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Abstract
In this paper we investigate scaling limits of the odometer in divisible sandpiles
on d-dimensional tori following up the works of Chiarini et al. (Odometer of long-
range sandpiles in the torus: mean behaviour and scaling limits, 2018), Cipriani et al.
(Probab Theory Relat Fields 172:829–868, 2017; Stoch Process Appl 128(9):3054–
3081, 2018). Relaxing the assumption of independence of the weights of the divisible
sandpile, we generate generalizedGaussian fields in the limit by specifying the Fourier
multiplier of their covariance kernel. In particular, using a Fourier multiplier approach,
we can recover fractional Gaussian fields of the form (−Δ)−s/2W for s > 2 and W a
spatial white noise on the d-dimensional unit torus.

Keywords Divisible sandpile · Fourier analysis · Generalized Gaussian field ·
Abstract Wiener space

Mathematics Subject Classification (2010) 31B30 · 60J45 · 60G15 · 82C22 · 60G22

1 Introduction andMain Results

Gaussian randomfields arise naturally in the study ofmany statistical physical models.
In particular fractional Gaussian fields FGFs(D) := (−Δ)−s/2W , where W denotes
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a spatial white noise, s ∈ R and D ⊂ R
d , typically arise in the context of random

phenomena with long-range dependence and are closely related to renormalization.
Examples of fractional Gaussian fields include the Gaussian free field and the con-
tinuum bi-Laplacian model. We refer the reader to Lodhia et al. [14] and references
therein for a complete survey on fractional Gaussian fields. In this paper we study
a class of divisible sandpile models and show that the scaling limit of its odometer
functions converges to a Gaussian limiting field indexed by a Fourier multiplier.

The divisible sandpile was introduced by Levine and Peres [11,12], and it is defined
as follows: A divisible sandpile configuration on the discrete torus Z

d
n of side-length n

is a function s : Z
d
n → R, where s(x) indicates a mass of particles or a hole at site x .

Note that here, unlike the classical Abelian sandpile model [2,8], s(x) is a real-valued
number. Given (σ (x))x∈Zd

n
a sequence of centered (possibly correlated) multivariate

Gaussian random variables, we choose s to be equal to

s(x) = 1 + σ(x) − 1

nd
∑

z∈Zd
n

σ(z). (1.1)

If a vertex x ∈ Z
d
n is unstable, i.e., s(x) > 1, it topples by keeping mass 1 for

itself and distributing the excess s(x) − 1 uniformly among its neighbors. At each
discrete time step, all unstable vertices topple simultaneously. The configuration s
defined as (1.1) will stabilize to the all 1 configuration. The odometer un : Z

d
n → R≥0

collects the information about all mass which was emitted from each vertex in Z
d
n

during stabilization. Our main theorem states that un , properly rescaled, converges to
a Gaussian random field in some appropriate Sobolev space.

In Cipriani et al. [4] the authors consider divisible sandpiles with nearest-neighbor
mass distribution and show that for any configuration s given by (1.1) where the σ ’s
are i.i.d. with finite variance the limiting odometer is a bi-Laplacian Gaussian field
(−Δ)−1W on the unit torus T

d (or FGF2(Td) in the notation of Lodhia et al. [14]).
Relaxing the second moment assumption on σ leads to limiting fields which are no
longer Gaussian, but alpha-stable random fields, see Cipriani et al. [7]. On the other
side, if one keeps the second moment assumption and instead redistributes the mass
upon toppling to all neighbors following the jump distribution of a long-range random
walk, one can construct fractional Gaussian fields with 0 < s ≤ 2 ([3]). To summarize,
Gaussian fields appear under the assumption of finite second moments in the initial
configuration, while tuning the redistribution of the mass leads to limiting interfaces
with smoothness which is at most the one of a bi-Laplacian field.

One natural question arises: What kind of sandpile models give rise to odometer
interfaces which are smoother than the bi-Laplacian? It turns out that to obtain limiting
fields of the form (−Δ)−s/2W such that s > 2 the long-range dependence must show
up in the initial Gaussian multivariate variables σ rather than in the redistribution
rule. The novelty of the present article is that it complements [3,4,7] by removing the
assumption of independence of the weights (in the Gaussian case), and in addition
provides an example of a model defined on a discrete space which scales to a limiting
field (−Δ)−s/2W such that s > 2. Note that for the fractional case with s > 2
one does not have the aid of explicit integral representations for the eigenvalues, and
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therefore constructing the continuum field via a discrete approximation requires new
approaches. To the best of the authors’ knowledge this article is the first instance of
such a construction.

In the proof, we start by defining a sequence of covariance matrices (Kn)n∈N for the
weights of the sandpile. Their Fourier transform K̂n is assumed to have a pointwise
limit K̂ as n goes to infinity. Under suitable regularity assumptions, K̂ defines the
Fourier multiplier of the covariance kernel of the limiting field. A key idea in the proof
is to absorb the multiplier K̂ into the definition of the abstract Wiener space. This
defines a new Hilbert space where we will construct the limiting field. Note that this
approach is different from the one in Chiarini et al. [3], Cipriani et al. [4], where the
covariance structure of the odometer was given. Furthermore we would like to stress
that the scaling factor an ∼ n−2 used for convergence (see Theorem 1) is dimension-
independent in contrast to the above-mentioned works. This follows from the fact
that, being the σ ’s correlated, the dimensional scaling is absorbed in the covariance
structure of the odometer (see Lemma 7).

Let us finally remark that depending on the parameters s, d the limiting field will
be either a random distribution or a random continuous function. More precisely, if
the Hurst parameter H of the FGFs field

H := s − d

2

is strictly negative, then the limit is a random distributionwhile for H ∈ (k, k+1), k ∈
N∪{0}, the field is a (k−1)-differentiable function ([14], with the caveat that the results
presented therein are worked out for R

d or domains with zero boundary conditions).
In the case of H ≥ 0, a stronger result could be pursued, namely an invariance
principle à-la Donsker (as, for example, in Cipriani et al. [5, Theorem 2.1], Cipriani
et al. [6, Theorem 3]). To keep the same outline for all proofs we will treat the limiting
field a priori as a random distribution and thus prove finite-dimensional distribution
convergence by testing the rescaled odometer against suitable test functions.

1.1 Main Result

Notation In all that follows, we will consider d ≥ 1. We are going to work with
the spaces Z

d
n := [−n/2, n/2]d ∩ Z

d , the discrete torus of side-length n, and T
d :=

[−1/2, 1/2]d , the d-dimensional torus. Moreover, let B(z, ρ) a ball centered at z of
radius ρ > 0 in the �∞-metric. We will use throughout the notation z · w for the
Euclidean scalar product between z, w ∈ R

d . We will let C,C ′, c . . . be positive
constants which may change from line to line within the same equation. We define the
Fourier transform of a function f ∈ L1(Td) as f̂ (y) := ∫

Td f (z) exp (−2π ı y · z) dz
for y ∈ Z

d . We will use the symbol ·̂ to denote also Fourier transforms on Z
d
n and R

d

(cf. Sect. 2.1 for the precise definitions).
We can now state our main result. We consider the piecewise interpolation of the

odometer on small boxes of radius 1/2n and showconvergence to the limitingGaussian
field Ξ K depending on the covariance Kn of the initial sandpile configuration. This
field can be represented in several ways: a convenient one is to let it be the Gaussian
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field with characteristic functional

Φ( f ) := exp

(
−‖ f ‖2K

2

)
(1.2)

where f belongs to the Sobolev space H−1
K (Td) with norm

‖ f ‖2K :=
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖−4| f̂ (ξ)|2.

