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Abstract
Machine learning (ML) algorithms have been used
frequently in the past years for Software Engineer-
ing tasks. One of the popular tasks researchers
use is method name prediction, which helps them
generate an identifier for methods with ML mod-
els such as Code2Seq. This model represents code
snippets as Abstract Syntax Trees (AST) and it in-
cludes all code elements except comments. This
paper introduces a novel approach to incorporat-
ing comments in Code2Seq. The reimplemented
models integrate comments into the AST when pre-
processing the data. We filtered comments to re-
duce the noise introduced in the model and im-
prove the predictions using techniques such as TF-
IDF and stopword removal. We implement sev-
eral models for each filtering technique and one
for raw comments. These models are trained and
evaluated using the dataset java-small, provided by
Code2Seq, with 700K examples and the follow-
ing metrics: precision, recall, and F1. The results
obtained from the evaluation of our model with
raw comments show an improvement of 3.62%
and 2.36% in precision and F1, respectively, on
method name prediction compared to the original
model. Furthermore, the model with stopword re-
moval has a 6% and 3.52% gain in recall and F1.
These improvements suggest that adding comments
to Code2Seq is valuable for better method name
predictions since they contain additional informa-
tion about the methods.

1 INTRODUCTION
Over the past several years, Machine Learning (ML) tech-
niques have shown a growing tendency to be used to automate
Software Engineering (SE) tasks [1] such as code comple-
tion, code summarization, and defect detection [2]–[4]. These
tasks are important because they help developers save time on
typing or writing well-documented and comprehensible soft-
ware.

One of the most commonly used tasks is method name pre-
diction, which generates a word that summarises the code’s
behaviour of a method. Giving meaningful and conventional
identifiers to methods and variables is crucial for a devel-
oper to understand a software system [5]. A study by Deis-
senboeck et al. observes that all identifiers (e.g. variable
names, method names) comprise approximately 70% of the
source code in terms of characters [6]. Methods with poor
names might also reduce the readability of a program [7]
because developers have only limited knowledge about the
names already used in the system, and identifiers are subject
to decay during the development process [6].

One machine learning model that can predict the method’s
name given a code snippet is Code2Seq [8], which uses Ab-
stract Syntax Trees (AST) [9] to represent the code into a set
of syntax paths. Currently, Code2Seq does not incorporate
comments during the preprocessing step; therefore, they do

not impact the predictions. Including comments in the model
may affect the prediction of method names since they can im-
prove the readability of the programs. However, they can also
introduce dead code, wrong information about the code, and
to-dos [10], [11].

Therefore, this research aims to study how including and
removing the comments in the model affects the performance
of method name prediction. First, to achieve this goal, we
include the comments in the AST during preprocessing. Ad-
ditionally, we remove stopwords from the comments to ver-
ify whether they influence the predictions. We also use TF-
IDF (term frequency-inverse document frequency) [12] dur-
ing preprocessing to create a model which only uses a set
of keywords extracted from the comments. These keywords
are considered the most relevant words in the comments, and
they summarize the content of a comment. Next, we retrain
the different models and evaluate them using the metrics: pre-
cision, recall and F1. We use the dataset java-small provided
by Code2Seq, of which 24.50% of information is comments,
to assess the models. After evaluation, we compare the results
with the original model1 and discuss the outcome.

The results demonstrate that comments improve the per-
formance of method name prediction; this might be because
comments introduce helpful information to the model that
helps better predict the identifier. Removing stopwords has
also shown a better score than including raw comments, as it
might be possible for them to introduce noise to the model.
Lastly, the TF-IDF model showed some precision improve-
ment but a lower score on recall than the original model.

This paper is structured as follows: Section 2 covers the
required background about ASTs and Code2Seq. Next, in
Section 3 we present our changes to the preprocessing to in-
clude comments and the techniques used on comments, such
as stopword removal and TFIDF. Section 4 explains the ex-
perimental setup and the metrics used to evaluate the models.
In Section 5, the results obtained during the evaluation are
demonstrated and discussed. Section 6 describes different as-
pects which might affect the study’s validity. We reflect on
the ethical aspects of the study, such as reproducibility, in
Section 7. Finally, the conclusion and future work are ex-
plained in Section 8.

