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A Computationally Efficient Moving Horizon
Estimator for Ultra-Wideband Localization on

Small Quadrotors
Sven Pfeiffer , Christophe de Wagter , and Guido C.H.E. de Croon , Member, IEEE

Abstract—We present a computationally efficient moving hori-
zon estimator that allows for real-time localization using Ultra-
Wideband measurements on small quadrotors. The estimator uses
only a single iteration of a simple gradient descent method to
optimize the state estimate based on past measurements, while
using random sample consensus to reject outliers. We compare
our algorithm to a state-of-the-art Extended Kalman Filter and
show its advantages when dealing with heavy-tailed noise, which is
frequently encountered in Ultra-Wideband ranging. Furthermore,
we analyze the algorithm’s performance when reducing the number
of beacons for measurements and we implement the code on a
30 g Crazyflie drone, to show its ability to run on computationally
limited devices.

Index Terms—Sensor fusion, localization, aerial systems:
perception and autonomy, optimization and optimal control.

I. INTRODUCTION

OVER the past few years, the continuing miniaturization of
computational hardware has advanced the development

of small, agile quadrotors. This new generation of flying robots
performs tasks in environments, that were previously inaccessi-
ble to them due to size and safety constraints. Most notably, this
concerns indoor environments, such as warehouses, greenhouses
or industrial facilities, which present numerous new potential
use-cases.

A key component required for autonomous operation in these
environments is a robust and accurate localization system. Ultra-
Wideband (UWB) technology has been gaining a lot of attention
for indoor positioning, as it offers high accuracy at an affordable
cost. UWB systems allow for the localization of a mobile tag, by
exchanging messages with a set of static beacons at known loca-
tions in the environment. Although a position can be calculated
from a sufficient number of independent UWB measurements
through multilateration, better results can be achieved when
using additional filtering. Commonly, a state estimator that can
fuse the UWB measurements with data collected by the on-board
inertial measurement unit (IMU) is employed.
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Fig. 1. Moving horizon estimators can optimize the evolution of a drone’s
trajectory based on a limited number of previous UWB measurements. We
propose a novel formulation for UWB localization that is efficient enough to
run on a 30 g Crazyflie drone and performs robustly in scenarios with very
noisy or limited measurements. In the plot, ξ stands for the state and y for a
measurement of the state.

For linear systems with Gaussian noise, the Kalman Filter
yields an optimal estimate in the sense that it minimizes a
weighted two-norm of the expected value of the estimation
error [1]. Different formulations have been developed to approx-
imate this result for more general systems, while retaining the
computationally efficient, iterative structure of the Kalman Fil-
ter. The Extended Kalman Filter (EKF) [1] or Unscented Kalman
Filter (UKF) [2] are often used to address non-linearities, but
fail to address the issues that can arise from uncertain system
models and unknown or non-Gaussian noise. Since UWB mea-
surements often exhibit heavy-tailed noise due to multi-pathing
and non-line-of-sight (NLOS) conditions [3], [4], this can be a
significant shortcoming.

For highly non-linear problems and systems with non-
Gaussian noise, Moving Horizon Estimation (MHE) yields bet-
ter results at the cost of requiring more computational power.
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MHE aims at finding a sequence of states, that minimizes
the noise and disturbances required to explain the observed
measurements over a moving time horizon [5]. A multitude of
options exist for the formulation of the cost-function to this min-
imization problem, but most commonly, a batch least-squares
formulation is used [6]. In addition, past data can be included in
the cost-function through an “arrival cost”. Unfortunately, the
requirement of solving an optimization problem at every time
step currently make MHE impractical for real-time applications
on computationally limited devices or for systems with fast
dynamics.

In this work, we present a computationally efficient Moving
Horizon Estimator with RANSAC [7] outlier rejection that can
perform real-time localization with UWB on a small quadro-
tor with limited computational power. We compare it with a
state-of-the-art EKF in simulated noise environments and show
its advantages when dealing with heavy-tailed noise, which
is observed on UWB measurements when multi-pathing and
NLOS effects occur. We also show that the MHE is still able to
perform state estimation when the number of UWB beacons in
the environment is drastically reduced.

In Section II we will present an overview of the related
work. Section III outlines the design of our computationally
efficient moving horizon estimator, while Section IV will cover
its implementation for position estimation with UWB. We will
then compare our MHE with a state-of-the-art EKF in Section V.
Finally we will conclude on our findings in Section VI.

