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Th Efe 07
Temporal oscillations in the simulation of foam
enhanced oil recovery
J.M. van der Meer* (Delft University of Technology), J.B.F.M. Kraaijevanger
(Shell Global Solutions), M. Möller (Delft University of Technology) & J.D.
Jansen (Delft University of Technology)

SUMMARY
Many enhanced oil recovery (EOR) processes can be described using partial differential equations with
parameters that are strongly non-linear functions of one or more of the state variables. Typically these non-
linearities result in solution components changing several orders of magnitude over small spatial or
temporal distances. The numerical simulation of such processes with the aid of finite volume or finite
element techniques poses challenges. In particular, temporally oscillating state variable values are
observed for realistic grid sizes when conventional discretization schemes are used. These oscillations,
which do not represent a physical process but are discretization artifacts, hamper the use of the forward
simulation model for optimization purposes. To analyze these problems, we study the dynamics of a
simple foam model describing the interaction of water, gas and surfactants in a porous medium. It contains
sharp gradients due to the formation of foam. The simplicity of the model allows us to gain a better
understanding of the underlying processes and difficulties of the problem. The foam equations are
discretized by a first-order finite volume method. Instead of using a finite volume method with a standard
interpolation procedure, we opt for an integral average, which smooths out the discontinuity caused by
foam generation. We introduce this method by applying it to the heat equation with discontinuous thermal
conductivity. A similar technique is then applied to the foam model, reducing the oscillations drastically,
but not removing them.
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 Introduction

Foam was first applied in the oil industry in the late 1950s to decrease gas mobility and hence reduce
the undesirable effect of viscous fingering and gravity override in subsurface porous media flow (Fried,
1961). To generate foam in a subsurface oil reservoir, usually a mixture of chemicals and water is in-
jected into the reservoir, which together with the injected gas forms a foam. These chemicals make
a large contribution to the production costs, and therefore the goal is to minimize their amount. To
determine the required amount of chemicals for an economically profitable production level, reliable
simulations are needed (van der Meer et al., 2014).
The generation of foam can be described by a system of partial differential equations with strongly
non-linear functions, which impose challenges for the numerical modeling. Former studies by Namdar
Zanganeh et al. (2014), Ashoori et al. (2011) and Ashoori et al. (2012) show the occurrence of tem-
porally strongly oscillating solutions when using forward simulation models, that are entirely due to
discretization artifacts (Fig. 1).
To analyze these problems, we study the dynamics of a one-dimensional, two-phase incompressible
foam model, based on the Buckley-Leverett equation (Buckley and Leverett, 1942). In this simplified
model we consider a one-dimensional horizontal reservoir with one injection and one production well.
Gas is injected in the reservoir, which consists of a porous medium filled with a mixture of water and
surfactants (to simplify the model, oil is assumed to be absent). As soon as the injected gas comes into
contact with a sufficient amount of water and surfactant a foam is generated. The foam will cause a
rapid decrease of the gas mobility, because it captures the gas in bubbles that are separated by liquid
films (lamellae) between the pore walls (Rossen, 2013). The water mobility is not influenced by foam in
these models and hence the mobility ratio between gas and water is reduced. This will increase the time
that the injected gas needs to reach the production well (breakthrough time).
The governing equations of the foam model are solved sequentially in time by the implicit pressure ex-
plicit saturation (IMPES) method (Aziz and Settari, 1979). In space the saturation equation is solved by
a second-order MUSCL scheme (van Leer, 1979), and in time by the second-order semi-implicit trape-
zoidal method. The pressure equation is discretized in space by a first-order finite volume method, and
the resulting linear system is solved by the Cholesky method (van der Meer et al., 2014). Instead of using
a standard interpolation procedure for the phase mobilities when discretizing the pressure equation, we
opt for an integral average. The highly non-linear transition caused by the generation of foam is hence
integrated over a range of saturation values between two neighboring grid blocks, reducing jumps in the
solution.
We first introduce this method by applying it to the heat equation with discontinuous thermal conduc-
tivity. The initially strongly oscillating solution becomes monotonic by introducing this small change in
the discretization scheme. A similar technique is then applied to the foam model, reducing the oscilla-
tions drastically, but not removing them entirely. We analyze this difference in behavior by performing
a continuity analysis of the numerical scheme for each model. Furthermore, we illustrate the effective-
ness of our numerical scheme by comparing it with other finite volume schemes, which vary in order,
interpolation procedure and the amount of artificial diffusion.

