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Abstract
In this work, the application of tensor methodologies for computer-assisted history matching of channelized
reservoirs is explored. A tensor-based approach is used for the parameterization of petrophysical parameters
to reduce the dimensionality of the parameter estimation problem. Building on the work of Afra and Gildin
(2013); Afra et.al. (2014); Afra and Gildin (2016), permeability fields of multiple model realizations are
collected in a tensor form which is subsequently decomposed to derive a low-dimensional representation
of the dominant spatial structures in the models. This representation then is used to estimate an identifiable
reduced set of parameters using an ensemble Kalman filter (EnKF) strategy. This approach is attractive for
the parameter estimation of permeabilities because it increases the ability to represent channelized structures
in the updates resulting in an improved predictive capacity of the history-matched models. In particular,
channel continuity is better preserved than with a Principal Component Analysis (PCA) parameterization.

Introduction
Computer-assisted history matching (CAHM) has been successfully applied to reduce the level of
uncertainty of the petrophysical properties by incorporating data-driven methods for parameter estimation.
In this context, CAHM aims to assimilate production data by finding an updated set of model parameters
(petrophysical parameters like permeabilities, porosities, net-to-gross ratios, etc.), such that the mismatch
between production data and the model response is minimized. This has been a very prolific field of research
and many algorithms have been developed in the last decades. For overviews we refer to the textbook by
Oliver et al. (2008) and the review paper by Oliver and Chen (2011). Here we will use the Ensemble Kalman
filtering method for which we refer to the textbook of Evensen (2009) and the review paper by Aanonsen
et al. (2009).

Typically, the number of parameters to be estimated exceeds by far the number of available field
measurements, and the parameter estimation problem becomes ill-conditioned, see e.g. Oliver et al. (2008).
As the parameter estimation procedure is posed as an ill-conditioned optimization problem, there are usually
several optimal solutions, i.e., there are multiple realizations of the petrophysical parameters that minimize
the mismatch between the model output and the data. This implies the fact that while two history-matched
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reservoir realizations may look very different from the geological perspective, they may have very similar
outputs in their response space. This phenomenon is illustrated in Fig. 1.

Figure 1—Rock permeability and well configuration of two updated reservoir models with
very similar dynamical (solid and dashed lines), adapted from van Essen et al. (2016).

From a Systems and Control perspective, a mathematical model that, when provided with different
parameter sets, generates similar responses is usually classified as a non-identifiable model. Typically,
reservoir models are nonidentifiable, see e.g. Van Doren et al. (2009, 2011). In simple words, the
petrophysical parameters are currently described at a level of detail which is too high to achieve a proper
validation from the data. This problem is usually addressed through the use of a prior term with spatial
correlations described with two-point statistics (a covariance matrix). However, spatial features that extend
over many grid blocks, such as channels or faults, are not captured by such a description. In order to address
this issue, several authors have developed parameterization methods of geological structures which include
techniques based on sensitivity analysis and PCA: Oliver (1996); Reynolds et al. (1996); Tavakoli et al.
(2010); Wavelets: Sahni et al. (2005); Channel parameterizations: Van Doren et al. (2011); Discrete Cosine
Transform: Jafarpour et al. (2009, 2010); Pluri-Principal Component Analysis: Chen et al. (2016). Recently,
there have been several developments aimed at preserving geological realism after the CAHM step, see, e.g.,
Vo and Durlofsky (2015). Sarma et al. (2008) have introduced the kernel PCA method, which can capture,
to some extent, higher-order statistics, but involves the solution of a nontrival pre-imaging problem. From
the perspective of CAHM, parameterizations are attractive because:

1. Identifiability: They increase the identifiability of the inverse modeling problem by estimating fewer
parameters.

2. Spatial structure: They sometimes maintain spatial features such as channels or faults, that are not
captured by two-point statistics (covariances).

