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A Multimodal Social Signal
Processing Approach to Team
Interactions

Nale Lehmann-Willenbrock1

and Hayley Hung2

Abstract
Social signal processing develops automated approaches to detect, analyze, and synthesize social sig-

nals in human–human as well as human–machine interactions by means of machine learning and sen-

sor data processing. Most works analyze individual or dyadic behavior, while the analysis of group or

team interactions remains limited. We present a case study of an interdisciplinary work process for

social signal processing that can develop automatized measures of complex team interaction dynam-

ics, using team task and social cohesion as an example. In a field sample of 25 real project team

meetings, we obtained sensor data from cameras, microphones, and a smart ID badge measuring

acceleration. We demonstrate how fine-grained behavioral expressions of task and social cohesion

in team meetings can be extracted and processed from sensor data by capturing dyadic coordination

patterns that are then aggregated to the team level. The extracted patterns act as proxies for beha-

vioral synchrony and mimicry of speech and body behavior which map onto verbal expressions of

task and social cohesion in the observed team meetings. We reflect on opportunities for future

interdisciplinary or collaboration that can move beyond a simple producer–consumer model.

Keywords
machine learning and AI, types of research design, field research, types of research design, time

series, longitudinal and related approaches

Many research questions in organizational research relate to how members of organizations behave
during dynamic social interactions (LeBaron et al., 2018). Among social interaction phenomena in
organizations, team interactions are particularly complex and often puzzling for organizational
researchers (Waller & Kaplan, 2018). However, researchers need to understand behavioral team
interactions in order to understand emergent team phenomena such as intra-team trust, collaborative
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sensemaking, or team cohesion, all of which originate in team behavioral dynamics. Several scholars
have pointed to the benefits of recording audiovisual team interaction data in order to capture rich
data on team dynamics over time (e.g., Kozlowski, 2015; Waller & Kaplan, 2018). Empirical
studies adopting audiovisual recording and analysis have made important contributions to under-
standing the micro-level behavioral dynamics that characterize successful team interactions (e.g.,
Hoogeboom & Wilderom, 2020; Lehmann-Willenbrock & Chiu, 2018; Uitdewilligen et al., 2018).
Yet, behavioral team phenomena continue to be difficult to capture. If researchers go to the
trouble of gathering audiovisual data on actual team behavior rather than relying on survey-based
proxies of behavior (for a detailed critique, see Lehmann-Willenbrock & Allen, 2018), they need sub-
stantial resources for annotating the data and quantifying behavioral patterns. Moreover, team beha-
vioral dynamics are fluid and often change from one minute to the next, which requires
“high-resolution” research methods with high sampling rates (Klonek et al., 2019).

This paper presents a social signal processing approach that can automatically detect “high-
resolution” behavioral team processes from sensor data that is combined with a machine learning
algorithm. This approach moves beyond the state of the art in team interaction analysis in several
ways. First, social signal processing can incorporate multiple social signals that occur simultaneously
during team interactions, whereas researchers pursuing quantitative team interaction analysis typi-
cally focus on only one modality and study sequential verbal or nonverbal interaction behavior
(for an overview, see Keyton, 2018). Second, “high resolution” is a debatable term in the literature.
The state of the art often considers verbal utterances as the smallest temporal unit (cf., Klonek et al.,
2019), but behavioral phenomena in complex social collectives such as teams also occur at a much
more fine-grained, sub-utterance level of nonverbal behavior (see Müller et al., 2019). Third, the state
of the art in team interaction analysis requires intense human effort, in terms of the many hours that
go into annotating the interaction data. Social signal processing develops algorithms that can ade-
quately predict such human annotations (or ground truth labels), with the aim of automating these
predictions.

With the growth in artificial intelligence in the last decade, many human behaviors can be mea-
sured reliably by state-of-the-art machine learning techniques (see Rudovic et al., 2017). The main
premise of machine learning in its most basic form is to learn a mapping from some data to an
expected outcome or “label.” Mathematically speaking, this involves minimizing an error between
a prediction and an actual outcome by adjusting the parameters of this mapping function. When
the learning task involves predicting some aspect of a human’s social behavior given some behavioral
input data, this is known as the research domain of social signal processing, defined as “the comput-
ing domain aimed at modeling, analysis, and synthesis of social signals in human–human and
human–machine interactions” (Vinciarelli, 2017).

Social signals are constructs that are generated from a constellation of measurable behavioral cues
displayed during social interactions, such as facial expressions, gaze, body posture, movement, ges-
tures, and vocal expressions (e.g., speech rate) that produce a response in others (e.g., team
members). The data used in social signal processing are often multimodal social signals that have
been captured by sensors in the local environment, capturing, for example, (1) video from
cameras, (2) audio from microphones, or (3) bodily movement or physiological data from wearable
sensors. Relatively simple social cues such as facial action units from video or sentiment from auto-
matically transcribed text can be extracted without additional human annotation, often reaching
acceptable degrees of reliability (for an overview, see Burgoon et al., 2017). To study more
complex, multimodal social behaviors such as team processes, machine learning algorithms
require training by humans to detect meaningful behaviors. Hence, the final ingredient for training
a machine to interpret more complex group or team constructs is human intervention. This may ini-
tially trigger some disappointment for researchers who are looking for off-the-shelf technology to
capture their constructs of interest. However, once there are sufficient interdisciplinary collaborations
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to generate more robust machine learning approaches, this will catalyze our understanding of team
dynamics and temporal linkages between different team processes (and other behavioral interaction
phenomena, including leadership, e.g., Fischer et al., 2020; Hemshorn de Sanchez et al., 2022).

In this paper, we showcase the potential of an interdisciplinary social signal processing approach
for obtaining new insights into systematic behavioral patterns in teams and other interacting social
collectives in organizations. We apply this approach in a field sample of project team meetings,
during which we recorded numerous social signals (audio, video, and movement) and annotated
the teams’ verbal interaction with the aim to automatically predict moments of high or low cohesion
in the meeting from team patterns of extracted social signals. We specify the requirements for mul-
timodal social signal data gathering, explain how to select appropriate time windows, calculate mea-
sures of behavioral mimicry based on multimodal sensor data at the team level, and investigate to
what extent automatically extracted behavioral mimicry can predict cohesive team interaction behav-
iors. We discuss the potential as well as the shortcomings and substantial need for additional inter-
disciplinary or even transdisciplinary work on automatic behavioral modeling approaches to dynamic
team interaction phenomena, in the hope that this paper will inspire others to pool their expertise and
embrace interdisciplinary research collaboration opportunities in this area.

Detecting Behavioral Mimicry and Predicting Cohesive Team
Interaction Using Social Signal Processing
At the outset, we need to clarify that machine learning, which is the method used in social signal pro-
cessing for making sense of social signals gathered from various sensors, is different from traditional
regression analytical methods in several key ways. Statistical modeling approaches such as regres-
sion center on the assumption that data are generated by a given stochastic data model. In contrast,
supervised machine learning typically uses algorithms for modeling with the assumption that the
process that generated the data given a particular ground truth label is unknown. This distinction
between machine learning and statistical modeling has been discussed in depth by Breiman
(2001), along with the limitations of statistical modeling approaches. However, machine learning
algorithms can and do also utilize regression and logistic regression techniques as a basic tool for
prediction tasks. For example, machine learning uses linear or logistic regression analysis for super-
vised learning, in order to fit a function on the available data (e.g., James et al., 2021). One reason for
using supervised learning methods such as logistic regression, which we also use in the current study,
is that it somewhat circumvents the challenge of interpretability of machine learning models (i.e.,
explainable machine learning; e.g., Arrieta et al., 2020). Of note, next to supervised learning
approaches such as the current study, machine learning can also employ unsupervised, data-driven
approaches to discover patterns in the data as well as meta-learning (e.g., Hospedales et al., 2022;
Vanschoren, 2019).

Another way to look at the difference between machine learning and statistical modeling
approaches such as regression is to consider the types of analysis that can be achieved by each
approach. Regression analysis yields insights into generalized behavior that may be more or less
helpful for productive collaboration in teams. In comparison, machine learning enables a more per-
sonalized analysis approach. Notably, sometimes machine learning produces different findings than
regression analysis. This is because machine learning models are capable of accounting for much
higher complexity. Moreover, an important distinction between regression analysis and machine
learning is that machine learning intends to automate analysis, whereas regression analysis does
not. In other words, the promise of machine learning methods in the area of social signal processing
is that we will eventually be able to automatically detect meaningful social interaction phenomena,
including complex team constructs such as cohesion.
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Social signal processing approaches quickly yield a wealth of data. However, in order to advance
organizational research using such methods, the extraction and interpretation of social signals should
be guided by theoretical constructs. In our case, we focus on team cohesion, which has been
researched more extensively than any other team phenomenon. Several meta-analyses support link-
ages between cohesion and team performance (e.g., Beal et al., 2003; Castaño et al., 2013; Chiocchio
& Essiembre, 2009; Evans & Dion, 1991). Cohesion can be defined as a shared bond or attraction
among team members that holds the team together and is grounded in task-based or social aspects
of team membership (Casey-Campbell & Martens, 2009). Task cohesion refers to a general orienta-
tion toward achieving the group’s goals and objectives, whereas social cohesion refers to a general
orientation toward developing and maintaining social relationships within the group (e.g., Carron
et al., 1985).

As is the case for most team constructs, prior empirical work on team cohesion has predominantly
relied on self-report survey measures, often with a cross-sectional approach that is difficult to recon-
cile with the conceptual understanding of cohesion as a dynamic group property (e.g., Kozlowski &
Chao, 2012; Salas et al., 2015). In response, recent work has embraced a longitudinal approach to the
study of cohesion in teams (Acton et al., 2020; Hill et al., 2019). However, while contributing inter-
esting insights into the development of team members’ self-reported perceptions of cohesion over
time, these studies still offer little in the way of actual behavioral expressions of cohesion. To
address this shortcoming in the extant literature, scholars have pointed to audio/video recording of
team interactions in order to capture rich data on team dynamics over time (Kozlowski, 2015;
Kozlowski & Chao, 2012, 2018; Santoro et al., 2015).

We need to emphasize here that the issue of mismatching theory (which specifies behavioral con-
structs) and empirical investigations of team constructs (which continue to rely on survey-based
behavioral proxies) is a pervasive problem in the literature on team processes, as discussed in
detail elsewhere (e.g., Kozlowski & Chao, 2018; Klonek et al., 2019; Lehmann-Willenbrock &
Allen, 2018). Note that similar discussions are currently led in the leadership literature (Banks
et al., in press; Hemshorn de Sanchez et al., 2022). We ask readers to keep an open mind about
the potential of social signal processing approaches to address this core issue in the broader organi-
zational behavior literature, and we use the example of team cohesion for demonstration purposes in
this regard.

To clarify our methodological focus within the team process literature, we further need to empha-
size the distinction between team emergent states (i.e., the traditional conceptual approach to cohe-
sion) and the behavioral processes of emergence that lead to these states. Insights into the latter have
much more explanatory value for understanding the core behavioral mechanisms of dynamic team
constructs, for example, when aiming to understand how cohesion develops and changes over
time (cf., Kozlowski & Chao, 2018). Pentland and Heibeck (2008) discussed the promise of
sensor data to understand social phenomena. Since then, sensor data have mainly been used to
predict static measures of team constructs (e.g., predicting self-report surveys of cohesion), even
in computer science. Moreover, there is an overreliance on controlled, “clean” laboratory settings
in social signal processing, given that high-performing machine learning algorithms are easier to
achieve in these settings (for an overview, see Müller et al., 2019). Instead, we propose an application
to real-life, messy, temporally dynamic processes in teams (cf., Klonek et al., 2019) and increase the
challenge from the computer science perspective as well by aiming to predict much more fine-grained
instantiations of team cohesion expressions within dynamic team interactions. Müller et al. (2019)
provide a detailed discussion of the incompatibility between highly granular sensor data on the
one hand and the static, a-temporal nature of traditional quantitative methods on the other hand
(as in the case of the survey-based literature on team cohesion). To address this issue, we need to
match the criterion for training our machine learning algorithm much more closely to the high res-
olution of social signals exchanged during team interactions.
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Providing a Ground Truth for Behavioral Expressions of Team Cohesion
A criterion is needed for training and developing algorithms that automatically detect and combine
social signals and for evaluating their performance. This criterion is called the ground truth for the
construct of interest. It requires labeled data that can be taken as definitive and against which the auto-
mated system can be measured and trained (e.g., Pantic et al., 2011). To establish such a ground truth,
usually behavioral data are collected for which a human expert has provided a judgment of what the
machine should predict. This judgment is the “reference” or “ground truth.” A ground truth can be
provided by annotating (or rating or coding) observed behaviors during a social interaction, or it can
come from self-reported or other-reported survey measures, external ratings, or outcomes such as
team performance. Machine learning algorithms try to minimize the discrepancy between the pre-
dicted label and the reference or ground truth. Given sufficient training data, such an algorithm
can then be used to automatically analyze new data that is similarly distributed. In our case, this
means that given acceptable performance, an algorithm developed to detect cohesion can eventually
be applied to new datasets for automatically detecting team cohesion without requiring human anno-
tation effort.

Providing a ground truth at the behavioral event level can be a challenge of its own. In our case, we
are looking for behavioral expressions of team cohesion as a starting point for a social signal process-
ing approach. Of note, our aim is to pinpoint indicators of cohesion in the team interaction process,
whereas most of the extant literature has investigated perceptions of emergent cohesion (i.e., as the
result of prolonged team interactions, although the latter are typically not investigated). Hence, we
take some liberties in extrapolating from the extant literature. Some of the extant survey-based
research points to observable behavioral indicators of task and social cohesion, respectively.
Table 1 provides an overview of these findings and shows how we operationalized each finding at
the behavioral event level in team interactions, drawing from the literature on behavioral interactions
in team meetings.

