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CO2 utilization and storage (CCUS) simulation in subsurface reservoirs with complex heteroge-

neous structures necessitates a model that can capture multiphase compositional flow and transport.

The governing equations are highly nonlinear due to the complex thermodynamic behavior, which

involves the appearance and disappearance of multiple phases. Accurate simulation of these pro-

cesses necessitates the use of stable numerical methods. While machine learning (ML) approaches

have been used to solve a variety of nonlinear computational problems, a new approach based on

physics-informed neural networks (PINNs) has been proposed for solving partial differential equa-

tions (PDEs). Unlike typical ML algorithms that require a large dataset for training, PINNs can

train the network with unlabeled data. The applicability of this method has been explored for mul-

tiphase flow and transport in porous media. However, for nonlinear hyperbolic transport equations,

the solution degrades significantly. This work proposes sequential training PINNs to simulate two-

phase transport in porous media. The main concept is to retrain the neural network to solve the

PDE over successive time segments rather than train for the entire time domain simultaneously.

We observe that sequential training can capture the solution more accurately concerning the stan-

dard training for conventional two-phase problems. Furthermore, we extend the sequential training

approach for compositional problems in which nonlinearity is more significant due to the complex

phase transition. Our approach was tested on miscible and immiscible test cases and showed higher

accuracy than the standard training method.

KEY WORDS: hyperbolic PDE, PINNs, Buckley–Leverett, gas injection, sequential
training, compositional simulation, CCUS

1. INTRODUCTION

The global attempt to mitigate the effects of climate changehas increased the urgency of low-
ering carbon emissions. Carbon dioxide capture, utilization, and storage (CCUS) is one of the
existing technologies that has substantial potential for lowering greenhouse gas emissions. The
capture of carbon dioxide from industrial sources, compression, transportation, and subsequent
utilization for operations such as permanent storage in deep underground geological formations
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28 Pour & Voskov

and increased oil recovery in depleted areas are all part of CCUS. However, proper modeling of
multiphase compositional flow and transport in undergroundreservoirs with complex heteroge-
neous structures is required to effectively simulate CO2 use and storage (CCUS).

Compositional simulation deals with the modeling of the flowof multiple phases in a porous
medium. The interplay of phase behavior, flow, and transportgoverns the interactions between
hydrocarbon phases. Compositional simulation continues to be a challenging problem. Com-
plexities are mainly due to nonlinear couplings between multiphase multicomponent flow in
porous media with thermodynamic phase behavior (Alpak, 2010; Voskov and Tchelepi, 2012).
Conventional compositional simulation is based on the solution of the discretized governing
equations describing the mass, energy, and momentum transfer in the reservoir either implicitly
or explicitly. The fully-implicit method (FIM) is preferred in practice, with the nonlinear system
solved by a Newton method due to the fewer restrictions on time-step size. In practical appli-
cations, the highly nonlinear nature of problems involvingkinks and inflection points poses a
significant challenge for Newton’s method to achieve convergence, particularly when large time
steps are utilized. Consequently, to overcome this limitation, alternative nonlinear solvers have
been proposed (Jenny et al., 2009; Jiang and Pan, 2022; Pour et al., 2023) or smaller time steps
are selected for simulations.

Machine learning (ML) techniques, particularly deep learning (Lecun et al., 2015), are gain-
ing prominence in the computer science and engineering fields. Notably, physics-informed neu-
ral networks (PINNs) are being utilized to solve problems where there is knowledge of engi-
neering conservation equations and constitutive closure relationships, but without labeled data
(Raissi et al., 2019). By constructing neural networks withseveral hidden layers, coupled with
nonlinear activation functions, complex nonlinear solutions can be approximated. As a result,
PINNs have been employed to tackle diverse applications governed by differential equations,
such as the Euler equation (Jagtap et al., 2020, 2022b), gas dynamics (De Florio et al., 2021;
Lou et al., 2021), water dynamics (Jagtap et al., 2022b), andchemical kinetics (Ji et al., 2021;
Kim et al., 2021). PINNs have demonstrated their versatility in several applications, including
data assimilation and observations into numerical models,parameter identification (i.e., solving
inverse problems) (Raissi et al., 2019; Yang et al., 2021), and uncertainty quantification (Mao
et al., 2020; Tipireddy et al., 2020).