We will give the analytical background to this definition in Sect. 2.2. Note that we
index the norm and the Sobolev space by the Fourier multiplier K .

Theorem 1 For n ∈ N, consider an initial sandpile configuration defined by (1.1)
where the collection of centered Gaussians (σ (x))x∈Zd

n
has covariance

E[σ(x)σ (y)] = Kn(x − y).

Assume that K̂n, the Fourier transform of Kn on Z
d
n , satisfies

sup
n∈N

sup
ξ∈Zd

K̂n(ξ) < ∞,

and that
lim
n→∞ K̂n(ξ) =: K̂ (ξ) > 0, ξ ∈ Z

d (1.3)

exists. Let (un(x))x∈Zd
n
be the odometer associated with the collection (σ (x))x∈Zd

n

via (1.1). Let furthermore an := 4π2(2d)−1n−2. We define the formal field on T
d by

Ξ K
n (x) :=

∑

z∈Td
n

un(nz)1B
(
z, 1

2n

)(x), x ∈ T
d .

Then anΞ K
n (x) converges in law as n → ∞ to Ξ K in the topology of the Sobolev

space H−ε
K (Td), where

ε > max

{
d

2
,
d

4
+ 1

}

(for the analytical specification see Sect. 2.2). The field Ξ K and the space H−ε
K (Td)

depend on K , the inverse Fourier transform of K̂ as in (1.3).

Structure of the Paper We will give an overview of the needed results on divisible
sandpiles and Fourier analysis on the torus in Sect. 2. The proof of the main result will
be shown in Sect. 3. In Sect. 4 we discuss two classes of examples. In the first class, we
consider weights with summable covariances, leading to a bi-Laplacian scaling limit.

123



Journal of Theoretical Probability (2020) 33:2061–2088 2065

In the second class the limiting odometer is a fractional field of the form (−Δ)−s/2W ,
s > 2.

2 Preliminaries

2.1 Fourier Analysis on the Torus

We will use the following inner product for �2(Zd
n):

〈 f , g〉 = 1

nd
∑

z∈Zd
n

f (z)g(z).

Let Δg denote the graph Laplacian defined by

Δg f (x) = 1

2d

∑

‖y−x‖=1

f (y) − f (x).

Consider the Fourier basis of the same space given by the eigenfunctions of the
Laplacian {ψw}w∈Zd

n
with

ψw(z) = ψ(n)
w (z) := exp

(
2π ı z · w

n

)
. (2.1)

The corresponding eigenvalues {λw}w∈Zd
n
are given by

λw := − 4

2d

d∑

i=1

sin2
(

πwi

n

)
. (2.2)

Given f ∈ �2(Zd
n), we define its discrete Fourier transform by

f̂ (w) = 〈 f , ψw〉 = 1

nd
∑

z∈Zd
n

f (z) exp

(
− 2π ı z · w

n

)

for w ∈ Z
d
n . Similarly, if f , g ∈ L2(Td) we will denote

( f , g)L2(Td ) :=
∫

Td
f (z)g(z)dz.

Consider the Fourier basis {φξ }ξ∈Zd of L2(Td) given by

φξ (x) := exp(2π ıξ · x)
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and denote

f̂ (ξ) := ( f , φξ )L2(Td ) =
∫

Td
f (z)e−2π ıξ ·zdz.

It is important to notice that for f ∈ C∞(Td), if we define fn : Z
d
n → R by fn(z) :=

f (z/n), then for all ξ ∈ Z
d , f̂n(ξ) → f̂ (ξ) as n → ∞.

Finally, we write C∞(Td)/ ∼ for the space of smooth functions with zero mean,
that is, the space of smooth functions modulo the equivalence relation of differing by
a constant.

2.2 AbstractWiener Spaces and Continuum Fractional Laplacians

In this subsection our aim is to define the appropriate negative Sobolev space in which
the convergence of Theorem 1 occurs. To do so, we repeat the classical construction
of abstract Wiener spaces as done in Cipriani et al. [4] and Silvestri [15].

Lemma 2 Let K̂ : Z
d → R>0 be the limiting Fourier multiplier as defined in Theo-

rem 1. For a < 0 the following

( f , g)K ,a :=
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖4a f̂ (ξ)ĝ(ξ) (2.3)

is an inner product on C∞(Td)/ ∼ .

Proof The linearity and conjugate symmetry are immediate. Furthermore, since (1.3)
holds it follows that

( f , f )K ,a =
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖4a| f̂ (ξ)|2 > 0,

where the sum converges because a < 0 and f ∈ (C∞(Td)/ ∼) ⊂ (L2(Td)/ ∼).
On the other hand, if we have ( f , f )K ,a = 0 then we must have f̂ (ξ) = 0 for all
ξ ∈ Z

d\{0} and so f ≡ 0. ��
Define Ha

K (Td) to be the Hilbert space completion of C∞(Td)/ ∼ with respect to
the norm ‖ · ‖K ,a . Our goal is to define a Gaussian random variable Ξ K such that for
all f ∈ C∞(Td)/ ∼ we have 〈Ξ K , f 〉 ∼ N (0, ‖ f ‖2K ,a). We do this by constructing

an appropriate abstract Wiener space for Ξ K . We first of all recall the definition of
such a space (see Stroock [16, § 8.2]).

Definition 2.1 A triple (H , B, μ) is called an abstract Wiener space (from now on
abbreviated AWS) if

(1) H is a Hilbert space with inner product (·, ·)H .
(2) B is the Banach space completion of H with respect to the measurable norm

‖ · ‖B . Furthermore B is supplied with the Borel σ -algebra B induced by ‖ · ‖B .
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(3) μ is the unique probability measure on B such that for all φ ∈ B∗ we have
μ · φ−1 = N (0, ‖φ̃‖2H ), where φ̃ is the unique element of H such that φ(h) =
(φ̃, h)H for all h ∈ H .

In order to construct a measurable norm ‖ · ‖B as above it is sufficient to construct
a Hilbert–Schmidt operator on H and set ‖ · ‖B := ‖T · ‖H . For a ∈ R define the
continuum fractional Laplace operator (−Δ)a acting on L2(Td) functions f w.r.t.
the orthonormal basis {φν}ν∈Zd as

(−Δ)a f (x) :=
∑

ν∈Zd\{0}
‖ν‖2a f̂ (ν)φν(x).

