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Abstract. This paper presents the shape optimization of a compliant beam for prescribed load-displacements
response. The analysis of the design is based on the isogeometric analysis framework for an enhanced fidelity
between designed and analysed shape. The sensitivities used for an improved optimization procedure are de-
rived analytically, including terms due to the use of nonlinear state equations and nonlinear boundary constraint
equations. A design example is illustrated where a beam shape is found that statically balances a pendulum over
a range of 180◦ with good balancing quality. The analytical sensitivities are verified by comparison with finite
difference sensitivities.

1 Introduction

Mechanism synthesis can be thought of as finding a mech-
anism with a certain force transmission, a certain motion
transmission, or both. For conventional mechanisms the anal-
ysis and synthesis of motion and forces can be performed
separately. This does not hold in general for compliant mech-
anisms. In compliant mechanisms, which move due to defor-
mation of slender segments (Howell, 2001), every motion is
associated to a restoring force. If a certain force and motion
combination is desired at a part of the mechanism which is
input and output at the same time, such mechanism is some-
times called a spring (Vehar-Jutte, 2008). Not limited to the
conventional coil springs, where a motion over a straight
path produces a linear force characteristic, a general spring
mechanism can potentially exhibit infinite types of nonlinear
load-displacement responses when moved along a general
trajectory, which may be non-straight. A load-displacement
response, in this context, is defined as the force/moment ex-
erted by the spring given a series of applied boundary dis-
placements/rotations.

Applications of non-linear springs can be found in many
design disciplines including prosthetics, assistive devices,
MEMS and user products. Often nonlinear springs are ap-
plied as balancing mechanisms where either an external load,

e.g. a weight, or an intrinsic stiffness, e.g. in a compliant
mechanism, is counteracted by such nonlinear spring (Pow-
ell and Frecker, 2005; Chen and Zhang, 2011; Hoetmer et al.,
2010). Types of non-linearity that are typically interesting are
constant force mechanism, bi-stable or multi-stable mecha-
nisms and negative stiffness mechanisms (Pucheta and Car-
dona, 2010; Oh, 2008; Tolou, 2012).

A way of obtaining nonlinear spring behaviour is by opti-
mization of the shape of a chosen topology of elements such
as rods, beams, shells etc. Other means are to manipulate the
topology of a system (Sigmund, 1997; Du and Chen, 2008)
or the material properties.

In tailoring the load-response of structures and, more in
general, when dealing with large deflections the non-linearity
of the equilibrium equations makes optimization more chal-
lenging. The optimization procedure, which is an iterative
scheme, includes at every step the solution of a nonlinear set
of equations, on their turn also iterative. Clear disadvantages
are the complexity of the procedure and increased computa-
tion time, but also the smoothness of the optimization func-
tion space is often compromised due to e.g. singularities and
bifurcations in the solution.

Eriksson (2014) proposes a method where tracing the
non-linear equilibrium at every optimisation iteration is not
needed. This is done by augmenting the system of equilib-
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220 G. Radaelli and J. L. Herder: Shape optimization of compliant beams for prescribed load response

rium equations such that the unknowns include the displace-
ments and design variables, including a load parameter. By
keeping the load parameter constant a sequence of responses
to that loading can be obtained for different designs, without
computing the whole nonlinear equilibrium every time.

Similarly, in the concept of simultaneous analysis and de-
sign (SAND) (Haftka, 1985) the analysis unknowns, e.g. the
displacements, and the design variables are all treated equiv-
alently as optimization variables. Since equilibrium is not re-
quired at every iteration step, also tracing the nonlinear equi-
librium path is not needed every time. At the end of the pro-
cedure equilibrium is hopefully satisfied, and the design op-
timized (Ringertz, 1989).

Also in the compliant mechanisms community several ap-
proaches have been proposed to deal with geometrical non-
linearities, often present in compliant mechanisms (Bruns
and Tortorelli, 2001; Joo et al., 2001; Du and Chen, 2008).

In the majority of the cases the goal is to optimize the de-
sign for the situation where the full load is applied. If, how-
ever, the nonlinear load-response itself is what must be opti-
mized, the problem gets more involved. Examples of shape
and/or topology optimization where the whole load-response
or part of it is optimized can be found in Saxena and Anan-
thasuresh (1999), Pedersen et al. (2005), Rai et al. (2006),
Jutte and Kota (2010) and Leishman and Colton (2011).

In this work we focus on shape optimization and, as such,
a simple given topology is assumed. Topology and material
optimization are not considered in this work. In the context
of shape optimization of structures there is an increasing in-
terest in the isogeometric analysis (IGA) paradigm (Cottrell
et al., 2009). This can be considered as an alternative to fi-
nite element analysis (FEA) with some peculiar additional
advantages. There is an enhanced fidelity between designed
shape and analysed shape. This comes from the use of B-
splines as basis functions for the computer aided geometric
design (CAGD) as well as for the structural analysis. This
preserves the original shapes and guarantees a high level of
continuity between elements (Hughes et al., 2005).

Having the same geometrical formulation at the basis of
design and analysis also gives the advantage that there is no
need to spend much effort in meshing, which is done repeat-
edly in an optimization procedure. Instead there are some
well-performing and efficient refinement algorithms that are
applied in order to work with a finer discretisation of the
shape for the analysis.

A third advantage is that sensitivity properties are deriv-
able in an analytical fashion, which supposedly can improve
the efficiency of an optimization procedure (Cho and Ha,
2009; Nagy et al., 2010). Also, the derivable shape sensitivi-
ties are more accurate (Koo et al., 2013), leading to preciser
results.

