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ABSTRACT: This article presents a new non-proportional loading strategy for Sequentially Linear 
Analysis (SLA), which is a robust secant stiffness based procedure for nonlinear finite element analysis of 
quasi-brittle materials, like concrete and masonry. The strategy is based on finding the principal planes for 
a total strain based fixed cracking model, by searching for the critical plane where the normal stresses due 
to the scaled combination of two non-proportional loads is equal to the allowable strength. For a plane 
stress situation (2D), the scaling factor λ is expressed as a function of θ, the inclination of an arbitrary 
plane to the reference coordinate system, and a one dimensional (θ) optimization of λ is done to determine 
the principal plane and the resulting fixed crack coordinate system. This approach has been illustrated 
to match up to the closed form solution, obtained previously based on the principal stress theory, using 
single element tests and a quasi-static test pushover test on a masonry shear wall. Finally, the concept 
for the 3-D stress situation is presented, where the optimization problem becomes two-dimensional, with 
respect to l and m (two-directional cosines).

respect to finding the critical integration point and 
the scaling of the loads. The approach initially was 
based on expressing global stresses as the super-
position of stresses due to constant and (non-
proportional) variable loads. Subsequently, using 
the principal stress theory, a closed form solution 
(DeJong et al. 2008) for the critical load multiplier 
was found and the crack coordinate system was 
established for the secondary cracking to follow. 
The Force-release (F-R) method (Elias et al. 2010), 
another alternative for the non-proportional load-
ing problem, additionally aimed to address the 
dynamic phenomenon due to a damage event, that 
could lead to a series of subsequent failures in the 
vicinity of a damaged element, by redistributing 
the unbalanced forces gradually. Since it could not 
handle snap backs because of not being able to 
alter the previously applied load (constant load), 
the General method was proposed (Elias 2015) of 
which the F-R and the load-unload (L-U) meth-
ods (like SLA) are extreme cases, depending on 
time scales for the redistribution. Simultaneously, 
a constrained maximization analogy with a dou-
ble load multiplier strategy (Van de Graaf 2017), 
one for constant and the other for variable loads 
was also conceived to address the redistribution 
phenomenon and was illustrated using continuum 

1 INTRODUCTION

The Sequentially Linear Analysis (SLA) procedure 
is a total approach, in the context of total strain 
based fixed cracking models, wherein a sequence 
of scaled linear analyses is performed coupled with 
decreasing secant stiffness and strength at the criti-
cal integration point of a finite element model. In 
contrast to the traditional incremental-iterative 
nonlinear finite element analyses, the key aspect 
of the SLA approach is the departure from using 
the tangent stiffness, which significantly affects the 
stability of FE solutions in softening regions, to 
the secant stiffness which would yield numerically 
favourable positive definite stiffness matrices. The 
constitutive law is discretized into the so-called saw 
tooth laws with decreasing positive secant stiffness 
and has undergone improvements over the years to 
have mesh objective results (Rots et al. 2009).

The procedure was initially developed for a pro-
portional loading scheme, where the rate of change 
of all loads is the same. The extension of SLA to 
non-proportional loading, closer to real life load-
ing situations, was rather difficult and was initially 
confined to plane stress situations (2-D) in a fixed 
cracking model approach. When there are multi-
ple non-proportional loads, problems arise with 
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models for larger scale simulations like settlement 
of a building and pushover of masonry walls. This 
approach is used as reference in this study.

For a 3-D stress situation, as in the case of solid/
brick finite elements, a fixed cracking model allow-
ing for 3-D cracking had already been proposed 
(Voormeeren 2011) in the context of SLA, how-
ever, only for a proportional loading scheme. Thus, 
there was a need for a non-proportional loading 
strategy suitable for 3-D stress situations in SLA. 
Using the approach of principal stress evaluation 
for 3-D stress situations, as done in the plane stress 
case by DeJong, results in cubic equations in the 
load multiplier λ and the resulting closed form 
solution for λ is very complex. Thus, alternatives 
were sought to avoid the necessity for a closed 
form solution of the critical load multiplier and 
this forms the crux of the study.