II. RELATED WORK

Shortly after the original paper on the Kalman Filter appeared
in 1960 [8], the concept of limited memory filters was introduced
by Andrew Jazwinski to address cases in which the Kalman
Filter diverges due to modelling errors [9]. Several strategies
have since been proposed to reduce the high computational cost
of such limited memory filters.

The Unbiased Finite Impulse Response (UFIR) Filter was de-
veloped with a computationally efficient iterative structure like
the Kalman Filter. It offers robustness with respect to unknown
noise and initial position, but still relies on linearization when
dealing with non-linear system models. Furthermore, the UFIR
filter is only unbiased and not optimal [10].

Moving Horizon Estimation (MHE) on the other hand solves
an online optimization problem and can therefore accomodate
non-linear system models. However, the solution of these op-
timization problems can quickly become expensive, which has
mostly limited the use of MHE to slow processes, e.g., in the
chemical industry. There are however approaches to improve
the computational complexity of moving horizon estimation.
Zavala, Laird and Biegler [11] have used sensitivity analysis to
formulate and solve a reference optimization problem based on
previous measurements, while waiting for a new measurement
to arrive. Once the new measurement is known, the solution
to the real problem can be calculated more quickly. Kühl
et al. [12] have demonstrated a scheme that only relies
on a single iteration of a sequential quadratic programming
method per time step. Both papers demonstrate performance

on examples from the chemical industry, which deal with
more states but involve significantly slower dynamics than
quadrotors.

For this work, the use of computationally more efficient
gradient descent methods was investigated, which where proven
to be stable by Alessandri and Gaggero [13]. Similar to Kühl
et al. they were able to show, that also with simple gradient
descent minimization, a single iteration at every time step is
sufficient to get a stable state estimate.

On autonomous flying robots, MHE is rarely used due to
the before mentioned computational complexity. Girrbach et al.
have investigated the influence of horizon length when fusing
GNSS and IMU with MHE, but only perform comparisons
offline and without addressing the challenges of computational
cost [14]. Shuo et al. formulate the MHE problem with position
measurements and a simplified model in such a way, that there is
an analytical solution to the optimization problem. This allows
them to use their MHE on a 72 g quadrotor in a drone racing
context [15].

Instead of using MHE, state estimation with UWB measure-
ments on quadrotors is usually based on variations of the Kalman
Filter. The Crazyflie drone which we use as our testing platform
in this work for example uses an EKF for fusing data from a wide
variety of on-board sensors [16]. As an alternative to Kalman
Filters, Xu et al. [17], [18] recently started to investigate different
forms of UFIR filters for the purpose of fusing UWB and IMU
on drones.

In our work, we are approaching the problem of sensor fusion
on quadrotors by using a moving horizon estimator, which uses a
single iteration gradient descent algorithm to optimize its state-
estimate. We will show that this reduces the computational load
of MHE sufficiently, while providing accurate position estimates
on computationally limited drones.

III. MOVING HORIZON ESTIMATOR

A. Problem Formulation

Let us consider a non-linear, discrete-time dynamic system as
described by (1): {

ξt+1 = f(ξt,ut) +wt

yt = h(ξt,ut) + vt
(1)

where t = 0, 1, . . . is the time step, ξt ∈ Rn is the state vector,
ut ∈ Rp is the input vector, and yt ∈ Rm is the measurement
vector. Finally wt ∈ Rn and vt ∈ Rm are the process and
measurement noise vectors, all at time step t respectively.

The classical MHE problem can be formulated, as finding
the state ξ̂t−N |t, that minimizes the cost function J(ξ̂t−N |t),
where ξ̂t−N |t is the estimated state at time step t−N , based on
information available at time step t, N being the length of the
moving horizon. The cost function typically includes an arrival
cost, which takes into account a prior estimate of the state,
ξ̄t−N |t, the sum of squares of the process noise and the sum
of squares of the measurement noise. In this work, we simplify
the problem to an output noise MHE, which neglects the process
noise terms. This simplification is necessary to reduce the size
of the optimization problem sufficiently for it to be solved on
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an embedded system. It removes the ability of the estimator to
adjust inputs to better fit the measurements and is therefore likely
to reduce the accuracy of the estimate. Since it does however not
impact the convergence of the estimate, this can be an acceptable
trade-off for many systems.

Since the measurement frequency of UWB varies unpre-
dictably, some measurements in yk might be outdated. We can
accommodate for this fact, by writing the cost function in terms
of individual measurements yi, i = 0, . . . ,m, and including the
binary switching sequences θi,k, which are equal to 1 if a new
measurement arrives and 0 otherwise [19].

