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CO;, utilization and storage (CCUS) simulation in subsurface reservoirs with complex heteroge-
neous structures necessitates a model that can capture multiphase compositional flow and transport.
The governing equations are highly nonlinear due to the complex thermodynamic behavior, which
involves the appearance and disappearance of multiple phases. Accurate simulation of these pro-
cesses necessitates the use of stable numerical methods. While machine learning (ML) approaches
have been used to solve a variety of nonlinear computational problems, a new approach based on
physics-informed neural networks (PINNs) has been proposed for solving partial differential equa-
tions (PDEs). Unlike typical ML algorithms that require a large dataset for training, PINNs can
train the network with unlabeled data. The applicability of this method has been explored for mul-
tiphase flow and transport in porous media. However, for nonlinear hyperbolic transport equations,
the solution degrades significantly. This work proposes sequential training PINNs to simulate two-
phase transport in porous media. The main concept is to retrain the neural network to solve the
PDE over successive time segments rather than train for the entire time domain simultaneously.
We observe that sequential training can capture the solution more accurately concerning the stan-
dard training for conventional two-phase problems. Furthermore, we extend the sequential training
approach for compositional problems in which nonlinearity is more significant due to the complex
phase transition. Our approach was tested on miscible and immiscible test cases and showed higher
accuracy than the standard training method.

KEY WORDS: hyperbolic PDE, PINNs, Buckley—Leverett, gas injection, sequential
training, compositional simulation, CCUS

1. INTRODUCTION

The global attempt to mitigate the effects of climate changeg increased the urgency of low-
ering carbon emissions. Carbon dioxide capture, utiliratand storage (CCUS) is one of the
existing technologies that has substantial potentialdaeking greenhouse gas emissions. The
capture of carbon dioxide from industrial sources, congogs transportation, and subsequent
utilization for operations such as permanent storage ip deeerground geological formations
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28 Pour & Voskov

and increased oil recovery in depleted areas are all parCaf€ However, proper modeling of
multiphase compositional flow and transport in undergra@servoirs with complex heteroge-
neous structures is required to effectively simulate, @€e and storage (CCUS).

Compositional simulation deals with the modeling of the flawnultiple phases in a porous
medium. The interplay of phase behavior, flow, and transpaverns the interactions between
hydrocarbon phases. Compositional simulation continadseta challenging problem. Com-
plexities are mainly due to nonlinear couplings betweentipiuise multicomponent flow in
porous media with thermodynamic phase behavior (Alpakp2®skov and Tchelepi, 2012).
Conventional compositional simulation is based on thetgwiuof the discretized governing
equations describing the mass, energy, and momentumeranghe reservoir either implicitly
or explicitly. The fully-implicit method (FIM) is prefergkin practice, with the nonlinear system
solved by a Newton method due to the fewer restrictions oe-step size. In practical appli-
cations, the highly nonlinear nature of problems involviiigks and inflection points poses a
significant challenge for Newton’s method to achieve cogeace, particularly when large time
steps are utilized. Consequently, to overcome this lifoitatalternative nonlinear solvers have
been proposed (Jenny et al., 2009; Jiang and Pan, 2022; Palyr2023) or smaller time steps
are selected for simulations.

Machine learning (ML) techniques, particularly deep léagr(Lecun et al., 2015), are gain-
ing prominence in the computer science and engineeringsfidldtably, physics-informed neu-
ral networks (PINNSs) are being utilized to solve problemswmehthere is knowledge of engi-
neering conservation equations and constitutive clolegionships, but without labeled data
(Raissi et al., 2019). By constructing neural networks sitkieral hidden layers, coupled with
nonlinear activation functions, complex nonlinear san$ can be approximated. As a result,
PINNs have been employed to tackle diverse applicationemed by differential equations,
such as the Euler equation (Jagtap et al., 2020, 2022b),ygesrilcs (De Florio et al., 2021;
Lou et al., 2021), water dynamics (Jagtap et al., 2022b) chednical kinetics (Ji et al., 2021,
Kim et al., 2021). PINNs have demonstrated their versgtititseveral applications, including
data assimilation and observations into numerical mogalsmeter identification (i.e., solving
inverse problems) (Raissi et al., 2019; Yang et al., 20244, incertainty quantification (Mao
et al., 2020; Tipireddy et al., 2020).