In this article, we present a new non-propor-
tional loading strategy based on finding the prin-
cipal planes, and thus the fixed crack coordinate 
system, by searching for the plane where the nor-
mal stresses due to the scaled combination of two 
non-proportional loads is equal to the allowable 
strength. This is done by optimization of the criti-
cal load multiplier, expressed as a function of the 
inclination of an arbitrary plane, and the normal 
stresses on the plane due to a constant and a (non-
proportional) variable load.

2 BACKGROUND THEORY

2.1 General workflow

The procedure for SLA is as follows:

1. Set up the saw-tooth laws as shown in Figure 1.
2. Run a linear analysis with full value of the con-

stant load.
3. In case of damage already in this stage 

(nonlinearity):
a. Identify the critical integration point with 

the least ratio of (σ1/ft), where σ1 is the maxi-
mum principal stress and ft is the allowable 
strength.

b. Scale the constant load.
c. Reduce the strength and stiffness of the criti-

cal integration point based on the saw-tooth 
law.

d. Return to step 2 and repeat until the scaled 
value of the constant load is the same as the 
original full value.

4. Once the constant load is fully applied, add the 
variable load as a unit load and perform a linear 
analysis.

5. Construct the global stresses as a superposition of 
the stresses due to the constant and variable load 
(indicated with indices ‘c’ and ‘v’ respectively) 

and find a closed form solution for the critical 
load multiplier from the principal stress theory 
(plane stress situation) as shown below:

σ σ λ σxxσσ xx c xλ σ x v= +σ xx c, ,c xx  (1)

σ σ λ σxxσσ xx c xλ σ x v= +σ xx c, ,c xx  (2)

σ σ λ σxxσσ xx c xλ σ x v= +σ xx c, ,c xx  (3)
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6. Determine the integration point for which the 
load multiplier λ is critical. In principle, solv-
ing for the inequality σ(1,2)(λ) ≤ f, where ‘f ’ is 
the allowable strength, sets of values of λ per 
integration point per failure direction are found 
and the maximum value of the common sub-
set is chosen as the critical λ. In the event of an 
empty solution set, wherein the stress states in 
no integration point allows for a constitutively 
admissible scaled combination of the constant 
and variable loads, a return to an ‘intermediate 
proportional scheme’ is done. The ‘last success-
ful load combination’ is scaled in a proportional 
way thereby reducing the constant load and 
also partly retaining the scaled variable load. 
(Van de Graaf 2017).

7. Once the critical integration point and load 
multiplier is determined, scale the stresses and 

Figure 1. Saw-tooth curves for exponential tension sof-
tening (top) and parabolic compressive softening bottom 
in the ripple curve formulation. The dashed curves repre-
sent the delimiting curve at an offset to the ‘mother/base’ 
constitutive curve (by a percentage ‘p’ of the allowable 
strength) to allow for a formulation with regularized frac-
ture energy to ensure mesh objectivity.
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strains as well accordingly and obtain the new 
stress state.

8. Remove all loads and update the strength and 
stiffness of the critical integration point based 
on the saw tooth law and return to step 2 until 
the element/structure is completely damaged.

2.2 Fixed cracking model in SLA

SLA has thus far been based on a total strain 
based smeared cracking model. As soon as the 
principal stress violates the allowable strength at 
an integration point, the isotropic stress strain 
relation σ  =  Dε, transforms into an orthotropic 
relation at the n-t cracked coordinate system as 
σnt = Dntεnt. The normal direction’s Young’s modu-
lus and strength are damaged according to the saw 
tooth law. In the event of stress rotations that lead 
to stresses in the tangential direction violating the 
allowable strength, the damage is introduced simi-
larly. So every integration point essentially requires 
two uniaxial saw tooth laws in the 2-D plane stress 
situation. This aside, the shear behaviour in the 
fixed cracking model is represented using a vari-
able step wise shear retention function that takes 
into account the reduction of shear stiffness with 
increasing damage in normal direction of the 
cracked plane. Also, the Poisson’s ratio is reduced 
at the same rate as the associated Young’s modulus.