Wewould like to make two remarks at this point. The first one is that a priori the above
operator is not defined for all L2(Td)-functions for all values of a ∈ R. In fact we will
construct appropriate Sobolev spaces formally consisting of L2(Td) functions f such
that (−Δ)a f (x) is again square-integrable. The second remark concerns the need of
mean zero test functions in order to cancel the atom at ν = 0 which arises from taking
an inverse (a < 0) of the Laplacian in the definition above.

In the following Lemma we will construct an orthonormal basis on Ha
K (Td). We

set

fξ := K̂ (ξ)−1/2(−Δ)−aφξ = K̂ (ξ)−1/2‖ξ‖−2aφξ .

Lemma 3 { fξ }ξ∈Zd\{0} is an orthonormal basis of Ha
K (Td) under the norm ‖ · ‖K ,a.

Proof First we observe that the fξ ’s are orthogonal:

( fk, f�)K ,a =
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖4a (

K̂ (ξ)
)−1/2 ‖ξ‖−2a1ξ=k

(
K̂ (ξ)

)−1/2 ‖ξ‖−2a1ξ=�

= 1k=�.

Next we show that all g ∈ Ha
K (Td) have a Fourier expansion in the fξ ’s. Indeed,

choose any g ∈ Ha
K (Td); then by definition there exists a Cauchy sequence {gn}n∈N

in C∞(Td)/ ∼ such that ‖gn − g‖K ,a → 0 as n → ∞. As {gn}n≥1 is convergent
under ‖ · ‖K ,a , we have supn∈N ‖gn‖2K ,a < ∞. Denote by

F̃ξ := (F, fξ )K ,a, F : T
d → R.

We have for ξ ∈ Z
d\{0} fixed,

|g̃�(ξ) − g̃m(ξ)|2 ≤
∑

ξ∈Zd\{0}
|g̃�(ξ) − g̃m(ξ)|2 = ‖g� − gm‖2K ,a → 0
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as �, m → ∞. So in fact for ξ fixed, {g̃n(ξ)}n≥1 is a Cauchy sequence and thus has a
limit g̃(ξ). We define h := ∑

ξ∈Zd\{0} g̃(ξ) fξ . Note we have for all � ∈ N:

∑

ξ∈Zd\{0}
|̃g(ξ)|21ξ∈Zd

�
= lim

n→∞
∑

ξ∈Zd\{0}
|̃gn(ξ)|21ξ∈Zd

�

≤ lim
n→∞ ‖gn‖2K ,a ≤ sup

n∈N
‖gn‖2K ,a < ∞.

Therefore ‖h‖2K ,a < ∞, so h ∈ Ha
K (Td). Moreover, we have gm → h as m → ∞ in

Ha
K (Td). This can be seen by applying Fatou’s lemma:

‖gm − h‖2K ,a =
∑

ξ∈Zd\{0}
|g̃m(ξ) − g̃(ξ)|2 ≤ lim inf

�→∞
∑

ξ∈Zd\{0}
|g̃m(ξ) − g̃�(ξ)|2 → 0.

In this waywe see that wemust have g = h = ∑
ξ∈Zd\{0} g̃(ξ) fξ , so g has a fξ -Fourier

expansion. ��
Next we will define a Hilbert–Schmidt operator on Ha

K (Td).

Lemma 4 Let ε > d/4 − a and a < 0. The norm defined by

‖ · ‖B := ‖(−Δ)−(ε+a) · ‖K ,a (2.4)

is a Hilbert–Schmidt norm on Ha
K (Td).

Proof First of all, note that for a > b we have ‖ · ‖K ,b ≤ ‖ · ‖K ,a , so Ha
K (Td) ⊂

Hb
K (Td). Now recall that T is a Hilbert–Schmidt operator on a Hilbert space H if, for

{ fi }i �=0 an orthonormal basis of H , we have

∞∑

i=1

‖T fi‖2H < ∞.

Set T := (−Δ)b−a . We have the following for all ν ∈ Z
d\{0}:

‖(−Δ)b−a fν‖2K ,a =
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖4a

∣∣∣K̂ (ξ)−1/2‖ξ‖2(b−a)‖ξ‖−2a1ν=ξ

∣∣∣
2 = ‖ν‖4(b−a).

In this way, we see that

∑

ν∈Zd\{0}
‖T fν‖2K ,a =

∑

ν∈Zd\{0}
‖ν‖4(b−a) < ∞,

if and only if 4(b − a) < −d which is equivalent to b < −d/4 + a. We write
−ε := b < 0 with ε > d/4 − a. Note that the Banach space completion of Ha

K with
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respect to the measurable norm ‖(−Δ)−(ε+a) · ‖K ,a is exactly H−ε
K (Td). Indeed, we

have

‖g‖2B = ‖(−Δ)−(ε+a)g‖2K , a =
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖4a

∣∣∣‖ξ‖−2(ε+a)ĝ(ξ)

∣∣∣
2

=
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖4a‖ξ‖−4(ε+a) |̂g(ξ)|2

=
∑

ξ∈Zd\{0}
K̂ (ξ)‖ξ‖−4ε |̂g(ξ)|2.

��
Definition 2.2 (Definition of the limit field) Our AWS is the triple (Ha

K , H−ε
K , μ−ε)

where ε is as in Lemma 4. We will choose from now on a := −1 and denote ‖ ·
‖K ,−1 simply as ‖ · ‖K . The measure μ−ε is the unique Gaussian law on H−ε

K whose
characteristic functional is given in (1.2). The field associated with Φ will be called
Ξ K .

2.3 Covariance Kernels

We are going to show that positive, real Fourier coefficients on Z
d
n correspond to a

positive definite function (x, y) �→ Kn(x − y) on Z
d
n × Z

d
n by proving the analog of

Bochner’s theorem on the discrete torus.

Lemma 5 The function (x, y) �→ Kn(x, y) = Kn(x − y) on (Zd
n)

2 is symmetric and
positive definite, and thus a well-defined covariance function, if and only if the Fourier
coefficients K̂n are real-valued, symmetric and positive.

Proof Assume first that Kn is symmetric and positive definite. Then we have for any
function c : Z

d
n → R that is not the zero function that

0 <
∑

x,y∈Zd
n

Kn(x − y)c(x)c(y).

We then find

∑

x,y∈Zd
n

Kn(x − y)c(x)c(y) =
∑

x∈Zd
n

c(x)
∑

y∈Zd
n

Kn(x − y)c(y)

= nd
∑

x∈Zd
n

c(x)
∑

ξ∈Zd
n

exp

(
2π ı x · ξ

n

)
K̂n(ξ )̂c(ξ)
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= n2d
∑

ξ∈Zd
n

K̂n(ξ )̂c(ξ)

⎛

⎝ 1

nd
∑

x∈Zd
n

c(x) exp

(
2π ı x · ξ

n

)⎞

⎠

= n2d
∑

ξ∈Zd
n

K̂n(ξ )̂c(ξ)2 > 0.