Despite of these efforts, finding natural and simple representations of geological structures is still an
active field of research. Tensor methodologies for parameter estimation constitute a relatively new subject
in the reservoir simulation community, and Afra and Gildin (2013, 2014, 2016) and Afra et.al. (2014) have
explored the application of tensor decompositions to represent permeability fields for parameter estimation.
In this paper, we build on their work to achieve better predictive capabilities of updated channelized
reservoir models in CAHM, while providing an explicit formulation of the tensor methodology for the
parameterization of petrophysical parameters. We pursue this through the adaptation of an algorithm for
parameter estimation that uses the low-dimensional tensor formulation of channelized permeability fields.
In the next sections, we introduce the fundamental tensor tools, the type of parameterizations, the adapted
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ensemble algorithm for parameter estimation and a discussion of the results of the application of these
developments in a test case.

Tensor modeling and decompositions
The low-rank approximation of matrices is well understood, see e.g. Eckart and Young (1936); Golub
and Van Loan (2012), and recently there has been a huge development in the extension of low-rank
approximations to multilinear arrays, see e.g. Chen and Saad (2009); De Lathauwer et al. (2000a,b); De Silva
and Lim (2008); Kolda and Bader (2009); Lim (2004). This section introduces the concepts of multilinear
algebra, algorithms and the tensor parameterization of petrophysical parameters.

Tensor representation of the petrophysical properties Let us consider a reservoir with a 2D
rectangular geometry with I × J grid cells. Traditionally, the representation of the petrophysical parameters
(permeability, porosity, etc.) has been in the form of an (I · J × 1) vector. Alternatively, if the spatial grid
has a Cartesian structure, and if there is an ensemble of models, one can collect R realizations θ of size I ×
J, and represent this data object in a three-dimensional array S of size I × J × R. That is, the ensemble of
realizations is represented as a multidimensional array S ∈ ℝI×J×R. Such a multidimensional array is called
a tensor and can be viewed as the natural generalization of vectors and matrices to higher dimensional
objects. For an ensemble of 2D channelized permeability fields, a three-dimensional array is schematically
depicted in Fig. 2.

Figure 2—Schematic of the tensor representation of a petrophysical property (permeability) of an ensemble of
channelized models. The horizontal axes represent spatial coordinates and the vertical axis the model coordinate.
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In the tensor representation, the geometrical and spatial structures remain intact. In addition, the
multilinear domain allows extensions of classical matrix decompositions to tensors, and the notions of
approximations and low-rank approximations can be also defined in the tensor framework.

Fundamentals of linear and multilinear algebra Tensors are the multilinear extension of vectors
and matrices and can be represented as multilinear arrays and, similar to the matrix case, tensors can be
interpreted as multilinear mappings. With this interpretation, a tensor induces a multilinear mapping S : ℝI1

× ℝI2 × ··· × ℝIn → ℝ. Let TN be the set of all N-way mappings ℝI1 × ℝI2 × ··· × ℝIn → ℝ, then TN becomes
a vector space when it is equipped with additive and multiplicative properties, see e.g. van Belzen (2011);
Van Belzen and Weiland (2012). Given two tensors S, R ∈ TN, the following properties can be defined:

• Additivity: Q = S + R ∈ TN, where the (i1i2 ··· iN)th element of Q, i.e. qi1i2 ··· iN = si1i2···iN + ri1i2···iN,
the sum of the (i1i2 ··· iN)th elements of S and R.

• Tensor multiplication by a scalar: P = αS ∈ TN for any α ∈ ℝ, where the (i1i2 ··· iN)th element of
P, i.e. Pi1i2···iN = αsi1 i2···in.