2.3 Motivation for a new non-proportional 
strategy

Determining the critical load multiplier in a plane 
stress situation is straightforward as shown in the 
previous section. Substitution of the global stresses, 
i.e. Equation 1, 2, and 3, into the expression for the 
principal stress (Equation 4), would yield a quad-
ratic equation in λ thereby resulting in a closed 
form solution. So the existence of a rather simple 
expression for the principal stress is key to this 
approach and this is primarily because the charac-
teristic equation for a 2-D stress situation is also a 
quadratic equation.

However, for a 3-D stress situation the principal 
stresses would be the roots of a cubic characteristic 
equation (Equation 7).

det( )Σ Λ =)ΛI 0  (5)

σ σ σ
σ σ σ
σ σ σ
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Λ

Λ
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where Σ is the 3-D stress tensor, Λ are the princi-
pal values, I is the Identity matrix and I1, I2 and I3 

are the stress invariants. An analytical expression 
for the principal values from Equation 7 would not 
be as simple as Equation 4. It is well documented 
in literature about mathematical procedures like 
Cardano’s method (Birkhoff & MacLane 1997) 
involving transformation to get reduced cubic 
equations and subsequent reduction to a quad-
ratic equation to find analytical solutions, but such 
an approach for solving Equation 7 would prove 
rather complex and cumbersome. Since the super-
posed stresses as in Equation  1, 2 and 3 would 
introduce a new variable λ, finding a closed form 
solution, to be able to implement in a finite ele-
ment framework, becomes rather unrealistic.

This motivated the need for a new non-propor-
tional strategy suitable for the 3D stress situations. 
Numerical algorithms were considered as a possi-
ble solution to solve the cubic equation with the 
additional variable λ, but to reduce the complex-
ity of the problem, reformulation of the problem 
statement was regarded to be more pragmatic and 
this led to the new approach described in the next 
section. The problem is reduced to that of a two-
dimensional optimization problem, the directional 
cosines, in the 3-D case but is first elucidated in the 
2-D plane stress situation to match up to the exist-
ing closed form solution.

3 REFORMULATION OF NON-
PROPOPORTIONAL LOADING IN SLA

3.1 Concept

The non-proportional loading strategy being con-
sidered retains the concept of superposition of 
stresses due to the two non-proportional loads, 
referred to as constant and variable loads hereon, 
to obtain global stresses. Instead of resorting to 
the principal stress theory to find the closed form 
solution for λ, the normal stress on an arbitrary 
plane is now expressed as a function of the inclina-
tion of the plane to the reference axes.

The normal stresses due to the constant and the 
variable loads (denoted by the subscripts c and v) 
would be functions of θ:

σ σ σ θ
σ θ
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xyσσ c
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The scaled combination of the stresses shown, 
σnn, above would have to be equal to the allow-
able strength, from which the load multiplier λ, is 
expressed as a function of θ as shown below:
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λ θ θ θ( )λ θλ θ ( (σ ))θθ / (σ )θθ, ,= ( f nnσσ θ( )) / σσ( )) v,  (10)

where f  is the allowable strength.
The idea is to find the minimum value of  λ, at 

which the slope of  the function is zero, and the 
corresponding value of  θ will determine the incli-
nation of  the failure (cracking/crushing) plane. 
This was initially verified for simple stress states 
by comparing against the analytically derived 
closed form solution for λ and the inclination of 
the crack plane as formulated by DeJong et  al. 
(2008).

The function of the load multiplier may be con-
tinuous or discontinuous for different stress states 
but is periodic every π radians. Thus, it is sufficient 
to evaluate the function over a range of θ = [−π/2, 
π/2] to evaluate the critical λ and the correspond-
ing critical cracking plane. Typical functions are 
shown in Figure 3.

It is observed that the maxima or minima of 
this function correspond to ‘critical’ values of λ 
for which the scaled combination of the normal 
stresses due to constant and variable loads, σnn, 
approach the allowable strength. The physical 
meaning of the expression for λ as a function of 
the cracking inclination θ is that there several com-
binations of λ and θ for a certain kind of loading 
(stress state). However, there are only two critical 
admissible values in the interval θ = [−π/2,π/2], the 
maxima and the minima, for a certain stress state 
which could be seen as upper and the lower bound 

solutions. These bounds are analogous to the λmin 
and λmax of the sets of admissible lambda values 
found per integration point as described by Van de 
Graaf (2017). Therefore, along the same lines, the 
critical values for each integration point are used to 
set up the ‘sets’ of λ values, and the maximum of 
the common subset is chosen as the global critical 
load multiplier λcrit. In the event of an empty com-
mon subset, the strategy to temporarily reduce the 
constant load by proportionally scaling the ‘last 

Figure 2. Plane stress situation: Normal stress σθ and 
Shear stress τθ, on a plane at an inclination θ to the refer-
ence axes.