As this needs to hold for all functions c : Z
d
n → R, we necessarily have K̂n(ξ) ∈

R>0. Since Kn is symmetric, we also have

K̂n(ξ) = 1

nd
∑

z∈Zd
n

Kn(z) exp

(
−2π ı z · ξ

n

)

= 1

nd
∑

z∈Zd
n

Kn(−z) exp

(
−2π ı(−z) · ξ

n

)
= K̂n(−ξ),

thus K̂n is symmetric on Z
d
n . The other direction of the proof can be obtained in a

similar way; hence we will omit the proof here. ��

2.4 Divisible Sandpile Model and Odometer Function

A divisible sandpile configuration s = (s(x))x∈Zd
n
is a map s : Z

d
n → R where s(x)

can be interpreted as the mass or hole at vertex x ∈ Z
d
n . It is known [13, Lemma 7.1]

that for all initial configurations s such that
∑

x∈Zd
n
s(x) = nd the model will stabilize

to the all 1 configuration.
We consider in this paper initial divisible sandpile configurations of the form (1.1)

where (σ (x))x∈Zd
n
are multivariate Gaussians with mean 0 and stationary covariance

matrix Kn given by
E(σ (x)σ (y)) = Kn(x, y) (2.5)

where Kn is as in Theorem 1. Let us remark that putting Kn(z) := 1z=0 retrieves the
case when the σ ’s are i.i.d.

We will study the following quantity. Let un = (un(x))x∈Zd
n
denote the odometer

[13, Section 1] corresponding to the divisible sandpile model specified by the initial
configuration (1.1) on Z

d
n . In words, un(x) denotes the amount of mass exiting from

x during stabilization. Let

g(x, y) = 1

nd
∑

z∈Zd
n

gz(x, y)

with gz(x, y) the expected amount of visits of a simple random walk on Z
d
n starting

from x and visiting y before being killed at z. The following characterization of un is
similar to Levine et al. [13, Proposition 1.3] and follows a close proof strategy.
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Lemma 6 Let (σ (x))x∈Zd
n
be a collection of centered Gaussian random variables with

covariance given in (2.5) and consider the divisible sandpile s on Z
d
n given by (1.1).

Then the sandpile stabilizes to the all 1 configuration and the distribution of the
odometer un(x) is given by

un
d=

(
η − min

z∈Zd
n

η(z)

)
.

Here (η(x))x∈Zd
n
is a collection of centered Gaussian random variables with covari-

ance

E[η(x)η(y)] = 1

(2d)2

∑

z,z′∈Zd
n

Kn(z − z′)g(z, x)g(z′, y).

Proof By Lemma 7.1 in Levine et al. [13] the sandpile stabilizes to the all 1 configu-
ration and the odometer un satisfies

{
Δun(z) = 1 − s(z) z ∈ Z

d
n

minz∈Zd
n
un(z) = 0.

Setting

vz(y) := 1

2d

∑

z∈Zd
n

gz(x, y)(s(x) − 1)

and v(y) = n−d ∑
z∈Zd

n
vz(y) = (2d)−1 ∑

x∈Zd
n
g(x, y)(s(x) − 1), we can see as in

Levine et al. [13, Proposition 1.3] that un − v is constant. So un
d= v + c for some

constant c ∈ R. Now, since each v(x) is a linear combination of Gaussian random
variables, v is again Gaussian with covariance

E[v(x)v(y)] = 1

(2d)2

∑

z,z′∈Zd
n

g(z, x)g(z′, y)E[(s(z) − 1)(s(z′) − 1)]. (2.6)

Observe that

∑

w∈Zd
n

Kn(z − w) =
∑

w∈Zd
n

Kn(w) =: C ′.
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The expectation in the summation (2.6) can be calculated in the following way:

E[(s(z) − 1)(s(z′) − 1)] = Kn(z − z′) − 1

nd
∑

w∈Zd
n

[Kn(z
′ − w) + Kn(z − w)]

+ 1

n2d
∑

w,w′∈Zd
n

Kn(w − w′)

= Kn(z − z′) − 2C ′

nd
+ C ′nd

n2d
= Kn(z − z′) − C ′

nd
.

If we now plug this into (2.6), we obtain

E[v(x)v(y)] = 1

(2d)2

∑

z,z′∈Zd
n

Kn(z − z′)g(z, x)g(z′, y)

− C ′

nd(2d)2

⎛

⎝
∑

z∈Zd
n

g(z, x)

⎞

⎠
2

.

Call

R := C ′

nd(2d)2

⎛

⎝
∑

z∈Zd
n

g(z, x)

⎞

⎠
2

and define Y ∼ N (0, R) independent of v. Then

(v + Y )x∈Zd
n

d= (η(x))x∈Zd
n

(2.7)

where (η(x))x∈Zd
n
is a collection of centered Gaussians with

E[η(x)η(y)] = 1

(2d)2

∑

z,z′∈Zd
n

Kn(z − z′)g(z, x)g(z′, y).

Now since un − v is constant and min un = 0, we conclude from (2.7) the desired
statement:

un
d=

(
η − min

z∈Zd
n

η(z)

)
.

��
The next lemma is concerned with yet another decomposition of the odometer

function, namely it allows us to express its covariance in terms of Fourier coordinates.
It is the analog of Cipriani et al. [4, Proposition 4].
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Lemma 7 Let un : Z
d
n → R≥0 be the odometer function as in Lemma 6. Then

un
d=

(
χ − min

z∈Zd
n

χz

)
.

Here (χz)z∈Zd
n
is a collection of centered Gaussians with covariance

E[χxχy] =
∑

ξ∈Zd
n\{0}

K̂n(ξ)
exp

(
2π ı(x − y) · ξ

n

)

λ2ξ
.

Proof We denote gx (·) := g(·, x). Subsequently we utilize Plancherel theorem on the
covariance matrix of η (see Lemma 6) to find

E[η(x)η(y)] = 1

(2d)2

∑

z,z′∈Zd
n

Kn(z − z′)g(z, y)g(z′, x)

= nd

(2d)2

∑

z∈Zd
n

g(z, y)
∑

ξ∈Zd
n

exp

(
2π ı z · ξ

n

)
K̂n(ξ)ĝx (ξ)

= n2d

(2d)2
K̂n(0)ĝy(0)ĝx (0) + n2d

(2d)2

∑

ξ∈Zd
n\{0}

K̂n(ξ)ĝy(ξ)ĝx (ξ).

We find ĝx (0) = n−d ∑
z∈Zd

n
g(z, x), which does not depend on x . In this way, we see

that the first term is constant, and thus it gives no contribution to the variance of un
due to the recentering by the minimum in a similar way to the proof of Proposition 1.3
of Levine et al. [13] and the proof of Proposition 4 in Cipriani et al. [4]. Considering
now the second summand above, we recall Equation (20) in Levine et al. [13], which
states that for ξ �= 0,

ĝx (ξ) = −2dn−dλ−1
ξ exp

(
−2π ıξ · x

n

)
.