2 BACKGROUND AND RELATED WORK
This section provides background information necessary to
understand the study. The structure of Abstract Syntax Trees
will be described since they are used to represent code in
code2seq. Information about code2seq will also be provided
to understand how the model is built and works.

2.1 Abstract Syntax Trees
An Abstract Syntax Tree is a tree representation of the syntax
structure of a program. Nodes in the AST represent a code
element, and they are distinguished into terminal and non-
terminal nodes. The terminal nodes are the leaves of the tree,
and they represent the operands and user-defined values, such
as identifiers, variables and function calls. The non-terminal

1https://github.com/tech-srl/code2seq
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Figure 1: An example code snippet (a) and its corresponding Ab-
stract Syntax Tree (b). The non-terminal nodes are shown as ovals
and terminal nodes as rectangles.

nodes stand for the operands of the program (e.g., loops, vari-
able declaration, expressions). An example of an AST and its
code is shown in Figure 1.

2.2 Code2Seq
Code2Seq is a neural network which can generate natural lan-
guage sequences from a code snippet. It can do the following
tasks: code summarization, code captioning, and code docu-
mentation.

The model uses ASTs to represent code snippets with con-
text pair-wise paths between terminal nodes. They repre-
sent a sequence of the terminal and non-terminal nodes con-
nected by up and down movements. In every training iter-
ation, Code2Seq selects a certain number paths k because a
code snippet can contain any amount of paths.

Code2Seq uses an encoder-decoder architecture which cre-
ates a vector representation for each path in the AST. Each
node in a path is represented using a learned embedding ma-
trix Enodes, and then the entire path is encoded using a bi-
directional LSTM. The values of the terminal nodes, which
are tokens, are split into sub-tokens by CamelCase; for exam-
ple, ArrayList is divided into Array and List. Then, a learned
embedding matrix Esubtokens models each sub-token, and
the sum of the sub-token vectors represents the whole token.

Next, the token representations are concatenated with the
path representation, and they are applied to a fully connected
layer in the neural network. In the end, the decoder gener-
ates the output sequence by going through all the combined
representations.

3 METHODOLOGY
This section describes how we approach the research. First,
we analyze the implementation of Code2Seq to understand

how it transforms a code snippet into an Abstract Syntax Tree
(AST). Next, we change the model to embed the comments
in the trees during preprocessing. After evaluating the model
with the comments, we modify the content of the comments
with techniques including TF-IDF and stopword removal.

3.1 Comment Embedding into Code2Seq
To include the comments in the model, we first needed to un-
derstand how a code snippet is represented to get a prediction
and then change the representation to embed the comments
and study their effect on the task.

Code2Seq represents each code snippet, during the prepro-
cessing step, into an Abstract Syntax Tree. Each code ele-
ment is represented as a Node in the tree. All nodes, except
the root, have precisely one incoming relationship and zero-
to-many outgoing relationships. The leaf nodes are the nodes
which have zero outgoing relationships. The other nodes with
outgoing relationships are branches and parents with one or
more children nodes.

Comments are represented as leaf nodes and are associ-
ated with a parent node.They are distinguished into LineCom-
ment, BlockComment, and JavadocComment. We consider
these categories crucial as they might affect the model’s per-
formance differently. Each node, except comments, can
be associated with at most one comment. The relationship
between node and comments is bi-directional. Block and
Javadoc comments are assigned to the following node on the
same or successive line in the code. Line comments, instead,
are attributed to the node preceding them when they are on the
same line as another node or the node following them if they
are on their own line. Some comments may not be associated
with any node because no nodes are preceding or following
them. These comments are called Orphan Comments, which
are associated with an arbitrary node in the code or the par-
ent of the expected node. Nodes can have multiple orphan
comments attributed to them.

We included the comments in the model by visiting each
node and verifying whether the node is associated with a com-
ment during the preprocessing step. In case a comment is
attributed to a node, we normalized the comment’s content
by converting it to lowercase. Next, the comment was pre-
processed as a node and added to the leaves. In Figure 2,
an example of a code snippet with comments and the corre-
sponding AST is shown.