Recently, the application of PINNs has been explored inwtdase flow and transport. Two-
phase immiscible transport in porous media is typicallycdbsd by a nonlinear first-order hy-
perbolic partial differential equation (PDE), also knovatlae Buckley—Leverett (B-L) equation.
Standard PINNs have been utilized to model this phenomeraks(and Tchelepi, 2020). The
authors demonstrated that PINNs cannot find the solutidmeicase of the steep saturation front
with the nonconvex flux function (Fuks and Tchelepi, 202MlyCafter an artificial diffusion
term was added to the original conservation equation, dich#ural networks solution manage
to approximate the true solution (Fuks and Tchelepi, 202Bgre were multiple attempts to
solve this problem by modifying the loss function. Rodrigti®rrado et al. (2022) proposed
a new neural network architecture known as physics-infdrateention-based neural networks
(PIANNS), which is a blending of recurrent neural networksl attention mechanisms. Fraces
and Tchelepi (2021) introduced yet another solution to tHe@oblem. Their method entails
embedding the entropy and velocity constraints into thealewetwork residual.

Recently, a sequential training scheme has been propos@INdls (Krishnapriyan et al.,
2021; Mattey and Ghosh, 2022). In this approach, unlikenitngi for the entire spatiotemporal
domain, we discretize the time domain and march in time tohéhe end time. Mattey and
Ghosh (2022) demonstrate the effectiveness of the seqlitratning approach for Allen—Cahn
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and Cahn-Hilliard equations. Krishnapriyan et al. (202dmdnstrated the method’s effective-
ness in solving a one-dimensional reaction-diffusion gob The present study aims to investi-
gate the efficacy of sequential training in the context ofdrpplic transport equations in porous
media. This approach is inspired by the conventional pradf using Newton’s method to solve
PDEs in reservoir simulation, while also taking into corsation the fact that reducing the time
step can help improve the effectiveness of Newton’s metfna. work suggests a sequential
training scheme with a dynamic time step that reduces thebeumf time steps required for

training, instead of uniformly marching in time.

Through the analysis of a single time-step residual, ouiriggldemonstrate that the non-
linearity of the flux becomes increasingly dominant as theetstep increases. This nonlinearity
can be translated into the residual of the loss function. Assalt, the final value of the loss
function is higher for larger time steps. Next, we extendstguential training approach to com-
positional problems, in which nonlinearity is more pronoed due to complex phase transitions.
The presence of discontinuous points that coincide withptigese transition zone can severely
hinder the convergence of the loss function for neural neks:dl'o mitigate this issue, we utilize
a continuous sigmoid approximation of the fractional floimaHy, we test the performance of
the sequential training approach on pure hyperbolic tramnsp porous media in the 1D domain,
ranging from the classic B-L problem to both immiscible anidaible compositional transport.
Our findings demonstrate that the sequential training ntethusperforms the standard training
approach in terms of accuracy, for both immiscible and rbisdiransport scenarios.

2. GOVERNING EQUATIONS

We consider the general form of the transport equationsrfas@hermal multiphase composi-
tional problem withn,, phases and,. components that can be written as

9 np ) np np ~

E ¢Z$ijj5j +leZl’cjijj +Zl’cjquj' = O, Cc = 1,...,nc. (1)
Here, ¢ is porosity,z.; is the mole fraction of componeantin phasej, S; is the phase

saturation of phasg, p; is phase molar density;; is phase velocity, and; is phase rate per

unit volume. Darcy’s law is applied to describe how each pHumsvs:

k.
V= -K },LJ (va — ’YJVd), (2)

J

whereK — permeability tensoi,.; — relative permeabilityy; — phase viscosityp; — vector of
pressures in phagey,; — phase density] — vector of depths (positive downwards).