While the work done on isogeometric shape optimization
is widespread (Nagy, 2011; Wall et al., 2008), specific atten-
tion to nonlinear settings is scarce (Kiendl, 2011; Koo et al.,
2013). Moreover, while typical problems where the stiffness,

the weight, the volume or stresses are optimized have been
analysed extensively (Nagy et al., 2010; Hsu, 1994; Ding,
1986), there is no work known by the authors where the load-
displacement of a non-linear spring is optimized within the
IGA framework.

The rotation-less character of the degrees of freedom in
the used isogeometric formulation gives a complication with
respect to the application of rotation constraints on the beam.
These constraints, imposed here by nonlinear equations on
the control points by Lagrange multipliers, have a relevant
impact on the derivation of the sensitivity. Together with the
nonlinearity of the equilibrium equations and the unusual
type of objective function, this leads to a few non-trivial
problems to be dealt with in this paper.

In previous work (Radaelli and Herder, 2014) the authors
have applied isogeometric shape optimization to obtain a
flexible beam with a rotational load-displacement response
that matches a sine. This moment-angle characteristic can be
used to balance a pendulum which has a similar but opposite
moment-angle characteristic.

The current work is dedicated to the derivation of the sen-
sitivities needed for the shape optimization of a flexible beam
with prescribed load-displacement. This procedure is demon-
strated on the same case study of the balanced pendulum.
This case study is a comprehensible but not trivial case: it
requires the stiffness to go from positive, through zero, to
negative. The contribution of this paper is to enhance the
procedure by adding the sensitivity analysis. Special atten-
tion is paid to the formulation of an objective function for
general load-displacement tracing cases and to the applica-
tion of general boundary conditions as nonlinear constraint
equations. Putting together these pieces in one work is a con-
tribution that has not been found in literature, but is believed
to be helpful for designers of nonlinear springs.

The rest of the paper is structured as follows: After a brief
introduction to the IGA framework Sect. 2 is dedicated to
the derivation of the objective function and the terms needed
for the sensitivity analysis. Section 3 shows a comparison of
two optimization runs on a given example problem with var-
ious optimization algorithms, with and without use of gradi-
ent information. Section 4 shows the result of a validation by
comparing the analytical sensitivities with the numerically
approximated sensitivities.

2 Method

The present section starts with the problem description of
a compliant mechanism with tailored load-displacement re-
sponse formulated as the minimization of the difference be-
tween a desired and an obtained energy-path. Following, a
brief explanation is given of the basic concepts of isogeo-
metric analysis (IGA), needed for this paper. There are many
literature sources about this method. The reader is referred
to Cottrell et al. (2009) for more information. In the remain-
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der all components needed for the evaluation of the sensitiv-
ity of the objective function are treated.

2.1 Problem description and objective formulation

In the given context, a typical problem consists of ob-
taining an elastic system where a given force is provided
along a given trajectory. Herein the terms force and tra-
jectory can be used interchangeably with moments and ro-
tations. Examples include constant force mechanisms (Lan
et al., 2010), bi-stable and multi-stable mechanisms where
the load-displacement response has multiple intersections
with the zero-load line (Pucheta and Cardona, 2010; Oh,
2008), and static balancing (Chen and Zhang, 2011) where
the resulting load-displacement response neutralizes as much
as possible an existing load-displacement response of the
system to be balanced. In these examples obtaining a cer-
tain nonlinear load-displacement response is the goal of the
design process.

Provided that the considered forces are conservative, the
problem can be reformulated as obtaining a given potential
energy along a given trajectory. The use of energy with re-
spect to forces often proves to be convenient due to its scalar
nature. The design challenge, here reformulated as a shape
optimization problem, consists thus in finding a certain elas-
tic system which, for a series of prescribed boundary dis-
placements and rotations, is compliant with a given potential
energy-path.

A simple two-dimensional elastic beam is treated of which
the shape is to be determined. Note that the method can in
principle be extended to multiple beams and/or applied to
other type of elements like shells or solids. In the example
treated in Sect. 3 the beam is connected to the base hinge of
a pendulum and the shape of the beam is optimized such that
the moment characteristic balances the pendulum, see Fig. 4.

In the current framework the given energy-path is de-
scribed at a discrete number of steps m resulting in a vector
of potential energy values, see Fig. 1,

Û (δ)≈ Û =
[
Û1 (δ1) Û2 (δ2) . . . Ûm (δm)

]
(1)

where the hat ˆ( ) symbol refers to the target energy while the
actual obtained energy-path is denoted by

U (δ)≈ U =
[
U1 (δ1) U2 (δ2) . . . Um (δm)

]
. (2)

In the previous equations the calligraphic U denotes the po-
tential energy of the system at a single configuration. δ is
the imposed displacement value corresponding to the point
of the trajectory.

In the case of load-displacement tailoring it is often useful
to examine the shape of the energy-path without considering
its amplitude. In a bending dominated problem the ampli-
tude is scaled by sizing and material parameters through the
Young’s-modulus and cross-sectional properties, in the as-
sumption that these parameters are constant over the length

illustration of objective function formulation
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Figure 1. Illustration of energy-paths for objective function.
Û (δ)≈ Û is the target behaviour, U (δ)≈U is the actual obtained
behaviour and Ũ is the actual obtained behaviour normalized for an
amplitude-independent comparison.

of the beam and that the Euler–Bernoulli assumptions hold
(length� thickness). Therefore it is useful to do the opti-
mization on the shape of the energy-path, and once the shape
of the target energy-path is achieved, one can scale the am-
plitude by tuning the sizing and material parameters. In par-
ticular, the width of the beam can easily be adjusted to match
the desired amplitude.

For this reason the target energy-path Û is required to be
bounded between [0, 1]. The normalized obtained energy-
path Ũ is defined element-wise by

Ũk =
Uk −Umin

Umax−Umin
(3)

where Umin and Umax are the minimum and maximum ele-
ments of the vector U and the index k= 1 . . . m represents
the kth entry of the discrete energy vectors.