After including the comments in the model, we also wanted
to study whether removing stopwords from the comments af-
fects the predictions. Usually, stopwords do not add criti-
cal information to the content, decrease the data size and add
noise to the data [13], [14]; because of these reasons, we pre-
processed and trained a new model without stopwords in the
comments. In order to do so, we used Blei et al. [15] dataset
containing the stopwords from the English language and went
through each comment and removed any word present in the
dataset.

3.2 TF-IDF
Other than removing stopwords from the comments, we also
studied whether including only a certain amount of words
from the comments affected the performance of the model.
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Figure 2: An example code snippet with comments (a) and its cor-
responding Abstract Syntax Tree (b).

Thus, we used TFIDF (term frequency-inverse document fre-
quency), which is a statistical measure that evaluates the im-
portance of a word to a document in a collection of docu-
ments. With TF-IDF, we calculated the relevance of each
word in a comment and selected the most important ones as
keywords [16].

In TF-IDF, the relevance increases proportionally with the
number of times a word appears in a document, but it is bal-
anced with the number of documents that contain the word.
The score of a word is calculated by multiplying two metrics:
term frequency (TF) and inverse document frequency (IDF).

TF.IDF (t, d,D) = TF (t, d) ∗ IDF (t,D) (1)

TF measures the number of times a word appears in a doc-
ument. It is calculated by dividing the word frequency in a
document d by the total number of words in d (see E.q. 2).

TF (t, d) =
Number of times t appears in d

Total number of terms in d
(2)

IDF estimates how common or rare a word is. This metric
is calculated by dividing the total number of documents N in
a collection C by the number of documents possessing the
word and calculating the natural logarithm of the result (see
E.q. 3).

IDF (t,D) = ln (
N

Number of documents containing t in D
)

(3)
In our implementation, a comment is considered as a docu-
ment and the collection of documents is the set of comments
contained in a method. We calculate the TF-IDF score for
each word in a comment, select a certain number k of words
with the highest scores, and then remove the remaining terms

from the comment. We view these top k words as the key-
words for a comment, which summarize the information of
the comments and might improve the model’s performance.

4 EMPIRICAL STUDY
This section showcases the research questions we needed to
answer for this research, the parameters required to reproduce
the study, and the evaluation metrics and dataset used to eval-
uate the models.

4.1 Research Questions
This research aims to study the effects of comments on the
results of method name prediction for Code2Seq. The main
question RQ1 we want to answer is: What is the impact
of comments on the performance of code2seq for method
name prediction?. Furthermore, we also want to investigate
whether applying various filtering techniques on the content
of the comments would affect the model. Thus, we define the
following sub-questions:

RQ2 How does ”including Javadoc comments” impact the
performance of code2seq for method name prediction?

RQ3 How does ”including inline comments” impact the per-
formance of code2seq for method name prediction?

RQ4 How does ”filtering the content of the comments” im-
pact the performance of code2seq for code method name
prediction?

4.2 Dataset
We use the dataset java-small provided by Code2Seq to eval-
uate the reimplemented models. Java-small consists of 11
large GitHub Java projects, nine of which are used for train-
ing and the other two for validation and testing. This dataset
contains around 700K examples for training, 23K examples
for validation and 56K for testing. In total, the dataset con-
tains around 12M lines of code of which 3M are used for com-
ments. Around 24.50% of new information from the dataset
is added into the model. The Javadoc comments comprise
53.93% of the comments. Instead, the line and block com-
ments are respectively 44.78% and 1.29%. About 15.58%
of comments are orphans, hence not used to predict method
names.