Recently, the application of PINNs has been explored in subsurface flow and transport. Two-
phase immiscible transport in porous media is typically described by a nonlinear first-order hy-
perbolic partial differential equation (PDE), also known as the Buckley–Leverett (B-L) equation.
Standard PINNs have been utilized to model this phenomenon (Fuks and Tchelepi, 2020). The
authors demonstrated that PINNs cannot find the solution in the case of the steep saturation front
with the nonconvex flux function (Fuks and Tchelepi, 2020). Only after an artificial diffusion
term was added to the original conservation equation, did the neural networks solution manage
to approximate the true solution (Fuks and Tchelepi, 2020).There were multiple attempts to
solve this problem by modifying the loss function. Rodriguez-Torrado et al. (2022) proposed
a new neural network architecture known as physics-informed attention-based neural networks
(PIANNs), which is a blending of recurrent neural networks and attention mechanisms. Fraces
and Tchelepi (2021) introduced yet another solution to the B-L problem. Their method entails
embedding the entropy and velocity constraints into the neural network residual.

Recently, a sequential training scheme has been proposed for PINNs (Krishnapriyan et al.,
2021; Mattey and Ghosh, 2022). In this approach, unlike training for the entire spatiotemporal
domain, we discretize the time domain and march in time to reach the end time. Mattey and
Ghosh (2022) demonstrate the effectiveness of the sequential training approach for Allen–Cahn

Journal of Machine Learning for Modeling and Computing



Physics-Informed Neural Networks for CCUS 29

and Cahn–Hilliard equations. Krishnapriyan et al. (2021) demonstrated the method’s effective-
ness in solving a one-dimensional reaction-diffusion problem. The present study aims to investi-
gate the efficacy of sequential training in the context of hyperbolic transport equations in porous
media. This approach is inspired by the conventional practice of using Newton’s method to solve
PDEs in reservoir simulation, while also taking into consideration the fact that reducing the time
step can help improve the effectiveness of Newton’s method.Our work suggests a sequential
training scheme with a dynamic time step that reduces the number of time steps required for
training, instead of uniformly marching in time.

Through the analysis of a single time-step residual, our findings demonstrate that the non-
linearity of the flux becomes increasingly dominant as the time step increases. This nonlinearity
can be translated into the residual of the loss function. As aresult, the final value of the loss
function is higher for larger time steps. Next, we extend thesequential training approach to com-
positional problems, in which nonlinearity is more pronounced due to complex phase transitions.
The presence of discontinuous points that coincide with thephase transition zone can severely
hinder the convergence of the loss function for neural networks. To mitigate this issue, we utilize
a continuous sigmoid approximation of the fractional flow. Finally, we test the performance of
the sequential training approach on pure hyperbolic transport in porous media in the 1D domain,
ranging from the classic B-L problem to both immiscible and miscible compositional transport.
Our findings demonstrate that the sequential training method outperforms the standard training
approach in terms of accuracy, for both immiscible and miscible transport scenarios.

2. GOVERNING EQUATIONS

We consider the general form of the transport equations for an isothermal multiphase composi-
tional problem withnp phases andnc components that can be written as

∂

∂t



φ

np
∑

j=1

xcjρjSj



+ div

np
∑

j=1

xcjρjvj +

np
∑

j=1

xcjρj q̃j = 0, c = 1, . . . , nc. (1)

Here,φ is porosity,xcj is the mole fraction of componentc in phasej, Sj is the phase
saturation of phasej, ρj is phase molar density,vj is phase velocity, and̃qj is phase rate per
unit volume. Darcy’s law is applied to describe how each phase flows:

vj = −K
krj
µj

(∇pj − γj∇d), (2)

whereK – permeability tensor,krj – relative permeability,µj – phase viscosity,pj – vector of
pressures in phasej, γj – phase density,d – vector of depths (positive downwards).

