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Light emission from Si, would allow integration of electronic and optical functionality 
in the main electronics platform technology, but this has been impossible due to the indirect 
band gap of Si. In this talk I will discuss 2 different approaches, using unique properties of 
nanowires, to realize light emission from Si-based compounds.  

In the first route we focus on the fabrication of defect-free GeSn compounds. GeSn 
has been shown to exhibit a direct band gap at Sn concentrations above 12.5% in the infrared 
part of the spectrum (around 0.5 eV).1 However, in bulk layers the strain between the Ge and 
the GeSn layer is released by the introduction of defects near the interface affecting the 
optical properties of the layer. In the nanowire geometry the lattice strain can be effectively 
relieved in the radial direction, which is exploited to grow Ge/GeSn core shell nanowires with 
high (13%) Sn content. The wires are grown by the Vapor-Liquid-Solid (VLS) growth 
mechanism in an Metal-Organic Vapor Phase Epitaxy (MOVPE) system at low temperatures. 
The core/shell nanowires are free of dislocations and therefore show a very high 
photoluminescene internal quantum yield of around 10% at room temperature. In this talk the 
growth mechanism is discussed, the structural properties are investigated by Electron 
Microscopy and Atom Probe Tomography and the temperature dependent optical properties 
are studied. 

In the second route we concentrate on Si and Ge with a different crystal structure. It 
has been predicted that SiGe alloys with the hexagonal (2H) crystal structure have a direct 
band gap. It has been shown that by using the VLS nanowire growth mechanism it is possible 
to fabricate III-V semiconductors, which normally crystallize in the cubic phase, can now 
been grown with a 2H crystal structure.2 This system has the unique ability to control and 
switch the crystal structure with a precision at the atomic monolayer level.3 Here, we employ 
crystal structure transfer, in which we use wurtzite GaP as a template to epitaxially grow SiGe 
compounds with the hexagonal crystal structure (see figure 1).4 We show that with this 
method we can grow defect free hexagonal SiGe shells and branches with tunable Ge 
concentration. The structural and optical properties of these new crystal phases will be 
discussed. 

We believe that these new 3-dimensional epitaxial nanostructures have great potential 
to integrate optical functionality in Si technology. 
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Fig. 1: Transfer of the crystal structure from a wurtzite GaP core wire into a Hex-Si shell. (a) SEM 
image of GaP/Si core/shell NWs, (b) TEM image of a Hex-GaP/Si core/shell NW, (c) High-resolution 
TEM image of GaP/Si interface confirming the hexagonal Si crystal structure.4 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 : (a) cross sectional TEM image of a hexagonal GaP/Si core/shell nanowire illustrating the 
conformal epitxial growth, (b) High-resolution TEM image of the GaP/Si interface substantiating the 
defect-free hexagonal Si crystal structure.4 
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