The proposed objective function is stated as

f0 =

(
Ũ − Û

)(
Ũ − Û

)T
Û ÛT

(4)

which can be interpreted as the normalized sum of squared
residuals. As a consequence of the discretisation of the
energy-path, the reader should be aware of the fact that the
energy difference is minimized only at those discrete points.
Fluctuations between the points can theoretically not be ex-
cluded. Increasing the resolution of the discretisation helps
preventing this.

The given formulation of the objective function is conve-
nient for the sensitivity analysis. Its derivative with respect
to the design vector, containing the control point positions
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x= [P1x P1y . . . Pnx Pny ]
T , can be derived as

df0

dx
= 2

(
Ũ − Û

)
Û ÛT

dŨ
dx

(5)

where the derivative with respect to the normalized energy-
path is

dŨ
dx
=

(Umax−Umin)
(

dU
dx −

dU
dx

∣∣∣
U=Umin

)
(Umax−Umin)2

−

(
dU
dx

∣∣∣
U=Umax

−
dU
dx

∣∣∣
U=Umin

)
(U −Umin)

(Umax−Umin)2 (6)

where dU
dx |U=Umin and dU

dx |U=Umax are the derivatives dU
dx eval-

uated only for the minimum and maximum entries of U . In
the first term this vector, which would be one-dimensional, is
replicated and tiled in order to match the dimensions of the
vector dU

dx , from which it is subtracted. Also the Umin in the
numerator of the second term is subtracted from all elements
of the vector U .

Since the potential energy U at every configuration is a
function of both design variables x and the state variables
(displacements) u(x),

U(x,u(x)) (7)

the total derivative of the potential energy is given by

dU(x,u)
dx

=
∂U(x, ũ)
∂x

+
∂U (̃x,u)
∂u

du
dx
. (8)

The partial derivative of the energy function with respect to
the displacement vector u is by definition equal to the inter-
nal force vector F i, which will be used next, but of which the
derivation is omitted for the sake of conciseness. Substitution
gives

dU(x,u)
dx

=
∂U(x, ũ)
∂x

+F i
du
dx
. (9)

The partial derivative with respect to the design vector x is
given in explicit form in Sect. 2.3, while the total derivatives
of the displacement vector u with respect to the design vec-
tor x is elaborated in Sect. 2.4.

Note that Eq. (9) must be evaluated at every converged
load step solution in order to feed dU

dx as columns of the ma-
trix dU

dx in Eq. (6).

2.2 IGA introduction

Isogeometric analysis is a framework with growing popular-
ity for a number of reasons that particularly hold for shape
optimization. First, the fidelity between analysed shape and
designed shape. There is no approximation involved in the

P i

r (ξ)

Figure 2. B-spline curve and control polygon.

discretisation of the geometry as with meshing. Instead, a
refinement of the parametric description of the geometry is
performed, which increases the amount of parameters with-
out altering the geometry itself.

Secondly, and related to the first argument, not needing
a conversion step between the geometric description of the
design to the analysis gives speed advantages, which are of
major impact in optimization where this conversion happens
many times.

Third, the availability of analytic derivative information
can enhance an optimization procedure significantly.

Since a lot of literature can be found about IGA, just the
needed formulas are given to understand the notation. For the
notation Nagy (2011) is followed. A B-spline, see Fig. 2, is
defined as

r(ξ )=
n∑
i=1

Ni,p(ξ )P i (10)

where P i ∈Rd is a control point, n is the number of con-
trol points and where the pth degree basis functions are con-
structed recursively starting with piecewise constants

Ni,0(ξ )=
{

1 if ξi ≤ ξ < ξi+1,

0 otherwise

and for p= 1, 2, 3, . . . , they are defined by

Ni,p(ξ )=
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ )+

ξi+p+1− ξ

ξi+p+1− ξi+1
Ni+1,p−1(ξ ). (11)

In the present work a geometrically nonlinear Euler–
Bernoulli beam is used. The potential energy of the beam
can be written as

U =
1
2

∫ (
EAε2

+EIρ2
)

dS (12)

where the integral is evaluated numerically following a Gaus-
sian quadrature rule using

U ≈ U =
1
2

n+p∑
j=1

nint∑
k=1

(
EAε2

k +EIρ
2
k

)
JkJ jwk (13)
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where E, A and I represent the Young’s modulus, the cross-
sectional area and the second moment of inertia, respectively,
and are assumed constant over the length of the beam. More-
over J is the reference rod Jacobian, J and w are the Ja-
cobian and the weight associated with the numerical integra-
tion, n+p is the number of knot spans and nint is the number
of integration points per knot span.

The relative strain measures, i.e. the membrane strain ε
and the bending strain ρ are given as defined in Simo (1985)

ε =
1
2

((
ds
dS

)2

− 1

)
(14)

ρ = (κ −K)
ds
dS
. (15)

The differential arch length and curvature of the line of cen-
troids of the beam are denoted by the kinematic variables dS,
ds,K and κ , where the capital symbols refer to the reference
state R(S) and the minuscule symbols refer to the current
state r(S). The definitions are

ds(ξ )=
∣∣∣r (1)

∣∣∣dξ (16)

κ(ξ )=

[
r (1)
× r (2)]

3∣∣r (1)
∣∣3 (17)

where the subscript 3 refers to the third component of
the vector in brackets and the superscript in parenthesis
denote successive differentiation w.r.t. ξ , the variable of
parametrization. The definition of dS and K is similar to
Eqs. (16) and (17), only replacing the curve of the current
configuration r(S) by the one of the reference configura-
tion R(S).