Mathematical model

Conservation law

We study the one-dimensional foam model defined in van der Meer et al. (2014). In case of an in-
compressible fluid in a porous medium, mass conservation of the phase saturation Sα ∈ [0,1] is given
by

φ∂tSα =−∂x( fαu), ∀x ∈ [0,1], t ≥ 0, (1)

where the subscript α ∈ {w,g} denotes the water or gas phase, φ is the reservoir porosity, fα = λα/λ is
the phase fractional flow function, and u is the total Darcy velocity which follows from Darcy’s law,

u =−λ∂x p. (2)
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Figure 1 Temporal oscillations in the injection rate due to generation of foam, that are highly dependent 
on the grid resolution (Namdar Zanganeh et al., 2014).

Here p is the reservoir pressure, and λ is the total mobility, which is given by the sum of the phase 
mobilities as

λα = k
krα(Sα)

μα
, (3)

where k is the absolute permeability, μα the phase viscosity and krα the phase relative permeability,
defined by the Brooks-Corey model (Brooks and Corey, 1964). The Brooks-Corey relative permeability
functions for gas and water are given by

krw = krwe

(
Sw −Swc

1−Swc −Sgr

)nw

, krg = krge

(
Sg −Sgr

1−Swc −Sgr

)ng

, (4)

where krwe and krge are the endpoint relative permeabilities, Swc is the connate water saturation, Sgr is the
residual gas saturation and nw and ng are power coefficients, which all depend on the specific interface
properties of the rock and the fluids. From the definition of saturation it follows that the sum of the phase
saturations is one everywhere, i.e.

∑
α

Sα = 1, with α ∈ {w,g}, (5)

so that we only have to solve for one phase. Hence, Eq. (1), (2) and (5) imply that

∂xu = ∂x(−λ∂x p) = 0, ⇒ u(x, t) = u(t), (6)

which describes the pressure decay in the porous medium.

Foam model

If gas comes into contact with a sufficient amount of water and surfactants a foam will form. This will
cause a rapid decrease in the gas mobility λg, which can be modeled by decreasing the relative gas
permeability function by a mobility reduction factor fmr

krg :=
ko

rg

fmr
, fmr = 1+R ·Fw ·Fs, (7)

where ko
rg is the relative permeability of the gas in its original state using the Brooks-Corey model, R is

a constant that accounts for the maximum flow resistance of the foam, and Fw and Fs are functions that
describe the sensitivity of the foam to water saturation and surfactant concentration, respectively (Boeije
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 and Rossen, 2013). We assume that the surfactant concentration is the same everywhere, so that Fs = 1.
Because foam forms almost instantly, Fw is modeled by the Heaviside step function

Fw = H(Sw −S∗w), (8)

where S∗w is the least amount of water that is needed to form a foam. Since a sudden jump in the mobility
of the gas at S∗w will lead to discontinuous derivatives in the simulator, this jump is approximated by a
continuous arctangent function, so that it is smeared over a width that scales with 1/κ

Fw = 0.5+
arctan(κ(Sw −S∗w))

π
, (9)

where κ is a positive parameter that controls the width of the gas-foam transition. In Fig. 2 the rela-
tive permeability function described here is shown. The flux function and its derivative for the scaled
parameters are shown in Fig. 3.

Non-dimensional formulation

To reduce the number of parameters we scale the model given by Eq. (1), (2) and (6), in a similar way
as done by Riaz and Tchelepi (2007). If we let L be a characteristic length scale of the model, and U a
characteristic velocity scale we can scale the variables as follows

x = Lx∗, (10)

∂x =
∂x∗

L
, (11)

u = Uu∗, (12)

t =
φL(1−Swc −Sgr)

U
t∗, (13)

p =
μUL

k
p∗, (14)

where the asterisk denotes a non-dimensional variable. The relative permeability functions are scaled
by their endpoint relative permeabilities, i.e. the relative permeability of the residual water and gas
saturation, krwe = krw(Sgr) and krge = krg(1− Swc), respectively. The gas saturation is normalized by

S∗g =
(Sg−Sgr)