4.3 Evaluation
We resolve RQ1 by comparing the model with embedded
comments with the original model without them. We use the
following metrics, used by Alon et al. [8], to compare the
models: precision, recall and F1 score. These metrics mea-
sure the quality of a method name prediction using the sub-
tokens composing the identifier. During evaluation, the pre-
dicted sub-tokens are classified into four groups: True Posi-
tive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN). Precision quantifies how many correct posi-
tive predictions the model made, and it is calculated as:

precision =
TP

TP + FP
(4)



Table 1: Comparison between original and reimplemented code2seq
models on method name prediction using java-small

Model Precision Recall F1
Original Code2Seq 47.30 36.92 41.47
Code2Seq + comments 49.01 37.44 42.45
Code2Seq + javadoc 44.44 35.59 39.53
Code2Seq + inline comments 47.75 37.30 41.88
Code2Seq without stopwords 47.52 39.14 42.93
Code2Seq + TFIDF 48.36 35.88 41.19

Recall is the ratio of correctly positive predictions of sub-
tokens to all the correct predictions the model made, and it
is defined as:

recall =
TP

TP + FN
(5)

F1 score is a metric which combines both precision and recall
into a weighted average. It is determined as:

F1 = 2 ∗ recall ∗ precision
recall + precision

(6)

An unknown sub-token of a predicted method name is re-
garded as a False Negative. For example, the prediction ob-
jectGet for the method getObject has maximum precision and
low recall since it is an exact match. However, the prediction
getObjectCount has maximum recall and low precision.

We answer RQ2 by including only the documentation of
each method during the preprocessing of the data and then
training a new model. We compare this model with the
model without comments using the metrics mentioned above.
The same procedure is followed to answer RQ3, but we in-
clude only the inline comments of the methods instead of the
Javadoc comments. For RQ4, we trained two models which
modify the content of the comments by using the following
techniques during preprocessing: stopword removal and TF-
IDF. Next, we train new models for each filtering technique
and compare them with the original model.

4.4 Experimental Setup
The values of all the parameters for preprocessing and train-
ing were set up as the same ones used for method name pre-
diction for the original model of Code2seq. The reimple-
mented models were trained for 8 epochs since they con-
verged and got the best results around 5-8 epochs. We trained
models with 2, 4 and 10 keywords for TF-IDF and the results
showed minor differences in the F1 scores. Therefore we
used 4 keywords for the TF-IDF model because we wanted
to have a small group of keywords to represent the content
of the comments. Due to time limitations, we could not ex-
periment with other values for the number of keywords The
experiments have been carried out using the DelftBlue Super-
computer [17].

5 RESULTS
We changed the Code2Seq model and trained the original and
new models to answer the research questions. We evaluated

Table 2: Comparison between original and reimplemented code2seq
model with comments using java-med

Model Precision Recall F1
Original Code2Seq 57.29 45.42 50.67
Code2Seq + comments 58.09 46.37 51.57

the models using the java-small dataset and used the original
model as a baseline for comparison with the other models.
We trained the models 3 times with random seed 239 to com-
pare them fairly and get accurate results. Table 1 shows the
average results of the three iterations of the original and reim-
plemented models.

From the results, we can notice some improvement in the
model’s performance by including the entire content of the
comments with no filtering technique. Both precision and F1
are significantly higher for the model with the comments than
for the original model. This result might suggest that com-
ments add beneficial information to the model that improves
the prediction of the names of the methods.

Surprisingly, the model with only the documentation had a
lower score than the original model. There are two likely rea-
sons for this result: the documentation might not follow the
rules, which might have introduced noise to the model. Usu-
ally, the documentation includes the parameters and the de-
scription of the method, but this information could be not up-
to-date and provide erroneous data. Alternatively, the amount
of documentation in the dataset is not sufficient to affect the
model’s performance.

The model with inline comments shows a slight perfor-
mance improvement; this could be because the amount of in-
line comments in the dataset is insufficient for a significant
improvement. Approximately 66.80% of inline comments in
the dataset are used to evaluate the models since the rest is
orphaned.

Removing stopwords from the content of the comments
led to a higher score in both recall and F1 compared to the
original model. The plausible explanation for this result is
that the stop words might have introduced noise to the model
and therefore increased the number of unknown sub-tokens
in the dictionary. Unknown sub-tokens are False Negatives,
and thus, if the number of FNs increases, the recall decreases.
Indeed, we can notice that only recall has changed in a better
result, and the precision has remained nearly the same as the
original model. Using stopword removal has decreased the
number of terms used in the comments by 36.27% and this
piece of data might have contained noise as we mentioned
above.