It is customary to define the geometry of a system by a
relatively small set of control points which are used as opti-
mization variables (X=P design). A refinement step, preserv-
ing the exact shape of the curve itself, yields a larger amount
of control points (x=P analysis) that are used for the numeri-
cal analysis.

The discrete structural arrays, i.e. tangent stiffness matrix
Kt and the internal force vector F i, are derived from the en-
ergy functional of Eq. (12). The displacement of the control
points of the analysis (x) are the unknowns of the equilibrium
equations indicated by the vector of state variables u.

2.3 Energy derivative

Often in structural optimization the stored elastic energy,
assumed equivalent to the structural compliance, is simply
evaluated as c= 1

2 F
T
e u. While this is correct for a lin-

ear analysis, namely it represents the area under the force-
displacement curve, this is not valid in general for nonlinear
cases. Therefore we must go back to the definition of the
strain energy given in Eq. (12) and its numerical approxima-
tion given in Eq. (13). The partial derivative of Eq. (13) with

respect to the vector x, where u is kept constant, is given by

∂U
∂x
=

1
2

n+p∑
j=1

nint∑
k=1

((
EAε2

k +EIρ
2
k

) ∂Jk
∂x

+

(
EA

∂
(
ε2
k

)
∂x
+EI

∂
(
ρ2
k

)
∂x

)
Jk

)
Jjwk. (18)

The partial derivatives of the squared strain measures read

∂
(
ε2)
∂x
= 2ε

∂ε

∂x
= 2ε

 ds
dS

(
∂ds
∂x

dS− ∂dS
∂x

ds
)

dS2

 (19)

and

∂
(
ρ2
)

∂x
= 2ρ

∂ρ

∂x
= 2ρ

[(
∂κ

∂x
−
∂K

∂x

)
ds
dS
+ (κ −K)

∂ds
∂x
∂dS
∂x

]
(20)

where

∂ds
∂x
=
r (1)R

(1)
i,p∣∣r (1)
∣∣ dξ (21)

and

∂κ

∂x
=

∂
∂x

([
r (1)
× r (2)]

3

) ∣∣r (1)
∣∣3− [r (1)

× r (2)]
3
∂
∂x

(∣∣r (1)
∣∣3)∣∣r (1)

∣∣6 . (22)

Similar equations hold for ∂dS
∂x

and ∂K
∂x

, where again the refer-
ence curve is used instead of the current curve. Furthermore

∂

∂x

([
r (1)
× r (2)

]
3

)
= R

(1)
i,p

(
r

(2)
2 − r

(2)
1

)
+

(
r

(1)
1 − r

(1)
2

)
R

(2)
i,p. (23)

The derivatives of the curves r (1), r (2) and their algorith-
mic implementations are readily available from e.g. Piegl and
Tiller (1997).

2.4 State sensitivity

The more tedious parts of the derivation are not the partial
derivatives but the total derivative of the state vector. Usu-
ally there is not an explicit relation between x and u, and
thus the derivative cannot be found analytically. There are
two common methods to compute them numerically. One is
the direct method and the other one is the adjoint method.
The direct method is used because of its simpler implemen-
tation and derivation. There is however no objection in using
the adjoint method instead.

There are two aspects in the described situation that make
the implementation not trivial. These two aspects have not
been found combined in literature. The first aspect is that the
set of equilibrium equations is nonlinear and thus requires
an iterative, newton-like, procedure to solve it. The second
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aspect is the application of nonlinear constraint equations
as Lagrange multipliers, which creates an augmented sys-
tem of equations. Both aspects together lead to the follow-
ing derivations. The formulation of the constraint equations
in the present work will be illustrated in Sect. 2.5.

The equilibrium conditions to be solved can be formulated
in terms of the tangent stiffness matrix Kt, the internal and
external force vectors F i and F e

Kt(x,u)1u= F e(x,u)−F i(x,u) (24)

which is solved for an increment of the displacement vec-
tor 1u. While this is a good practice for the solution of the
system itself, for the current derivation of the sensitivities it
is more convenient to use the alternative formulation in terms
of the secant stiffness matrix, where the internal force vector
drops out

Ks(x,u)u−F e(x,u)= 0. (25)

Contrary to the former formulation, here the total displace-
ment vector u is used. This is convenient because the con-
straint equations will be formulated in terms of the total dis-
placements as well. The general set of constraint equations
are noted as

F2 = A(x,u)u− b(x,u)= 0 (26)

and adding the constraints as Lagrange multiplier terms to
the system in Eq. (25), see Felippa (2004) for a concise ex-
planation, gives

F1 =Ks(x,u)u+A(x,u)T λ−F e(x,u)= 0. (27)

The set of equations in F1 and F2 collected into the so called
augmented form[

Ks(x,u) A(x,u)T

A(x,u) 0

](
u

λ

)
=

(
F e(x,u)
b(x,u)

)
(28)

is normally solved simultaneously for both u and the La-
grange multipliers λ which, pre-multiplied by the A matrix,
can be interpreted as the forces needed to impose the condi-
tions.