For example, Zaccaro and colleagues (1995) discussed how task cohesive teams devote more time
to action planning. In terms of observable verbal behaviors, action planning expresses concrete inten-
tions to act, such as “I’ll take care of this today” or “We’ll have this done by Friday” (e.g., Kauffeld
et al., 2018). As further detailed in Table 1, we also include statements that express taking respon-
sibility, such as “This is our job as a team” (e.g., Kauffeld & Lehmann-Willenbrock, 2012),
or that signal positivity, such as “This could really work” (Lehmann-Willenbrock et al., 2017).
In line with the literature (Table 1), we also consider procedural statements (e.g., Lehmann-
Willenbrock et al., 2013) such as distributing tasks, prioritizing, and goal orientation statements as
expressions of task cohesion. Regarding social cohesion, we extrapolate from the extant literature
as highlighted in Table 1 and consider relational communication such as supportive statements,
praise, active listening, expressions of feelings (e.g., Kauffeld & Lehmann-Willenbrock, 2012),
humor and laughter (Lehmann-Willenbrock & Allen, 2014), and statements encouraging other
members to participate (e.g., “Lisa, what do you think?”) as behavioral indicators of social cohesion
in team interactions.

Mimicry and Synchrony of Social Signals
The social signal processing community has frequently considered the role of mimicry or synchrony
in social interactions. Mimicry, the interdependence of interacting partners’ behaviors, occurs in
almost any social interaction when different individuals converge in their social signals (e.g.,
Delaherche et al., 2012; Duffy & Chartrand, 2015). Of note, group interactions are considerably
more dynamic and complex than dyadic interaction scenarios (e.g., Lehmann-Willenbrock et al.,
2017). In thin slices of behavior within the team interaction stream, we show how automatically
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detected behavioral mimicry based on social signal data can be captured at the group level to predict
behavioral expressions of task and social cohesion in team interactions.

Humans have a natural tendency to mimic one another’s facial expressions, emotions, speech
characteristics and patterns, and motor movements such as posture and gestures (for an overview,
see Chartrand & Van Baaren, 2009). Different types of mimicry can be considered behavioral
(Chartrand & Lakin, 2013). In other words, mimicry can occur across a range of different behavioral
modalities such as gestures, postures, facial expressions, or vocal expressions. In teams, behavioral
mimicry occurs when two or more members exhibit similar behavioral patterns within a short time
window (i.e., in quick temporal succession, such as a few seconds). In our application example, we
use social signal processing to model multimodal mimicry among team members as an underlying
mechanism that may help us automatically detect cohesive team interaction behaviors in project
team meetings. In other words, when team members mimic their nonverbal expressions and move
in sync, this can point to cohesive team interactions.

Research on dyadic interactions has identified several social benefits of mimicry, including
increased empathy, bonding, and positive affect (e.g., Stel & Vonk, 2010; Tschacher et al.,
2014). Previous research has also found connections between cohesion and behavioral synchrony,
defined as the spontaneous rhythmic and temporal coordination of actions between two or more
participants (Chartrand & Lakin, 2013; Delaherche et al., 2012; Lakin, 2013; Mayo & Gordon,
2020). Hoehl and colleagues (2021) review and discuss the manifold benefits of synchrony in
human interactions, including bonding. Wilson and Gos (2019) found that dyads moving in syn-
chrony are perceived as more cohesive. In the context of large social groups, Jackson and col-
leagues (2018) showed that behavioral synchrony in movement and arousal increased cohesion.
These findings suggest that a social signal processing approach to team interactions should
capture mimicry or synchrony.

Whereas some social signal processing work has focused on a single modality only when mod-
eling behavioral mimicry (Nanninga et al., 2017), additional behavioral modalities may need to be
considered. Verbal indicators of task and social cohesion (Table 1) may be accompanied by a
wealth of nonverbal signals spanning different modalities such as body movement and paralinguistic
features (e.g., voice pitch). Taking a step toward multimodal integration, one previous study observed
that dyadic mimicry of movement (i.e., accelerometer data) and speech signals, aggregated to the
group level, was positively correlated with self-reported task cohesion at the day level (Zhang
et al., 2018). Of note, this previous research captured mimicry by aggregating the similarity of par-
ticipants’ social signals across 10-min periods, which is likely an overly rough time resolution that
cannot account for more swift developments and changes in team interaction behaviors. Next, we
investigate how social signal mimicry in different behavioral modalities and within fine-grained tem-
poral windows maps onto expressions of task and social cohesion observed in a sample of project
team meetings in the field.

Data Gathering
Data were gathered during regular project team meetings at a large software organization in the
Netherlands. Our study was endorsed by the local ethics committee as well as the organization’s
legal department. Participation was voluntary and subject to informed consent by all team
members. Data confidentiality was guaranteed. Participants retained the right to withdraw from
the data gathering at any time and to have their data deleted upon request. Twenty-five regular meet-
ings were recorded. Meeting size ranged from 3 to 8, with an average of 4.6 attendees. Participants
were 64% male, 37 years old on average, with an organizational tenure of 8.6 years and an average
team tenure of 2.5 years. To enable multimodal behavioral data gathering, we equipped an on-site
meeting room (see Figure 1) with multiple cameras, headset microphones, a microphone array
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(Microcone; Mast et al., 2015), and a wearable sensor badge. Eight cameras (ABUS HDCC72510,
which record at a resolution of 1,920× 1,080 and at 25 fps), each centered on the seat on the opposite
side of the room, were mounted overhead in order to avoid distracting the participants. The
Microcone was placed in the center of the table. All individual meeting attendees were outfitted
with a microphone (Sennheiser wireless headsets, version ew 152 G3) to record their speech and
a custom-built sensor badge worn around the neck measuring torso acceleration at three orthogonal
directions of motion. Out of the 25 recorded meetings, 14 had complete data available across all
modalities (Table 2).

Developing Ground Truth Labels
As a ground truth and criterion for training and evaluating our machine learning algorithm, we iden-
tified moments of high or low task/social cohesion across 2-min segments of each meeting (in line
with previous work on convergent group phenomena; Barsade, 2002). These labels of high or low
task and social cohesion were based on the annotated verbal behavior that occurred during each
2-min segment (see Figure 2). Two intensively trained coders annotated the entire stream of
verbal interactions using the act4teams coding scheme for team interactions (e.g., Kauffeld et al.,
2018), yielding a total of 19,979 verbal utterances. An utterance or sense unit is the smallest

Figure 1. Schematic overview of the on-site meeting room setup showing camera locations, with each camera

capturing an individual meeting attendee seated across each camera (1 through 8); wearable headset micro-

phones, one per individual meeting attendee; and the Microcone (microphone array) placed in the center of the

boardroom table. Figure adapted from Nanninga et al., (2017). In addition, each attendee wore a custom-built

sensor badge around the next to track their motion during the meeting.
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speech segment that expresses a complete thought (Bales, 1950). This is often the same as a single
sentence, but it can also be a single word (e.g., “Uh-huh” for active listening), leading to a very fine-
grained analysis. The final column in Table 1 shows examples of verbal utterances. Like many con-
temporary studies of behavioral team interactions, the coders used software (specifically,
INTERACT software) to annotate directly from the video without needing to transcribe. This
creates time stamps with onset and offset times as well as duration for each annotated behavior
(for an overview, see Lehmann-Willenbrock & Allen, 2018). Nine randomly selected meetings
were annotated twice in order to establish inter-rater reliability for the utterance annotations that
were the basis for our ground truth labels (κ= .80).

To get from the annotated verbal utterances to labels that can be used for social signal process-
ing, we pursued a typical social signal processing approach and labeled the team interaction data
using binary ground truth labels for high versus low task and social cohesion, respectively. For
each 2-min meeting segment, we computed a proportion of task cohesion and a proportion of
social cohesion, based on the verbal behaviors that occurred during each meeting segment (as

Table 2. Available Sensor Data for Each Modality and Analyzed Meeting Segments Across All Observed Team

Meetings.

Meeting

Total Number

of Participants

Annotated

Verbal

Interaction

Usable

Video

Data

Participants

with

Accelerometer

Data

Meeting Duration

(Hours:Minutes:

Seconds)

Number of

Analyzed Meeting

Segments

1 5 N 01:13:35 37

2 4 N 01:24:41 42

3 5 N

4 8 7 00:59:17 31

5 6 4 00:50:57 26

6 4 3 01:28:51 44

7 3 3 00:39:47 20

8 3 2 00:22:12 11

9 5 3 00:24:13 12

10 5 N 00:55:28 27

11 6 6 00:46:48 23

12 5 5 00:42:25 21

13 4 3 00:55:38 27

14 4 N 00:36:33 18

15 5 4 00:52:56 27

16 5 5 00:28:28 14

17 3 N

18 6 4 00:37:35 18

19 3 N 3 01:12:22 36

20 6 4 00:42:23 21

21 6 6 00:49:03 24

22 5 N 5 00:48:30 24

23 4 N 3 00:59:52 30

24 3 N 3 01:11:11 36

25 3 3 01:02:28 31

Note: N: data was not available, not time-synchronized with the other modalities, or participants walked outside the camera

angle. Meeting 8 was excluded concerning the accelerometer data as it only included accelerometer data for two participants,

which does not constitute a group (Moreland, 2010).
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illustrated in Figure 2). To obtain these labels, we focused on the annotated utterances that indi-
cate task and social cohesion as described in Table 1, third column. From these annotations, for
each 2-min segment in each team meeting, we computed the proportion of time that the team
spent on these behaviors. We converted these proportions into labels for high and low task
and social cohesion by dividing the duration of the verbal behaviors that express task and
social cohesion by the duration of all verbal behaviors annotated within each 2-min segment.
This produced social and task cohesion values for all 2-min segments of each team meeting
which ranged between 0 and 1. Among these values, we defined a “high” label as a value in
the top 25% of the distribution and a “low” label as a value in the bottom 25% of the distribution,
respectively (for a similar approach, see Hung & Gatica-Perez, 2010). Of note, high task cohe-
sion labels occurred sparsely, whereas moments labeled as high social cohesion were more fre-
quent (see Appendix A for more detail).

Data Processing
In the domain of social signal processing and in machine learning more generally, major time and
effort are devoted to pre-processing the gathered sensor data and extracting relevant features from
this data (e.g., Khalid et al., 2014; Ramírez-Gallego et al., 2017; Vinciarelli et al., 2009). Hence,
we discuss these two aspects of developing a machine learning algorithm for team behavior analysis
in detail. Figure 3 provides an overview of our workflow to extract relevant features and

Figure 2. General data gathering framework. Type of data shown on the left and temporal resolution shown

toward the right. Sensor data including sampling rates. All features were extracted for 2-min meeting segments

within each team meeting (as illustrated by the highlighted section). We extracted 720 features in total (spe-

cifics regarding feature extraction are detailed next in the paper). For each 2-min segment, we obtained the

ground truth (i.e., cohesion labels) from the annotated verbal utterances, as illustrated in the lower part of the

figure. Cohesion labels were obtained at the meeting segment level from the percentages of task and social

cohesion behaviors within the respective meeting segment.
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automatically predict cohesion labels. The top part of Figure 3 refers to the machine learning
approach to the observed team meetings that can account for multiple, simultaneous modalities in
team behavior (movement, video, and audio). From the three different modalities, we calculated
group-level similarity (i.e., mimicry) values among team members. These values were used to
predict high/low cohesion labels. The bottom part of the figure refers to the human analysis of
these team meetings. The dotted lines illustrate how we obtained ground truth labels for task and
social cohesion from the human annotations of the observed team meetings. These labels served
as criteria for training and evaluating the machine learning algorithm for automatically detecting
cohesion.

Figure 3 also indicates key differences between social signal processing and the state of the art in
quantitative team interaction analysis. The latter is sketched at the bottom of Figure 3 and essentially
requires two steps: (1) gather behavioral team data and (2) spot behaviors of interest using trained
human annotators (for more detail, see Keyton, 2018; Lehmann-Willenbrock & Allen, 2018). This
means that the temporal windows for analyzing the team interaction flow are much more coarse
than in social signal processing, where the behavioral units are milliseconds or picture frames
rather than seconds or minutes. Furthermore, the bottom path illustrated in Figure 3 falls short of ana-
lyzing the rich multimodal quality of behavioral interaction dynamics in teams, due to the extensive
human annotation effort that would be required to address this. Finally, whereas the ultimate goal in
social signal processing is to automatically obtain reliable predictions of meaningful behavior from
sensor data, this automation is not possible in quantitative interaction analysis (see also Allen et al.,
2017, for a detailed discussion of differences in workflows when social scientists vs. computer sci-
entists are analyzing team interactions).

We pre-processed the sensor data from each modality per team member into time series data
across 2-min segments within each meeting. For each modality, we extracted features and captured
behavioral synchrony and convergence across these 2-min segments (i.e., the same timeframe that
was used to establish ground truth labels; see Figure 2). For the code for our feature extraction
and combination, we used a combination of Python and Matlab. While we are not permitted to

Figure 3. Flow chart of the work process for automatically detecting cohesion in meetings using a social signal

processing approach.
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openly share the code, extracted features, and the underlying raw behavioral measures given privacy
concerns and legal restrictions at the organization where we gathered our field data, interested readers
can contact us for more information on an individual basis.

Extracting Multimodal Features
We extracted time series data from (1) the audio data (voice intensity, fundamental frequency, speech
rate, and first 12 mel frequency cepstral coefficients [MFCCs]); (2) the video data (thresholded pixel-
wise difference between image frames and the Histogram of Oriented Gradient [HOG] part of the
dense trajectories feature vector); and (3) the accelerometer data (absolute x, y, z, and magnitude,
from which six spectral and two statistical representations, namely, mean and variance, were gener-
ated—thus, 4× (6+ 2) features).