We obtain, up to a constant factor which we ignore due to the recentering,

E[χxχy] =
∑

ξ∈Zd
n\{0}

K̂n(ξ)
exp

(
2π ı(x − y) · ξ

n

)

λ2ξ
.

To show the positive-definiteness of E[χxχy] we will show that for any function
c : Z

d
n → R, such that c is not the zero function,

∑
x,y∈Zd

n
E[χxχy]c(x)c(y) > 0.

First of all, since Kn(z − z′) is positive definite, we conclude that K̂n is positive by
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Lemma 5. Next we find

∑

x,y∈Zd
n

E[χxχy]c(x)c(y) =
∑

x,y∈Zd
n

c(x)c(y)
∑

ξ∈Zd
n\{0}

K̂n(ξ)
e2π ı(x−y)· ξ

n

λ2ξ

= n2d
∑

ξ∈Zd
n\{0}

K̂n(ξ)

λ2ξ
|̂c(ξ)|2 > 0.

which concludes the proof. ��

3 Proof of Theorem 1

In this section we will prove Theorem 1 using the fact that convergence in distribution
for the fields Ξ K

n is equivalent to showing [10, Section 2.1]

• tightness in H−ε
K (Td);

• characterizing the limiting field.

While tightness is deferred to Sect. 3.1, we will now characterize the limiting dis-
tribution by proving that for all mean-zero f ∈ C∞(Td)/ ∼ we have, as n goes to
infinity,

〈anΞ K
n , f 〉 d→ 〈Ξ K , f 〉 ∼ N (0, ‖ f ‖2K ).

Observe first that

〈anΞ K
n , f 〉 = 4π2(2d)−1n−2

∑

z∈Td
n

un(nz)
∫

B(z, 1
2n )

f (x) dx (3.1)

is a linear combination of Gaussians, and thus Gaussian itself for each n. In order to

now prove the convergence 〈anΞ K
n , f 〉 d→ 〈Ξ K , f 〉, it is enough to show convergence

of the first and second moment of 〈anΞ K
n , f 〉 for any mean-zero f ∈ C∞(Td)/ ∼.

To this end, note that by Lemma 7

un
d= (χx + C ′)x∈Zd

n
,

so in fact

〈anΞ K
n , f 〉 = 4π2(2d)−1n−2

∑

z∈Td
n

un(nz)
∫

B(z, 1
2n )

f (x) dx

d= 4π2(2d)−1n−2
∑

z∈Td
n

(χnz + C ′)
∫

B(z, 1
2n )

f (x) dx .
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Because f is a mean-zero function, we can neglect the random constant C ′ and with
a slight abuse of notation we write

〈anΞ K
n , f 〉 = 4π2(2d)−1n−2

∑

z∈Td
n

χnz

∫

B(z, 1
2n )

f (x) dx,

with

E[χnzχnz′ ] = 1

16(2d)2

∑

ξ∈Zd
n\{0}

K̂n(ξ)
exp(2π ı(z − z′) · ξ)
(∑d

i=1 sin
2
(
π

ξi
n

))2 .

As we have E[χnz] = 0 for all z ∈ T
d
n , it follows that E[〈anΞ K

n , f 〉] = 0 for all n.
For the second moment note first that

〈anΞ K
n , f 〉2 = 16π4(2d)−2n−4

∑

z,z′∈Td
n

χnzχnz′
∫

B(z, 1
2n )

f (x) dx
∫

B(z′, 1
2n )

f (x ′) dx ′

= 16π4(2d)−2n−(2d+4)
∑

z,z′∈Td
n

χnzχnz′ f (z) f (z
′)

+ 16π4(2d)−2n−(2d+4)
∑

z,z′∈Td
n

χnzχnz′En(z)En(z
′)

+ 32π4(2d)−2n−(2d+4)
∑

z,z′∈Td
n

χnzχnz′ f (z)En(z
′)

=: 16π4(2d)−2n−(2d+4)
∑

z,z′∈Td
n

χnzχnz′ f (z) f (z
′) +

+ R2
n + 8π2(2d)−1n− d+4

2
∑

z∈Td
n

f (z)χnz Rn . (3.2)

Here we have defined

En(z) :=
(∫

B(z, 1
2n )

nd f (x) dx − f (z)

)
,

Rn := 4π2(2d)−1n−(d+2)
∑

z∈Td
n

χnz En(z).

In En we essentially approximate the integral with the value at the center of the box
B(z, 1

2n ). The proof will now proceed in two steps:Wewill first show that the first term
of the right-hand side of (3.2) goes to the desired limiting variance (Proposition 8).
Then we will argue in Proposition 9 that the second term in (3.2) goes to 0 in L2 and,
likewise, the third term after an application of the Cauchy–Schwarz inequality.
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Proposition 8 We have

lim
n→∞ 16π4(2d)−2n−(2d+4)

∑

z,z′∈Td
n

f (z) f (z′)E[χnzχnz′ ] = ‖ f ‖2K ,,

where ‖ · ‖K is defined in (2.3).

Proposition 9 We have that limn→∞ Rn = 0 in L2(Td).

First we will give the proof to Proposition 8. As a preliminary tool, we need to
recall the following bound on the eigenvalues λξ .

Lemma 10 (Cipriani et al. [4, Lemma 7]) There exists c > 0 such that for all n ∈ N

and w ∈ Z
d
n\{0} we have

1

‖πw‖4 ≤ n−4

(
d∑

i=1

sin2
(πwi

n

))−2

≤
(

1

‖πw‖2 + c

n2

)2

.

Proof of Proposition 8 First of all,
If we now use the notation fn : Z

d
n → R for fn(·) = f (·/n), then we find that

n−d
∑

z∈Td
n

f (z) exp(−2π ı z · ξ) = f̂n(ξ).

We have that

16π4(2d)−2n−(2d+4)
∑

z,z′∈Td
n

f (z) f (z′)E(χnzχnz′)

= π4n−4
∑

ξ∈Zd
n\{0}

K̂n(ξ)
(∑d

i=1 sin
2
(
π

ξi
n

))2 | f̂n(ξ)|2. (3.3)

For the next step in the proof we use Lemma 10. Since K̂n is non-negative, we have
that on the one hand

(3.3) ≥
∑

ξ∈Zd
n\{0}

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2 (3.4)

and on the other that

(3.3) ≤ π4
∑

ξ∈Zd
n\{0}

K̂n(ξ)| f̂n(ξ)|2
(

1

‖πξ‖2 + c

n2

)2

=: A + B + C,

(3.5)
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where

A :=
∑

ξ∈Zd
n\{0}

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2,

B := Cn−2
∑

ξ∈Zd
n\{0}

K̂n(ξ)

‖ξ‖2 | f̂n(ξ)|2,

C := Cn−4
∑

ξ∈Zd
n\{0}

K̂n(ξ)| f̂n(ξ)|2.