Taking the total derivative of both vector equations F1 and
F2, applying the product rule and the chain rule and collect-
ing du

dx and dλ
dx gives

dF1

dx
=

(
Ks(x,u)+

∂ [Ks(x,u)̃u]
u

−
∂F e(x,u)

∂u

)
du
dx

+A(x,u)T
dλ
x
+

[dKs(x, ũ)̃u]
dx

+

[
dA(x,u)T λ̃

]
dx

−
∂F e(x, ũ)

∂x
= 0 (29)

and

dF2

dx
= A(x,u)

du
dx
+

d[A(x,u)̃u]
dx

−
db(x,u)

dx
= 0. (30)

Here and in the following the tilde (̃ ) means that the vari-
able is held constant during differentiation. Notice that for
the terms containing A(x, u) and b(x, u) in the present work
the total derivative is directly available as will be shown in
Sect. 2.5, and thus the chain rule is not being applied to those
terms. The following relations between secant and tangent
stiffness matrices and between the secant matrix and the in-
ternal force vector are given in Ryu et al. (1985)

Kt(x,u)=Ks(x,u)+
∂ [Ks(x,u)̃u]

∂u
(31)

∂ [Ks(x, ũ)̃u]
∂x

=
∂F i(x, ũ)
∂x

. (32)

Substituting Eqs. (31) and (32) into Eqs. (29) and (30) and
rearranging them into matrix form gives[

Kt−
∂F e(x,u)

∂u
(x,u) A(x,u)T

A(x,u) 0

] du
dx
dλ
dx

=
 ∂F e(x, ũ)

∂x
−
∂F i(x, ũ)
∂x

−
d
[
A(x,u)T λ̃

]
dx

db(x,u)
dx

−
d[A(x,u)̃u]

dx

 (33)

which can be solved for du
dx . Consider that in the case that

the external forces are not depending on the displacements,
e.g. no follower forces or pressure, the coefficient matrix on
the left hand side is equal to the coefficient matrix used for
the analysis steps, and is therefore already available in in-
verted form. This can save considerable computation time.
The used constraint equations and its derivative terms are
elaborated in Sect. 2.5.

2.5 Boundary constraint equations and derivatives

2.5.1 Constraint equations

In the current setting the system is loaded by applying dis-
placements typically at the endpoints of the beam. Thereby
the forces appear as reaction forces of the applied constraints
instead of external forces. Once the displacement is applied,
equilibrium can be found and the energy is derived. Displace-
ments in this case can also mean rotations. In a typical exam-
ple one would clamp one end of the beam, i.e. both trans-
lations and rotations zero, and apply a given motion on the
other end, e.g. travelling along a curved line, or applying a
rotation at a fixed point.

There is a complication that arises from the use of the iso-
geometric analysis method. From the rotation-less character
of the control points, it follows that rotations cannot be di-
rectly applied. Instead, as described earlier in Radaelli and
Herder (2014), a set of nonlinear constraints is applied that
dictates the position of the second control point with respect
to the first one. It is a given notion that the line connecting
the first and the second control point is tangent to the be-
ginning of the curve and, similarly, the line connecting the
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second-last to the last control point is tangent to the end of
the curve. In the following only the beginning of the curve is
considered, omitting the end of the curve. All the equations
are similarly derivable replacing the subscripts 1 and 2 by
n− 1 and n.

In general there are two types of constraints that are ap-
plied to the beam. The first is a linear set Alu= bl prescrib-
ing the displacement on the endpoints as

[
1 0 0 0 . . .

0 1 0 0 . . .

] u1x
u1y
...

= ( b1x
b1y

)
(34)

where b1x and b1y are the applied x and y displacements.
There are cases where the applied displacement is made de-
pendent on the design vector x. For instance in the design
example given in Sect. 3, where the endpoint of the beam is
pre-stressed by positioning the endpoint at the origin of the
coordinate system. Here bnx =−Pnx and bny =−Pny , and
thus bl= bl(x).

The second type of constraints concerns the rotations and
is somewhat more involved. The inclination h of the tangent
line at the beginning of the curve is defined as

h(x,u)= tan(θ0(x)+1θ (x,u)) (35)

where 1θ is the difference of the current angle θk from the
an initial angle θ0. The initial angle depends on the design
vector x and the current angle θk on both the design vector x
and the displacements vector u. Therefore the inclination h
is is nonlinear in both x and u. The inclination h must equal
the inclination of the line crossing the first two control points

h=

(
P2y + u2y

)
−
(
P1y + u1y

)(
P2x + u2x

)
−
(
P1x + u1x

) . (36)

Rewriting and separating the displacements terms gives the
nonlinear set of constraints Anl(x, u) u= bnl(x, u) as

[
−h(x,u) 1 h(x,u) −1 . . .

]

u1x
u1y
u2x
u2y
...


=
[
h(x,u)P1x −P1y −h(x,u)P2x +P2y

]
. (37)

The matrices Al and Anl and the vectors bl and bnl can be
simply concatenated vertically to form a set of equations
Au= b to be added to the system as Lagrange constraints,
as described in Sect. 2.4.

2.5.2 Derivatives of constraint equations

The derivatives of the constraint equations, needed in
Eq. (33), will be derived next.

For the linear part of the constraints only the case where
bl is a function of x, i.e. bl= bl(x), is mentioned. This is the
case when e.g. a pre-stress proportional to a design parameter
is applied to the system. Typically, if bl is linear in x, the total
derivative dbl(x)

dx is a vector of constants.
The derivations for the nonlinear part of the constraints

requires more attention. The following holds

dbnl(x,u)
dx

=

(
dh
dx

(
P1x −P2x

)
+h

(
dP1x

dx
−

dP2x

dx

)
−

dP1y

dx
+

dP2y

dx

)
, (38)

d[Anl(x,u)̃u]
dx

=

(
dh
dx

(
u2x − u1x

))
(39)

and

d
[
Anl(x,u)T λ̃

]
dx

=



−
dh
dx
λ

.
dh
dx
λ

.

...