It is important to understand that the elements of S, i.e. si1i2···iN are defined with respect to a set of basis
functions:

(1)

If the vector space TN is equipped with an inner product, it allows the definition of a normed space. With
S, R ∈ Tn, the inner product #·,·# between S and R is defined as:

(2)

Hence, an induced tensor norm can be defined as , known as the Frobenious norm, which
is equal to

(3)

for the special case when the basis functions in Eq. 1 are orthogonal.
Tensor decompositions and approximations The most general formulation of a tensor decomposition

is provided by the Tucker decomposition, see, e.g., the work of Tucker (1966) and Kolda and Bader (2009),
where the tensor S is represented by the multiplication of the elements of a full core tensor with rank 1
tensors, defined by the basis functions for each of the tensor coordinate spaces. The Tucker decomposition
can be defined as:

(4)

where the scalars σijr ∈ ℝ are the elements of the so called core tensor of size I × J × R and where

(5)

is the outer product of vectors φi ∈ ℝI, Ψj ∈ ℝJ and vr ∈ ℝR. This makes Θijr a rank-one 3-way tensor. In
such a representation, the sets ,  and  are usually taken as a basis of ℝI, ℝJ and ℝR,
respectively, and the Tucker decomposition, Eq. 4 is viewed as a representation of the tensor with respect
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to these bases. More precisely, the rank-one 3-way tensor Θijr is a multilinear mapping Θijr: ℝI × ℝJ × ℝR

→ ℝ defined as

(6)

which is a product of inner products in ℝI, ℝJ and ℝR. At this stage, it is important to observe that the
mapping Θijr, defined in this way, is linear in each of its argument. Moreover, if the bases , 

and  are all orthonormal sets (that is, 〈φi′ φi″〉 = 1 if i′ = i″ and zero otherwise for vectors ),
it follows that

(7)

for any triple of indices (i0, j0, r0) with 1 ≤ i0 ≤ I, 1 ≤ j0 ≤ J and 1 ≤ r0 ≤ R. In words, this says that the entries
of the core tensor represent the tensor S when evaluated at its (orthonormal) basis vectors. If the bases are
orthonormal, then this observation naturally identifies the entries σi0j0r0 of the core tensor with the evaluation
of the tensor S at its (i0, j0, r0)th basis element. When evaluating S at vectors which are not basis functions,
then the multilinear functional S : ℝI × ℝJ × ℝr → ℝ defined in Eq. 7 and operating over the vectors (φ, Ψ,
υ) changes its representation, and produces:

(8)

A particular case of the Tucker decomposition is the canonical polyadic (CP) decomposition, also known
as the PARAFAC decomposition, and has been successfully applied in the field of chemometrics, see e.g.
Bro (1997); Harshman (1970); Harshman and Lundy (1994). In the CP decomposition the core tensor is
"diagonal", i.e., the elements of the core tensor σijr ≠ 0 for i = j = r, and σijr = 0 otherwise.

For the Tucker decomposition, a low-rank approximation of S can be obtained by decomposing Eq. 4
according to  where, for , , , the tensor

(9)

is viewed as the approximation of S to its modal-rank ( , , ) truncation and where  is viewed
as the corresponding approximation error. The size of the approximation error is measured in Frobenius
norm and satisfies

(10)

provided that the bases ,  and  are orthonormal sets. The Frobenius norm of tensors
in Eq. 10 is used to compute a relative approximation error related to the tensor approximation as follows:

(11)
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Algorithms for tensor decompositions Clearly, the approximation accuracy of Eq. 9 depends on the
choice of basis vectors φi, Ψj, and υr, their ordering and the elements in the core tensor. There exist many
algorithms to select these bases in such a way that the approximation error, Eq. 10 is small or minimized.

The problem of finding these sets can be formulated as the optimization problem

(12)

which is to be solved subject to the constraint that the basis elements , 
and  are orthonormal.