The closure assumption of instantaneous thermodynamititgqum further increases the
nonlinearity. We used the overall molar formulation sugegesy Collins et al. (1992). In this
formulation, the following system must be solved at any bt@tk containing a multiphage:,,)
multicomponent:. mixture:

p
Fc:Zcfzvjxcj :Oa (3)

j=1
Fc+nc = fcl(pa T, .T]_) - fcj(pa T, xj) = Oa (4)
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Ne

Fj+nc*np = Z(:Ecl - wcj) = Oa (5)
c=1
np
Frpinesn, = »_vj —1=0. (6)
j=1

Herez, = Xz jp;s;/p;s; is the overall composition anfl.; (p, T', z.;) is the fugacity of com-
ponentc in phasej. The solution of this system is called a multiphase flash fidisen, 1982)
and needs to be applied at every nonlinear iteration (Voskal Tchelepi, 2012). The solution
provides molar fractions for each componenj and phase fraction;. The above system of
equations provides a complete mathematical statement édtiptmase multicomponent trans-
port. Here we concentrate on two-phase, two-componentripeessible transport for miscible
and immiscible cases.

07, OF.

a Yo

whereZ, is the overall composition of componenandv; is the total velocityg.. is the source,
sink term.F, is the fractional flow of the componeatvhich is defined as

= (e, T e Qa cE {HZO: COZ}7 (7)

F=x.1-f(s)) +y.f(s), two-phase zone
B . , (8)
F=7Z single-phase zone
fa= 2 = (H,0,C0) ©)
* 7 Aco, + Aater’ v ’

wherez. andy, are molar fractions of componeain the liquid and gas phases, respectively.
Ao = (kkro)/1a Stands for the phase mobility,, is the viscosity of the phase, aigdy (S« )

is the relative phase permeability. For the immiscible phase B-L transport test case, the
fractional flow F, is equivalent tof . The initial and boundary conditions are

(10)

Z(x,t)=0, Vax&t=0, initial condition
Z(x,t) =1 1 =0&t>0, boundarycondition

3. STD-PINNS SOLUTION

Raissi et al. (2019) proposed that the solution of the PDHdcba approximated by a deep
neural network through the loss function of the neural nekwin a standard PINNs solution,
a neural network is trained for the entire spatial-tempdaahain. Let's examine the standard
format of a PDE,

Zy+N(Z)=0, (11)
whereZ(z,t) denotes the latent (hidden) solutio¥].] is a nonlinear differential operator. By
adopting the methodology of Raissi et al. (2019), the soiuff (¢, «) to the PDE is estimated
using a deep neural network that relies on a group of parasmésmoted a8. In simpler terms,
the PDE solution is expressed as a sequence of function citiops.

Deep neural networks are composecdhpseries of functions,

Zo(X) = zn (2,1 (- - (z2(21(X))))); (12)
Zi(X):O'(WiX-i-bi), izl,...,nl, (13)
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where each hidden layer consists of a stack of artificial oresithat process input feature matrix
X as the weighted sum of weighW’; and biase; before passing through activation function
o (tanh in our study): is the ensemble of all the model parameters based on weidlitiases:

0= {Wi,Wa,...,Wy,,b1,b2,...,bn, }. (14)

To provide the neural network with the physics specified lgyRDE, we define the residual
of the PDE as the left-hand side of Eq. (11) and replacwith Z..

Ro(x,t) == (Z); + N(Z) = 0. (15)

Here,Z(ac, t) is the PDE solution which is approximated by a neural netwdhe loss function
of the neural network is made of three error conditions:

Liot = L + L + L. (16)

Each error is

N; 7 )
I, — 2K Z(x},0) — Z;
! N; ’ mean squared error of the initial condition,
rh € Q,
Ny Z(.b _ b
L. — 2K Z(xy,t) — Z(x], tx)
v Ny ’ mean squared error of the boundary conditiorf17)
(xi, ;) € T x (0,77,
N;
e N ’ mean squared error of the residual of the PDE.
(xk.t7) € T x (0,77,

Here we introduceV;, N,, and N, which are the number of initial, boundary, and residual
collocation points, wher€ is the boundary of2 andZ; is the given initial condition atz, 0).
The superscript@u)b, (e)", ()" stand for boundary, initial, and residual conditions of FH2E.
In our study, we focus on the 1D equation (7) with the initiatldoundary conditions given in
Eq. (10).

Figure 1 shows schematically the fully connected neuralioek architecture.