The TF-IDF model shows a slight gain in precision but a
lower score for the recall than for the original model. One
explanation might be that the number of keywords selected
from the comments is inadequate to represent the actual con-
tent of the comments as roughly 11.28% of the terms in the
comments were left after applying TF-IDF to the dataset. The
selected keywords could have also introduced unknown sub-
tokens and thus, increased the number of False Negatives and
decreased the recall.

Additionally, we run the model with the raw comments



with the dataset java-med, which has around 3M examples.
The results, shown in Table 2, are consistent with those ob-
tained using java-small. Due to time limitations, we could
not use java-med with the rest of the models.

6 DISCUSSION
The current reimplemented models do not include the or-
phaned comments because they are not associated with a spe-
cific node but random nodes. Thus, multiple comments in
the dataset might have been excluded during preprocessing;
their information would probably affect the model’s perfor-
mance. It would be valuable to include the orphan comments
in the model and study their effects using a meaningful man-
ner, such as finding the scope of the comments and associat-
ing them with the correct node in a future study.

We used a dataset with 700K methods to train and evaluate
the models, but a larger dataset might affect the validity of
our research. Because of the time constraints of this research
and complications during the training of the models, we could
not test our models with the more extensive datasets java-
med and java-large provided by the developers of Code2Seq.
These datasets have respectively 3M and 12M examples. A
further research is needed to ensure the validity of our results.

Currently, the model with TF-IDF extracts four keywords
from the comments, but a different amount of keywords might
affect the prediction of method names. Therefore, additional
research would be helpful to study the effects of different
numbers of keywords for TF-IDF on method name predic-
tion. K-cross validation might be useful to choose the best
number of keywords, which gives the best results.

7 RESPONSIBLE RESEARCH
We considered the following ethical aspects during the re-
search: reproducibility, data usage, and energy consumption.
We ensured the reproducibility of our research by making
the source code used during the study available on a GitHub
repository2. The code is documented, as every person can
use it to reproduce our study. The preprocessing and training
times are also included in the documentation with the ma-
chine’s specifications used during the research. Additionally,
the parameters used to train and evaluate the models are listed
in Section 4.

We used two datasets for our study: java-small and Blei’s
stopwords. Both datasets are publicly available on GitHub
and can be used by anyone. Therefore, we do not affect any
ethical issues by using these datasets since everyone can ac-
cess them and use them to reproduce our study.

Since we included around 24.50% of new data in the
model, we looked at the experiment’s impact on energy con-
sumption. The preprocessing of the reimplemented models
took 30-40 minutes more than the original model. Instead,
the training and evaluation times were equivalent for all the
models. Hence, we conclude that the gain we achieved from
including comments is worth the slight growth in preprocess-
ing time and energy usage. However, a bigger dataset might
affect the preprocessing and training times differently.

2https://github.com/MrsHan23/code2seq

8 CONCLUSION AND FUTURE WORK
In this paper, we presented a method to include comments in
the ML model Code2Seq to study their effects on the per-
formance of the method name generation task. Currently,
Code2Seq uses Abstract Syntax Trees to represent a code
snippet and comments are not included in the AST during the
preprocessing and training steps. To include the comments in
the model, we navigated through each node in the AST and
verified whether they were associated with a comment. If the
node contained a comment, we included the comment as a
node in the tree’s leaves. Filtering techniques such as TF-IDF
and the removal of stop words on the comments were also
employed to reduce the noise and dataset size.

The reimplemented models were trained and evaluated us-
ing the metrics: precision, recall, and F1. We compared these
models with the original model code2seq using the same pa-
rameters provided by the documentation of the ML model.
The results showed that including comments in the model
improves the performance of code2seq for the task method
name prediction. Removing stopwords from the comments
also had higher scores; an explanation would be that stop-
words in comments introduce noise in the model and reduce
the recall value.

In the new models, the orphaned comments are excluded
because they are not associated with any node. It would be
valuable to include them in the model and verify whether the
performance is affected. Future research is needed to study
the effects of the number of keywords extracted from com-
ments when using TF-IDF. Finding an optimal number might
improve the performance of method name prediction.
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