(1−Swc−Sgr)
. Substituting these variables into the dimensional model leads to a non-dimensional

system of the form

∂t∗S∗g = −∂x∗

(
k∗rgM
λ ∗ u∗

)
, (15)

u∗ = −λ ∗∂x∗ p∗, (16)

∂x∗u∗ = 0, (17)

where λ ∗ = Mk∗rg +k∗rw is the dimensionless mobility function. Here, the variable M denotes the dimen-
sionless mobility ratio, given by

M =
μw

μg

krge

krwe
. (18)

The mobility ratio together with the dimensionless foam parameters R, κ and S∗w, dimensionless injec-
tion rate I∗ and porosity φ , determine the entire behavior of the fluids for a certain initial boundary value

problem. In the rest of the article we will drop the asterisk for readability and define S ≡ Sg and f ≡ krgM
λ .

Together with initial and boundary conditions we then have the following initial boundary-value prob-
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 lem,

∂tS = −∂x ( f u) , ∀x ∈ [0,1], t ≥ 0, (19)

∂xu = 0, ∀x ∈ [0,1], (20)

u = −λ∂x p, ∀x ∈ [0,1], (21)

S(x,0) = 0, ∀x ∈ [0,1], (22)

S(0, t) = 1, ∀t ≥ 0, (23)

u(0, t) = uL, ∀t ≥ 0, (24)

p(1, t) = pR, ∀t ≥ 0, (25)

where we fix the velocity on the left boundary and the pressure on the right boundary. Due to the
incompressibility condition, the velocity will now be constant in time and space. Hence, the solution of
Eq. (19) is independent of Eq. (20) and the system is only weakly coupled through the total mobility.
Later in this paper we will also investigate the strongly coupled system, where the pressure is fixed on
both sides of the domain (i.e. Eq. (24) is replaced by p(0, t) = pL).

Numerical oscillations

We solve the foam model numerically for multiple sets of foam parameters, where we use the IMPES
method with a second-order MUSCL solver for the explicit part. A necessary condition for stability of
the saturation update, is given by the Courant-Friedrichs-Lewy (CFL) condition. Due to the high wave
speeds around the critical water saturation, as shown in Fig. 3b, the time step can become extremely
restricted if κ is increased. In Fig. 4 the saturation profile of the foam model for one parameter set is
shown, which is stable in both space and time. However, if we take a look at the pressure solutions in
Fig. 4 we see that the pressure solution is oscillating in time. In Fig. 5 we show that the amplitude of
the oscillations is highly dependent on the value of the foam parameters R and κ . Both increasing the
foam resistance R and the steepness of the foam transition κ will cause stronger oscillatory behavior.
Both the amplitude and frequency of the oscillations seem directly related to the grid size. Decreasing
the grid size will decrease the amplitude of the oscillations, and increase its frequency, as depicted in
Fig. 1. Moreover, we can connect each oscillation to a grid block the shock has passed as shown in
Fig. 6, which was also observed by Namdar Zanganeh et al. (2014). So unless the step size is drastically
reduced, the oscillations will not disappear by using a higher resolution in space (Fig. 7). Considering
the already small time step size due to the CFL condition, it is not feasible to reduce the step size by a
large amount.

Heat equation with discontinuous conductivity

Similar oscillations in time were observed for the one-dimensional heat equation with a discontinuous
coefficient, defined by

∂tT = −∂xq, ∀x ∈ [0,1] , t ≥ 0, (26)

q = −a(T )∂xT, (27)

T (x,0) = 0, ∀x ∈ [0,1], (28)

T (0, t) = 1, ∀t ≥ 0, (29)

T (1, t) = 0, ∀t ≥ 0, (30)

(31)

where T is the temperature and a the thermal conductivity given by a step function,

a(T ) :=

{
ε if T ≤ T ∗,
1 if T > T ∗,

(32)

as depicted in Fig. 8. We semi-discretize this equation with the finite volume method over a finite
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 interval [0,1] that is divided into N grid cells with size Δx = 1/N as shown in Fig. 9, where xi = iΔx
denotes the midpoint of the i-th grid cell and Ti = T (xi) the average temperature in the i-th grid cell. The
cell centers are indexed by i ∈ {0, . . . ,N} and the cell interfaces by i ∈ {−1