Figure 3. Example of functions of λ with respect to the 
inclination of an arbitrary plane at an inclination θ to the 
reference axes where: (a) there are global critical points, 
(b) there are ‘no’ critical points (infinite real set) and 
(c) there are local critical points, that can result in a pos-
sible load combinations to initiate failure.
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successful’ load combination as mentioned in sec-
tion 2.1 is adopted (Van de Graaf 2017).

In case of functions such as those shown 
in Figure  3(b), there appears to be only global 
extreme values at certain θ and no local critical 
points. This would mean that critical bounding 
solutions where failure can be initiated are infinite 
and so such cases can be neglected. In other words, 
the range of admissible values of the scaled vari-
able load to initiate failure at an integration point 
is the infinite real set.

Additionally, it is to be noted that for the new 
crack coordinate system at an inclination θ with 
respect to the reference coordinate system, there 
will also be a normal stress σtt which is not to be 
neglected. For the critical λ evaluated by finding 
the optimum θ with respect to σnn, the correspond-
ing σtt at an angle (θ +π/2) should be lesser than 
the maximum principal stress or greater than mini-
mum principal stress, for tensile or compressive 
failure along σnn respectively. Thereby we ensure 
that the derived λ also results in the normal stresses 
which are in accordance to the principal stress the-
ory. Depending on these aspects of the function, 
we can address the non-proportional loading strat-
egy now as an optimization problem.

3.1.1 Minimization of the λ function using 
optimization algorithm

With the knowledge of typical functions within 
the interval [−π/2, π/2], the choice to utilize opti-
mization techniques, to find the minimum for 
every integration point per linear analysis, was 
made. In this study, the minimization of the func-
tion is carried out in two stages if  the function is 
smooth and parabolic near the minima as shown 
in Figure  3(a) and Figure  3(c). Firstly, the mini-
mum is bracketed using the inverse parabolic inter-
polation. Subsequently, the golden section search 
algorithm (Kiefer 1953) is used to find a functional 
minimum. This method is the optimization coun-
terpart of the root finding bisection method. The 
idea is to successively narrow down the set of val-
ues to a small interval where the minimum exists. 
The convergence towards the minimum is linear 
but the method is always guaranteed to converge. 
The maximum can be found by adopting the same 
strategy but with the negative of the function. In 
scenarios wherein no minima occurs as shown in 
Figure 3(b) or there are global minimum (extreme 
values) alongside the critical local minimum as 
in the case of Figure  3(c), the algorithm has to 
be modified, to appropriately find the critical 
points or neglect the integration point with such 
stress states on the whole. The knowledge of the 
first derivative of the function can make it possi-
ble to use faster optimization routines to find the 
desired critical points and this is being currently 

investigated. Nevertheless, as explained in the fol-
lowing sections, the strategy matches up to the 
existing closed-form solution based strategy and 
also in terms of computational effort (time).

4 VALIDATION STUDIES (2D)

4.1 Single element test

The concept for the reformulated non proportional 
strategy, hereon referred to as the Sequentially 
linear ‘theta-based’ non-proportional strategy 
(SLTHNP) was implemented and validated in the 
commercial FEA program DIANA FEA. Several 
single element tests were performed and one such 
is presented in this paper. The scheme of the test 
on the linear plane stress element is as shown in 
Figure 4. The plane stress element is assigned unit 
material properties as shown in Table 1. The test is 
performed with both the SLTHNP and the closed 

Figure 4. A Linear plane stress element, with boundary 
conditions as shown, is subject to constant load Fcon in 
the negative-y direction followed by the unit proportional 
load Fvar in the positive-x direction. In-plane Gaussian 
integration scheme 2 × 2 is used (demarked as stars).