The closure assumption of instantaneous thermodynamic equilibrium further increases the
nonlinearity. We used the overall molar formulation suggested by Collins et al. (1992). In this
formulation, the following system must be solved at any gridblock containing a multiphase(np)
multicomponentnc mixture:

Fc = zc −

np
∑

j=1

vjxcj = 0, (3)

Fc+nc
= fc1(p, T, x1)− fcj(p, T, xj) = 0, (4)
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Fj+nc∗np
=

nc
∑

c=1

(xc1 − xcj) = 0, (5)

Fnp+nc∗np
=

np
∑

j=1

vj − 1 = 0. (6)

Herezc = Σxcjρjsj/ρjsj is the overall composition andfcj(p, T, xcj) is the fugacity of com-
ponentc in phasej. The solution of this system is called a multiphase flash (Michelsen, 1982)
and needs to be applied at every nonlinear iteration (Voskovand Tchelepi, 2012). The solution
provides molar fractions for each componentxcj and phase fractionvj . The above system of
equations provides a complete mathematical statement for multiphase multicomponent trans-
port. Here we concentrate on two-phase, two-component incompressible transport for miscible
and immiscible cases.

φ∂Zc

∂t
+ vt

∂Fc

∂x
= qc, x ∈ Ω, c ∈ {H2O, CO2}, (7)

whereZc is the overall composition of componentc andvt is the total velocity.qc is the source,
sink term.Fc is the fractional flow of the componentc which is defined as

{

F = xc(1− f(s)) + ycf(s), two-phase zone

F = Z, single-phase zone
, (8)

fα =
λα

λCO2 + λwater
, α = {H2O, CO2}, (9)

wherexc andyc are molar fractions of componentc in the liquid and gas phases, respectively.
λα = (kkrα)/µα stands for the phase mobility,µα is the viscosity of the phase, andkrα(Sα)
is the relative phase permeability. For the immiscible two-phase B-L transport test case, the
fractional flowFc is equivalent tofα. The initial and boundary conditions are

{

Z(x, t) = 0, ∀x & t = 0, initial condition

Z(x, t) = 1, x = 0& t > 0, boundary condition
. (10)

3. STD-PINNS SOLUTION

Raissi et al. (2019) proposed that the solution of the PDE could be approximated by a deep
neural network through the loss function of the neural network. In a standard PINNs solution,
a neural network is trained for the entire spatial-temporaldomain. Let’s examine the standard
format of a PDE,

Zt +N (Z) = 0, (11)

whereZ(x, t) denotes the latent (hidden) solution,N [.] is a nonlinear differential operator. By
adopting the methodology of Raissi et al. (2019), the solutionZ(t, x) to the PDE is estimated
using a deep neural network that relies on a group of parameters denoted asθ. In simpler terms,
the PDE solution is expressed as a sequence of function compositions.

Deep neural networks are composed ofnl series of functions,

Zθ(X) = znl
(znl−1(. . . (z2(z1(X))))), (12)

zi(X) = σ(WiX+ bi), i = 1, . . . , nl, (13)
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where each hidden layer consists of a stack of artificial neurons that process input feature matrix
X as the weighted sum of weightsWi and biasesbi before passing through activation function
σ (tanh in our study);θ is the ensemble of all the model parameters based on weight and biases:

θ = {W1,W2, . . . ,Wnl
, b1, b2, . . . , bnl

}. (14)

To provide the neural network with the physics specified by the PDE, we define the residual
of the PDE as the left-hand side of Eq. (11) and replaceZc with Z̃c.