Extracting Vocal Features from the Audio Data
From theMicrocone (seeFigure 1) audio data,weobtained audio segments separated by speaker.Using the
open-source programPraat,we extracted the followingvocal characteristics or these segments separatedby
speaker: (1) voice intensity, (2) fundamental frequency, (3) speech rate, and (4) first 12 MFCCs. Voice
intensity is the loudness of the voice, which is measured in decibel (dB). The fundamental frequency is
a physiological parameter defined as the frequency of vibration of the vocal folds, which can be measured
in cycles per secondorHertz (Hz). The fundamental frequency is closely related to voice pitch,which is our
human perception of fundamental frequency. The fundamental frequency generally lies in the range of 85–
155 Hz for men and approximately one octave higher for women (165–255 Hz; for children, it is around
300 Hz). The speech rate or speaking rate is the tempo, in terms of the pace at which a stretch of connected
discourse is delivered by a speaker. The average speech rate in conversations is typically around 3–4words
per second. We quantified the speech rate in vowels per second, using Praat software and the procedure
described byDe Jong andWempe (2009). Finally, the first 12MFCCs describe the spectral characteristics
of an audio signal, in terms of different frequency bands that are determined logarithmically. They are com-
monly used to describe vocal behavior as their design is inspired by sound production in the human tract.
These four vocal characteristics have been found to be effective for quantifying dyadic mimicry (e.g.,
Bonin et al., 2013; Solanki et al., 2016).

Extracting Motion Features From the Video Data
To capture motion from the video data, we extracted the thresholded pixel-wise difference between
image frames in the region where a meeting participant is seated as a baseline feature. The more
pixels change in intensity over consecutive frames, the higher the body motion score. Hung and
Gatica-Perez (2010) used a similar approach to measure group-level cohesion except pixel-level move-
ment was computed directly from compressed video data. The disadvantage of such approaches is that
they are not able to capture movement or the shape of movement occurring over more than two consec-
utive video frames. Therefore, we also extracted dense trajectories (cf., Wang et al., 2013) which try to
follow pixels (a 2× 2-pixel neighborhood) over a pre-defined number of frames of a video, with a
description per trajectory of the movement and appearance of the trajectory at each frame. Dense trajec-
tories primarily describe the motion of a pixel in a video over time. The flow of the pixels is determined
using optical flow fields computed on consecutive frames of the video. Then, the position of each loca-
tion of the image in the next frame is determined based on the estimated flow direction. They are dense
because the representation is extracted at multiple spatial scales, leading to a dense and overcomplete
representation of the movement in the scene. This representation is able to describe human movement
in an extremely powerful way for machine perception tasks. The default parameters are a trajectory
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length of L= 15 frames (see Wang et al., 2013), computed over an N×N pixels space-time volume
aligned with a trajectory. The volume is subdivided into a grid, with

grid size = nσ ∗ nσ ∗ nτ
The parameters nσ and nτ are used to specify the grid size of each space-time volume, where nσ specifies
the grid size in pixels in space and nτ specifies the temporal grid size. Values for nσ and nτ can be 1 or
higher, with previous work showing no superior performance beyond nσ = 2 and nτ = 3 (Wang et al.,
2013). We used the default parameters N= 32, nσ= 2, and nτ= 3, which were previously found to
perform well on action recognition tasks. Note that, in practice, the parameters tend not to be tuned
but are determined based on empirical evidence. The identified trajectories can be highly non-linear
in shape. The popular approach by Wang et al. (2013) which we also adopted in this paper does not
regress the trajectory from the optical flow fields, so it is known to accumulate significant errors when
longer trajectories are used. More powerful models can use more complex particle advection strategies
to regress sub-pixel resolution trajectories, though this is more expensive to compute.

From the video data, we further extracted the HOG, a feature descriptor that is commonly used for
object detection in computer vision and image processing (e.g., Zhu et al., 2006). The HOG repre-
sents the gradient directions of image intensity values as a distribution. These features provide a
proxy of postural appearance over detected trajectories. Trajectories are associated with each
person depending on whether the starting point of the trajectory originates within a pre-defined
bounding box assigned for a given individual. We use a pre-defined bounding box in the image
plane which represented a rectangular region over which the features for a given individual’s beha-
vior are extracted. In practice, we would prefer to be able to identify the seated person over time auto-
matically. However, due to the uncertainty that the person would be tracked correctly and the
knowledge in any case that the participants are seated throughout the meeting, we used a pragmatic
approach to identify the relevant region of interest for each participant.

Extracting Movement Features From the Accelerometer Data
Accelerometer data captures movement along three orthogonal axes X, Y, and Z. The XYZ data rep-
resent the magnitude and direction of acceleration incident on each of the X-, Y-, and Z-axis, respec-
tively. Because there can be interpersonal differences in the amount of movement in raw
accelerometer signals, we first standardized each axis using z-scores. We then used these standard-
ized values in three ways: the z-values themselves, the absolute values, and the magnitude which
combines all three axes. We therefore obtained seven different features from the accelerometer
data, namely, the raw and absolute value for each axis X, Y, and Z, respectively, and the magnitude
for all axes combined.

We calculated absolute values, which removes the within-axis direction. The reason for using
absolute values is that sometimes the direction of the movement along a particular axis might not
be relevant (e.g., distinguishing forward from backward movement or left movement and right move-
ment might not be necessary). The magnitude takes this a step further by considering just the amount
of movement to be important irrespective of any direction. It is a representation of the total amount of
movement a participant made and is calculated as

magnitude =
����������������
X 2 + Y 2 + Z2

√

For accelerometer-based features, the output of the pre-processing step can generally be used as
individual features. Kapcak et al. (2019) also propose using statistical and spectral representa-
tions of this data with a sliding window approach in order to capture variations in the body move-
ments over time. This sliding window has a size of n and shifts by n/2 such that consecutive
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windows are half-overlapping. The size n of the sliding window is determined by trying varying
window sizes and selecting the size that maximizes cohesion prediction performance on data not
used for testing the approach.

Sliding Windows. Variables such as sliding window size or sample interval length are considered
parameters in the machine learning model. Using a grid search approach, one can test various
values of these parameters over a range of possible values to see which yields the best results
on some data used for training the machine learner while then testing the resultant tuned
model on new unseen data. Our sliding window size was a parameter that was empirically val-
idated by using a simple toy model using the accelerometer data. Both the window size and
sample interval length were fixed; in this case, the sample interval length was taken from prior
work which had used the same thin slice length. However, parameters related to the weights
for each of the coefficients of the logistic regressor were tuned for each of the five folds of the
group-k-fold cross-validation. A logistic regressor has 1+ the number of input feature dimen-
sions (in our case 720).

We tried sliding windows of 1, 3, 5, and 10 s (cf., Kapcak et al., 2019) and found that a 3-s sliding
window yielded the best prediction performance. We compared each possible pair of participants in
the team meeting using these 3-s sub-windows over the entire 2-min meeting slice (see Figure 4) and
calculated the minimum, maximum, mean, and variance of the resulting differences as a representa-
tion of short-term similarity, as detailed next.

Computing Group-Level Mimicry and Convergence Features. To quantify group-level social signal
mimicry and convergence for each of the included modalities, we computed group-level measures
of mimicry and convergence based on measuring each person A’s potential reaction to B in all pos-
sible dyads within each group. Hence, we first created pairwise similarity values for each dyad in the
respective group and then aggregated these to the group level using the minimum, median, and
maximum of standard deviation of the set of possible pairwise values (cf., Kapcak et al., 2019).

Figure 4. Computation of mimicry among team members. When person A is mimicking person B, they are

imitating B’s behavior with a delay. To measure short-term mimicry for each possible dyad in each meeting

segment, we compared the two persons’ consecutive 3-s sliding windows (shifting by n/2 such that consecutive

windows are half overlapping, as illustrated) by calculating the distance between these windows (figure adapted

from Kapcak et al., 2019). Across all of these possible comparisons within each 2-min meeting segment, we

calculated the minimum, maximum, mean, and variance as a representation.
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We then added this to the feature representation by placing the set of short-term similarity features
corresponding with the highest maximum first.

Mimicry of the audio features was represented by the extent to which additional data
samples from one speaker followed the distributions from the other speakers in the group. We
implemented model-based similarity measures for the audio signals based on Nanninga et al.
(2017) to compare paralinguistic mimicry features between participants, based on the
log-likelihood as follows:

rij = 1

M

∑N

i=1

log(P(Xj|θi)

where M is the number of data points of the speech signals extracted for participant j and θi are
the parameters of the statistical model that characterize the speech of a different speaker i. We
calculated the log-likelihood rather than the likelihood because the latter would result in very
small numbers for some of the audio features. A better model fit, described by the average
log-likelihood, indicates more similar speech behavior among each pair of meeting participants
compared per corresponding sub-window.

From the set of dense trajectories (see overview in Figure 3) extracted for each participant delimited
by a pre-defined bounding box in the image plane, we created a model for each participant in each
meeting section. We adopted a Gaussian Mixture Model to learn a compact representation of each par-
ticipant’s dense trajectories in order tomodel their synchrony and convergence with other participants in
the meeting (see Nanninga et al., 2017 for a similar approach for audio data, as well as Solanki et al.,
2016, for more detail on using GaussianMixtureModels to capture social signal mimicry). By applying
the features obtained from another participant on this trainedGaussianMixtureModel, we could see how
well they matched the movements of a given participant in the meeting.

For the accelerometer and video-based temporal difference (TD) data, relatively few dimen-
sions were extracted over time. We therefore used five different forms of synchrony and conver-
gence measures: normalized mutual information, Pearson correlation, short-term similarity (i.e.,
mimicry), global convergence, and symmetric convergence. Normalized mutual information is
calculated as I(X ; Y ) = H(X )+ H (Y )− H(X , Y ), where H(X ) and H(Y ) are the marginal
entropy for both variables and H(X, Y ) is the joint entropy. In our case, this metric quantifies
the amount of information that can be obtained about one participant’s behavior by observing
another participant in the meeting. From this, the normalized mutual information is calculated
as follows, which yields a score between 0 and 1. A higher score means that the behavior of
the two meeting participants is more similar:

NMI (X ; Y ) = I(X ; Y )������������
H(X )H (Y )

√

Pearson’s correlations among the features from different attendees can range between −1 and 1,
where a value closer to 1 means that the extracted features of two participants within the team
meeting are more linearly related and are therefore more similar.

Short-term similarity compares the difference between feature values of one meeting participant A
in a given time window to those feature values of participant B in the consecutive time window (see
Figure 4). Note that our measure for short-term similarity or mimicry is asymmetric, because it yields
different values when comparing participant A to B versus comparing participant B to A. Because it
should not matter which participant is considered as person A and which one as person B, we added
the mimicry comparison with the highest maximum to the feature vector first, followed by the one
with the lower maximum.
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Global convergence is the difference in the behavioral features of two participants when compar-
ing their behavior in the first half of each 2-min segment, compared to the second half of each
segment (see Figure 5). Symmetric convergence is the correlation between features of person 1
and 2 in corresponding 3-s sub-windows across each 2-min segment (see Figure 6).

From each of these, four group-level measures were created by generating the minimum,
maximum, median, and standard deviation from all possible pairs for each group for a given
meeting segment. This led to 5× 4× (4× (6+ 2)) features for the accelerometer data and 5× 4× 1
features for the video-based TDs.

Synchrony was computed as the average likelihood of the samples from another participant belonging
to a given person’s model. Convergence was captured as pairwise similarity by computing the Pearson

Figure 6. Calculation of symmetric convergence, in terms of the difference between feature values of two

participants for each overlapping sub-window (3 s each). The correlation between these difference values over

time is the symmetric convergence rate.

Figure 5. Calculation of the global convergence value. The distance between participants for each of the

overlapping sliding windows (s) was summed for the first half of the 2-min segment as well as the second half of

the segment, respectively.
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correlation per timestep and the likelihood. The same four group-level features were computed per pair as
above, leading to 3×4 features for the audio and 4×3×4 features for the video-based HOGs extracted
from the video data. We therefore extracted 720 features in total to train our algorithm.

Algorithm Development
Our aim was to create a machine learning algorithm that would be able to automatically detect the level of
task and social cohesion (high or low) in each meeting segment, based on group-level social signal
mimicry. If such an algorithm can indeed predict cohesion labels, then we can eventually use it on
other datasets and avoid the hassle of laborious human annotation of team behavior. Instead, the algorithm
will tell us about behavioral expressions of task and social cohesion in the observed team interactions. To
get there, we needed to specify how the input from the various sensors should be processed and combined
to automatically detect task and social cohesion expressions in each meeting.

In machine learning, a classifier is an algorithm that can automatically categorize data into one or more
classes, such as an email classifier that scans emails and categorizes them as “spam” or “not spam.” In our
case, the classes were “high task cohesion” versus “low task cohesion” and “high social cohesion” versus
“low social cohesion” for each 2-min segment in each team meeting. We had two goals in our algorithm
development. First, we wanted to obtain reliable predictions of task and social cohesion. Second, we
wanted to be able to interpret which specific behaviors help predict task and social cohesion inside the
meeting. We used a so-called simple classifier, which allowed us to look at the weights of each
feature and to identify which features contribute more to successful classifications.

Specifically, we used a logistic regression model and chose a linear classifier to classify high and low
cohesion using the group-level behavioral mimicry features described above. Borrowed from the field of
statistics, machine learning approaches use logistic regression as a so-called supervised learning classifi-
cation algorithm in order to predict the probability of a target variable (in our case, labels for high versus
low task and social cohesion, respectively). If researchers want to use this approach, the nature of the
dependent variable needs to be dichotomous, which means there can only be two possible classes (in
our case, high or low, represented as 1 or 0 for each meeting segment). Mathematically, our logistic
regression model predicts the probability of high cohesion as a function of the group-level mimicry fea-
tures for each type of modality. For the multimodal version of the algorithm including all available modal-
ities, this level of probability was averaged across the different modalities.

K-Fold Cross-Validation
Machine learning algorithm development requires training data on which the algorithm learns how to
automatically detect the criterion of interest (in our case, task and social cohesion in each meeting
segment) and test data for evaluating algorithm performance. To evaluate the generalizability of a
proposed approach, researchers in social signal processing usually perform cross-validation. This
involves partitioning the data into k folds where each fold is used to test the model while the remain-
ing k-1 folds are used to train the parameters of the model. Each time a different fold is selected as the
test fold, and then, a different model is being trained based on different training data. In our case, we
also forced each fold to be stratified by group such that no data from the same group having the same
meeting would appear in both the train and test folds.