4. SEQUENTIAL TRAINING WITH DYNAMIC TIME STEPPING

Unlike standard PINNs training, we train for the entire dimet once and discretize the time
domain into several segments. Note that this strategy idagito the numerical methods used
in scientific computing, where space-time problems arecglpi harder to solve than time-
marching methods. Figure 2 illustrates the sequentialitrgischeme versus the standard train-
ing scheme.

In a dynamic time-stepping scheme, the first time $€eff3] is solved with a similar loss
function as std-PINNs in Eq. (16).

For all the subsequent time segments, we utilize the foligidss function:

LtAotT" = L;+ Ly + Lisi + Ly, (18)
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Neural network Physical laws

Initial and boundary conditions

Loss function |
s B

Governing equations

r=7:+f(Z), te 1]

FIG. 1: Standard PINNSs architecture

X b

Aty = BAty Aty = fAty_;

to t; =AMty t; + Aty tno1 + Aty_q tena ¢ to tond

(@) (b)

FIG. 2: Training scheme: (a) dynamic sequential time-steppingreeh (b) standard training scheme

L — 2K Z(‘ﬁc?Tn*l) -7
! N; ’ mean squared error of the initial condition,
zh € Q,
Mo Z(ab t) — Z(al, ty,)
L., = K k> ko Yk »
" N, ’ mean squared error of the boundary condition,
(XE,tZ) el x (Th-1,Ty), (19)
L. — 2K (R(:c};,t’,j)) _
T N ) mean squared error of the residual of the PDE,
(X£7t1]:;) 6 F X (Tn717Tn]7
Lm:Z(:c,t)—Z(:c,t), . . .
mean squared error of solution of previous time.
(xg,th) € Q x (0,T,_1],

Here(z%,T,,_1) is used to denote the collection of points where the caliaulaif the error on

the initial condition is evaluatedx, %) is the set of points where the error on the boundary
conditions is calculated during the specified time inte(¥#aL 1, T,,]. The points on gridx$., ¢;)
store the solution obtained during the/th segment on the intervéd, T,,_,], for its usage in the
(n)th segment. By incorporating;, terms into the loss functions, the neural network can ensure
backward compatibility (Mattey and Ghosh, 2022), meanirad the single neural network can
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replicate the solution from all the previous time segmertigersolving the PDE for a specific

time segment.
Next, we introduce a dynamic time-stepping scheme thag¢@usbf marching in time uni-

formly for training, we will make dynamic sequential traigi The algorithm is as follows:
o We start with the small time step.

o If the loss function decreases as a predefined tolerance ulipiy the next time step to
the fixed ratiop.

o If it fails to reach the tolerance, we divide the next timgodty the same constafit
o If the maximum time step\tnqx is reached, we keep it for further simulation.

Figure 3 shows the neural network of the sequential traimiitly backward compatibility and
dynamic time-stepping scheme over the inteftal 1, t,,].

5. RESULTS
5.1 Single Timestep Training

To motivate our sequential approach, we consider the fatliguransport equation with a given
left and right boundary; and F;..

At
Rco, = Sco, + E(FT(SCOZ) - F). (20)
We investigated the nonlinearity of the residual over fawgpessive time steps and analyzed
the relationship between time-step size and nonlinediiyre 4 shows that as the time-step size
increases, the nonlinearity of the residual also increadas is due to the nonlinearity of the
flux function, which plays a crucial role in determining thenfinearity of the residual. The

Neural network Physical laws

Initial and boundary conditions

F Zy, n=1
Z(x}.tn,l) = l

Zﬁ(x.tn_l)r n=1
F(xl 1) = 28
» Governing equations

[r =Z:+£(2), €Ty Tl

Backward compatibility
[z"(x, t) = Z(x,t), tE€ (0, Tn-1]

2

lAtra—lf-= B 1 No
Tp = Tn-1 + Atp_1/B =

Atg_y#=f Lior < € o

‘fes

|
‘ Tay $= 488,
| Ty =Fhog HAf 4 |g——

FIG. 3: Sequential PINNs architecture with backward compatipditd dynamic time-stepping scheme
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0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 0.9 1

S, S
co, co,

@ (b)

FIG. 4: (a) Residual for multiple time steps; (b) flux function

figure further demonstrates that the residual becomes rigrdicant and more closely aligned
with the flux function as the time-step size increases.