This problem has an analytic solution only for the case where ( , , ) = (1, 1, 1). For all other
cases one has to resort to numerical approximations. Several algorithms have been proposed to compute
tensor decompositions using orthonormal basis functions. The High Order SVD (HOSVD) proposed by
De Lathauwer et al. (2000a) was the first extension of the classical SVD to the tensor domain and the
methodology is based on an unfolding procedure of tensors. The High Order Orthogonal Iteration (HOOI)
by De Lathauwer et al. (2000b), the Tensor SVD proposed by Weiland and Van Belzen (2010), Maximum
Singular Value Modal Rank (MSVM) and the Single Directional Modal-rank decomposition (SDM) by
Shekhawat and Weiland (2014) compute singular values (elements of the core tensor) and basis vectors in a
sequential way, where the singular values and vectors depend on a search direction at every decomposition
level ( , , ). The tensor SVD, MSVM and SDM algorithms keep the tensor structure intact in such
a decomposition procedure. In this paper, we consider the Tucker modal-rank type of decomposition, see
Kolda and Bader (2009), which achieves orthonormal sets ,  and . There are several
tensor toolboxes available for the Matlab platform, like the Matlab Tensor toolbox, see, e.g., Bader et al.
(2015) and the Tensorlab, see, e.g., Vervliet et al. (2016). In this work we have implemented the HOSVD
using tensor functions from the Matlab Tensor Toolbox, see, e.g., Bader et al. (2015).

Tensor approximations of permeability fields In order to illustrate the use of tensor decompositions
to approximate the petrophysical parameters of an ensemble of realizations, we analyze the performance
of the classical SVD and tensor approaches for low-dimensional representations of permeability fields.
Let us consider an ensemble of 3D geological models with a geological structure consisting of a
network of fossilized meandering channels of high permeability. The data set has been uploaded to the
4TU.Datacentrum repository and can be accessed by external users, see Jansen et al. (2014). A view of
the first layer of one of the geological realizations from the ensemble is depicted in Fig. 3. Note that here
we use the full square realization with all grid blocks, whereas in the original model several grid blocks
were declared void in order to modify the reservoir shape. The realizations are composed of 25200 grid
blocks that are 8 × 8 × 4m in size, and have dimensions of 480 × 480 × 28m and 7 geological layers, and
we consider R = 100 realizations.
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Figure 3—Low rank approximations using classical SVD and tensor decompositions.

We construct a 4D tensor S of size 60 × 60 × 7 × 100, where the x, y, z and model dimensions correspond
to the first, second, third and fourth tensor coordinates accordingly. Hence, the tensor S can be decomposed
as in Eq. 4:

(13)

For instance, the permeability fields in tensor S are described by I = 60 basis functions, which are vectors
φ ∈ ℝ60, for the x coordinate; J = 60 basis functions, which are vectors Ψ ∈ ℝ60, for the y coordinate; Z = 7
basis functions, which are vectors χ ∈ ℝ7, for the z coordinate; and R = 100 basis functions, which are vectors
υ ∈ ℝ100, for the model coordinate. We compute low-rank approximations  of the original permeability

pattern by truncating the sums in Eq. 13 as follows:  for the x coordinate,  for the y

coordinate,  for the z coordinate and  for the model coordinate, leading to a modal rank
approximation of (15,35,1,100). The quality of the tensor approximation is compared with the classical low-
rank approximation provided by the SVD, where the vector representations of the petrophysical properties
are collected in a matrix S of size I · J · Z × R, and a low-rank approximation of S is constructed by selecting a
few basis functions. The visualization of one realization and the SVD and tensor approximation are depicted
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in Fig. 3. The results in Fig. 3 indicate that the rank of the SVD approximations has to be increased to 60 in
order to reconstruct adequately the general patterns of the permeability fields. One relevant aspect comes
from the amount of information required to approximate the rock patterns, measured in megabytes. The
tensor S and the matrix S have a memory size of 20.16MB, and the basis functions and the core tensor in
Eq. 13 for the tensor approximation of modal rank (15,35,1,100) have a memory size of 0.53MB in total,
which corresponds to the 2.6% of the size of the original tensor S. If we
check the memory size of the basis functions and singular value matrices required to compute the low-
rank SVD approximation of rank 60 of S, we find that this is 12.17MB, which corresponds to the 60.3% of
the memory size of the original matrix S. This result demonstrates the compression capabilities of tensor
decompositions. This characteristic will be used in the next sections to find low-order parameterizations
of permeability fields.