Due to our field sample, we only had a limited number of meeting segment data available, partic-
ularly for training and testing the algorithm across all modalities (see Table 2). To address this, we
used k-fold cross-validation and set k to 5. We divided our data into k meeting exclusive folds of
which one was used as a test set and the others were used as the training set, respectively, for the
machine learning algorithm. This was repeated k times so that each fold was taken as the test set
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once. This approach reduces over-fitting and therefore gives a more accurate estimation of perfor-
mance on previously unseen data (Cawley & Talbot, 2010).

Findings
To evaluate the performance of our algorithm, we examined how well the quantified group-level
mimicry within each extracted feature predicted instances of high or low task and social
cohesion, respectively. Machine learning approaches measure this prediction or classification
performance using metrics. In this case, due to the imbalance of the high and low cohesion
samples, we used the average area under the curve (AUC) of the receiver operating characteristic
(ROC) curve. The ROC curve represents the true positive rate (TPR) against the false positive rate
(FPR) at different classification thresholds. Compared to other performance metrics, the AUC
provides the most complete picture of how well a model is performing because the ROC on
which it is based shows the performance at all possible combinations of precision and recall
for the given test dataset. Appendix B provides more detail regarding reasons for selecting the
AUC as a performance metric as well as how the AUC is computed, along with more information
about the correlation of the different features with task and social cohesion labels across our
dataset.

In addition to the AUC scores that follow, Appendix C presents different performance metrics
(precision, recall, and f-measure), based on post hoc additional analyses using the extracted features.
Performance metrics such as the f-measure provide an intuitive idea about model performance if the
ultimate goal is to understand the efficacy of a model at the time of application. Whereas the AUC
metric considers different classification thresholds, the f-measure only provides an estimate of a
model’s performance at a single point on the precision–recall curve. The selection of this point on
the curve depends on what a user needs for a given application. If both classes (positive and negative)
are considered equally important, one would choose a model threshold that maximizes both precision
and recall (f1-score) jointly. However, some applications may favor higher precision and lower recall
for detecting the positive over the negative class. For the interested reader, we provide results for the
f-measure where precision and recall are considered equally important (see Appendix C). We caution
the reader that the aim of this paper is not to provide a software tool that can be downloaded and used
as is.

Comparing Feature Performance With Respect to AUC Values
The boxplot in Figure 7 shows the algorithm’s classification performance for automatically detecting
task cohesion (light gray) and social cohesion (dark gray) using the different features. This classifi-
cation was based on the total of 720 features extracted across the entire dataset (as illustrated in
Figure 2). As can be seen in Figure 7, all of the features performed better for predicting social cohe-
sion than for task cohesion. Social cohesion was detected with an average AUC of 0.64 based on the
accelerometer features, 0.63 based on the audio features, and 0.57 based on the TD features. Task
cohesion was detected with a noticeably lower average AUC of 0.57 based on the accelerometer fea-
tures, 0.60 based on the audio features, and 0.52 based on the TD features.

The reason why the audio features performed best for detecting task cohesion was likely that all
team meetings had audio data, so the audio features had the largest amount of training data available
(see Table 2). Because a different set of meetings was available for each modality, we cannot defin-
itively conclude which modality detects social and task cohesion the best. Still, it appears that para-
linguistic mimicry is a decent detector of both social and task cohesion, whereas motion similarity
extracted from an accelerometer and TD data works for detecting social cohesion. The appearance-
based HOG features seemed to detect neither.
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To compare the predictive performance of the different features, we also tested the classifica-
tion performance of each individual feature for the shared set (see Figure 8a). For the video fea-
tures as well as the audio features, we obtained a better AUC for social cohesion than for task
cohesion, respectively (see Figure 8a). Overall, the accelerometer features yielded the best perfor-
mance for both social and task cohesion. Interestingly, the video TD approach captures a proxy of
the speed of the movement rather than the acceleration, which may make the representation
potentially more descriptive of the actual underlying behavioral process. The audio features per-
formed poorly for detecting cohesion, compared to earlier analyses (Nanninga et al., 2017),
because only a subset of our data had all modalities available for training and testing.
Comparable performance was obtained when each modality was evaluated independently using
all available data.

We also examined multimodal classification performance, which means that we let the algorithm
combine different features to automatically predict task and social cohesion (Figure 8b). Note that we
chose not to include the HOG features in the multimodal analysis, given that these features performed
poorly for predicting either type of cohesion (see Figure 8a and Appendix B for more information).
As depicted in Figure 8b, the combination of audio and TD features yielded the best average perfor-
mance for the two modalities, and the combination of all three modalities (video, audio, and accel-
erometer) yielded the highest AUC. Whereas the unimodal performance of the audio and TD video
features for detecting task cohesion was not that high, the combination of audio and video led to an
average AUC of 0.62. In comparison, combining the accelerometer and TD features did not improve
over the performance of the accelerometer data alone—which is perhaps less surprising given that
both measure movement similarity.

We obtained the best average classification performance when combining motion-based mimicry
features from the accelerometer and video data with the audio features, which suggests that the

Figure 7. Boxplot of individual feature performance for predicting task cohesion (light gray) and social

cohesion (dark gray) by each feature type, including error bars.
Note. AUC = area under the curve; TD = temporal difference; HOG = Histogram of Oriented Gradient.
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combination of all different modalities does contain complementary information. However, the
increase in performance was just 0.01 for social cohesion when compared to the combination of
audio and TDs. Hence, while we cannot conclude that the combination of all modalities provides
a significant increase in average AUC for social cohesion, the combination of features representing
the two different mimicry types does seem beneficial for the detection of social cohesion. Similarly,
when combining all modalities to detect task cohesion, the performance was higher compared to the
detection based on accelerometer features alone, which suggests that a multimodal model detects task
cohesion better than a unimodal model.

In sum, this study showcases the potential of social signal processing for automatically detecting
behavioral manifestations of team constructs such as cohesion. Our findings illustrate how a multi-
modal approach, combining audio, movement, and video sensor data that captures mimicry at the
group level, achieves the most accuracy for automatically predicting instances of social cohesion.
Task cohesion was generally more difficult to predict automatically, which may partially be due

Figure 8. (a) Quality of the automated prediction of social cohesion (left) and task cohesion (right) by each

individual feature type, as indicated by the respective average ROC curve. (b) Average ROC curve for multi-

modal combinations of the features in order to automatically detect social cohesion (left) and task cohesion

(right), respectively.
Note: ROC = receiver operating characteristic; TD = temporal difference; HOG = Histogram of Oriented Gradient.
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to the higher overall frequency of meeting segments labeled with social cohesion compared to task
cohesion behaviors in our dataset.

Discussion
Interdisciplinary work can bridge social and computer science in general and innovate methodolog-
ical approaches to team interaction dynamics specifically. First, our study illustrates how a social
signal processing approach can provide novel, unobtrusive measures of highly granular team inter-
action behaviors. To this end, we want to emphasize that automatically detecting behavioral team
constructs such as cohesion still requires substantial input from social scientists in order to
develop behavioral measures and establish the “ground truth” that serves as the basis for social
signal processing and machine learning. In other words, as tempting as it may seem, the automated
detection of team phenomena without any human annotation effort is not yet possible. To get there,
more interdisciplinary collaborations between social and computer scientists are needed to create data
available for computer scientists to train more robust models in “messy,” real-life team interaction
settings such as the on-site project meetings investigated here.

Second, our interdisciplinary empirical approach offers a potential solution for overcoming the lim-
itations inherent in static, survey-basedmeasurement approaches to team constructs (e.g., Kolbe&Boos,
2019; Kozlowski & Chao, 2012; Lehmann-Willenbrock & Allen, 2018). Considering the benefits of
surveys regarding the ease of data access and the low effort involved in processing and analyzing the
data, compared to behavioral observations of team processes, the departure from survey-based
designs can seem daunting.We hope that our studywill encourage team researchers to seek out interdis-
ciplinary collaborations that can facilitate this leap and advance our understanding of the intricate beha-
vioral dynamics at the core of complex team phenomena such as cohesion. We suggest that team
researchers should consider incorporating multiple sensors in their study design, including movement
as well as audio and video data collection. The methodological setup described in our study is one
example of implementing such an approach without interfering with the naturally occurring team inter-
action, while still obtaining multimodal behavioral data from the field.

Third, in showing how behavioral indicators of task and social cohesion in real-life team meetings
are represented by the dynamics of social signals at the micro-level and across different behavioral
modalities, our findings point to the importance of capturing behavioral mimicry in team interactions.
Our finding that a combination of team-level movement and paralinguistic features performed best
for automatically predicting behavioral team cohesion within the meeting suggests that mimicry in
teams is a multimodal phenomenon. This insight speaks to calls for multimodal approaches in
social signal processing more broadly (Baltrušaitis et al., 2018). An important benefit of the social
signal processing approach is the ease with which multimodal behavioral phenomena can be inves-
tigated. In our case, we only looked at within-modality behavioral synchrony. Additional analyses
could be carried out involving cross-modal synchrony measures, which would allow us to probe
questions related to the role of inter- versus intra-modal synchrony for predicting team constructs.
Furthermore, in addition to synchrony, other higher-order terms worth exploring include possible
interactions between modalities (e.g., specific audio and video features might interact to predict dif-
ferent types of cohesion differently).

Fourth, beyond our specific example of predicting team cohesion, our findings suggest that social
signal processing can be used to automatically detect complex social interaction phenomena more
broadly. Indeed, computer scientists have applied social signal processing to a broad range of con-
structs of relevance to organizational researchers, such as detecting emergent leadership influence
(e.g., Muller & Bulling, 2019), predicting group performance from social signals (e.g., Murray &
Oertel, 2018), or automated analyses of group affect (e.g., Böck, 2021). Gatica-Perez and colleagues
(2017) reviewed 100 social signal processing publications that focused on small group analysis and
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derived conversational dynamics, verticality (including dominance and leadership), team personality,
and group characterization as trending topics in social signal processing that are of high relevance for
organizational researchers interested in group and team dynamics, leader–follower dynamics, and
social interactions at work more generally. Moving beyond the typical controlled laboratory
setting in these earlier applications, our findings from real, “messy” team meetings in organizational
context show that multimodal social signal processing approaches can be extended successfully to
teams in the wild. As a caveat, we need to acknowledge that we are not in a position yet to fully
rely on machine learning algorithms to reliably detect complex team behavior.

Our proposed approach can be easily extended to include the processing of othermodalities including
language, for example, by processing the transcripts generated from automatic speech recognition using
pre-trained neural language embeddings.We could indeed also consider processing other information at
the utterance level.However, there are privacy concerns to consider. Becausewegatheredfield data from
real project meetings, verbal transcriptions of the meetings were strictly forbidden. Given this practical
constraint, it is worth considering the benefit of also developing multimodal nonverbal approaches
further. This privacy-preserving aspect of our processing approach was certainly appealing to the
company where we gathered the data and was a contributing factor to our collaboration with them.

Limitations and Future Research Directions
Several limitations of our approachpoint to future researchopportunities. Someof these concernour choice
of labels for dynamic cohesion. In our machine learning model, the level of cohesion was binarized. The
choice to simplify the data by creating labels for high versus low task and social cohesion, rather than using
continuous labels, is standard in the social signal processing community, yet this leads to a loss of detail. It
remains a research challenge for the social signal processing community how to best handle these data
which have neither positive nor negative classifications. One might be led to think that solving this with
a regression task would be the solution. However, given the skewed nature of the data distributions as
shown in Appendix A, Figure A1, computing regressions accurately remains an open problem in the
field. Moreover, metrics for measuring good performance on a regressive scale tend to be harder to link
back to what is actually happening in the social interaction (in our case, a meeting). This remains an
open design choice for any interdisciplinary collaboration in the area of social signal processing.

Moreover, our machine learning model considered the two cohesion estimation tasks independently.
In other words, all 2-min meeting segments were labeled as either task or socially cohesive, but never as
both. Given that each time window within the team interaction stream could contain both utterances of
task and social cohesion, each window could receive a continuous value label for the associated level of
task and social cohesion present, rather than the binary categorization into high/low cohesion as applied
in our case study. For instance, each behavioral unit within the team interaction would be annotated with
a certain percentage of task cohesion and social cohesion. In adjusting the outputs of the estimation task
and considering the problem tobe one of jointly estimating task and social cohesion, othermachine learn-
ing approaches such as multitask learning could be used to better predict both types of cohesion with the
assumption that there is some dependency between the two phenomena that can also be learned.Notably,
much more training data would be required to achieve reliable predictions on continuous labels of task
and cohesion levels inside meeting segments.

Our choice of logistic regression as a supervised learning classification algorithm was one possi-
bility among many, many others. It really remains an open question which approach would be most
accurate. One of the issues to be considered in the context of our current study is that different par-
titions of the data would yield different results, given the type of validation approach we used due to
the small sample. It would be beyond the aims and scope of this paper to compare different classifiers,
but we refer the interested reader to Witten et al. (2005) for an overview of different types of algo-
rithms and data mining methods in machine learning. Moreover, given the growing success of deep
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learning approaches, future research might explore machine learning approaches that learn features
for social interaction from data (i.e., learned representations) rather than using prior knowledge to
design features. Such deep learning approaches use artificial neural networks (e.g., Rosopa, 2022;
Urban & Gates, 2021) and rely on massive amounts of data, which are far beyond the amounts avail-
able from typical samples of behavioral team interactions such as the one examined in the current
study. Likewise, leveraging knowledge that can be generalized from multiple datasets, recording con-
ditions, and contexts remains an open question. There is still a hope that with learned representations,
learned models can still be adapted to a specific set of experimental data using adaptation approaches
such as fine-tuning. However, future research using deep learning to detect behavioral team phenom-
ena should aim for larger samples of in-the-wild team interactions than the one we gathered and anno-
tated here. Moreover, we caution the reader that while deep learning approaches are powerful
machine learning techniques, they fall short in terms of their interpretability. It remains an open ques-
tion as to how we can resolve the semantic interpretation of such abstract representations, which can
often be “in the eye of the beholder.” This phenomenon is often overlooked and can cause severe
misinterpretations of machine learning results if not handled appropriately (see also Raman et al.,
2022, for a discussion of this point).