Here, we make a test case in which we train for a single pregesime step and observe
the behavior of the loss function for the B-L everett probl&mom Fig. 5, we can observe that
the final value of the loss function evolves with the trainfogthe larger time steps. We used
fully connected neural networks with eight layers and eagted has 20 neurons. We use the
L-BFGS-B optimizer. The training data points of the neurtwork are recorded in Table 1.

5.2 Full 1D Simulation Buckley—Leverett Test Case

Here we compare the solution of seg-PINN with dynamic tinepging and std-PINN for the
two-phase immiscible B-L problem. Initially, the 1D domainfully saturated by the nonwet-
ting phase and we inject a wetting phase at the left boundgeyused fully connected neural

0.020

0.015

Loss

0.010

0.005

02 0.4 0.6 0.8 Lo
dt

FIG. 5: Evolution of loss function for different time steps

TABLE 1: Description of training data

Variable Description Number
N; Initial condition points 300
Ny Boundary condition points 300
N, Collocation points 10,00& At
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networks with eight layers and each layer has 20 neuronss@/éhe L-BFGS-B optimizer. The
tolerance for the dynamic sequential time stepping is s&.%&-3 in this test case. Figure 6
compares the precise analytical solution to the solutiedipted by the standard PINNs at time
intervalst = 0.1, 0.3, and 0.7. As we can see, the standard PINNs canndhérsblution of the
front accurately. Figure 7 compares the analytical sofutiicthe solution of the PINNs with dy-
namic sequential training. As we can see, sequential trgigicapable of predicting the solution
more accurately with respect to the standard training seh&igure 8 shows the full solution in
time and space.

5.3 Full 1D Simulation Compositional Test Case

In the compositional test case, we see two nondifferergipbints related to phase changes in
fractional flow formulations of compositional transport.the two-phase region, the fractional

t=0.10 t=0.30 t=0.70

10 10 10
— exact — exact —cxact
- prediction - prediction DN - prediction
~
08 08 A 08 ~
\ A SO
~ S SS
n \ \\ S
X o6 06 06 ] N
\ \
»
04 ~ 04 \\ 04 \
So ~ \
iy S A
~o ~ N
02 ~ 02 So 02
~< ~ \
~
b ~ \
~
N AN \
00 00 00

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 08 08 10

FIG. 6: Solution of the PINNs with standard training scheme

t=0.10 t=0.30 t=0.70

— xact —exact —exact
= prediction == prediction = prediction

00 02 04 x 06 08 10 00 02 04y 06 08 10 00 02 04 x 06 08 10

FIG. 7: Solution of the PINNs with sequential training scheme

FIG. 8: Solution in spatiotemporal space
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flow has an S-shaped curve, whereas it is linear in singleghbanditions. The discontinuous
derivatives in the flow function can largely degrade the epgence of the loss function for the
neural networks. To overcome this issue, we propose the tbnfioomulation of the fractional
flow using the sigmoid step function:

Fsmooth=H x F + (1—H) x Z, (21)
H = Sigmoid S) — Sigmoid S — 1), (22)
Sigmoid= T (23)

whereF’ is the nonsmooth fractional flow given by Eq. (8). The accydche smooth approxi-
mation highly depends on the parametarhich indicates how steep the sigmoid and step func-
tion could be. From Fig. 9 we can observe that the highewitibe better the approximation.

5.3.1 Miscible Test Case

Here we test the sequential PINN training on miscible fluidth whase behavior controlled by
constanti-values withK = {2.5,0.3}. Initially, the 1D domain is fully saturated by the non-
wetting phase and we inject a wetting phase at the left bayndée usex = 20 for the sigmoid
approximation of the fractional flow as a trade-off betwesssland accuracy. In this particular
test case, the tolerance value for the dynamic sequential $tepping is set to 7e-3. Figures
10 and 11 show the solution of the standard training versyisestial training, respectively. We
can observe that the sequential training scheme can pthdisblution better than the standard
training scheme.