(3.6)

We will show in the following that A, which is the right-hand side of (3.4), exhibits
the following limit:

lim
n→∞

∑

ξ∈Zd
n\{0}

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2 = ‖ f ‖2K (3.7)

and B,C vanish as n → ∞. As in Cipriani et al. [4], we split the proof into two cases.
First we give a more direct proof for d ≤ 3 and then consider d ≥ 4. We have that
| f̂n(ξ)|2 is uniformly bounded in ξ , so

| f̂n(ξ)| ≤ n−d
∑

z∈Td
n

| f (z)| →
∫

Td
| f (x)| dx = ‖ f ‖L1(Td ) < ∞.

We can now use the dominated convergence theorem to obtain that

lim
n→∞

∑

ξ∈Zd\{0}
1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2 =
∑

ξ∈Zd\{0}

K̂ (ξ)

‖ξ‖4 | f̂ (ξ)|2 = ‖ f ‖2K .

In d ≥ 4 we use a mollifying procedure. Take any φ ∈ S(Rd), the space of Schwartz
functions, such that φ is compactly supported on the unit cube [−1/2, 1/2)d with
integral 1. We write φκ(·) := κ−dφ (·/κ) for κ > 0. In order to show the convergence
of (3.7), we split the terms:

∑

ξ∈Zd\{0}
1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2 =
∑

ξ∈Zd\{0}
φ̂κ (ξ)1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2

+
∑

ξ∈Zd\{0}

(
1 − φ̂κ (ξ)

)
1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2.

Next, we take from Cipriani et al. [4] the following bound, where C > 0 is some
constant:

∣∣φ̂κ (ξ) − 1
∣∣ ≤ Cκ‖ξ‖.
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Plugging this into the above, we find

∣∣∣∣∣∣

∑

ξ∈Zd\{0}

(
1 − φ̂κ (ξ)

)
1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2
∣∣∣∣∣∣
≤

∑

ξ∈Zd
n\{0}

∣∣φ̂κ (ξ) − 1
∣∣ K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2

≤ Cκ
∑

ξ∈Zd
n\{0}

K̂n(ξ)

‖ξ‖3 | f̂n(ξ)|2

≤ Cκ
∑

ξ∈Zd
n\{0}

| f̂n(ξ)|2. (3.8)

Note that by Plancherel theorem

∑

ξ∈Zd
n\{0}

| f̂n(ξ)|2 ≤ n−d
∑

ξ∈Zd
n

∣∣∣∣ f
(

ξ

n

)∣∣∣∣
2

= n−d
∑

ξ∈Td
n

| f (ξ)|2 .

Since the right-hand side above converges to
∫
Td | f (x)|2dx < ∞, one has

∑

ξ∈Zd
n\{0}

| f̂n(ξ)|2 < ∞ (3.9)

uniformly in n. Now taking the limit κ → 0 in (3.8) gives that

lim
κ→0

lim sup
n→∞

∑

ξ∈Zd\{0}

(
1 − φ̂κ (ξ)

)
1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2 = 0.

For the other term, we observe that since φκ is smooth, φ̂κ (ξ) decays rapidly in ξ ,
and since the f̂n(ξ) are uniformly bounded, we can use the dominated convergence
theorem to obtain

lim
κ→0

lim
n→∞

∑

ξ∈Zd\{0}
φ̂κ (ξ)1ξ∈Zd

n

K̂n(ξ)

‖ξ‖4 | f̂n(ξ)|2 = lim
κ→0

∑

ξ∈Zd\{0}
φ̂κ (ξ)

K̂ (ξ)

‖ξ‖4 | f̂ (ξ)|2.

We have that |φ̂κ (ξ)| ≤ 1 and φ̂κ (ξ) → 1 as κ → 0. Applying the dominated
convergence theorem once more, we see that

lim
κ→0

∑

ξ∈Zd\{0}
φ̂κ (ξ)

K̂ (ξ)

‖ξ‖4 | f̂ (ξ)|2 =
∑

ξ∈Zd\{0}

K̂ (ξ)

‖ξ‖4 | f̂ (ξ)|2.

To conclude it remains to show that B, C as defined in (3.6) vanish. This can be
achieved in a similar way to Cipriani et al. [4, proof of Proposition 5]. The key point
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is to observe that

∑

ξ∈Zd
n\{0}

K̂n(ξ)| f̂n(ξ)|2 ≤ C

is uniformly bounded in n, thanks to the uniform upper bound on K̂n(·) and (3.9). ��

Remark 11 One could construct a different approximation fn(·) of f (·/n) by con-
sidering the Taylor expansion of the latter. Being the supremal error between fn and
f (·/n) of order n−2d , one could use the fast decay of the Fourier coefficients of fn to
apply dominated convergence directly in (3.7). This would give an alternative proof
to the mollifying procedure, valid in all dimensions.

We continue and prove Proposition 9.

Proof of Proposition 9 Let us calculate E[R2
n] in the following way:

E[R2
n] = 16π4(2d)−2n−(2d+4)

∑

z,z′∈Td
n

E[χnzχnz′ ]En(z)En(z
′)

≤ n−2d
∑

z,z′∈Td
n

∑

ξ∈Zd
n\{0}

K̂n(ξ)
exp(2π ı(z − z′) · ξ)

‖ξ‖4 En(z)En(z
′)

≤ Cn−2d
∑

ξ∈Zd
n\{0}

∑

z,z′∈Td
n

En(z)En(z
′) exp(2π ı(z − z′) · ξ),

because the K̂n(ξ) are uniformly bounded and ‖ξ‖ ≥ 1. Now write E ′
n(x) :=

En (x/n). Then the term above becomes

∑

ξ∈Zd
n\{0}

Ê ′
n(ξ)Ê ′

n(ξ) ≤
∑

ξ∈Zd
n

Ê ′
n(ξ)Ê ′

n(ξ)

= n−d
∑

ξ∈Zd
n

E ′
n(ξ)E ′

n(ξ)

≤ ‖En‖2L∞(Td )
≤ Cn−2 → 0.

The last inequality relies on the bound given in Cipriani et al. [4, Lemma 8]:

sup
z∈Td

n

|En(z)| ≤ Cn−1.

This then concludes the proof to Proposition 9. ��

123



2080 Journal of Theoretical Probability (2020) 33:2061–2088

3.1 Tightness in H−"
K

To complete the proof, we show that the convergence in law anΞ K
n

d→ Ξ K as n → ∞
holds in the Sobolev space H−ε

K (Td) for any ε > max{1 + d/4, d/2}. We state the
following theorem:

Theorem 12 The sequence (anΞ K
n )n∈N is tight in H−ε

K (Td), in fact, for all δ > 0 there
exists Rδ > 0 such that

sup
n∈N

P

(∥∥∥anΞ K
n

∥∥∥
H

− ε
2

K

≥ Rδ

)
≤ δ.

Proof The proof of this Theorem is analogous to the proof of tightness in Cipriani
et al. [4, Section 4.2]. We first apply Markov’s inequality and see

P

(∥∥∥anΞ K
n

∥∥∥
H

− ε
2

K

≥ Rδ

)
≤

E

[∥∥anΞ K
n

∥∥2
H

− ε
2

K

]

R2
δ

.