In the social signal processing field, works that are showing proofs of concept tend to use
simpler classifiers with feature engineering, while contributions that are more technical typi-
cally propose more robust classifiers that are designed based on hypotheses about the nature
of the prediction problem. While some earlier SSP works did compare modeling with different
classifiers, we deem this a rather unsatisfactory approach. This is because the explanation for
why one classifier works better than the other cannot be meaningfully extracted from more
complex classifiers without further analysis and often does not lead to satisfactory conclusions.
This is further compounded by the comparatively small size of our field study dataset (com-
pared to typical dataset sizes in the machine learning field). By using more sophisticated
machine learning classifiers, we would reduce the model transparency and might overfit our
model to unwanted nuances in the data. How to trade off these issues remains an open question
for interdisciplinary research.

In the scope of modeling choices, future research could also examine to what extent data transfor-
mations may improve performance in social signal processing. Methods from generalized linear
models (e.g., Rönkkö et al., 2022), such as log transformation, could potentially be applied to
machine learning model performance when labels are not distributed evenly (as in the case of our
labels for high and low cohesion, see Table A1 in Appendix A). Moreover, future research can inves-
tigate the potential interplay between micro-level behavioral mechanisms underlying task and social
cohesion, as presently investigated, and larger-scale temporal dynamics of (emergent) task and social
cohesion across longer interaction periods, such as entire meetings or series of meetings by utilizing
multilevel modeling approaches.

Regarding the ground truth for variables such as cohesion at the behavioral event level, we
took some liberties in our case study to establish a link between verbal utterances and labels
for task and social cohesion. We provided conceptual arguments for this link, drawing from
the extant literature on static measures of cohesion. Of note, we do not claim that our labels
of behavioral-level cohesion are the same as overall emergent cohesion, which is typically mea-
sured using self-report surveys (e.g., Salas et al., 2015). Equating these different types of vari-
ables would be problematic, for example, because survey-type reports of a very spontaneous,
subconscious coordination process such as the behavioral mimicry of social signals that represent
moments of cohesion during team interactions would not be feasible. In other words, we cannot
expect team members to self-report fluctuations in cohesion at the micro-level (see Mayo &
Gordon, 2020). It would be like trying to ask people to annotate the mimicry while experiencing
the interaction. We might label mimicry from external perceptions, but actually, we already know
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that these kinds of nonconscious behavioral patterns are best captured using sensors (e.g.,
Vinciarelli et al., 2011).

Related to our operationalization of ground truth labels for behavioral cohesion, future research can
investigate questions related to construct validity when pursuing a social signal processing approach to
team interactions in meetings and other dynamic social settings. Construct validity remains a potential
concern regarding the workwe presented here, as it pertains to the operationalization of behavioral-level
team cohesion, our key phenomenon of interest and the criterion which we used to train and evaluate our
machine learning algorithm.We anticipate that it will be a research challenge in and of itself to examine
whether and how micro-level fluctuations in behavioral expressions of cohesion map onto team
members’ self-reported experiences of team cohesion (which are prone to known biases associated
with self-report methods but nevertheless insightful because they add a perceptual measurement
layer; e.g., Gerpott et al., 2020). While beyond the scope of the current paper, future research can
and should extend our approach to other team constructs that have not yet been operationalized at
the behavioral level such that machine learning approaches can become more mainstream and
more researchers can benefit from them.Moreover, future research can examine to what extent auto-
matically detected behavioral expressions of task and social cohesion predict objective team perfor-
mance outcomes, in light of previously established linkages between cohesion and performance in
the survey-based literature (for an overview, see Grossman et al., 2022).

In our research example, regardless of the specific behavioral modality, the AUC score as an indi-
cator of the quality of the automated prediction was not particularly high. Hence, the goal to replace
laborious human annotations completely with artificial intelligence and rely on machine learning
algorithms to tell us how teams “tick” is still a work in progress. Ideally, future work in this area
will examine the performance of social signal processing approaches to group cohesion across a
range of different field settings beyond the one examined in our study, thus further contributing
answers to calls for more research “in the wild” voiced in both disciplines (e.g., Alameda-Pineda
et al., 2018; Shuffler & Cronin, 2019). To advance interdisciplinary research in this direction,
more collaborations between social scientists and computer scientists are needed. This includes
the need for collaborative datasets, along with new policies and ethical procedures in place for
sharing such data, and interdisciplinary foresight when designing studies (Keyton & Heylen,
2017). For researchers interested in embarking on such projects, Table 3 lists key points for consid-
eration during research design in order to enable multimodal social signal processing.

Finally, the key term “ground truth” in social signal processing warrants some reflection.
For organizational researchers focusing on team processes, the idea of a “truth” can seem
rather odd, given the subjectivity of team experiences and the fact that team research is not
an exact science. As a side note, while machine learning researchers call the labels “ground
truth,” others such as the speech processing community call them the “reference.” This
accounts for the fact that the labels themselves might be subjective in some way.
Historically, many traditional machine learning tasks were able to offer a more objective
(true) idea of what a label should be. However, as the field has developed and more subjective
phenomena are being investigated, the use of soft labels or the notion of subjectivity in the
labeling process is also accepted. However, the way of modeling this subjectivity in
machine learning approaches remains an open question.

To this end, scholars need to invest in developing and validating behavioral coding schemes for
behavioral team constructs such as task and social cohesion. As a first step, team phenomena need to
operationalize team constructs at the behavioral level such that they become observable. More schol-
ars need to focus on team dynamics in an organizational context with methods that yield high-
resolution team interaction data (e.g., Klonek et al., 2019). Organizational researchers should seek
dialogue with computer scientists in order to establish data-gathering routines, including the require-
ments in the observational setup to gather relevant social signals at sufficient quality and enable
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robust multimodal social signal processing, and appropriate time windows for annotating behavioral
team constructs. Alternatively, interdisciplinary research teams can explore to what extent the raw
signals from sensor data can provide meaningful insights into team constructs directly. The larger
question in this regard concerns the notion of representation, that is, how we may build scholarly con-
sensus to move beyond abstract sensor information and toward meaningful social signals that repre-
sent psychological phenomena in and of themselves.

Implications for Interdisciplinary Collaboration in Social Signal Processing
Our mode of collaboration in this study can be considered a light form of the producer–consumer model
(see Allen et al., 2017), where the social scientist provided the data and human annotations of the
observed team interactions and advised the selection of the task and socially cohesive utterances and
final interpretations of the resultant developed model. While such a lighter collaborative construction
can help in the earlier phases of establishing a common ground for interdisciplinary communication,
one would hope for more developed findings and outcomes moving forward with this collaboration.
Looking back on the collaboration, we could have taken a more equal role with respect to the generation
of joint research questions and the social scientist could have been includedmore in the design decisions
regarding the creation of the extracted feature data. This could have perhaps led to more application-
driven motivations for different machine learning models such as multitask learning or a different

Table 3. Research Design Aspects to Enable Multimodal Social Signal Processing.

Design Aspect Points for Consideration

Location • Ideally, no windows; no changes in ambient lighting

• Ideally, soundproof or in a quiet building area to avoid outside noise on the recorded

audio

• No fans/ventilators/noisy air conditioning noises inside the room

• Well-illuminated room to avoid shadows on participants’ faces
Sensor selection and

setup

• Individual videocameras trained on each participant (when seated, face and upper

body should be centered in each video). Camera signals with high resolution at a

constant frame rate (in our study, 1,920× 1,080 recorded at 25 fps)

• Individual microphones (headsets preferable over lapel microphones). Headsets

should not be worn too close to the mouth to avoid signal saturation, e.g., from the

utterance of plosives or sudden laughter

• Range of motion tracking technology (e.g., Poppe, 2011), including obtrusive (e.g.,

accelerometer badges) and unobtrusive (e.g., depth cameras)
Feature alignment • Necessary to temporally align data obtained from different participants and from

different sensors (audio, video, motion tracking)

• For video data: participants’ actions are compared in time, so the frames that

occurred at approximately the same timestamp within different videos need to be

found. This requires sampling video data at a constant frame rate. In our case,

frames with their timestamps closest to the new timestamp were used to construct

the new video using ffmpeg

• Video/audio synchronization (e.g., Lichtenauer et al., 2011; Raman et al., 2020):

ideally, digital synchronization. Manual synchronization, comparing statements

heard in the audio with visible mouth movement in the video, is less preferable

because it can cause multimodal drift

• Synchronizing accelerometer with audio/video data requires a precise data

gathering protocol, e.g., in our case, a research assistant was asked to clap a specific

accelerometer on the table after reading out the time shown on that accelerometer
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labeling approach based on the proportion of utterances that were task or socially cohesive within each
2-min meeting segment, as discussed above. Despite the early stage nature of this work, the joint expe-
rience has been invaluable as a common reference point to develop a joint working language for the col-
laboration and for furthering interdisciplinary research collaboration.

Regarding the practical implications of how such interdisciplinary work can be carried out, one of
the biggest hurdles is typically related to the lack of funding, which can be a chicken-and-egg
problem (i.e., without funding, no work can be carried out, and without at least preliminary work,
there is typically no funding). Our experience shows that this is a common misconception and
that actually low-hanging fruits do exist. While we conceptualized the research idea and study
design and set up the collaboration with the organization where the data were gathered, the actual
data gathering and much of the analytical work presented in this paper were then carried out by grad-
uate students in an interdisciplinary team as part of their master theses. One format could involve one
or more graduate students from each discipline working together. Beyond coordinating such an
effort, this also requires that the PIs are willing to invest time in advising graduate students from
the respective other discipline. As a caveat, such an approach limits the level of transdisciplinarity
that the work can have since graduate students need to fulfill certain disciplinary requirements.
However, such a collaboration forms a basis for establishing a common ground and language.
From there, we can develop more mature co-designed research questions that can ultimately
advance our conceptual understanding of social dynamics in groups and teams and computing
systems that can support organizations in improving teamwork. In closing, we want to emphasize
the exciting research opportunities afforded by social signal processing for innovating team
science. At the same time, we are nowhere near replacing human annotators with machines in
order to understand complex team phenomena such as cohesion. Continued collaboration and poten-
tially data sharing with the wider research community will allow computer scientists to develop more
robust automated machine perception approaches toward understanding more complex behavioral
group and team phenomena. We hope that the growing interest in interdisciplinary initiatives in
this realm (see Hung et al., 2020, for a summary) will continue to build.

Appendix A: Distribution of ground truth labels across the data set

Table A1. Percentage of 2-minute Segments (total N = 600) Within Each Meeting Labeled as High or Low

Social and Task Cohesion, Respectively.

Percentage of 2-minute Segments Labeled as:

Meeting

Number

Duration

(hh:mm:ss)

Number of

Labeled 2-Minute

Segments

High Social

Cohesion

Low Social

Cohesion

High Task

Cohesion

Low Task

Cohesion

1 01:14:00 37 .541 .000 .081 .270

2 01:27:45 42 .238 .119 .357 .500

4 01:04:05 31 .290 .419 .226 .452

5 00:52:45 26 .385 .115 .538 .269

6 01:29:41 44 .091 .636 .023 .841

7 00:41:23 20 .250 .200 .000 .750

8 00:22:29 11 .091 .091 .455 .091

9 00:24:30 12 .000 .667 .000 .583

10 00:55:40 27 .185 .481 .296 .370

11 00:47:13 23 .217 .348 .348 .217

(continued)
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Table A2. Means, Standard Deviations, and Correlations of Cohesion Labels (in %) Across the Entire Data Set.

M SD
High Social

Cohesion

Low Social

Cohesion

High Task

Cohesion

Low Task

Cohesion

High social cohesion .254 .179 1 −.724* .094 −.135
Low social cohesion .246 .204 1 −.311 .104

High task cohesion .252 .235 1 −.779*
Low task cohesion .388 .264 1

Note: N = 600 windows labeled for high/low task and social cohesion across the 25 observed team meetings. Spearman Rho

correlations. *p < .01.

Table A1. (continued)

Percentage of 2-minute Segments Labeled as:

Meeting

Number

Duration

(hh:mm:ss)

Number of

Labeled 2-Minute

Segments

High Social

Cohesion

Low Social

Cohesion

High Task

Cohesion

Low Task

Cohesion

12 00:43:00 21 .429 .048 .238 .333

13 00:58:38 27 .259 .259 .000 .444

14 00:36:45 18 .167 .389 .333 .333

15 00:54:25 27 .259 .074 .074 .593

16 00:28:38 14 .786 .000 .000 1.00

18 00:41:29 18 .167 .333 .056 .444

19 01:13:20 36 .250 .139 .222 .139

20 00:42:55 21 .476 .000 .476 .048

21 00:49:16 24 .083 .417 .208 .458

22 00:49:13 24 .292 .125 .833 .042

23 01:01:10 30 .067 .133 .733 .000

24 01:11:24 36 .250 .139 .222 .139

25 01:02:28 31 .065 .516 .065 .613

Figure A1. Frequency of behavioral expressions of social and task cohesion across the entire data set (i.e., all

2-minute meeting segments combined).
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Appendix B: AUC calculation and individual feature performance

In social signal processing, it is not customary to report a range of different performance metrics
because each metric should be well motivated with respect to the sample distribution. Given the
highly imbalanced class sizes in our case (see Figure A1 in Appendix A), we chose the area under
the curve (AUC) as a performance metric. The AUC metric is based on the receiver operating
characteristic (ROC). In machine learning, the ROC is a popular diagnostic tool for evaluation
the performance of classifiers both on balanced and imbalanced binary prediction problems
because “ROC analysis does not have any bias toward models that perform well on the minority
class at the expense of the majority class—a property that is quite attractive when dealing with
imbalanced data” (Weiss, 2013, p. 27). Compared to other performance metrics, the AUC pro-
vides the most complete picture of how well a model is performing because the ROC on
which it is based shows the performance at all possible combinations of precision and recall
for the given test dataset.