5.3.2 Near-Immiscible

We test sequential PINNSs training on quasi-immiscible cosinal transport with phase be-
havior regulated by constaiif-values of 2 and 0.002. The nonwetting phase first completely
saturated the 1D domain, and we inject a wetting phase atthbdrder. For the sigmoid ap-
proximation, we usex = 20. In this particular test case, the tolerance value fordyreamic
sequential time stepping is set to 7e-3. Figures 12 and ugrifite and compare the PINNs
solution trained standard and sequentially versus the/@eell solution for three different times

— Standard
-——a=1
-—- a=10
084 --- a=50

0.6 4

0.4

0.24

0.0

0.0 0.2 0.4 0.6 0.8 10
2

FIG. 9: Standard fractional flow versus smooth approximation aftfoaal flow using a sigmoid function
with different alpha coefficient
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/
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o8 1

FIG. 10: Solution of the PINNs with standard training scheme and dyodme stepping

t=0.10 t=0.20 t=0.40

—act
- prediction
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/

0z 02 1 a2

o v 00 oo
.17 02 0% 06 [ Lo a0 a2 04 4 08 a8 10 00 0z 04 o8 e 10

X

FIG. 11: Solution of the PINNs with sequential training scheme ankayic time stepping

t = 0.1, 0.3, and 0.7. We can observe that the sequential tcpgtineme can capture the shock
more accurately with respect to the standard training sehétowever, there is still a small dif-
ference between the analytic solution and the PINN solwtitimthe sequential training scheme.

6. CONCLUSIONS

CCUS are required in addition to innovative low-carbon ggesolutions to mitigate global
warming. For the simulation of COuse and storage (CCUS) in subsurface reservoirs with
complicated heterogeneous structures, a model that iesloiltiphase compositional flow and
transport is needed. We investigated the application oNINFbr a two-phase fluid in porous
media. While standard PINNs have difficulties solving hygmdic PDEs with nonconvex flux
functions, we suggested a sequential training scheme akesnagive. We can overcome this
obstacle by training for shorter time intervals and marghimtime dynamically. The sequential

t=0.10

1=0.30

t=0.70

— et
== pregiction

08

10

—xact
- prediction

~

—oxact
- prediction

02

w“oox 06 08 10

00 0z 04 x 08 08

10

FIG. 12: Solution of the PINNs for a compositional immiscible tesseavith standard training scheme
and dynamic time stepping
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=010 t=0.70

—cact
- prediction

— il 1 — et
= pradiction = prediction

08 10 00 02 04 o 06 08 10

FIG. 13: Solution of the PINNs for a compositional immiscible tesseavith sequential training scheme
and dynamic time stepping

training scheme begins with a small time step, and if the fosstion decreases to a prede-
fined tolerance, we multiply the next time step by a constardupeter, denoted s However,

if the loss function fails to decrease to the tolerance witthie given number of epochs, we
divide the time interval by3. This adaptive approach allows for efficient convergencantac-
curate solution while avoiding unnecessary computatioisminimizing computational costs.
Furthermore, we extended the sequential training stratetfye miscible binary compositional
test case, where there are kink points that made it even nifficald for the optimizer to find
the solution. To address this, we proposed a sigmoid fumd¢ticontinuously approximate the
fractional flow function.

Within our study we conducted several numerical test casesdluate the effectiveness of
our proposed sequential training scheme for simulating @@ and storage in subsurface reser-
voirs with complex heterogeneous structures. Firstly, egghed a single-time-step numerical
test case to demonstrate that increasing the time steptieaasincrease in the final loss func-
tion. This observation is attributed to the heightened imealrity of the residual as the time step
is increased, resulting in a more challenging optimizapooblem that negatively impacts the
performance of the optimizer. Subsequently, we conducidi fall simulation test case to com-
pare the standard and sequential training schemes for tmatiiscible and miscible test cases.
Our results show that the proposed seq-PINNs approachréotmes the standard approach in
terms of solution capture accuracy.

Our study identifies several promising directions for fetuesearch. Firstly, an important
avenue for further exploration would be to extend the nengalvork to an arbitrary number of
components, thereby enhancing the model’s capacity tolatexaomplex multiphase composi-
tional flows. Secondly, another possible future project ivdae to extend the model to higher
dimensions and predict the solution in 2D and 3D space witdrbgeneous reservoir structures.
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