θi,k =

{
1 if yi,k �= yi,k−1

0 otherwise
(2)

To express the cost function in term of the state at the begin-
ning of the horizon, ξ̂t−N |t, it is helpful to define the composite
prediction and measurement equations at time step k:

Fk(ξ̄t−N |t) = fuk ◦ . . . ◦ fut−N (ξ̄t−N |t) (3)

Hi,k(ξ̄t−N |t) = huk
i ◦Fk−1(ξ̄t−N |t) (4)

For compactness, we omit the input vectors ut−N to uk in the
composite functions, as the output error structure of the MHE
does not allow them to change anyway. For the composing func-
tions we note the corresponding input vector in the superscript.
This results in the final cost function shown in (5).

Jt(ξ̂t−N |t) = μ‖ξ̂t−N |t − ξ̄t−N |t‖2

+

t∑
k=t−N

m∑
i=1

(
θi,k · ‖yi,k −Hi,k(ξ̂t−N |t)‖2

)
(5)

B. Computationally Efficient MHE

To solve the MHE problem efficiently, we use a single iteration
of the gradient method at every time step [13]. The prior estimate
ξ̄t−N |t is obtained by applying the prediction equations on the
last available state estimate.

ξ̂t−N |t = ξ̄t−N |t − α∇Jt(ξ̄t−N |t) (6)

ξ̄t−N |t = f(ξ̂t−N−1|t−1,ut−N−1) (7)

If the number of states n becomes large, the numerical calcu-
lation of∇Jt(ξ̄t−N |t) becomes very expensive. This is due to the
fact, that every evaluation of Jt(ξ̄t−N |t) requires the prediction
of the state vector’s evolution over the complete horizon. We
are therefore using an iterative, analytical solution based on the
chain rule, which only requires a single prediction cycle over
the full horizon.

In the analytical expression of the gradient of the cost function,
the first term (arrival cost) disappears since we evaluate the
gradient at ξ̄t−N |t. What remains is a sum of terms that stem
from the individual measurements:

∇Jt(ξ̄t−N |t) = − 2
t∑

k=t−N

m∑
i=1

[
θi,k

(
yi,k −Hi,k(ξ̄t−N |t)

)∇Hi,k(ξ̄t−N |t)
]

(8)

By stepping through the full horizon, we can calculate the
sequence of prior estimates ξ̄k|t, k = t−N, . . . , t in an iterative
manner, which makes calculating the predicted measurement
Hi,k(ξ̄t−N |t) = hi(ξ̄k|t,uk) trivial.

To calculate the gradient of Hi,k, we make use of the chain
rule to split the equation into two factors: The gradient based
on the current predicted state and input, ∇hi(ξ̄k|t,uk), and the
Jacobian of the composite prediction equation DFk−1(ξ̄t−N |t):

∇Hi,k(ξ̄t−N |t) =
(
DFk−1(ξ̄t−N |t)

)T · ∇hi(ξ̄k|t,uk) (9)

DFk−1(ξ̄t−N |t) = Df
(
ξ̄k−1|t,uk−1

)
·Df

(
ξ̄k−2|t,uk−2)

)
· . . . ·Df

(
ξ̄t−N |t,ut−N

)
(10)

Similar to the predicted state, the Jacobians of the prediction
equation can be calculated in an iterative manner by premul-
tiplying the previous value with the Jacobian evaluated at the
current prediction. In the end, calculating the Jacobian of the
cost function therefore requires the following computations for
each time step k in the horizon (i.e. N times):
� Forward prediction of the prior estimate

ξ̄k|t = f(ξ̂k−1|t,uk−1) (11)

� Calculation of the n× n Jacobian of the prediction func-
tion f at t = k − 1

Df(ξ̄k−1|t,uk−1) =
∂f

∂ξ
(ξ̄k−1|t,uk−1) (12)

� Calculation of the composite Jacobian of Fk−1 by multi-
plication of two n× n matrices (chain rule)

DFk−1(ξ̄t−N |t) = Df(ξ̄k−1|t,uk−1) ·DFk−2(ξ̄t−N |t)
(13)

� Up to m measurement predictions for measurements that
arrived at t = k,

hi(ξ̄k|t,uk) (14)

� Calculation of up to m measurement gradients for mea-
surements that arrived at t = k,