Computing the AUC
The AUC is computed by first determining the ROC, as shown in Figure 8a and b in the paper. This
shows how a model performs with respect to the true positive rate (TPR) against the false positive rate
(FPR). This is achieved by computing the TPR and FPR at various different thresholds with respect to
the probability of an observed sample belonging to the positive class (in this case, high cohesion).
The computed TPR and FPR at each threshold can be plotted as a curve from which the area
under it can be computed to obtain the AUC. One can imagine that the better our logistic regressor
is at modeling the two classes, the more likely that the estimated probabilities reflect the true class
label.

For the case of a perfect model, we can imagine that at the optimal threshold, all samples with a
probability below that threshold should be correctly labeled as negative (low cohesion) and corre-
spondingly, anything above that threshold should be correctly labeled as positive (high cohesion).
At that moment, the ROC should trace a line going straight up the y axis until it reaches 1 and
then straight across until it reaches 1 FPR and 1 TPR. We assumed in our case that positive labels
refer to the high cohesion label and negative to low cohesion.

To compute the FPR, we first need to calculate the false positives (FP); the number of samples that
were incorrectly labeled as having high cohesion, the true negatives (TN); the number of samples that
were correctly labeled as having low cohesion. Then, we can compute FPR = FP/(FP+TN). In other
words, of all the low cohesion samples, what percentage was labeled incorrectly?

To compute the TPR, we first need to calculate the true positives (TP); the number of samples that
were correctly labeled as having high cohesion, and the false negatives (FN); the number of samples
that were incorrectly labeled as low cohesion. Then we can compute the TPR=TP/(TP+FN). In other
words, of all the high cohesion samples, what percentage were labeled correctly?

Note that to combine or fuse multiple modalities together in this study, we used a late fusion
approach that takes an average of the output probabilities of each modality specific classifier. If
we wanted to tune the performance, we could have combined the probabilities with an additional
learned hyper parameter in order to better learn how to weigh the combination of different modalities
together for both social and task cohesion.

Features most related to social and task cohesion (correlations)
The accelerometer features and the video temporal difference features showed the best performance
(see Figure 8a). For more in-depth insights, we calculated correlations between the various features
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and task cohesion as well as social cohesion. Table B1 below shows the accelerometer and video-TD
features which were most strongly correlated with the ground truth labels for social cohesion.
Table B2 further below shows the accelerometer and video temporal difference features which
were most strongly correlated with the ground truth labels for task cohesion. The first component
in each feature name is the group-level aggregation method (e.g., Minimum), the second is the
mimicry measurement (e.g., Mutual Information), and the last is the individual feature type (e.g.,
PSD_Z_6).

Both Table B1 and Table B2 show that the group minimum value is the most common among
those features that correlate strongly with the cohesion labels in our data set. The group minimum
value is always negatively correlated with the label (both for social and for task cohesion predic-
tions). This may seem counterintuitive, because you might think that a group would be more cohesive
when they are more similar. However, note that the focal speaker is not separated from the rest of the
group. Hence, a low minimum results for example when the group is silently listening while the
speaker shows more movement (which makes the movement pattern of the rest of the group very
dissimilar to the speaker). This would also be reflected in a higher standard deviation, which is
indeed positively correlated with both social and task cohesion.

Concerning social cohesion (Table B1), we observe positive correlations with the median and
maximum group values among the video-TD features. This suggests that if the non-speakers of
the group are more similar their social cohesion is also similar, because this would be reflected in
a higher median and maximum. Mutual information is the pairwise correlation value that is most

Table B1. Correlations Between Accelerometer or Video-TD Features and Social Cohesion.

Feature Name Pearson’s r With Social Cohesion Labels p-value

Accelerometer features
Min Mutual Information PSD_Z_6 −.293 <.0001

Min Mutual Information PSD_X_3 −.292 <.0001

SD Normalized Mutual Information Var_XAbs .291 <.0001

Min Normalized Mutual Information PSD_X_3 −.280 <.0001

SD Normalized Mutual Information Mean_XAbs .267 .0001

SD Normalized Mutual Information PSD_Z_4 .262 .0001

SD Normalized Mutual Information PSD_X_2 .260 .0001

Min Normalized Mutual Information PSD_Z_6 −.251 .0002

SD Normalized Mutual Information PSD_X_1 .247 .0002

Min Mutual Information Var_X −.246 .0002

Video temporal difference features
Median Mutual Information Var_Mag .220 .001

Median Mutual Information Mean_Mag .186 .004

Max Mutual Information Var_Mag .183 .004

Min Global Convergence Mean_Mag −.181 .005

Min Mimicry_1_Mean Mean_Mag −.164 .011

SD Global Convergence Mean_Mag .162 .011

Min Mimicry_2_Mean Mean_Mag −.161 .012

Max Mutual Information Mean_Mag .161 .012

Min Mimicry_2_SD Mean_Mag −.159 .013

Min Global Convergence Var_Mag −.158 .014

Note:N = 600 meeting segments lasting 2 minutes each, labeled for high or low task and social cohesion. Min =minimum; Mag

=magnitude; Max =maximum; PSD = power spectral density and the bin number; SD = standard deviation; Var = variance; X

= X-axis; Y = Y-axis; Z = Z-axis.
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commonly found in the top 10 correlation accelerometer features. Mutual information is a metric that
quantifies how much about one signal can be known by knowing the other, and is therefore a sim-
ilarity rather than a mimicry metric.

Table B2 shows that mimicry is a common entry both among the accelerometer features and
among the video-TD features that correlate strongly with task cohesion.

Appendix C: Additional calculation of different performance metrics

In addition to the preferable AUC metric (see Appendix B for a detailed justification), alternative
performance metrics were requested during the revision process. As this was not anticipated, we
had not saved intermediate results that would enable alternative metrics to be directly calculated
from the posterior probability per sample per repeated folder. Hence, we performed a separate
analysis to obtain the requested alternative performance metrics based on the extracted features
and used a so-called brute force approach to identify the combination of extracted feature files
that would produce results with the closest AUC to our originally generated results. As an addi-
tional verification step, we cross-checked the ROCs and AUCs with our original findings and
observed a mean difference of .078 across all AUC scores, which can be attributed to expected
variations in folds of the cross-validations given our random seed approach to determine the
data folds during our original analysis.

Table B2. Correlations Between Accelerometer or Video-TD Features and Task Cohesion.

Feature Name Pearson’s r With Task Cohesion Labels p-value

Accelerometer features
Min Mimicry_1_Mean PSD_ZAbs_4 −.331 <.0001

Min Mimicry_2_Mean PSD_ZAbs_4 −.328 <.0001

Min Mimicry_2_Mean PSD_YAbs_5 −.314 <.0001

Min Mimicry_1_SD PSD_YAbs_5 −.313 <.0001

Min Mimicry_2_SD PSD_YAbs_5 −.311 <.0001

Min Mimicry_1_SD PSD_ZAbs_4 −.310 <.0001

Min Mimicry_1_M PSD_YAbs_5 −.308 <.0001

Min Mimicry_2_SD PS_ZAbs_4 −.306 <.0001

Min Mimicry_1_Max PSD_YAbs_5 −.298 <.0001

Min Mimicry_2_Max PSD_YAbs_5 . −.296 <.0001

Video temporal difference features
SD Global convergence Var_Mag .151 .009

Min Global convergence Var_Mag −.134 .020

Min Mimicry_1_Mean Mean_Mag −.133 .021

Min Mimicry_1_SD Mean_Mag −.127 .027

Min Mimicry_2_SD Mean_Mag −.126 .029

Min Mimicry_2_Mean Mean_Mag −.125 .029

Min Correlation Var_Mag −.125 .030

Min Correlation Mean_Mag −.121 .036

Max Symmetric convergence Var_Mag .120 .037

Min Mimicry_2_Max Mean_Mag −.119 .039

Note:N = 600 meeting segments lasting 2 minutes each, labeled for high or low task and social cohesion. Min =minimum; Mag

=magnitude; Max =maximum; PSD = power spectral density and the bin number; SD = standard deviation; Var = variance; X

= X-axis; Y = Y-axis; Z = Z-axis.
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Since computing the precision, recall, and f-measures forces us to discard the posterior probabil-
ities used by the AUC and reduces them to binary classifications, an additional transformation step
was necessary here. The binary prediction labels were generated by taking the highest posterior prob-
ability for each class. The results are shown in the table below, with standard deviations for all cal-
culated metrics shown in parentheses, respectively.

Authors’ Note

We appreciate the research assistance of Navin Raj Prabhu, Marjolein Nanninga, Marissa van der Wel, Sebastian
Dorfmeister, Stephanie Tan, Yanxia Zhang, Dina Habib, and Fabeya Kaygun. Our field data collection was sup-
ported by Manfred Overmeen, Robert-Jan Sips, Zoltán Szlávik, and Benjamin Timmermans, which is gratefully
acknowledged. An abridged version of this paper was presented as a poster at the Annual SIOP Conference 2023
in Boston.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication
of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication
of this article: This research was partially funded by Netherlands Organization for Scientific Research (NWO)
under project number 639.022.606 with associated AspasiaGrant, as well as support by IBM Netherlands.

ORCID iDs

Nale Lehmann-Willenbrock https://orcid.org/0000-0003-3346-5894
Hayley Hung https://orcid.org/0000-0001-9574-5395

References

Acton, B. P., Braun, M. T., & Foti, R. J. (2020). Built for unity: Assessing the impact of team composition on
team cohesion trajectories. Journal of Business and Psychology, 35(12), 751-766. https://doi.org/10.1007/
s10869-019-09654-7

Alameda-Pineda, X., Ricci, E., & Sebe, N. (2018). Multimodal behavior analysis in the wild: Advances and
challenges. Academic Press. https://doi.org/10.1016/B978-0-12-814601-9.00007-9.

Allen, J. A., Fisher, C., Chetouani, M., Chiu, M. M., Mehu, M., Gunes, H., & Hung, H. (2017). Comparing
social science and computer science workflow processes for studying group interactions. Small Group
Research, 48(5), 568-590. https://doi.org/10.1177/1046496417721747

Arrieta, A. B., Rodríguez, N. D., Ser, J. D., Bennetot, A., Tabik, S., & Barbado, A., … & F. Herrera (2020).
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012

Bales, R. F. (1950). Interaction process analysis: A method for the study of small groups. Addison Wesley.
Baltrušaitis, T., Ahuja, C., & Morency, L. P. (2018). Multimodal machine learning: A survey and taxonomy.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423-443. https://doi.org/10.1109/
TPAMI.2018.2798607

Banks, G. C., Woznyj, H. M., &Mansfield, C. A. (2021). Where is “behavior” in organizational behavior? A call
for a revolution in leadership research and beyond. The Leadership Quarterly. Advance online before print.
https://doi.org/10.1016/j.leaqua.2021.101581

Lehmann-Willenbrock and Hung 509

https://orcid.org/0000-0003-3346-5894
https://orcid.org/0000-0003-3346-5894
https://orcid.org/0000-0001-9574-5395
https://orcid.org/0000-0001-9574-5395
https://doi.org/10.1007/s10869-019-09654-7
https://doi.org/10.1007/s10869-019-09654-7
https://doi.org/10.1007/s10869-019-09654-7
https://doi.org/10.1016/B978-0-12-814601-9.00007-9.
https://doi.org/10.1016/B978-0-12-814601-9.00007-9.
https://doi.org/10.1177/1046496417721747
https://doi.org/10.1177/1046496417721747
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1016/j.leaqua.2021.101581
https://doi.org/10.1016/j.leaqua.2021.101581


Barsade, S. G. (2002). The ripple effect: Emotional contagion and its influence on group behavior.
Administrative Science Quarterly, 47(4), 644-675. https://journals.sagepub.com/doi/abs/10.2307/3094912
https://doi.org/10.2307/3094912

Beal, D. J., Cohen, R. R., Burke, M. J., & McLendon, C. L. (2003). Cohesion and performance in groups: A
meta-analytic clarification of construct relations. Journal of Applied Psychology, 88(6), 989-1004. https://
doi.org/10.1037/0021-9010.88.6.989

Böck, R. (2021). Affects in groups: A review on automated affect processing and estimation in groups. IEEE
Signal Processing Magazine, 38(6), 74-83. https://doi.org/10.1109/MSP.2021.3107811

Bonin, F., De Looze, C., Ghosh, S., Gilmartin, E., Vogel, C., Polychroniou, A., Salamin, H., Vinciarelli, A., &
Campbell, N. (2013). Investigating fine temporal dynamics of prosodic and lexical accommodation. In
INTERSPEECH 2013: 14th Annual Conference of the International Speech Communication Association,
Lyon, France, 25-29 August 2013. http://www.interspeech2013.org/.

Braaten, L. J. (1990). The different patterns of group climate critical incidents in high and low cohesion sessions
of group psychotherapy. International Journal of Group Psychotherapy, 40(4), 477-493. https://doi.org/10.
1080/00207284.1990.11490623

Brawley, L. R., Carron, A. V., & Widmeyer, W. N. (1987). Assessing the cohesion of teams: Validity of the
group environment questionnaire. Journal of Sport and Exercise Psychology, 9(3), 275-294. https://doi.
org/10.1123/jsp.9.3.275

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author).
Statistical Science, 16(3), 199-231. https://doi.org/10.1214/ss/1009213726

Burgoon, J. K., Magnenat-Thalmann, N., Pantic, M., & Vinciarelli, A. (2017). Social signal processing.
Cambridge University Press.