2
, 1

2
, . . . ,N + 1

2
}. Hence, we

obtain an ordinary differential equation for Ti,

Ṫi =
qi− 1

2
−qi+ 1

2

Δx
, ∀i ∈ {0, . . . ,N}, (33)

qi+ 1
2

= −ai+ 1
2

Ti+1 −Ti

Δx
, ∀i ∈ {0, . . . ,N −1}, (34)

q− 1
2

= −a(T0)
T0 −TL

Δx/2
, (35)

qN+ 1
2

= −a(TN)
TR −TN

Δx/2
, (36)

where Ṫi is the time derivative of Ti, and ai+ 1
2

is the approximation of the thermal conductivity on the

cell interface, which can be computed by one of the following approaches

• upwind: ai+ 1
2
=

{
a(Ti), if Ti ≥ Ti+1,

a(Ti+1), if Ti < Ti+1,

• harmonic average: ai+ 1
2
= 2a(Ti)a(Ti+1)

a(Ti)+a(Ti+1)
,

• arithmetic average: ai+ 1
2
= 1

2
(a(Ti)+a(Ti+1)),

• maximum average: ai+ 1
2
= max{a(Ti),a(Ti+1)}.

Because the temperature decreases from left to right, the maximum average is identical to the upwind
average for this problem, and the harmonic average is unsuitable since it converges very slowly if ε is
small. Eq. 33 is then solved by the forward Euler method for the other two averaging procedures and a
constant time step Δt = 1.8 ·10−4, which satisfies the CFL criterium.

Temporal oscillations

Independent of the choice of the flux discretization, this will lead to oscillatory behavior in time, as
shown in Fig. 10b and 10d. As a remedy we take the integral over the discontinuous parameter a,
defined by

A(T )≡
∫ T

0
a(v)dv, (37)

so that the solution of the PDE satisfies

q =−a(T )∂xT =−∂A
∂x

. (38)

This suggests the following choice for the numerical flux,

qi+ 1
2
=

A(Ti)−A(Ti+1)

Δx
=− 1

Δx

∫ Ti+1

Ti

a(v)dv, (39)
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 which corresponds to the choice

ai+ 1
2
=

A(Ti+1)−A(Ti)

Ti+1 −Ti
=

1

Ti+1 −Ti

∫ Ti+1

Ti

a(v)dv. (40)

If this integral is approximated using the Trapezoidal rule, it will reduce to the arithmetic average dis-
cretization, leading to non-physical oscillations. However, if we evaluate the integral exactly, A(T )
becomes a C0-continuous function of the temperature. Hence the flux q will be a continuous function of
the temperature. From Eq. (33) it then follows that Ṫ is a C0-continuous function and so the solution for
T is C1-continuous (Coddington and Levinson, 1955). In Fig. 10f the solution in time using the integral
average (40) is depicted. The resulting temperature is monotone in time, but exhibits a stepwise increase
that will damp out after some time. Also note that the integral average approaches the exact solution
most closely among the three methods. Of all cases the upwind average performs worst.
In order to determine the nature of the oscillations we analyze the (almost) semi-discrete behavior of the

equation by taking a very small time step. The results are shown in Fig. 11 and 12. The integral average
method does not show any improvement by decreasing the time step, since the stepwise behavior is still
visible. The smoothness of the solution using the other two averaging methods improves significantly
by taking a smaller time step, since the amplitude of the oscillations is smaller and the oscillations are
mainly restricted to a small time interval occurring after the shock wave has passed. Behind the shock
front the solutions show some low-frequency oscillations, with a decreasing amplitude, that resemble
the stepwise pattern we observed for the integral average method. The integral average is thus able to
remove the high-frequency oscillations, but not enough to get rid of the low-frequency oscillations.
Let us examine the time interval where the high frequency oscillations occur for the first two averaging

methods. The length of this interval seems to be dependent on the grid resolution and it reduces if the
grid is refined. As the time step is reduced the oscillations decrease in amplitude, and finally a constant
state is reached, which approaches the temperature at which the heat conductivity is discontinuous. The
length of this time interval corresponds to the time that the numerical shock precedes the analytical
shock. If the integral average is applied no such constant state is obtained and the numerical shock fits
the analytical shock quite well.