. (40)

In these equations the derivative of h is calculated as

dh
dx
=

d
dx

(tan(θ0+1θ ))=
d

dx

(
h0+ T1θ

1−h0T1θ

)
=

(
dh0
dx +

dT1θ
dx

)
(1−h0T1θ )+ (h0+ T1θ )

(
dh0
dx T1θ +h0

dT1θ
dx

)
(1−h0T1θ )2 (41)

where T1θ is a shorthand notation for tan(1θ ), h0 is the ini-
tial inclination and their derivatives are given respectively by

dT1θ
dx
= sec(1θ )

d1θ
dx

(42)

and

dh0

dx
=

d
dx

(
P2y −P1y

P2x −P1x

)
. (43)

Now 1θ , which is the difference between the current an-
gle θk and the initial angle θ0, is split up in the angle of the
converged solution of the last iterative step θk−1, the angle
that is imposed in the current iteration θstep, which is known
and fixed, minus the reference angle θ0. This is a precaution
measure. In fact, in the case that a rotation is applied from
rest, 1θ is known and fixed. But in the case that the loading
history is not fully known, e.g. a pre-stress is applied, than
1θ could contain a certain unknown rotation induced by a
previous step. In order to avoid this type of error we define

d1θ
dx
=

d
dx

(
θk−1+ θstep− θ0

)
=

dθk−1

dx
−

dθ0

dx
(44)

where

dθ0

dx
=

d
dx

(
tan−1 (h0)

)
=

1

1+ (h0)2
dh0

dx
(45)
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is fairly simple to find, and where the following term is used
which has been calculated at the end of the previous con-
verged solution step, where the derivative of the state vector
was already solved:

dθk−1

dx
=
∂θk−1

∂x
+
∂θk−1

∂u

du
x
. (46)

The partial derivatives that are needed are

∂θk−1

∂x
=

∂

∂x

(
tan−1 (hk−1)

)
=

1

1+ (hk−1)2
∂hk−1

∂x
(47)

and

∂θk−1

∂u
=

∂

∂u

(
tan−1 (hk−1)

)
=

1

1+ (hk−1)2
∂hk−1

∂u
(48)

which turn out to be the same since

∂hk−1

∂x
=
∂hk−1

∂u
=



(
P2y + u2y

)
−
(
P1y + u1y

)((
P2x + u2x

)
−
(
P1x + u1x

))2
−

1(
P2x + u2x

)
−
(
P1x + u1x

)
−

(
P2y + u2y

)
−
(
P1y + u1y

)((
P2x + u2x

)
−
(
P1x + u1x

))2
1(

P2x + u2x
)
−
(
P1x + u1x

)
...



T

.

(49)

At this point Eqs. (38)–(40) are fully defined and can be used
to find du

dx in Eq. (33).

2.6 Refinement term

In geometric design optimization it is a common use to define
a geometry at a level with relatively few parameters which is
refined to a more dense level at which the analysis is per-
formed. Commonly this is done by meshing, while in isoge-
ometric analysis there are so called refinement techniques,
where the same spline curve is refined to a spline with more
control points and/or higher order basis functions, but main-
taining the exact original shape. It is not worth going much
into detail here, given the amount and quality of literature on
this topic, e.g. Piegl and Tiller (1997); Cottrell et al. (2009).

The Jacobian of x, the refined design vector, with respect
toX, the global design vector, is needed for the sensitivity of
the objective with respect to the global design vector.

df0

dX
=

df0

dx
dx
dX

(50)

The derivation of term dx
dX is not within the scope of this pa-

per, but can be found e.g. in Qian (2010).
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Figure 3. Transformation of coordinates of the control points in a
set of generalized coordinates, described by the lengths and angles
of the links of a linkage chain representing the control polygon.

2.7 Variable transform

As a last (optional) step a transformation of variables on the
global design vector X to a generalized design vector q has
been adopted. The latter is a vector containing lengths l and
relative angles θ of the lines connecting the control points B
of the global design as if it where a linkage chain, see Fig. 3.
This way it becomes easy, by imposing boundaries on the
search space of the optimization, to avoid loops in the curve
and avoid consecutive control points lying to close to each
other. The first is done by bounding the angles avoiding too
sharp corners in the control polygon, and the second is re-
alised by limiting the minimum lengths of the links. In gen-
eral this avoids awkward shapes that are undesired.

The transformation is defined as

X =



B1x
B1y
B2x
B2y
B3x
B3y
B4x
B4y


=



q1
q2
q1+ q3c (q4)
q2+ q3s (q4)
q1+ q3c (q4)+ q5c (q4+ q6)
q2+ q3s (q4)+ q5s (q4+ q6)
q1+ . . .+ q7c (q4+ q6+ q8)
q2+ . . .+ q7s (q4+ q6+ q8)


(51)

where c and s are the shorthand notations for cos and sin, and
q defined as

q =
[
B1x B1y l1 θ1 l2 θ2 l3 θ3

]
. (52)

Note that in a design with more control points q can be longer
than shown, in that case the expression would expand in a
similar fashion. For the sensitivity of the objective with re-
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P

φ

Figure 4. Topology of the system: A leaf spring (red dashed) is pre-
stressed (black) by connecting one endpoint with a rigid pendulum,
while the other end of the spring is clamped.

spect to the generalized variables dX
dq is needed because

df0

dq
=

df0

dX
dX
dq
. (53)

The full expression of dX
dq is omitted for the sake of concise-

ness. Its derivation can however be considered straightfor-
ward. At this point all expressions for the sensitivity analysis
are derived.

3 Design example

To asses the usefulness of the gradients in the given de-
sign problem several optimization runs are compared where
one gradient-free algorithm and four gradient-based algo-
rithms are used. The first type only needs Eq. (4) as an
input, while the last four also use Eq. (53). The algo-
rithms implemented in the optimization toolbox in Matlab®

are used: Nelder–Mead Simplex (NMS), Trust-Region-
Reflective (TRR), Interior-Point (IP), Active-Set (AS) and
Sequential Quadratic Programming (SQP). See the Matlab®
(2014) documentation for details on the algorithms.