Table 1. Material properties for the test.

Property Value Units

Young’s Modulus (E) 1000 N/m2

Poisson’s ration (v)    0 –
Tensile strength (ft)    1 N/m2

Tensile Mode-I fracture energy (Gf1)    1 N/m
Compressive strength (fc)    1 N/m2

Compressive fracture energy (Gc)    1 N/m
Number of Saw-tooth*   20 –

*Linear Tensile and parabolic compressive Saw-tooth as 
shown in Figure 1 with a ‘p’ factor of 0.1.



936

form solution based non-proportional strategy of 
DeJong later improved by Van de Graaf (2017), 
hereon referred to as SL2DNP.

The constant load is kept low to about 0.01 N/m 
so that damage in an integration point happens 
only when the variable load is applied and the non-
proportional loading strategy, as the case may be, 
determines the cracking plane and the load mul-
tiplier. The stress strain evolution in all 4 integra-
tion points is observed for both simulations with 
SL2DNP and SLTHNP.

Since the loading is such that damage will occur 
only in tension along the X-direction, the cor-
responding stress strain relations in X-direction 
alone are presented in Figure 5. It can be seen for 
integration points 1 and 2 that at certain load steps 
an integration point may lie on the secant branch 
(as another point becomes critical) or at the upper 
limit point of the saw tooth, depending on whether 
or not the point under consideration is critical, 
and vice versa. As expected, in line with similari-
ties observed for simple stress states as mentioned 
in the previous section (analytical comparisons), 
the approaches match. A similar test with con-
stant tension load in Y (but small enough to avoid 
damage) and the variable compression load in X 
directions also show good agreement between the 
approaches. This validates the SL2DNP at element 

level but there was need for an assessment at a 
structural level involving stress redistributions and 
this is shown in the next section.

4.2 Quasi-static cyclic pushover test—High wall

To demonstrate the SLTHNP strategy, the bench-
mark of a calcium silicate masonry shear wall test 
is chosen. Several in-plane quasi-static cyclic tests 
were performed on calcium-silicate and clay brick 
walls at TU Delft in the Stevin Lab as a part of 
the extensive research campaign addressing the 
induced seismic situation in Groningen, The Neth-
erlands (Rots et al. 2016). Of these, one of the high 
walls is tested using SLA with the SL2DNP and 
SLTHNP strategies.

The constitutive relationship combining a lin-
ear tension softening and a parabolic compression 
softening behaviour in uniaxial direction, similar 
to that presented in Figure  1, is used. The wall 
is slender, around 2.75 m ×  1.1 m in size. It is a 
single wythe wall of  thickness 0.1 m and is sub-
ject to a vertical precompression of  0.7 MPa. The 
experimental setup has double clamped bound-
ary conditions (top edge remains straight but is 
free to move vertically in the direction of  over-
burden). After application of  precompression, 
a lateral load is applied in a cyclic fashion. The 
experimental setup is shown in Figure 6 and the 
end stage damage pattern was a combination of 
flexure (rocking failure), toe crushing and slid-
ing failures. For further details refer Ravenshorst 
et al. (2016). Although the test is cyclic in nature, 
the test could be used as a benchmark in a monot-
onic approach to make qualitative comparisons 
between the experimental backbone/envelope 
curve and the SL2DNP and SLTHNP non-pro-
portional strategies.

The force displacement curves from the 
SL2DNP and SLTHNP simulations, in comparison 

Figure 5. Stress strain evolution along the x-direction 
which is subject to tension as observed using the closed 
form solution based SL2DNP strategy and the theta 
based new SLTHNP strategy for integration points 1 & 
2 - (top) and (bottom) respectively.

Figure 6. Experimental setup of shear wall with dimen-
sion 2.75*1.1 m2 with thickness 0.102 m. The pre-com-
pression and lateral loads are applied using hydraulically 
controlled actuators as shown (Ravenshorst et al. 2016).
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to the experimental backbone curve are shown in 
Figure 8. There is a slight deviation in the numerical 
result from the experiment and this can attributed 
to calibration of material properties which were 
obtained from material level tests which were also 
done as a part of the campaign. These are shown 
in Table 2.