Foam model with discontinuous mobility

If we consider the foam model given by Eq. (19) to (24), we observe many similarities with the heat
equation with discontinuous conductivity. The system contains a discontinuous parameter λ , shown in
Fig. 13. Like the thermal conductivity a, this parameter λ is responsible for the time oscillations that
were observed in the pressure solution.

Finite volume scheme using integral average

If we discretize the system of equations with the finite volume method we obtain the following semi-
discrete system in xi

Ṡi = −u
fi+ 1

2
− fi− 1

2

Δx
, for i ∈ {0, . . . ,N}, (41)

∂xui =
ui+ 1

2
−ui− 1

2

Δx
= 0, for i ∈ {0, . . . ,N}, (42)

ui+ 1
2

= −λi+ 1
2

pi+1 − pi

Δx
, for i ∈ {0, . . . ,N −1}, (43)

u− 1
2

= −λ (S0)
p0 − pL

Δx/2
, (44)

uN+ 1
2

= −λ (SN)
pR − pN

Δx/2
, (45)

where λi+ 1
2

is approximated on the cell interface by one of the following interpolation methods
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 • upwind: λi+ 1
2
=

{
λ (Si), if ui > 0,

λ (Si+1), if ui < 0,

• harmonic average: λi+ 1
2
= 2λ (Si)λ (Si+1)

λ (Si)+λ (Si+1)
,

• arithmetic average: λi+ 1
2
= 1

2
(λ (Si)+λ (Si+1)),

• maximum: λi+ 1
2
= max(λ (Si),λ (Si+1)).

It was shown earlier, that this approach leads to non-physical oscillations in time. The amplitude of
these oscillations depends, besides the foam parameters and the grid size, on the adopted interpolation
method. The upwind average will cause similar oscillations as the harmonic average applied to the finite
volume discretization of the foam model. The mean average method suffers much less from oscillations
than the harmonic average method. It is reasonable to assume that if we choose this average in a smarter
way, it will be possible to reduce the oscillations even further.

Starting from Eq. (2) and (6) with u(t) = 1, it follows that

p(x, t) =
∫ 1

x

dx
λ (S(x, t))

+ pR, (46)

A central two-point discretization for the spatial derivative leads to the semi-discrete equation for the
pressure as a function of time only

pi(t) = Δx
N

∑
j=i

1

λ (S j(t),S j+1(t))
+ pR. (47)

Hence p is a smooth function of time if 1
λ (Si,Si+1)

and u(t) are smooth. If we fix the velocity at the left

boundary, it will be constant in time and space, due to the incompressibility condition. This means we
only have to obtain a smooth formulation for the sum over the mobilities in time. In order to achieve this
we take the cell-integral average of 1

λ over the interval [Si,Si+1], given by

1

λ (S j,S j+1)
=

1

Si+1 −Si

∫ Si+1

Si

1

λ (S)
dS, (48)

so that

λi+ 1
2
=

Si+1 −Si∫ Si+1

Si
1

λ (S)dS
. (49)

Alternatively, we can take the integral over λ directly, so that

λi+ 1
2
=

1

Si+1 −Si

∫ Si+1

Si

λ (S)dS. (50)

If λ is a smooth function of S and ΔSi = |Si+1 −Si| is small, the integral averages are similar to standard
averages like the arithmetic average. It can be shown that in this case

1

Si+1 −Si

∫ Si+1

Si

λ (S)dS =
λ (Si)+λ (Si+1)

2
+O((ΔSi)

2). (51)



 

 

 
ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery 

29 August – 1 September 2016, Amsterdam, Netherlands 

 Finally, to avoid very large contributions to the sum of inverse mobilities 1
λ (Si,Si+1)

, we could opt for

another ’averaging method’, given by

λi+ 1
2
= max{λ (Si),λ (Si+1)}. (52)

We solve the system given by Eq. (15) to (17) with the IMPES method, where we make use of different
averaging methods for the total mobility. The resulting pressure solutions in time are shown in Fig. 14
for a grid resolution N = 100.