∇hi(ξ̄k|t,uk) =
∂hi

∂ξ
(ξ̄k|t,uk) (15)

� Calculation of up to m composite measurement gradients
by multiplication of an n× n matrix with a size n vector,
(9)

� Up to m subtractions, m · n multiplications and m · n
additions to form the full measurement sum at t = k, (8)

To complete the estimation process, the gradient descent step
needs to be performed (6), which requires n multiplications and
n subtractions. Finally, a forward prediction of ξ̂t−N |t must be

performed to actually know the current state ξ̂t|t, which requires
k evaluations of the prediction equation f .
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From these steps, the most expensive calculation in terms of
computational complexity is the multiplication of two n× n
matrices, which behaves as O(n3) without using specialized
algorithms. Neglecting lower order terms, our MHE there-
fore ends up with a computational complexity of O(N · n3).
With respect to the number of states, our MHE therefore
scales just as well as the EKF and the increase in complexity
only comes from the number of time steps in the moving
horizon.

C. RANSAC Outlier Rejection

The occurrence of outliers in UWB measurements is a prob-
lem for any state estimator, as they can have a big impact
on the estimated state. To deal with outliers, other authors
have used the Mahalanobis distance [16], [17], which weighs
the measurement error with its variance. To eliminate any

reliance on the knowledge of error statistics, we have de-
cided to use a random sample consensus (RANSAC) scheme
instead.

To do this in an efficient manner, we split the measurement
terms in (8) in two sums: A common sum and a RANSAC sum.
The common sum includes measurements that are not subject to
RANSAC outlier rejection (e.g., altitude measurements) while
the RANSAC sum includes only a fraction of the terms from
UWB measurements. By adding to multiple RANSAC sums at
the same time, multiple gradients of the cost function can be
computed after going through only one prediction cycle for the
full horizon.

Since this removes the need to step through the full horizon
several times, the only real contribution of the outlier rejection
to the computational cost is from the evaluation of the different
RANSAC estimates. The evaluation of every RANSAC estimate
still requires an independent prediction cycle over the full hori-
zon, to choose the best estimate.

IV. IMPLEMENTATION

In our implementation we limit ourselves to the estimation of
the drone’s position and velocity, while the attitude is estimated
using Mahony’s AHRS algorithm [20].

A. Prediction Equations

We use a slightly simplified version of the model in [16],
where we represent the attitude with quaternions and neglect
the dependence of the drag on the propellers’ angular velocities.

ẋ =

[
q ⊗

[
0
ρ

]
⊗ q−1

]
v

(16)

ρ̇ =
f

m
e3 + (Ka − [[ω×]])ρ−

[
q−1 ⊗

[
0
g

]
⊗ q

]
v

(17)

In this model, our six dimensional state ξ = [xT ,ρT ]T en-
compasses the position x ∈ R3 in the global frame and the local
velocitiesρ ∈ R3 in the body frame. The inputs to the system are
the total thrust f , the attitude quaternion q ∈ R4, and the angular
velocities as measured by the gyroscopes, ω ∈ R3. The drone’s
mass m and drag coefficients Ka = diag(k⊥, k⊥, k‖) enter as
parameters. ⊗ is the quaternion product and the subscript 0
and v refer to the scalar and vector portion of the quaternion
respectively. Finally, g is the directed acceleration of gravity
and [[ω×]] is the skew symmetric matrix defined as

[[ω×]] =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ (18)

Since inputs are usually available at higher rates than the
estimator’s update rate, we accumulate these inputs between
two estimation cycles and average them to reduce input noise.
For the thrust and each of the gyroscope’s axes, this is done by
simply calculating the mean, while for the attitude quaternion,
the average is found by calculating the dominant eigenvector of
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the matrix Q [21]:

Q =
∑
i

qiq
T
i (19)

B. Measurement Equations

We consider two different types of UWB measurements that
can be used with the estimator. In two-way ranging (TWR), the
UWB system returns the distance between the tag at its current
position, and the (known) location of an anchor, puwb,i. The
measurement equation, including measurement noise ηtwr is then
given by

ytwr = ‖puwb,i − x‖+ ηtwr (20)

Alternatively, time-difference of arrival (TdoA) measure-
ments can be used. In TdoA schemes, the measurement yields
the difference between the distances to two different anchors:

ytdoa,ij = ‖puwb,i − x‖ − ‖puwb,j − x‖+ ηtdoa (21)

Since in most indoor environments, the distribution of anchors
is mostly in the xy-plane with comparatively small variations in
height, altitude estimation based on UWB alone is often difficult
and noisy. We therefore also include the measurement equations
for dedicated altitude measurements from a barometer or from
laser time-of-flight (ToF) measurements:

ybaro = x3 + zref + ηbaro (22)

ytof = x3 · cos θ cosφ+ ηtof (23)

Note that the ToF measurement equation must take into ac-
count the current pitch θ and current roll φ since the laser is not
measuring the shortest distance to the ground, but the distance
on the body frame’s z-axis.