Rθ(x, t) := (Z̃)t +N (Z̃) = 0. (15)

Here,Z̃(x, t) is the PDE solution which is approximated by a neural network. The loss function
of the neural network is made of three error conditions:

Ltot = Li + Lii + Liii. (16)

Each error is





















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







Li =

∑Ni

K Z̃(xi
k, 0)− Zi

k

Ni

,

xi
k ∈ Ω,

mean squared error of the initial condition,

Lii =

∑Nb

K Z̃(xb
k, t)− Z(xb

k, tk)

Nb

,

(xb
k, t

b
k) ∈ Γ× (0, T ],

mean squared error of the boundary condition,

Liii =

∑Ni

K

(

R(xt
k, t

k
k)
)

N
,

(xr
k, t

b
k) ∈ Γ× (0, T ],

mean squared error of the residual of the PDE.

(17)

Here we introduceNi, Nb, andNr which are the number of initial, boundary, and residual
collocation points, whereΓ is the boundary ofΩ andZi

k is the given initial condition at(xi
k, 0).

The superscripts(•)b, (•)i, (•)r stand for boundary, initial, and residual conditions of thePDE.
In our study, we focus on the 1D equation (7) with the initial and boundary conditions given in
Eq. (10).

Figure 1 shows schematically the fully connected neural network architecture.

4. SEQUENTIAL TRAINING WITH DYNAMIC TIME STEPPING

Unlike standard PINNs training, we train for the entire domain at once and discretize the time
domain into several segments. Note that this strategy is similar to the numerical methods used
in scientific computing, where space-time problems are typically harder to solve than time-
marching methods. Figure 2 illustrates the sequential training scheme versus the standard train-
ing scheme.

In a dynamic time-stepping scheme, the first time step[0, T1] is solved with a similar loss
function as std-PINNs in Eq. (16).

For all the subsequent time segments, we utilize the following loss function:

L∆Tn

tot = Li + Lii + Liii + Liv, (18)
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FIG. 1: Standard PINNs architecture

(a) (b)

FIG. 2: Training scheme: (a) dynamic sequential time-stepping scheme; (b) standard training scheme
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Li =

∑Ni

K Z̃(xi
k, Tn−1)− Zi

k

Ni

,

xi
k ∈ Ω,

mean squared error of the initial condition,

Lii =

∑Nb

K Z̃(xb
k, t)− Z(xb

k, tk)

Nb

,

(xb
k, t

b
k) ∈ Γ× (Tn−1, Tn],

mean squared error of the boundary condition,

Liii =

∑Ni

K

(

R(xt
k, t

k
k)
)

N
,

(xr
k, t

r
k) ∈ Γ× (Tn−1, Tn],

mean squared error of the residual of the PDE,

Liv = Z̃(x, t)− Z̃(x, t),

(xs
k, t

s
k) ∈ Ω× (0, Tn−1],

mean squared error of solution of previous time.

(19)

Here(xi
k, Tn−1) is used to denote the collection of points where the calculation of the error on

the initial condition is evaluated.(xb
k, t

b
k) is the set of points where the error on the boundary

conditions is calculated during the specified time interval(Tn−1, Tn]. The points on grid(xs
k, t

s
k)

store the solution obtained during the(n)th segment on the interval(0, Tn−1], for its usage in the
(n)th segment. By incorporatingLiv terms into the loss functions, the neural network can ensure
backward compatibility (Mattey and Ghosh, 2022), meaning that the single neural network can

Journal of Machine Learning for Modeling and Computing



Physics-Informed Neural Networks for CCUS 33

replicate the solution from all the previous time segments while solving the PDE for a specific
time segment.

Next, we introduce a dynamic time-stepping scheme that instead of marching in time uni-
formly for training, we will make dynamic sequential training. The algorithm is as follows:

• We start with the small time step.

• If the loss function decreases as a predefined tolerance, we multiply the next time step to
the fixed ratioβ.

• If it fails to reach the tolerance, we divide the next time step by the same constantβ.