Now whenever we have

sup
n∈N

E

[∥∥∥anΞ K
n

∥∥∥
2

H
− ε
2

K

]
≤ C,

the assertion follows as we can choose Rδ such that

P

(∥∥∥anΞ K
n

∥∥∥
H

− ε
2

K

≥ Rδ

)
≤ C

R2
δ

< δ.

We calculate the expectation and obtain

E

[∥∥∥anΞ K
n

∥∥∥
2

H
− ε

2
K

]
= a2n

∑

ξ∈Zd
n\{0}

∑

x,y∈Td
n

K̂n(ξ)

‖ξ‖2ε E[χnxχny]
∫

B(x, 1
2n )

φξ (ϑ) dϑ
∫

B(y, 1
2n )

φξ (ϑ) dϑ

Now define

Fn,ξ : T
d
n → R

x �→ Fn,ξ (x) :=
∫

B(x, 1
2n )

φξ (ϑ) dϑ.

We have that both 1B(x, 1
2n ) and φξ ∈ L2(Td) so by Cauchy–Schwarz inequality

Fn,ξ ∈ L1(Td). Next we claim that, for some C ′ > 0,

sup
ξ∈Zd

sup
n∈N

∣∣∣∣∣∣

∑

x,y∈Td
n

n−4
E[χnxχny]Fn,ξ (x)Fn,ξ (y)

∣∣∣∣∣∣
≤ C ′. (3.10)
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Remark that similarly to Cipriani et al. [4, Equation (4.5)], we have

|n−4λ−2
ξ | ≤ C‖ξ‖−4 (3.11)

for some C > 0. We write Gn,ξ : Z
d
n → R for Gn,ξ (·) := Fn,ξ (· n). Using this, we

find

∣∣∣∣∣∣

∑

x,y∈Td
n

n−4
E[χnxχny]Fn,ξ (x)Fn,ξ (y)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

x,y∈Td
n

n−4
∑

z∈Zd
n\{0}

K̂n(z)
exp(2π ı(x − y) · z)

λ2z
Fn,ξ (x)Fn,ξ (y)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

z∈Zd
n\{0}

n−4λ−2
z K̂n(z)n

2d |Ĝn,ξ (z)|2
∣∣∣∣∣∣

(3.11)≤ Cn2d
∑

z∈Zd
n\{0}

‖z‖−4|Ĝn,ξ (z)|2.

Here we have exploited the fact that supz∈Zd
n
K̂n(z) < ∞ by (1.3). Now by the triangle

inequality,

|Fn,ξ (w)| =
∣∣∣∣∣

∫

B(w, 1
2n )

φξ (ϑ) dϑ

∣∣∣∣∣ ≤
∫

B(w, 1
2n )

dϑ = n−d .

Thus

∑

z∈Zd
n\{0}

‖z‖−4|Ĝn,ξ (z)|2 ≤
∑

z∈Zd
n

|Ĝn,ξ (z)|2 = n−d
∑

z∈Zd
n

Gn,ξ (z)Gn,ξ (z)

= n−d
∑

z′∈Td
n

Fn,ξ (z′)Fn,ξ (z′) ≤ n−2d
∑

z′∈Td
n

∫

B(z′, 1
2n )

|φξ (ϑ)| dϑ

≤ n−2d‖φξ‖L1(Td ) = Cn−2d .

We then use this bound to obtain

Cn2d
∑

z∈Zd
n\{0}

‖z‖−4|Ĝn,ξ (z)|2 ≤ Cn2dn−2d = C .
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This is a constant that does not depend on n or ξ , so the claim (3.10) is proven. Using
it, we have by the Euler–Maclaurin formula and the boundedness of K̂ (·)

E

[∥∥∥anΞ K
n

∥∥∥
2

H
− ε
2

K

]
=

∑

ξ∈Zd\{0}

K̂ (ξ)

‖ξ‖2ε
∑

x,y∈Td
n

E[χnxχny]Fn,ξ (x)Fn,ξ (y)

≤ C ′ ∑

k≥1

kd−1−2ε ≤ C .

The last estimate is due to the fact that −ε < −d/2. ��

4 Some Examples

In this section we want to give some concrete examples of initial distributions and
Gaussian fields that can be generated via scaling limits of the odometer.

4.1 Initial Gaussian Distributions with Power-Law Covariance

We would like to look at the case in which the initial distribution of the σ ’s is
(σ (x))x∈Zd

n
∼ N (0, Kn) when the covariance matrix Kn is polynomially decaying.

As an example, consider

K±
n (x, y) =

{
7 if x = y

±‖x − y‖−3 otherwise.

We choose K (0) = 7 in order to make the covariance matrix positive definite. The
corresponding realizations of the odometer function are indicated in Figs. 1 and 2 and
superposed in Fig. 3.

4.2 A Bi-Laplacian Field in the Limit

Thenext proposition shows that, even if (1.3) does not hold, but instead limn→∞ nd K̂n(ξ)

exists and is finite for all ξ , one can rescale the weights σ to go back to the setting of
Theorem 1.

Proposition 13 Consider the divisible sandpile configuration defined in (1.1) with
(σ (x))x∈Zd

n
a sequence of centered multivariate Gaussians with covariance Kn satis-

fying

• limn→∞ Kn(w) = K (w) exists for all w ∈ Z
d ,

• K ∈ �1(Zd),
• CK := ∑

z∈Zd K (z) �= 0.
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Fig. 1 Rescaled odometer associated with K+
n

Fig. 2 Rescaled odometer associated with K−
n

Let (un(x))x∈Zd
n
be theassociatedodometer and furthermorebn := 4π2(2d)−1n(d−4)/2

C−1/2
K . We define the formal field on T

d by

Ξ K
n (x) :=

∑

z∈Td
n

un(nz)1B(z, 1
2n )(x), x ∈ T

d .

Then bnΞ K
n converges in law as n → ∞ to Ξ K = FGF2(Td) in the topology of the

Sobolev space H−ε
K (Td), where ε > max {d/2, d/4 + 1}.

Proof The basic idea is to use, rather than the weights σ as in the assumptions, the
rescaled weights

σ ′(x) := nd/2σ(x), x ∈ Z
d
n .
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Fig. 3 Odometer interfaces associated with K+
n and K−

n

The Fourier transform of the associated covariance kernel is now K̂ ′
n = nd K̂n . Now

observe that

K̂ ′
n(ξ) =

∑

w∈Zd

K (w)1w∈Zd
n
e−2π ıw·ξ/n .

By dominated convergence and the fact that K ∈ �1(Zd) we deduce

lim
n→∞ K̂ ′

n(ξ) = CK , ξ ∈ Z
d . (4.1)

We repeat the computation of (3.2) for 〈bnΞ K
n , f 〉2 and we obtain as leading term

16(2d)−2π4C−1
K n−(d+4)

∑

z,z′∈Td
n

f (z) f (z′)χnzχnz′ .