Because of the high dependency with the starting point
of the optimization, the runs are all performed starting at
two different initial points, chosen such that the resulting be-
haviour would be clearly distinct.

The case study is similar to the one found in Radaelli and
Herder (2014). The goal is to design a leaf spring able to
statically balance a pendulum in the range from 0 to 180◦,
see Fig. 4. The objective is to make the reaction moment on
the end of the beam follow a sinus-shaped characteristic with
respect to the rotation of that point. Equivalently, knowing
that the derivative of the energy with respect to the rotation
equals the moment, the target energy-path Û (δ) is defined as
a negative cosine function bounded in amplitude between 0
and 1, as prescribed for Eq. (3). Thus

Û (ϕ)=
(1− cos(ϕ))

2
(54)
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Figure 5. Objective function value vs iteration number for
the algorithms Nelder–Mead Simplex (NMS), Trust-Region-
Reflective (TRR), Interior-Point (IP), Active-Set (AS) and Sequen-
tial Quadratic Programming (SQP). (a) Example1 and (b) Exam-
ple 2.

where ϕ is the rotation of the endpoint P . Before this actual
working range a pre-stress step is applied where one endpoint
stays clamped, and the other end is brought to the origin of
the coordinate system leaving the rotation free. This guar-
antees that the moment before the first actual step is zero,
corresponding to the needed moment when the pendulum is
upright.

Some details on relevant design choices are: cross-
sectional width and height are 0.01 and 0.002 m, Young’s
modulus is 135 GPa. The design curve is a second order B-
spline with four control points and uniform knot vector. The
curve is refined for analysis with 20 additional knot evenly
spread over the knot vector. The used bounds on the variables
of optimizations: q1, q2 : [−0.3, 0.3], q3, q5, q7 : [.1,0.4] and
q4, q6, q8 : [−2, 2].

Figure 5a and b show the progress of the objective function
plotted against the iteration steps for the two initial points

q0 = [−0.2 − 0.2 0.2 1.5 0.2 − 1.5 0.2 − 1.5] (55)

and

q0 = [−0.2 − 0.2 0.2 1.5 0.2 − 1.5 0.2 1.5]. (56)

The corresponding initial shapes and the energy trajectories
are shown in Figs. 6a–9a. The shapes and energy-paths after
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Figure 6. Example 1: shape in neutral position (red) and at the
15 increments of applied rotation of the endpoint about the origin
(blue). (a) Initial shape and (b) optimum shape.

optimization (the best result obtained) are shown in Figs. 6b–
9b. The thick red lines in the shape plots is the unloaded
shape of the beam, while the thin blue lines represent the de-
formed states at the 15 load-steps. The red line in each energy
plot is the target energy-path Û , while the blue crosses rep-
resent the actual normalized energy-path Ũ . The optimized
results have been evaluated at smaller increments of the dis-
placement to verify sufficient smoothness between the origi-
nal increment points. The energies at the smaller increments
are shown as grey dots in Fig. 7a and b.

4 Comparison with finite differences

This section is dedicated to a comparison of the result ob-
tained in Sect. 2 with a numerical approximation of the sen-
sitivity. The goal is twofold. One is to verify the validity of
the derived equations and the other is to underline one advan-
tage of the analytical sensitivity. Namely the independence
between sensitivity and perturbation size.
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Figure 7. Example 1: target energy-path Û (red line), normalized
actual energy-path Ũ (blue crosses) and normalized actual energy
path at smaller increments Ũ+ (grey dots). (a) Initial shape and
(b) optimum shape.

In this analysis the gradient of the objective function with
respect to the generalized coordinated df0

dq is approximated
by finite differences, using different perturbation sizes p
ranging from 10−18 to 100. The first is near or smaller than
machine precision, while the latter is in this case obviously
an overly large perturbation with respect to the physical di-
mensions of the system.

An error norm is defined to compare the analytical sensi-
tivities with the finite difference sensitivities. The used norm
is the normalized mean error e between the values of the
analytical df0

dq , Eq. (55), and its numerical approximation

( df0
dq )FD.

e =
mean

(∣∣∣( df0
dq

)
−

(
df0
dq

)
FD

∣∣∣)
mean

(∣∣∣( df0
dq

)∣∣∣) . (57)
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Figure 8. Example 2: shape in neutral position (red) and at the
15 increments of applied rotation of the endpoint about the origin
(blue). (a) Initial shape and (b) optimum shape.

The analysis is performed at two different points. One is
the first starting point of the optimization shown in Sect. 3.
Another is near one of the found minima. The sensitivities at
an optimum point are zero. The error e includes a division by
zero in that case. Therefore this error is evaluated at a point
near an optimum, and not at an optimum.

Figure 10 shows the error e for a range of perturbation
sizes. The blue line (crosses) represents the error at the start
point q0 and the red line (circles) represents the error at the
point near the optimum.

5 Discussion

The optimization runs on the given example are considered
successful in the sense that for both starting points, depend-
ing on the algorithm, a shape could be found that matches
the given energy-path closely. Closely means that the signif-
icance of the remaining error is expected to be far beneath
other types of errors expected in a physical realization of
the concept. The optimized shapes have been analysed again
with smaller increments of the rotation. Minimal differences
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Figure 9. Example 2: target energy-path Û (red line), normalized
actual energy-path Ũ (blue crosses) and normalized actual energy
path at smaller increments Ũ+ (grey dots). (a) Initial shape and
(b) optimum shape.

can be observed, meaning that the chosen amount of load
steps was suitable for this example.

The objective function is non-convex, meaning that it can-
not be guaranteed that the global minima are found in the
examples. However, in the current scope it is not of practical
relevance, as long as a “good-enough” minimum is obtained.
In fact the nature of the objective function, which cannot be-
come negative, tells that if the solution is close enough to
zero within relevant significance the goal has been achieved.