• If the maximum time step∆tmax is reached, we keep it for further simulation.

Figure 3 shows the neural network of the sequential trainingwith backward compatibility and
dynamic time-stepping scheme over the interval[tn−1, tn].

5. RESULTS

5.1 Single Timestep Training

To motivate our sequential approach, we consider the following transport equation with a given
left and right boundaryFl andFr:

RCO2 = SCO2 +
∆t

∆x

(

Fr(SCO2)− Fl

)

. (20)

We investigated the nonlinearity of the residual over four progressive time steps and analyzed
the relationship between time-step size and nonlinearity.Figure 4 shows that as the time-step size
increases, the nonlinearity of the residual also increases. This is due to the nonlinearity of the
flux function, which plays a crucial role in determining the nonlinearity of the residual. The

FIG. 3: Sequential PINNs architecture with backward compatibility and dynamic time-stepping scheme
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(a) (b)

FIG. 4: (a) Residual for multiple time steps; (b) flux function

figure further demonstrates that the residual becomes more significant and more closely aligned
with the flux function as the time-step size increases.

Here, we make a test case in which we train for a single progressive time step and observe
the behavior of the loss function for the B-L everett problem. From Fig. 5, we can observe that
the final value of the loss function evolves with the trainingfor the larger time steps. We used
fully connected neural networks with eight layers and each layer has 20 neurons. We use the
L-BFGS-B optimizer. The training data points of the neural network are recorded in Table 1.

5.2 Full 1D Simulation Buckley–Leverett Test Case

Here we compare the solution of seq-PINN with dynamic time stepping and std-PINN for the
two-phase immiscible B-L problem. Initially, the 1D domainis fully saturated by the nonwet-
ting phase and we inject a wetting phase at the left boundary.We used fully connected neural

FIG. 5: Evolution of loss function for different time steps

TABLE 1: Description of training data

Variable Description Number

Ni Initial condition points 300
Nb Boundary condition points 300
Nr Collocation points 10,000× ∆t
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networks with eight layers and each layer has 20 neurons. We use the L-BFGS-B optimizer. The
tolerance for the dynamic sequential time stepping is set as3.5e–3 in this test case. Figure 6
compares the precise analytical solution to the solution predicted by the standard PINNs at time
intervalst = 0.1, 0.3, and 0.7. As we can see, the standard PINNs cannot findthe solution of the
front accurately. Figure 7 compares the analytical solution to the solution of the PINNs with dy-
namic sequential training. As we can see, sequential training is capable of predicting the solution
more accurately with respect to the standard training scheme. Figure 8 shows the full solution in
time and space.

5.3 Full 1D Simulation Compositional Test Case

In the compositional test case, we see two nondifferentiable points related to phase changes in
fractional flow formulations of compositional transport. In the two-phase region, the fractional

FIG. 6: Solution of the PINNs with standard training scheme

FIG. 7: Solution of the PINNs with sequential training scheme

FIG. 8: Solution in spatiotemporal space
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flow has an S-shaped curve, whereas it is linear in single-phase conditions. The discontinuous
derivatives in the flow function can largely degrade the convergence of the loss function for the
neural networks. To overcome this issue, we propose the smooth formulation of the fractional
flow using the sigmoid step function:

Fsmooth= H × F + (1−H)× Z, (21)

H = Sigmoid(S)− Sigmoid(S − 1), (22)

Sigmoid=
1

1+ e−αS
, (23)

whereF is the nonsmooth fractional flow given by Eq. (8). The accuracy of the smooth approxi-
mation highly depends on the parameterα which indicates how steep the sigmoid and step func-
tion could be. From Fig. 9 we can observe that the higher theα, the better the approximation.