The surface plot of the Fig. 4 depicts the relative error as defined in Eq. 10 as a function of the number
of spatial basis functions in the x and y coordinates. From the surface plot it is possible to visualize that
increasing the number of basis functions for the y coordinate has a bigger impact on the quality of the
approximation than increasing the number of basis functions in the x coordinate. This result has a physical
interpretation since the channel orientation is along the y coordinate. To confirm the directional relevance
of the basis functions in the coordinate that is aligned with the channels, we have depicted in Fig. 4 the
relative error when fixing the number of basis functions to 60 for the x or y coordinates and varying the
number of basis functions for the other coordinate. The plot confirms the observation and suggest that the
basis functions in the y coordinate are more relevant to approximate the features of the channels aligned
with the y coordinate. For instance, tensor decompositions can be used for directional approximations that
emphasize geological features like channels which are aligned with a particular spatial coordinate, and
provide a framework to approximate petrophysical parameters in a more efficient way than classical SVD
methods.

Figure 4—Relative error of the approximations. Left: Relative error as a function of the basis functions
in the x and y coordinates. The color-scale corresponds to magnitude. Right: Relative error fixing the
number of basis functions in one coordinate, and varying the number of basis functions in the other.
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Methods like the DCT parameterizations, see e.g. Jafarpour et al. (2009), use real cosine functions to
define infinite series expansions of the permeability fields, while assuming that the most relevant geological
features are preserved in the low frequency modes. Despite that this method is computationally efficient due
to the fast algorithms for Fourier transforms, the approximation error is minimal if and only if the number of
basis functions (cosines) tends to infinity, and in theory, it usually requires a large number of Fourier modes
to capture relevant geological features. In practice, DCT-based approximations have a good performance
while using a few set of basis functions, but no error estimates can be derived from the approximations. The
tensor approach to the approximation of permeability fields computes the optimal basis functions which
guarantee the best approximation with the computed basis functions, and error estimates can be easily
computed using Eq. 11. In addition, it provides a framework for approximating geological features which
are aligned with one specific spatial coordinate.

Tensor parameterizations of permeability fields
Previously, we have exemplified the benefits of implementing tensor representations and decompositions of
petrophysical parameters to extract the most relevant geological features in low-dimensional spaces. In this
section, we propose a low-dimensional parameterization of the petrophysical parameters based on the tensor
decomposition described in Eq. 4, which can be incorporated in parameter estimation routines. To illustrate,
suppose now that the Tucker tensor decomposition is applied to the data corresponding to an ensemble of
two-dimensional rectangular permeability fields. The permeability field of the mth realization θm is then
represented as a matrix of dimension I × J. A number of R realizations of petrophysical parameters θm is
stored in an order-3 tensor S of size I × J × R. This tensor is approximated as in Eq. 9, and results in the
approximate sample  of the permeability field defined by the order-2 tensor

(14)

where em is the mth standard unit vector in ℝR and where  are real-valued
coefficients in the expansion in Eq. 14 of a (rank 1) two-dimensional permeability field. The coefficients

 are linear combinations of the mth elements of the basis functions in the set , i.e.,

, where . The expression in Eq. 14 is a tensor representation of the
permeability fields, where all realizations of the ensemble share the same spatial basis functions defined by
φi ⊗ Ψj. In this tensor form, the realizations are characterized by the set of coefficients αij. This representation
induces a parameterization of the ensemble if we allow the coefficients αij to be free parameters. In the next
section, we explore the use of this induced parameterization for parameter estimation.