Nevertheless, the aim of the study is to demon-
strate the applicability of the proposed non-pro-
portional strategy for Sequentially linear analysis 
and therefore in-depth comparisons are made only 
between the SL2DNP and SLTHNP approaches 
and only an overall/global comparison to the exper-
imental benchmark in terms of the damage patterns 
and the failure modes is made. For the same reasons, 
the comparison between the approaches is stopped 
at 7.0 mm for the simulations while the experiment 
was continued to around 25 mm top displacement.

The results from both the simulations are in 
agreement until the top displacement of 7.0  mm 
until which the analysis has been investigated. Since 
the results from SL2DNP match exactly with those 
from SLTHNP, the evolution of the maximum prin-
cipal strain ε1 is shown only for the SLTHNP simu-
lations in Figure 7. The rocking/flexure failure that 
was observed in the experiment is seen in both simu-
lations and the strain contours are in agreement.

However, there are a couple of points to be 
noted. The optimization routine to find critical λ, 
the golden search algorithm, is dependent on a cer-
tain tolerance for convergence to the solution and 
the solution is sensitive to this parameter. Varying 
the tolerance further may alter the proximity to the 
closed form solution; however beyond a certain 
value this would not be the case. The sensitivity of 
the SLTHNP with respect to this tolerance is cur-
rently being investigated with this benchmark and 
the one discussed in the next section.

It has to be pointed out that compressive sof-
tening was not observed for the displacements 
considered. This is due to the choice of comparing 
simulations until a net top displacement of 7.0 mm. 
Also, the combined tension-compression  biaxial 
failure model that has been used in this study has 
an intrinsic problem that in a uniaxial case, if  an 
integration point softening in tension unloads 
locally (is possible for monotonic analysis also due 
to stress redistributions (Van de Graaf 2017)) it 
carries over the damaged stiffness into compres-
sive regime and this could affect the results. This 
aspect of the biaxial failure envelope is also being 
currently investigated.

4.3 Quasi-static cyclic pushover test—Low wall

The benchmark presented in the previous section 
exhibits a rather simple damage pattern, a rocking 
mode. In order to authenticate the validity of the 

SLTHNP strategy in comparison to SL2DNP for 
another failure mode, the benchmark of low wall 
that exhibited a brittle failure by diagonal cracking 
is investigated.

Table 2. Material properties for the shear wall test *.

Property Value Units

Young’s Modulus (E) 5.091E+09 N/m2

Poisson’s ration (v) 0.2 –
Tensile strength (ft) 0.15E+06 N/m2

Tensile Mode-I fracture energy (Gf1) 15 N/m
Compressive strength (fc) 5.93E+06 N/m2

Compressive fracture energy (Gc) 31300 N/m
Number of Saw-tooth 30 –

*Properties obtained from material level tests on calcium 
silicate masonry (Esposito et al. 2016).

Figure 7. Maximum principal strain ε1 evolution at A, 
B and C points of Figure 8 for SLA using SLTHNP non-
proportional loading strategy.

Figure 8. Comparison of the monotonic SLA simula-
tions of the shear wall test using SL2DNP and SLTHNP 
non-proportional loading strategies and the envelope 
curve of the cyclic experimental curve.
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The wall considered is rather squat in com-
parison to the previous benchmark, around 
1.35 m(high) × 1.1 m in size. The experimental setup 
has double clamped boundary conditions and 
after application of precompression of 0.6 MPa, a 
lateral load is applied in cyclic fashion similar to 
the previous benchmark. The experimental setup 
is shown in Figure 9. The material properties for 
the constitutive relationship combining a linear 
tension softening and a parabolic compression sof-
tening behaviour in uniaxial direction, similar to 
that presented in Figure 1, is presented in Table 3.

The only point to be noted is that the elements 
in the middle of the wall in Figure 9 are assigned 
a higher Mode-I fracture energy than the extreme 
row of elements (grey-coloured) in order to 
account for the relatively larger energy dissipation 
in a shear failure as against a rocking failure. Diag-
onal shear failure was observed in the experiment 
subsequent to reaching the peak force. For further 
details about the experiment refer Anthoine et al. 
(1995). Monotonic simulations are made to make 
qualitative comparisons between the SL2DNP and 
SLTHNP non-proportional strategies.