Burlingame, G. M., Fuhriman, A., & Johnson, J. E. (2001). Cohesion in group psychotherapy. Psychotherapy:
Theory, Research, Practice, Training, 38(4), 373. https://doi.org/10.1037/0033-3204.38.4.373

Carmody, P. C., Mateo, J. C., Bowers, D., & McCloskey, M. J. (2017). Linguistic coordination as an unobtru-
sive, dynamic indicator of rapport, prosocial team processes, and performance in team communication. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61(1), 140-144. Sage.
https://doi.org/10.1177/1541931213601518

Carron, A. V., Widmeyer, W. N., & Brawley, L. R. (1985). The development of an instrument to assess cohesion
in sport teams: The Group Environment Questionnaire. Journal of Sport and Exercise Psychology, 7(3), 244-
266. https://doi.org/10.1123/jsp.7.3.244

Casey-Campbell, M., & Martens, M. L. (2009). Sticking it all together: A critical assessment of the group cohe-
sion–performance literature. International Journal of Management Reviews, 11(2), 223-246. https://doi.org/
10.1111/j.1468-2370.2008.00239.x

Castaño, N., Watts, T., & Tekleab, A. G. (2013). A reexamination of the cohesion–performance relationship
meta-analyses: A comprehensive approach. Group Dynamics: Theory, Research, and Practice, 17(4),
207. https://doi.org/10.1037/a0034142

Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection bias in per-
formance evaluation. The Journal of Machine Learning Research, 11, 2079-2107. https://dl.acm.org/doi/abs/
10.5555/1756006.1859921

Chartrand, T. L., & Lakin, J. L. (2013). The antecedents and consequences of human behavioral mimicry. Annual
Review of Psychology, 64, 285-308. https://doi.org/10.1146/annurev-psych-113011-143754

Chartrand, T. L., & Van Baaren, R. (2009). Human mimicry. Advances in Experimental Social Psychology, 41,
219-274. https://doi.org/10.1016/S0065-2601(08)00405-X

Chiocchio, F., & Essiembre, H. (2009). Cohesion and performance: A meta-analytic review of disparities
between project teams, production teams, and service teams. Small Group Research, 40(4), 382-420.
https://doi.org/10.1177/1046496409335103

Christensen, U., Schmidt, L., Budtz-Jørgensen, E., & Avlund, K. (2006). Group cohesion and social support in
exercise classes: Results from a Danish intervention study. Health Education & Behavior, 33(5), 677-689.
https://doi.org/10.1177/1090198105277397

510 Organizational Research Methods 27(3)

https://journals.sagepub.com/doi/abs/10.2307/3094912
https://journals.sagepub.com/doi/abs/10.2307/3094912
https://doi.org/10.2307/3094912
https://doi.org/10.2307/3094912
https://doi.org/10.1037/0021-9010.88.6.989
https://doi.org/10.1037/0021-9010.88.6.989
https://doi.org/10.1037/0021-9010.88.6.989
https://doi.org/10.1109/MSP.2021.3107811
https://doi.org/10.1109/MSP.2021.3107811
http://www.interspeech2013.org/
http://www.interspeech2013.org/
https://doi.org/10.1080/00207284.1990.11490623
https://doi.org/10.1080/00207284.1990.11490623
https://doi.org/10.1080/00207284.1990.11490623
https://doi.org/10.1123/jsp.9.3.275
https://doi.org/10.1123/jsp.9.3.275
https://doi.org/10.1123/jsp.9.3.275
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1037/0033-3204.38.4.373
https://doi.org/10.1037/0033-3204.38.4.373
https://doi.org/10.1177/1541931213601518
https://doi.org/10.1177/1541931213601518
https://doi.org/10.1123/jsp.7.3.244
https://doi.org/10.1123/jsp.7.3.244
https://doi.org/10.1111/j.1468-2370.2008.00239.x
https://doi.org/10.1111/j.1468-2370.2008.00239.x
https://doi.org/10.1111/j.1468-2370.2008.00239.x
https://doi.org/10.1037/a0034142
https://doi.org/10.1037/a0034142
https://dl.acm.org/doi/abs/10.5555/1756006.1859921
https://dl.acm.org/doi/abs/10.5555/1756006.1859921
https://dl.acm.org/doi/abs/10.5555/1756006.1859921
https://doi.org/10.1146/annurev-psych-113011-143754
https://doi.org/10.1146/annurev-psych-113011-143754
https://doi.org/10.1016/S0065-2601(08)00405-X
https://doi.org/10.1016/S0065-2601(08)00405-X
https://doi.org/10.1177/1046496409335103
https://doi.org/10.1177/1046496409335103
https://doi.org/10.1177/1090198105277397
https://doi.org/10.1177/1090198105277397


De Jong, N. H., & Wempe, T. (2009). Praat script to detect syllable nuclei and measure speech rate automati-
cally. Behavior Research Methods, 41(2), 385-390. https://doi.org/10.3758/BRM.41.2.385

Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux, S., & Cohen, D. (2012). Interpersonal
synchrony: A survey of evaluation methods across disciplines. IEEE Transactions on Affective Computing,
3(3), 349-365. https://doi.org/10.1109/T-AFFC.2012.12

Duffy, K. A., & Chartrand, T. L. (2015). Mimicry: Causes and consequences. Current Opinion in Behavioral
Sciences, 3, 112-116. https://doi.org/10.1016/j.cobeha.2015.03.002

Evans, C. R., & Dion, K. L. (1991). Group cohesion and performance: A meta-analysis. Small Group Research,
22(2), 175-186. https://doi.org/10.1177/1046496491222002

Eys, M. A., & Carron, A. V. (2001). Role ambiguity, task cohesion, and task self-efficacy. Small Group
Research, 32(3), 356-373. https://doi.org/10.1177/104649640103200305

Fischer, T., Hambrick, D. C., Sajons, G. B., & Van Quaquebeke, N. (2020). Beyond the ritualized use of ques-
tionnaires: Toward a science of actual behaviors and psychological states. The Leadership Quarterly, 31(4),
101449. https://doi.org/10.1016/S1048-9843(20)30076-X

Gatica-Perez, D., Aran, O., & Jayagopi, D. (2017). Analysis of small groups. In J. K. Burgoon,
N. Magnenat-Thalmann, M. Pantic, & A. Vinciarelli (Eds.), Social signal processing (pp. 349-367).
Cambridge University Press.

Gerpott, F. H., Lehmann-Willenbrock, N., & Scheibe, S. (2020). Is work and aging research a science of ques-
tionnaires? Moving the field forward by considering perceived versus actual behaviors. Work, Aging, and
Retirement, 6(2), 65-70. https://doi.org/10.1093/workar/waaa002

Glass, J. S., & Benshoff, J. M. (2002). Facilitating group cohesion among adolescents through challenge course expe-
riences. Journal of Experiential Education, 25(2), 268-277. https://doi.org/10.1177/105382590202500204

Greatbatch, D., & Clark, T. (2003). Displaying group cohesiveness: Humour and laughter in the public lectures
of management gurus. Human Relations, 56(12), 1515-1544. https://doi.org/10.1177/00187267035612004

Grossman, R., Nolan, K., Rosch, Z., Mazer, D., & Salas, E. (2022). The team cohesion–performance relation-
ship: A meta-analysis exploring measurement approaches and the changing team landscape. Organizational
Psychology Review, 12(2), 181-238. https://doi.org/10.1177/20413866211041157

Hemshorn de Sanchez, C. S., Gerpott, F. H., & Lehmann-Willenbrock, N. (2022). A review and future agenda
for behavioral research on leader–follower interactions at different temporal scopes. Journal of
Organizational Behavior, 43(2), 342-368. https://doi.org/10.1002/job.2583

Hill, N. S., Offermann, L. R., & Thomas, K. (2019). Mitigating the detrimental impact of maximum negative
affect on team cohesion and performance through face-to-face communication. Group & Organization
Management, 44(1), 211-238. https://doi.org/10.1177/1059601118776835

Hoehl, S., Fairhurst, M., & Schirmer, A. (2021). Interactional synchrony: Signals, mechanisms and benefits.
Social Cognitive and Affective Neuroscience, 16(1-2), 5-18. https://doi.org/10.1093/scan/nsaa024

Holmes, J., & Marra, M. (2006). Humor and leadership style. Humor, 19(2), 119-138. https://doi.org/10.1515/
HUMOR.2006.006

Hoogeboom, M. A., & Wilderom, C. P. (2020). A complex adaptive systems approach to real-life team inter-
action patterns, task context, information sharing, and effectiveness. Group & Organization Management,
45(1), 3-42. https://doi.org/10.1177/1059601119854927

Hospedales, T. M., Antoniou, A., Micaelli, P., & Storkey, A. J. (2022). Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 5149-5169. https://doi.org/
10.1109/TPAMI.2021.3079209

Hüffmeier, J., & Hertel, G. (2011). Many cheers make light the work: How social support triggers process
gains in teams. Journal of Managerial Psychology, 26(3), 185-204. https://doi.org/10.1108/
02683941111112631

Hung, H., & Gatica-Perez, D. (2010). Estimating cohesion in small groups using audio–visual nonverbal
behavior. IEEE Transactions on Multimedia, 12(6), 563-575. https://doi.org/10.1109/TMM.2010.
2055233

Lehmann-Willenbrock and Hung 511

https://doi.org/10.3758/BRM.41.2.385
https://doi.org/10.3758/BRM.41.2.385
https://doi.org/10.1109/T-AFFC.2012.12
https://doi.org/10.1109/T-AFFC.2012.12
https://doi.org/10.1016/j.cobeha.2015.03.002
https://doi.org/10.1016/j.cobeha.2015.03.002
https://doi.org/10.1177/1046496491222002
https://doi.org/10.1177/1046496491222002
https://doi.org/10.1177/104649640103200305
https://doi.org/10.1177/104649640103200305
https://doi.org/10.1016/S1048-9843(20)30076-X
https://doi.org/10.1016/S1048-9843(20)30076-X
https://doi.org/10.1093/workar/waaa002
https://doi.org/10.1093/workar/waaa002
https://doi.org/10.1177/105382590202500204
https://doi.org/10.1177/105382590202500204
https://doi.org/10.1177/00187267035612004
https://doi.org/10.1177/00187267035612004
https://doi.org/10.1177/20413866211041157
https://doi.org/10.1177/20413866211041157
https://doi.org/10.1002/job.2583
https://doi.org/10.1002/job.2583
https://doi.org/10.1177/1059601118776835
https://doi.org/10.1177/1059601118776835
https://doi.org/10.1093/scan/nsaa024
https://doi.org/10.1093/scan/nsaa024
https://doi.org/10.1515/HUMOR.2006.006
https://doi.org/10.1515/HUMOR.2006.006
https://doi.org/10.1515/HUMOR.2006.006
https://doi.org/10.1177/1059601119854927
https://doi.org/10.1177/1059601119854927
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1108/02683941111112631
https://doi.org/10.1108/02683941111112631
https://doi.org/10.1108/02683941111112631
https://doi.org/10.1109/TMM.2010.2055233
https://doi.org/10.1109/TMM.2010.2055233
https://doi.org/10.1109/TMM.2010.2055233


Hung, H., Murray, G., Varni, G., Lehmann-Willenbrock, N., Gerpott, F. H., & Oertel, C. (2020, October). Workshop
on interdisciplinary insights into group and team dynamics. In Proceedings of the 2020 International Conference
on Multimodal Interaction (pp. 876-877). https://doi.org/10.1145/3382507.3419748.

Jackson, J. C., Jong, J., Bilkey, D., Whitehouse, H., Zollmann, S., McNaughton, C., & Halberstadt, J. (2018).
Synchrony and physiological arousal increase cohesion and cooperation in large naturalistic groups.
Scientific Reports, 8(1), 1-8. https://doi.org/10.1038/s41598-017-18023-4

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning with applica-
tions in R (2nd ed.). Springer.

Kapcak, Ö, Vargas-Quiros, J., & Hung, H. (2019, September). Estimating romantic, social, and sexual attraction
by quantifying bodily coordination using wearable sensors. In 2019 8th International Conference on
Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (pp. 154-160). IEEE.
https://doi.org/10.1109/ACIIW.2019.8925137.

Kauffeld, S., & Lehmann-Willenbrock, N. (2012). Meetings matter: Effects of team meeting communication on
team and organizational success. Small Group Research, 43(2), 128-156. https://doi.org/10.1177/
1046496411429599

Kauffeld, S., Lehmann-Willenbrock, N., & Meinecke, A. L. (2018). The advanced interaction analysis for teams
(act4teams) coding scheme. In E. Brauner, M. Boos, & M. Kolbe (Eds.), The Cambridge handbook of group
interaction analysis (pp. 422-431). Cambridge University Press.

Keyton, J. (2018). Interaction analysis: An introduction. In E. Brauner, M. Boos, & M. Kolbe (Eds.), The
Cambridge handbook of group interaction analysis (pp. 3-19). Cambridge University Press.

Keyton, J., & Heylen, D. K. (2017). Pushing interdisciplinary in the study of groups and teams. Small Group
Research, 48(5), 621-630. https://doi.org/10.1177/1046496417732528

Khalid, S., Khalil, T., & Nasreen, S. (2014, August). A survey of feature selection and feature extraction tech-
niques in machine learning. 2014 Science and Information Conference, 2014, pp. 372-378. https://doi.org/10.
1109/SAI.2014.6918213.