EnKF for parameter estimation using tensor parameterizations
The objective of CAHM is to update the model parameters through assimilating the information contained
in measurements taken during the operation of the oil reservoir, which typically are the production rates
and bottomhole or tubing head pressures at the well locations. Afra and Gildin (2014) have introduced
an Alternating Least Squares type of decomposition, used for the inference of permeability fields. In this
section, we incorporate the tensor parameterization described in the previous section into the EnKF scheme.
Let us consider the reservoir model:

(15)
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where f is a vector-valued nonlinear function of the states xk, the petrophysical parameters θ and the
inputs uk. Let  be the nonlinear output operator. Using the representation in Eq. 14, the

petrophysical parameters can be approximated by , and can be characterized by

the set of parameters αij. Let all the parameters αij be collected in the vector , and let us consider
the augmented state vector zk:

(16)

with augmented output vector yk:

(17)

The EnKF approach follows the sequential steps of the classical KF, but uses an ensemble of R
parameterizations of the realizations Ω = {a1, a2, ···, aR} to update the mean and covariance of the augmented
state z:

1. Forecast: For every model realization in the set Ω, the forecast of the ensemble of augmented states
is generated, and the matrix  is constructed according to:

(18)

2. Assimilation: The covariance matrix associated with the ensemble of augmented states is computed as:

(19)

where  is the average of the augmented states of the ensemble and 1 is
the column vector with all the elements equal to 1. The Kalman gain then is defined as

, with Rk the covariance matrix of the measurement noise. The
states zk are assimilated with the data dk using the Kalman equations as follows:

(20)

In practice, the EnKF is implemented in a computationally more efficient fashion. Moreover it is often
necessary to implement localization techniques to avoid spurious correlations. For details we refer to
Evensen (2009) and Aanonsen et al. (2009).

Application case
In this section we perform a parameter estimation experiment where we compare the performance of the
tensor parameterizations described in this paper with classical PCA parameterizations. We consider the data
set provided by Vo and Durlofsky (2015), and construct an ensemble of R = 100 realizations of channelized
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reservoirs of size I = 60 and J = 60. The well configuration consists of 12 producer wells and 4 injectors,
and their locations are depicted in Fig. 5. The producers are operated at a fixed bottom hole pressure and
the injectors at fixed rates.

Figure 5—A realization of the permeability field and well configuration
of the reservoir models. Red: Producer wells. Black: Injector wells.

Table 1—Details of the experimental setting.

Parameter Value Unit

Simulation parameters

Simulation time 15 [year]

Time step 1 [month]

Measurement errors, standard
deviations

Flow rates 12 [m3/day]

Bottom-hole pressures 6 [bar]

Fractional flow (watercuts) 0.1 -

Parameter estimation experiment

Observation time interval 3 [month]

Update time interval 2 [year]

End of history matching 6 [year]

The field is producing for 15 years, with a simulation time step of Δt = 1 month. The measurements to be
considered are the total rates at the producers, the bottom-hole pressures at the injectors and the fractional
flows at the producers, with an observation time interval of 3 months. In the experiment, measurement errors
are modeled as white noise, i.e. stochastic variables with a Gaussian distribution of zero mean. During the
production stage, the petrophysical parameters are estimated with an interval of 2 years and the last update
is made 6 years after the start of production. The key parameters for the experiment are summarized in Table
1. The forward simulations are performed with the Matlab Reservoir Simulation Toolbox (MRST), see,
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e.g., Lie et al. (2012). For the parameter estimation, we have used the EnKF module of MRST. We choose
realization number 100 to be the truth. The permeability fields are represented in a tensor formulation S of
size 60 × 60 × 99 and we construct a set of lowdimensional representations Ω = {a1, a2, ···, a99}, where a
∈ ℝ50, which is used as prior ensemble for the EnKF routine.