The results from the SLTHNP and SL2DNP 
simulations exactly match thereby validating the 
new strategy for the non-proportional loading 
problem. In contrast to the previous benchmark, 
here a return to the ‘intermediate proportional 
scheme’ proposed by Van de Graaf (2017) is also 

Table 3. Material properties for low-wall test*.

Property Value Units

Young’s Modulus (E) 1.491E+09 N/m2

Poisson’s ration (v) 0.15 –
Tensile strength (ft) 0.15E+06 N/m2

Tensile Mode-I fracture energy (Gf1) 150 N/m
Compressive strength (fc) 6.20E+06 N/m2

Compressive fracture energy (Gc) 40000 N/m
Number of Saw-tooth 30 –

*Properties calibrated after sensitivity analysis for tensile 
mode-I fracture energy and tensile strength. Additionally 
for continuum elements (extreme rows) Gf1 = 100 N/m.

Figure  9. Experimental setup of low-shear wall, 
Anthoine et al. (1995).

Figure 10. SL2DNP and SLTHNP simulations of the 
low wall test and the characteristic points A, B, C and D.

Figure  11. Evolution of λcon in the two simulations 
of the low wall test and the characteristic points from 
Figure 10.

Figure  12. Evolution of principal strain 1 (dotted 
softening branch—extreme elements, whole—middle 
elements).



939

observed. This is seen in Figure 11, where the load 
multiplier associated with the constant load (in 
this case the precompression) λcon reduces below 
1.0 over the number of  linear analysis steps. It 
regains the initial value of  precompression most 
often but post step 7850, there seems to be a grad-
ual decrease up until step 13300 where the value 
reaches almost 0.3. Physically this would mean 
that the precompression on the wall cannot be 
recovered and the gradual decrease could be inter-
preted as the wall nearing collapse state. Damage 
pattern for 4 characteristic points A, B, C and D 
in Figure 10 are shown in Figure 12 and a compar-
ison between damage patterns of  both approaches 
(exact match) is not made here owing to triviality.

5  EXTENSION OF THE NEW 
NON-PROPORTIONAL LOADING 
STRATEGY TO 3-D STRESS SITUATIONS

5.1 Concept

The purpose of introducing and demonstrating the 
theta based non-proportional strategy at a 2-D level 
was to prove the validity of the method. However, 
the aim of the strategy is ultimately to have 3-D 
SLA simulations with non-proportional loading 
or in other words simulations with a constant and 
variable load. Due to the aforementioned problems 
with finding closed form solution in a 3-D stress 
situation, in line with the 2-D reformulation of the 
non-proportional problem based on theta—the 
inclination of the arbitrary plane to the reference 
axes, the 3-D non-proportional loading problem is 
reformulated based on directional cosines.

In the 3-D stress situation, an arbitrary plane 
can be related to the reference coordinate system by 
means of the directional cosines l, m and n, of which 
only two may be considered independent variables 
since they are related as l2 + m2 + n2 = 1. The normal 
stresses acting on this plane due to the constant and 
variable loads can thus be expressed as

σ σ
σ

nnσσ c xσ x c yyσσ c zσ z c xy c

yz xσ z

l σσσl n l, ,c xx , ,c zz ,

, ,c xz

( )σ xy c lσ xy c mll,

( σ yzσσ c,c( ) (
= σ xσ x c l + σ zσ z c n

+ (
2 2mσ 2

2) (+)σσ cc nl )  (11)

σ σ
σ

nnσσ v xσ x v yyσσ v zσ z v xy v

yz xσ z

l σσσl n l, ,v xx , ,v zz ,

, ,v xz

( )σ xy v lσ xy v mll,

( σ yzσσ v,v( ) (
= σ xσ x v l + σ zσ z v n

+ (
2 2mσ 2

2) (+)σσ vv nl )  (12)

The load multiplier is now expressed as a func-
tion of only two of the directional cosines, rewrit-
ing the third as n = √ (1 - l2 - m2), as shown below:

λ σ( ,λλ ) ( ( , ( , ), ,f σ (, m l)) / (σnn , )) / σ))(( m)) / σ v,  (13)