Klonek, F. E., Gerpott, F. H., Lehmann-Willenbrock, N., & Parker, S. (2019). Time to go wild: How to concep-
tualize and measure process dynamics in real teams with high resolution.Organizational Psychology Review,
9(4), 245-275. https://doi.org/10.1177/2041386619886674

Kolbe, M., & Boos, M. (2019). Laborious but elaborate: The benefits of really studying team dynamics.
Frontiers in Psychology, 10, 1478. https://doi.org/10.3389/fpsyg.2019.01478

Kozlowski, S. W. (2015). Advancing research on team process dynamics: Theoretical, methodological, and
measurement considerations. Organizational Psychology Review, 5(4), 270-299. https://doi.org/10.1177/
2041386614533586

Kozlowski, S. W., & Chao, G. T. (2012). The dynamics of emergence: Cognition and cohesion in work teams.
Managerial and Decision Economics, 33(5-6), 335-354. https://doi.org/10.1002/mde.2552

Kozlowski, S. W., & Chao, G. T. (2018). Unpacking team process dynamics and emergent phenomena:
Challenges, conceptual advances, and innovative methods. American Psychologist, 73(4), 576. https://doi.
org/10.1002/mde.2552

Lakin, J. L. (2013). Behavioral mimicry and interpersonal synchrony. In J. A. Hall, & M. L. Knapp (Eds.),
Handbooks of communication science. Nonverbal communication (pp. 539-575). De Gruyter Mouton.
https://doi.org/10.1515/9783110238150.539

LeBaron, C., Jarzabkowski, P., Pratt, M. G., & Fetzer, G. (2018). An introduction to video methods in organizational
research. Organizational Research Methods, 21(2), 239-260. https://doi.org/10.1177/1094428117745649

Lehmann-Willenbrock, N., & Allen, J. A. (2014). How fun are your meetings? Investigating the relationship
between humor patterns in team interactions and team performance. Journal of Applied Psychology,
99(6), 1278-1287. https://doi.org/10.1037/a0038083

Lehmann-Willenbrock, N., & Allen, J. A. (2018). Modeling temporal interaction dynamics in organiza-
tional settings. Journal of Business and Psychology, 33(3), 325-344. https://doi.org/10.1007/s10869-
017-9506-9

512 Organizational Research Methods 27(3)

https://doi.org/10.1145/3382507.3419748.
https://doi.org/10.1145/3382507.3419748.
https://doi.org/10.1038/s41598-017-18023-4
https://doi.org/10.1038/s41598-017-18023-4
https://doi.org/10.1109/ACIIW.2019.8925137.
https://doi.org/10.1109/ACIIW.2019.8925137.
https://doi.org/10.1177/1046496411429599
https://doi.org/10.1177/1046496411429599
https://doi.org/10.1177/1046496411429599
https://doi.org/10.1177/1046496417732528
https://doi.org/10.1177/1046496417732528
https://doi.org/10.1109/SAI.2014.6918213.
https://doi.org/10.1109/SAI.2014.6918213.
https://doi.org/10.1109/SAI.2014.6918213.
https://doi.org/10.1177/2041386619886674
https://doi.org/10.1177/2041386619886674
https://doi.org/10.3389/fpsyg.2019.01478
https://doi.org/10.3389/fpsyg.2019.01478
https://doi.org/10.1177/2041386614533586
https://doi.org/10.1177/2041386614533586
https://doi.org/10.1177/2041386614533586
https://doi.org/10.1002/mde.2552
https://doi.org/10.1002/mde.2552
https://doi.org/10.1002/mde.2552
https://doi.org/10.1002/mde.2552
https://doi.org/10.1002/mde.2552
https://doi.org/10.1515/9783110238150.539
https://doi.org/10.1515/9783110238150.539
https://doi.org/10.1177/1094428117745649
https://doi.org/10.1177/1094428117745649
https://doi.org/10.1037/a0038083
https://doi.org/10.1037/a0038083
https://doi.org/10.1007/s10869-017-9506-9
https://doi.org/10.1007/s10869-017-9506-9
https://doi.org/10.1007/s10869-017-9506-9


Lehmann-Willenbrock, N., Allen, J. A., & Kauffeld, S. (2013). A sequential analysis of procedural meeting
communication: How teams facilitate their meetings. Journal of Applied Communication Research, 41(4),
365-388. https://doi.org/10.1080/00909882.2013.844847

Lehmann-Willenbrock, N., & Chiu, M. M. (2018). Igniting and resolving content disagreements during team
interactions: A statistical discourse analysis of team dynamics at work. Journal of Organizational
Behavior, 39(9), 1142-1162. https://doi.org/10.1002/job.2256

Lehmann-Willenbrock, N., Chiu, M. M., Lei, Z., & Kauffeld, S. (2017a). Understanding positivity within
dynamic team interactions: A statistical discourse analysis. Group & Organization Management, 42(1),
39-78. https://doi.org/10.1177/1059601116628720

Lehmann-Willenbrock, N., Hung, H., & Keyton, J. (2017b). New frontiers in analyzing dynamic group interac-
tions: Bridging social and computer science. Small Group Research, 48(5), 519-531. https://doi.org/10.1177/
1046496417718941

Lichtenauer, J., Shen, J., Valstar, M., & Pantic, M. (2011). Cost-effective solution to synchronised audio–visual
data capture using multiple sensors. Image and Vision Computing, 29(10), 666-680. https://doi.org/10.1016/j.
imavis.2011.07.004

Lott, A. J., & Lott, B. E. (1965). Group cohesiveness as interpersonal attraction: A review of relationships with
antecedent and consequent variables. Psychological Bulletin, 64(4), 259-309. https://doi.org/10.1037/
h0022386

Mast, M., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T. (2015). Social sensing for psychol-
ogy: Automated interpersonal behavior assessment. Current Directions in Psychological Science, 24, 154-
160. https://doi.org/10.1177/0963721414560811

Mayo, O., & Gordon, I. (2020). In and out of synchrony—Behavioral and physiological dynamics of dyadic
interpersonal coordination. Psychophysiology, 57(6), e13574. https://doi.org/10.1111/psyp.13574

Moreland, R. L. (2010). Are dyads really groups? Small Group Research, 41(2), 251-267. https://doi.org/10.
1177/1046496409358618

Müller, J., Fàbregues, S., Guenther, E. A., & Romano, M. J. (2019). Using sensors in organizational research—
clarifying rationales and validation challenges for mixed methods. Frontiers in Psychology, 10, 1188. https://
doi.org/10.3389/fpsyg.2019.01188

Muller, P. M., & Bulling, A. (2019). Emergent leadership detection across datasets. In ICMI ‘19: 2019
International Conference on Multimodal Interaction (274-278). https://doi.org/10.1145/3340555.3353721

Murray, G., & Oertel, C. (2018, October). Predicting group performance in task-based interaction. In
Proceedings of the 20th ACM International Conference on Multimodal Interaction (pp. 14-20).

Nanninga, M. C., Zhang, Y., Lehmann-Willenbrock, N., Szlávik, Z., & Hung, H. (2017, November). Estimating
verbal expressions of task and social cohesion in meetings by quantifying paralinguistic mimicry. In
Proceedings of the 19th ACM International Conference on Multimodal Interaction (pp. 206-215). https://
doi.org/10.1145/3136755.3136811

Pantic, M., Cowie, R., D’Errico, F., Heylen, D., Mehu, M., Pelachaud, C., Poggi, I., Schroeder, M., &
Vinciarelli, A. (2011). Social signal processing: The research agenda. In T. B. Moeslund, A. Hilton,
V. Krüger, & L. Sigal (Eds.), Visual analysis of humans (pp. 511-538). Springer.

Pentland, A., & Heibeck, T. (2008). Honest signals. MIT press.
Poppe, R. (2011). Automatic analysis of bilidy social signals. In J. Burgoon, N. Magnenat-Thalmann, M. Pantic,

& A. Vinciarelli (Eds.), Social signal processing (pp. 155-167). Cambridge University Press. https://doi.org/
10.1017/9781316676202.001

Raman, C., Nonnemaker, A., Villegas-Morcillo, A., Hung, H., & Loog, M. (2022). Why did this model forecast
this future? Closed-form temporal saliency towards causal explanations of probabilistic forecasts. arXiv pre-
print arXiv:2206.00679. Available at https://arxiv.org/pdf/2206.00679.

Raman, C., Tan, S., & Hung, H. (2020). A modular approach for synchronized wireless multimodal multisensor
data acquisition in highly dynamic social settings. In Proceedings of the 28th ACM International Conference
on Multimedia (pp. 3586-3594). https://doi.org/10.1145/3394171.3413697

Lehmann-Willenbrock and Hung 513

https://doi.org/10.1080/00909882.2013.844847
https://doi.org/10.1080/00909882.2013.844847
https://doi.org/10.1002/job.2256
https://doi.org/10.1002/job.2256
https://doi.org/10.1177/1059601116628720
https://doi.org/10.1177/1059601116628720
https://doi.org/10.1177/1046496417718941
https://doi.org/10.1177/1046496417718941
https://doi.org/10.1177/1046496417718941
https://doi.org/10.1016/j.imavis.2011.07.004
https://doi.org/10.1016/j.imavis.2011.07.004
https://doi.org/10.1016/j.imavis.2011.07.004
https://doi.org/10.1037/h0022386
https://doi.org/10.1037/h0022386
https://doi.org/10.1037/h0022386
https://doi.org/10.1177/0963721414560811
https://doi.org/10.1177/0963721414560811
https://doi.org/10.1111/psyp.13574
https://doi.org/10.1111/psyp.13574
https://doi.org/10.1177/1046496409358618
https://doi.org/10.1177/1046496409358618
https://doi.org/10.1177/1046496409358618
https://doi.org/10.3389/fpsyg.2019.01188
https://doi.org/10.3389/fpsyg.2019.01188
https://doi.org/10.3389/fpsyg.2019.01188
https://doi.org/10.1145/3340555.3353721
https://doi.org/10.1145/3340555.3353721
https://doi.org/10.1145/3136755.3136811
https://doi.org/10.1145/3136755.3136811
https://doi.org/10.1145/3136755.3136811
https://doi.org/10.1017/9781316676202.001
https://doi.org/10.1017/9781316676202.001
https://doi.org/10.1017/9781316676202.001
https://doi.org/10.1145/3394171.3413697
https://doi.org/10.1145/3394171.3413697
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	 &/title;&p;Many research questions in organizational research relate to how members of organizations behave during dynamic social interactions (LeBaron et al., 2018). Among social interaction phenomena in organizations, team interactions are particularly complex and often puzzling for organizational researchers (Waller  Kaplan, 2018). However, researchers need to understand behavioral team interactions in order to understand emergent team phenomena such as intra-team trust, collaborative sensemaking, or team cohesion, all of which originate in team behavioral dynamics. Several scholars have pointed to the benefits of recording audiovisual team interaction data in order to capture rich data on team dynamics over time (e.g., Kozlowski, 2015; Waller  Kaplan, 2018). Empirical studies adopting audiovisual recording and analysis have made important contributions to understanding the micro-level behavioral dynamics that characterize successful team interactions (e.g., Hoogeboom  Wilderom, 2020; Lehmann-Willenbrock  Chiu, 2018; Uitdewilligen et al., 2018). Yet, behavioral team phenomena continue to be difficult to capture. If researchers go to the trouble of gathering audiovisual data on actual team behavior rather than relying on survey-based proxies of behavior (for a detailed critique, see Lehmann-Willenbrock  Allen, 2018), they need substantial resources for annotating the data and quantifying behavioral patterns. Moreover, team behavioral dynamics are fluid and often change from one minute to the next, which requires “high-resolution” research methods with high sampling rates (Klonek et al., 2019).&/p;&p;This paper presents a social signal processing approach that can automatically detect “high-resolution” behavioral team processes from sensor data that is combined with a machine learning algorithm. This approach moves beyond the state of the art in team interaction analysis in several ways. First, social signal processing can incorporate multiple social signals that occur simultaneously during team interactions, whereas researchers pursuing quantitative team interaction analysis typically focus on only one modality and study sequential verbal or nonverbal interaction behavior (for an overview, see Keyton, 2018). Second, “high resolution” is a debatable term in the literature. The state of the art often considers verbal utterances as the smallest temporal unit (cf., Klonek et al., 2019), but behavioral phenomena in complex social collectives such as teams also occur at a much more fine-grained, sub-utterance level of nonverbal behavior (see Müller et al., 2019). Third, the state of the art in team interaction analysis requires intense human effort, in terms of the many hours that go into annotating the interaction data. Social signal processing develops algorithms that can adequately predict such human annotations (or ground truth labels), with the aim of automating these predictions.&/p;&p;With the growth in artificial intelligence in the last decade, many human behaviors can be measured reliably by state-of-the-art machine learning techniques (see Rudovic et al., 2017). The main premise of machine learning in its most basic form is to learn a mapping from some data to an expected outcome or “label.” Mathematically speaking, this involves minimizing an error between a prediction and an actual outcome by adjusting the parameters of this mapping function. When the learning task involves predicting some aspect of a human's social behavior given some behavioral input data, this is known as the research domain of social signal processing, defined as “the computing domain aimed at modeling, analysis, and synthesis of social signals in human–human and human–machine interactions” (Vinciarelli, 2017).&/p;&p;Social signals are constructs that are generated from a constellation of measurable behavioral cues displayed during social interactions, such as facial expressions, gaze, body posture, movement, gestures, and vocal expressions (e.g., speech rate) that produce a response in others (e.g., team members). The data used in social signal processing are often multimodal social signals that have been captured by sensors in the local environment, capturing, for example, (1) video from cameras, (2) audio from microphones, or (3) bodily movement or physiological data from wearable sensors. Relatively simple social cues such as facial action units from video or sentiment from automatically transcribed text can be extracted without additional human annotation, often reaching acceptable degrees of reliability (for an overview, see Burgoon et al., 2017). To study more complex, multimodal social behaviors such as team processes, machine learning algorithms require training by humans to detect meaningful behaviors. Hence, the final ingredient for training a machine to interpret more complex group or team constructs is human intervention. This may initially trigger some disappointment for researchers who are looking for off-the-shelf technology to capture their constructs of interest. However, once there are sufficient interdisciplinary collaborations to generate more robust machine learning approaches, this will catalyze our understanding of team dynamics and temporal linkages between different team processes (and other behavioral interaction phenomena, including leadership, e.g., Fischer et al., 2020; Hemshorn de Sanchez et al., 2022).&/p;&p;In this paper, we showcase the potential of an interdisciplinary social signal processing approach for obtaining new insights into systematic behavioral patterns in teams and other interacting social collectives in organizations. We apply this approach in a field sample of project team meetings, during which we recorded numerous social signals (audio, video, and movement) and annotated the teams’ verbal interaction with the aim to automatically predict moments of high or low cohesion in the meeting from team patterns of extracted social signals. We specify the requirements for multimodal social signal data gathering, explain how to select appropriate time windows, calculate measures of behavioral mimicry based on multimodal sensor data at the team level, and investigate to what extent automatically extracted behavioral mimicry can predict cohesive team interaction behaviors. We discuss the potential as well as the shortcomings and substantial need for additional interdisciplinary or even transdisciplinary work on automatic behavioral modeling approaches to dynamic team interaction phenomena, in the hope that this paper will inspire others to pool their expertise and embrace interdisciplinary research collaboration opportunities in this area.&/p;&/sec;
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