The plots of the total flow rates in several production wells, after the EnKF final update, are presented
in Figs. 6-8. All of the plots consist of three figures, each one associated with the flow rates in a particular
well for the parameter estimation result when using the unparameterized EnKF, the EnKF with tensor
parameterization and the EnKF with PCA parameterization. The history matching period, which is depicted
with a green background, ends after 6 years, and thereafter the reservoir models are used for prediction,
during the time period depicted with a pink background. One of the principal objectives of the parameter
estimation of reservoir models, of more importance than having a good history-match of the reservoir
outputs, is to create an updated ensemble of

Figure 6—History matching and rate prediction. Total rates at well 5. The green background indicates the history
matching interval. The pink background indicates the prediction interval. Red: Truth. Gray: Updated ensemble.
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Figure 7—History matching and rate prediction. Total rates at well 11. The green background indicates the history
matching interval. The pink background indicates the prediction interval. Red: Truth. Gray: Updated ensemble.

Figure 8—History matching and rate prediction. Total rates at well 15. The green background indicates the history
matching interval. The pink background indicates the prediction interval. Red: Truth. Gray: Updated ensemble.
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reservoir models with good predictive capabilities. On the one hand, the EnKF without parameterization
shows a very good history matching result. However, the updated ensemble of realizations presents very
poor prediction capabilities for most of the wells. On the other hand, when the EnKF is used with low-
dimensional tensor and the PCA parameterizations, it still generates good history matching results but now
also results in considerably improved prediction capabilities. The poor prediction capability of the EnKF
without parameterization can be explained from the loss of geological realism of the updated ensemble. In
Fig. 9 and Fig. 10 we depict the final permeability updates of two realizations, using the methods described in
this section. When no parameterization is used, the updates totally lose the channel structure. This is because
the Kalman filter is only capable to capture the second-order statistics of the petrophysical properties. When
tensor parameterizations are used, combined with an EnKF, they impose a certain amount of geological
structure on the updates. Despite that the EnKF still only captures the second-order statistics, the geological
updates have a structure imposed by the prior knowledge, which is included in the tensor basis functions, and
as a result the geological updates still look like channelized reservoir models. The PCA updates lose much
more of the geological realism of channelized structures compared to the results from the tensor updates.

Similar observations have been found for the watercuts. To exemplify, Fig. 11 and Fig. 12 show that the
watercuts predicted by the EnKF with no parameterization are deviating from the truth, while the watercuts
from the updated ensemble using a low-dimensional representation are able to predict more accurately the
water breakthrough times.

Figure 9—Final update permeability field, realization 78.
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Figure 10—Final update permeability field, realization 75.

Figure 11—History matching and water breakthrough prediction. Fractional flow at well 5. The green background indicates
the history matching interval. The pink background indicates the prediction interval. Red: Truth. Gray: Updated ensemble.
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Figure 12—History matching and water breakthrough prediction. Fractional flow at well 9. The green background indicates
the history matching interval. The pink background indicates the prediction interval. Red: Truth. Gray: Updated ensemble.

Conclusion
In this paper we have analyzed the effectiveness of the parameterizations of petrophysical parameters
with a tensor-based decomposition of the prior ensemble, for parameter estimation using CAHM, building
on the work of Afra and Gildin (2013); Afra et.al. (2014); Afra and Gildin (2016). The efficiency of
tensor approximations when representing channelized structures is illustrated by the fact that they require
only 0.6% of the original amount of information to reconstruct channels appropriately, while a PCA
approximation requires almost 63% (1 order of magnitude higher). In order to verify the potential use of the
tensor approach for parameter estimation, our experiments involve the estimation of the permeability field
of a channelized reservoir using three alternative parameterizations: grid block, PCA and tensor-based. The
uncertainty space is covered by an ensemble of channelized realizations which are updated every two years.
After the final history match, the updated ensemble is used to predict total rates, well pressures and water
breakthrough times. For the case of grid block property updates (i.e., without parameterization), an excellent
history match is observed, but the ensemble has poor prediction capabilities due to a loss of geological
realism. When using tensor representations, we observe considerably improved prediction capabilities of
the updated ensemble, outperforming the PCA approach, and an improved preservation of the geological
realism of the updated ensemble.
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