5.3.1 Miscible Test Case

Here we test the sequential PINN training on miscible fluids with phase behavior controlled by
constantK-values withK = {2.5, 0.3}. Initially, the 1D domain is fully saturated by the non-
wetting phase and we inject a wetting phase at the left boundary. We useα = 20 for the sigmoid
approximation of the fractional flow as a trade-off between loss and accuracy. In this particular
test case, the tolerance value for the dynamic sequential time stepping is set to 7e–3. Figures
10 and 11 show the solution of the standard training versus sequential training, respectively. We
can observe that the sequential training scheme can predictthe solution better than the standard
training scheme.

5.3.2 Near-Immiscible

We test sequential PINNs training on quasi-immiscible compositional transport with phase be-
havior regulated by constantK-values of 2 and 0.002. The nonwetting phase first completely
saturated the 1D domain, and we inject a wetting phase at the left border. For the sigmoid ap-
proximation, we useα = 20. In this particular test case, the tolerance value for thedynamic
sequential time stepping is set to 7e–3. Figures 12 and 13 illustrate and compare the PINNs
solution trained standard and sequentially versus the analytical solution for three different times

FIG. 9: Standard fractional flow versus smooth approximation of fractional flow using a sigmoid function
with different alpha coefficient
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FIG. 10: Solution of the PINNs with standard training scheme and dynamic time stepping

FIG. 11: Solution of the PINNs with sequential training scheme and dynamic time stepping

t = 0.1, 0.3, and 0.7. We can observe that the sequential training scheme can capture the shock
more accurately with respect to the standard training scheme. However, there is still a small dif-
ference between the analytic solution and the PINN solutionwith the sequential training scheme.

6. CONCLUSIONS

CCUS are required in addition to innovative low-carbon energy solutions to mitigate global
warming. For the simulation of CO2 use and storage (CCUS) in subsurface reservoirs with
complicated heterogeneous structures, a model that includes multiphase compositional flow and
transport is needed. We investigated the application of a PINN for a two-phase fluid in porous
media. While standard PINNs have difficulties solving hyperbolic PDEs with nonconvex flux
functions, we suggested a sequential training scheme as an alternative. We can overcome this
obstacle by training for shorter time intervals and marching in time dynamically. The sequential

FIG. 12: Solution of the PINNs for a compositional immiscible test case with standard training scheme
and dynamic time stepping
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FIG. 13: Solution of the PINNs for a compositional immiscible test case with sequential training scheme
and dynamic time stepping

training scheme begins with a small time step, and if the lossfunction decreases to a prede-
fined tolerance, we multiply the next time step by a constant parameter, denoted asβ. However,
if the loss function fails to decrease to the tolerance within the given number of epochs, we
divide the time interval byβ. This adaptive approach allows for efficient convergence toan ac-
curate solution while avoiding unnecessary computations and minimizing computational costs.
Furthermore, we extended the sequential training strategyto the miscible binary compositional
test case, where there are kink points that made it even more difficult for the optimizer to find
the solution. To address this, we proposed a sigmoid function to continuously approximate the
fractional flow function.

Within our study we conducted several numerical test cases to evaluate the effectiveness of
our proposed sequential training scheme for simulating CO2 use and storage in subsurface reser-
voirs with complex heterogeneous structures. Firstly, we designed a single-time-step numerical
test case to demonstrate that increasing the time step leadsto an increase in the final loss func-
tion. This observation is attributed to the heightened nonlinearity of the residual as the time step
is increased, resulting in a more challenging optimizationproblem that negatively impacts the
performance of the optimizer. Subsequently, we conducted a1D full simulation test case to com-
pare the standard and sequential training schemes for both immiscible and miscible test cases.
Our results show that the proposed seq-PINNs approach outperforms the standard approach in
terms of solution capture accuracy.

Our study identifies several promising directions for future research. Firstly, an important
avenue for further exploration would be to extend the neuralnetwork to an arbitrary number of
components, thereby enhancing the model’s capacity to simulate complex multiphase composi-
tional flows. Secondly, another possible future project would be to extend the model to higher
dimensions and predict the solution in 2D and 3D space with heterogeneous reservoir structures.
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