The idea is to find the critical values of λ, the 
maxima or minima of this function, at which the 

slope of the function is zero, make sets of admissi-
ble values of λ per integration point and choose the 
maximum λ of  the common subset similar to the 
2D case. The values of l, m and n corresponding to 
the λcrit will determine the inclination of the failure 
(cracking/crushing) plane. The function of the load 
multiplier may be continuous or discontinuous for 
different stress states similar to those observed in 
the 2-D plane stress situation and are shown in 
Figures 13 and 14. Additionally, analogous to the 
2-D case, for the new crack coordinate system at 
an inclination l, m and n, with respect to the refer-
ence coordinate system, there will also be a normal 
stress σtt and σss which are to be considered. For 
the critical λ evaluated by finding the optimum l, 
m and n, with respect to σnn, the corresponding σtt 
and σss should be such that σ1 > σ2 > σ3.

Figure 13. Example of a smooth continuous function 
of λ with respect to the inclination of an arbitrary plane 
defined by directional cosines l and m.

Figure 14. Example of a discontinuous λ with respect 
to the inclination of an arbitrary plane at an inclination 
defined by directional cosines l and m.
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In addition to the non-proportional loading 
strategy the fixed crack approach for the 3-D 
stress situation to allow for an additional tertiary 
cracking is necessary. The idea for the change from 
isotropic to orthotropic formulation upon dam-
age in 2D plane stress situation were extended to 
the 3D-stress state by Voormeren (2011). Here 
the transformation of the original isotropic for-
mulation into the n-s-t orthotropic formulation 
expressed as σnst  =  Dnst εnst, allowing for tertiary 
cracking as well, is done. The associated variable 
shear retention functions and poisson ratio reduc-
tions were also considered. The damaged integra-
tion point will have 3 each of Young’s moduli, 
shear moduli and poisson’s ratio.

The extrema (bounds) of the critical load mul-
tiplier was determined in the 2-D stress situation 
numerically using a one-dimensional optimization 
routine. In the reformulated 3-D non-proportional 
loading problem, the optimization has to be done 
with respect to 2 variables l and m. So a multidi-
mensional optimization routine is required and 
preliminary investigations have been made with 
the rather basic downhill simplex method, the 3-D 
version of the golden section search. The limita-
tion in multi-dimensional optimization is that the 
initial bracketing of the extremum is not possible 
and emphasis has to be laid on possibly restarting 
the optimization routine from a ‘converged solu-
tion’ repeatedly to ensure that the extremum is 
indeed global and not a local one. Investigations 
are also ongoing for the choice of a faster optimi-
zation routine like the Conjugate gradient method.

6 CONCLUSIONS

A new strategy for Sequentially linear analysis with 
a view to address the 3-D non-proportional loading 
has been presented in this study. This was motivated 
by the lack of a simple closed form expression for 
the critical load multiplier λ in the 3-D case as in the 
2-D plane stress situation. The problem statement 
for non-proportional loading has been proposed to 
be reformulated to first express the normal stress on 
an arbitrary plane, at an inclination θ with respect 
to the reference coordinate system, as the scaled 
combination of the normal stresses due to the con-
stant and variable loads. This was equated to the 
allowable strength based on the saw-tooth consti-
tutive law and ultimately the load multiplier was 
expressed as a function of θ. It has been shown in 
this study that the θ corresponding to extreme/criti-
cal values of the aforementioned function would 
result in inclination of the principal planes, using an 
optimization routine. First, the approach was pre-
sented for a 2-D stress situation and demonstrated 
using single element tests and quasi-static pushover 
tests on a slender calcium silicate masonry wall and 

a squat brick masonry wall. It has been shown to be 
in agreement with the closed form solution based 
non-proportional loading strategy as presented by 
DeJong (2008) and later readapted by Van de Graaf 
(2017). Furthermore, the concept for the 3-D stress 
situation has been presented and is currently being 
investigated with single element tests and bench-
marks. Also investigations are ongoing to improve 
the biaxial tension compression failure model used 
in this study, to address the crack closure problem; 
and to extend SLA to cyclic loading applications.
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