To compute the variance E[〈bnΞ K
n , f 〉2], we have

16(2d)−2π4C−1
K n−(d+4)

∑

z,z′∈Td
n

f (z) f (z′)E[χnzχnz′ ]

= C−1
K π4n−(d+4)

∑

z,z′∈Td
n

f (z) f (z′)
∑

ξ∈Zd
n\{0}

K̂n(ξ)
exp(2π ı(z − z′) · ξ)
(∑d

i=1 sin
2
(
π

ξi
n

))2

= C−1
K π4n−(2d+4)

∑

ξ∈Zd
n\{0}

K̂ ′
n(ξ)

(∑d
i=1 sin

2
(
π

ξi
n

))2
∑

z,z′∈Td
n

f (z) f (z′)e2π ı(z−z′)·ξ

. (4.2)
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Fig. 4 The initial configuration s obtained from (4.3) as in Theorem 1 and the limiting field of the associated
odometer for s := 1/2

From this point onward the proof of Proposition 8 applies verbatim. In view of (4.1),
the rescaling C−1

K in the variance is done to obtain a limiting field with characteristic
functional

Φ( f ) := exp

⎛

⎝−1

2

∑

ξ∈Zd\{0}
‖ξ‖−4| f̂ (ξ)|2

⎞

⎠

which identifies the FGF2(Td). ��

4.3 Fractional Limiting Fields

We can now use Theorem 1 to construct (1+ s)-Laplacian limiting fields for arbitrary
s ∈ (0,∞). Define an initial sandpile configuration such that

lim
n→∞ K̂n(ξ) = K̂ (ξ) := ‖ξ‖−4s, ξ ∈ Z

d\{0}. (4.3)

We do need K̂ (0) > 0 to ensure positive-definiteness of the kernel, so one can
choose any arbitrary constant to satisfy this constraint. Using the above Fourier
multiplier (observe that it is indeed uniformly bounded for s ∈ (0,∞) and hence
satisfies (1.3)) and applying Theorem 1, we find the following limiting distribution:
for all f ∈ C∞(Td)/ ∼ we have that 〈Ξ K , f 〉 is a centered Gaussian with variance

E

[
〈Ξ K , f 〉2

]
=

∑

ξ∈Zd\{0}
‖ξ‖−4s‖ξ‖−4| f̂ (ξ)|2 =

∑

ξ∈Zd\{0}
‖ξ‖−4(s+1)| f̂ (ξ)|2

= ( f , (−Δ)−2(s+1) f )L2(Td )

= ‖(−Δ)−(s+1) f ‖2L2(Td )
.

An example of limiting field and corresponding initial configuration is given in Fig. 4.
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4.4 Initial Gaussian Distributions with Fractional Laplacian Covariance

We have seen in the previous example that if we define an initial configuration on Z
d
n

with covariance given by Kn(·) = (‖ · ‖−4s
)∨
, where the inverse Fourier transform is

on Z
d
n , the limiting field is Gaussian with variance (for every f ∈ C∞(Td) with mean

zero):

E

[
〈Ξ K , f 〉2

]
= ( f , (−Δ)−2(s+1) f )L2(Td ).

However, the covariance Kn does not necessarily agree with that of the discrete s-
LaplacianfieldonZ

d
n .Namely,we recall the definitionof (minus) the discrete fractional

Laplacian (−Δg)
s on Z

d
n [3, Section 2.1]:

− (−Δg)
s/2 f (x) :=

∑

y∈Zd
n

( f (x + y) + f (x − y) − 2 f (x))p(s)
n (y) (4.4)

where the weights p(s)
n (·) are given by

p(s)
n (x, y) = p(s)

n (0, x − y) := c(s)
∑

z∈Zd \{0}
z≡x−y mod Zdn

‖z‖−d−s

and c(s) is the normalizing constant. The above representation has the advantage that
we have an immediate interpretation of the fractional graph Laplacian in terms of
random walks.

We introduce the powers (−Δg)
s differently from (4.4), in a way which is more

convenient for us. Since our main working tools are Fourier analytical, we will define
the discrete s-Laplacian (−Δg)

−s through its action in Fourier space. Let s > 0 and
f ∈ �2(Zd

n) be such that

f (·) =
∑

ν∈Zd
n\{0}

f̂ (ν)ψν(·) (4.5)

where the functions ψν were defined in (2.1) and f̂ (ν) := 〈 f , ψν〉. We thus define
the discrete fractional Laplacian as

(−Δg)
−s f (·) :=

∑

ν∈Zd
n\{0}

(−λν)
−s f̂ (ν)ψν(·), f ∈ �2(Zd

n) (4.6)

having λν as in (2.2). Note that for the above expression to be well-defined we need
f as in (4.5), in other words that f̂ (0) = 0 which is equivalent to

∑

z∈Zd
n

f (z) = 0.
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This space is the discrete analog of C∞(Td)/ ∼ . The definition in (4.6) resembles
one of the possible ways to define the continuum fractional Laplacian (Kwaśnicki [9])
and is akin to the definition of the zero-average discrete Gaussian free field (Abächerli
[1]). Indeed, when s = 1, the two definitions coincide.

Proposition 14 Let s > 0 and let (un(z))z∈Zd
n
denote the odometer function associated

with the weights (σ (z))z∈Zd
n
, which are sampled from a jointly Gaussian distribution

N (
0, a2sn (−Δg)

−2s
)
with an := 4π2(2d)−1n−2. Let us define the formal field Ξ K

n
by

Ξ K
n (x) :=

∑

z∈Td
n

un(nz)1B(z, 1
2n )(x), x ∈ T

d .

Then as n → ∞ the field anΞ K
n converges to Ξ K in the Sobolev space H−ε

K (Td),
ε > max{d/2, 1 + d/4}. Ξ K is the Gaussian field on T

d such that for each f ∈
C∞(Td)/ ∼ we have

〈Ξ K , f 〉 ∼ N
(
0, ‖(−Δ)−(s+1) f ‖2L2(Td )

)
.

Proof In the notation of Theorem 1, which we intend to apply here, we have

K̂n(ξ) =
(

n2

4π2

)−2s (−λξ

)−2s
, ξ ∈ Z

d
n\{0}.

It is immediate that K̂n is even and positive.We show that K̂n(ξ) is bounded uniformly
and converges to ‖ξ‖−4s . As the function x �→ xs is strictly increasing for x ≥ 0, we
can apply Lemma 7 from Cipriani et al. [4] and take s-powers such that the inequality
still holds. This gives:

‖πξ‖−4s ≤
(
n2

d∑

i=1

sin2
(

πξi

n

))−2s

≤
(
‖πξ‖−2 + cn−2

)2s
.

Observe first that since n is fixed and ‖ξ‖ ≥ 1, we indeed have that a2sn (−λξ )
−2s is

uniformly bounded in both n and ξ (recall (2.2)). Now taking the limit in the above, we
have the convergence of K̂n(ξ) to ‖ξ‖−4s . Therefore the assumptions of Theorem 1
are satisfied. ��
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