The use of sensitivity information on the illustrated ex-
ample has shown its utility in Fig. 5a and b. It can be seen
that with respect to the Nelder–Mead Simplex algorithm, es-
pecially with the Active-Set and the Sequential Quadratic
Programming algorithms, either a quicker (more efficient) or
deeper (more effective) descent is realized, and sometimes
both. It is, however, not guaranteed that this is always the
case.
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Figure 10. Error between finite-difference sensitivity and analyti-
cal sensitivities according to Eq. (57) at an initial configuration q0
and near one of the optimum configurations, plotted on a range of
perturbation sizes.

It is also noticed that the Interior-Point and the Trust-
Region Reflective algorithms fail to obtain either a lower
minimum or a quicker descent. This emphasizes the impor-
tance of the choice of the algorithm. Investigation on the op-
timal algorithm has not been the scope of this paper but is
an important topic of further research. The optimal choice of
the algorithm could be subject to factors like the number of
design variables, boundary conditions and other constraints,
and thus it may vary from case to case.

The comparison plots in Fig. 5a and b show the number
of iterations on the horizontal axis. It must be noted however
that for the Nelder–Mead Simplex the computation time of
every iteration is shorter because it does not need to compute
the sensitivity terms. The time saved at every iteration step
highly depends on the performance of the code and the used
hardware. To give an indication: Based on a Matlab code run-
ning on a Intel®. CoreTM i7 processor the additional compu-
tation cost for the sensitivity terms is about 60 %. Neverthe-
less, the advantages of using sensitivity seem to hold.

The finite difference check is quite satisfying. It shows that
there is a large range of perturbation sizes, from p= 10−6

to p= 10−11 where the difference between analytical and
finite-difference sensitivities is small. On the one hand this
tells that the calculations of the analytical sensitivities are
correct. On the other hand it says that within this range the
numerical sensitivities would give similar results, only less
efficiently. However it still remains a risk that this range may
vary from case to case, rising the chance to obtain imprecise
or even useless numerical sensitivities.

The points where the comparison is performed are at one
of the starting points of the optimization, and in the neigh-
bourhood of the end of the optimization run. As discussed
above, it would make little sense to compare the sensitivities
at the end of an optimization run. Assuming this is an opti-

mum, the sensitivities would be zero. At an optimum Eq. (57)
would divide by zero giving an invalid error norm. It is there-
fore not surprising that the error norm near the optimum so-
lution is higher than at a point far from an optimum. Similar
tendencies as in Fig. 10 have been observed starting at vari-
ous initial points.

In Sect. 2.5.2 a measure is taken to include the possibility
to apply pre-stress on the system, thus inducing the system
into a configuration where the angles of the endpoints are not
known a priori. Pre-stress is crucial in certain applications,
especially those involving static balancing. However, if this
is not required, then the procedure described in Sect. 2.5.2
will simplify significantly. Namely θk−1 becomes fixed and
thus its derivative zero. This reduces Eq. (44) to

d1θ
dx
=−

dθ0

dx
(58)

and the part after that, Eqs. (45)–(49), can be skipped.
In the definition of an amplitude invariant objective func-

tion the assumption was made that the sizing parameters
would not affect the results. The Euler–Bernoulli conditions
must be met in order for the numerical model to be valid
in the first place. This means that shear terms are neglected
and this is true for relatively long and slender beams. In the
second place, also the stretch terms must be neglected in or-
der for the thickness not to influence the energy-path. For a
beam with the same shape but different thickness, namely,
the stress condition is influenced by the stretch terms, and
thus it affects the deformation and stored energy. It is veri-
fied that in the given example, multiplying the thickness by
a factor of two yields a maximum amplitude deviation of
2.5 %, and multiplying by a factor of ten yields a deviation
of 4 %. Care is thus needed in the choice of a suitable thick-
ness when designing such system. The width of the spring
seems in practice the most appropriate parameter to adjust
after optimization without affecting the result.

6 Conclusions

The paper presents the shape sensitivity analysis for
the shape optimization of beams with prescribed load-
displacement response. The work is based on an isogeomet-
ric framework. It has been shown that it is possible to derive
the sensitivity parameters for this type of problem analyti-
cally.

A novel and general objective function is formulated for
problems with prescribed load-displacement response. The
objective function is based on the potential energy of the
beam determined at discrete steps of the applied displace-
ment path.

The travelled path is imposed by application of constraints
on the endpoints of the beam, involving displacements but
also rotations, which is more complex due to the rotation-less
character of the degrees of freedom in isogeometric analysis.
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The sensitivity of the state variables is determined through
the direct method, with special attention to the complications
brought by nonlinear equilibrium equations and the nonlinear
constraints equations, applied as Lagrange multipliers.

The effect of the load history on the sensitivity analysis,
e.g. by application of pre-stress in a previous load-step, is
neutralized by making smart use of the sensitivities previ-
ously calculated for the previous load steps.

The optimization is performed on an example where the
optimal shape of a beam is sought that is optimal for the static
balancing of a pendulum. The influence of the use of sensi-
tivity information is shown by comparison on different opti-
mization algorithms, with and without the use of gradients.
The optimization results in very satisfying balancing springs.
The use of gradients is positively influencing the efficiency
of the optimization, although determining the algorithm that
performs best is still an open question.

The correctness of the derived sensitivity equations is ver-
ified by comparison with finite-difference gradients. It is
shown that the numerical and the analytical gradients have
a good match within a certain range of perturbation sizes.

7 Data availability

The matlab figure files that are used to generate the figures
of this paper are attached as Supplement.

The Supplement related to this article is available online
at doi:10.5194/ms-7-219-2016-supplement.
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