From these results it is clear that the integral average is not sufficient to remove the oscillations,
although the amplitude is halved compared to the upwind and harmonic average. However, if we use
a coarser grid with resolution N = 10, the oscillations are more pronounced, and it becomes apparent
that the integral average has a smoothing effect on the oscillations (Fig. 15). There are several things
worth noting in Fig. 15. First, the number of oscillations is the same for all averaging methods and
matches the number of grid blocks behind the saturation front. Furthermore, note that the amplitude
of the oscillations differs drastically, with approximately a factor five between the upwind average and
the maximum average (Fig. 16). Besides that, the nature of the discontinuity varies for the different
averaging methods. It can be seen that for the maximum mobility the oscillations are saw tooths, also
called removable discontinuities, since the limit on both sides is equal. These discontinuities are not
continuously differentiable and hence are C0-continuous functions. The integral average, on the contrary,
is continuously differentiable.

Discussion and Conclusion

We studied two types of temporal oscillations, that are entirely due to the grid discretization. The first
type of oscillations appear in the parabolic heat equation with discontinuous conductivity, when dis-
cretized with the finite volume method. The second type of oscillations are found in the elliptic part
of a two-phase, incompressible foam model, with (almost) discontinuous mobility. To get rid of these
non-physical oscillations we changed the averaging method on the grid interfaces of the finite volume
scheme. Instead of taking an average of the conductivity/mobility on each side of the grid interface, all
(unknown) values in between are taken into account, by integrating the conductivity/mobility over the
given temperature/saturation range. This can be seen as a sort of flux correction method, where linear in-
terpolation is used to approximate the in-between values. Applying the integral average to the non-linear
heat equation with discontinuous heat conductivity removes the oscillations for our test cases. Applying
the same scheme to the foam model, does not solve the numerical problems. However, integration over
the mobility does change the nature of the discontinuities. The pressure solution becomes continuously
differentiable in time, and the amplitude of the oscillations is reduced by a significant amount. Still, the
maximum average performs best, when we compare the different averaging schemes for all test cases.
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(a) κ = ∞ (b) κ = 40

w

Figure 2 Relative permeability function for the model with and without foam. The sudden transition due 
to foam in the left figure given by Eq. (7) and (8) is approximated in the right figure by a continuous line 
given by Eq. (7) and (9), where S∗ = 0.3, κ = 40, R = 10 and M = 1.
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Figure 4 Numerical and analytical saturation and pressure profiles of the foam model with resolution N 
= 100 and M = 1, S∗ = 0.15, κ = 1000 and R = 10000, uL = 1,pR = 1.
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Figure 5 (Left) pressure versus spatial coordinate at t = 0.1, (Right) pressure versus time at x = 0.5, of 
the foam model with resolution N = 100 and M = 1, S∗ = 0.2, pL = 11, pR = 1.
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Figure 7: Non-oscillatory solutions in space (left) and oscillatory solutions in time (right) for different
grid resolutions and M = 1, S∗w = 0.15, κ = 1000 and R = 10000, uL = 1,pR = 1.
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Figure 8 Discontinuous thermal conductivity a(T ) for T ∗ = 0.5 and ε = 0.01.

Figure 9 Numerical grid over the domain [0,1].
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Figure 10 Numerical and analytical temperature profiles of the heat equation with discontinuous con-

ductivity, where Δx = 0.02, Δt = 1.8 · 10−4, T ∗ = 0.5 and ε = 0.01.
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Figure 11 Numerical and analytical temperature profiles of the heat equation with discontinuous con-

ductivity, where Δx = 0.02, Δt = 1.8 · 10−6, T ∗ = 0.5 and ε = 0.01.
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Figure 12: Numerical and analytical temperature profiles of the heat equation with discontinuous con-
ductivity, where Δx = 0.02, Δt = 1.8 ·10−7, T ∗ = 0.5 and ε = 0.01.
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Figure 13: Relative permeability functions of water, gas and foam and the total mobility λ at a fixed
time for M = 1, S∗w = 0.15.
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Figure 14: Pressure vs time x = 0.15 for N = 100, M = 1, S∗w = 0.2, with uL = 1 described on the left
boundary and pR = 1 prescribed on the right boundary.
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Figure 15: Pressure vs time at x = 0.15 for N = 10, M = 1, S∗w = 0.2, with uL = 10 described on the left
boundary and pR = 1 prescribed on the right boundary.
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Figure 16: Pressure versus time for N = 10, M = 1, S∗w = 0.2, with uL = 10 prescribed on the left
boundary and pR = 1 prescribed on the right boundary.