V. RESULTS

A. Setup

For testing and evaluation, we implemented our own algo-
rithm and the EKF from [16] (which is used on the Crazyflie)
in Python.1 We compared their real-time position estimates at
each timestep t, ξ̂t|t, with ground-truth from an optitrack motion
capture system. The evaluation was performed on real IMU and
UWB data, which was collected on a Crazyflie drone at 100 Hz,
and optitrack data collected in the “Cyberzoo” testing area at the
Aerospace Faculty of TU Delft2 (seen in Fig. 2). In total, 24 data
sets were gathered on 6 different trajectories, containing either
two-way ranging (TWR) or time-difference of arrival (TdoA)
data from the UWB system. The different trajectories used were
a square, a triangle, an octagon, an hourglass, a five-pointed
star and a random sequence of points. On each trajectory, we
recorded four runs, two for TWR data and two for TdoA data.
The UWB setup included eight beacons, positioned roughly
in the eight corners of a cube, enclosing our testing area (cf.
Table I). An example for a run of the Octagon trajectory where

1https://github.com/SUPfeiffer/uwb-simulator
2Data available at https://doi.org/10.4121/14 827 680

Fig. 2. Flight data was collected in the “Cyberzoo” at TU Delft using a
Crazyflie drone and the loco positioning system by bitcraze. Groundtruth is
provided by an Optitrack motion capture system.

TABLE I
UWB BEACON POSITIONS

Fig. 3. Example of one of the collected trajectories (Octagon) with offline
performance of MHE and EKF on real TWR data from 4 beacons.

we test the estimator performance offline but on real TWR data
is shown in Fig. 3.

B. Heavy-Tailed Measurement Noise

While the noise on TWR measurements can be assumed to be
Gaussian in an ideal scenario, it is more realistically modelled as
being heavy-tailed. This is due to multi-pathing and non-line-
of-sight (NLOS) effects, which cause UWB signals to arrive
with a slight delay compared to the shortest path [3], [4]. To
simulate heavy-tailed noise for TWR, we adapt the noise model
by Jimenez and Seco [3], which models the heavy-tailed noise
as the sum of a Gaussian distribution for the LOS component,
a Gamma distribution for the NLOS component, and a constant
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for outliers. To avoid dealing with a probability density function
(PDF) that does not integrate to 1, we remove the constant, and
rely on getting outliers from the Gamma distribution alone. To
show the effect of an increasingly non-Gaussian distribution, we
multiply the Gamma distribution with a scale factor sht, which
we vary between 0 and 1.25. Since a reduction in the NLOS
component should also cause the mean to go towards zero, we
multiplyμby the same factor, which causes the noise distribution
to represent the ideal LOS condition (i.e. a pure, zero-mean
Gaussian) for sht = 0. Finally, we divide the PDF by (1 + sht),
which causes the integral to be equal to 1. The resulting model
is given in (24).

f(x) =
1

1 + sht
· 1

σ
√
2π

exp

(
− (x− shtμ)

2

2σ2

)

+
sht

1 + sht
· λk

(k − 1)!
xk−1 exp (−λx) (24)

Even though there are significant differences between indi-
vidual anchors, we find that using the parameters suggested
by Jimenez and Seco (μ = 0.1, λ = 3.5, k = 2) and a standard
deviation of σ = 0.1 (determined from our own data), our TWR
data is best fit with a heavy-tail scale factor of sht = 0.2. The
main differences between anchors are the need for some higher
values for λ andk, but we also noted some anchors with shifted or
multiple peaks in the noise distribution. These odd behaviours
might originate from localized biases on different trajectories
and were not modeled in this research.

Since TdoA measurements can be seen as resulting from
two TWR measurements to different beacons, the heavier tail
appears on both sides and is better modeled by using a Cauchy
distribution. To vary the intensity of the heavy-tail, we model
the noise distribution for TdoA as the weighted sum of a Cauchy
distribution (γ = 0.3) and a Gaussian distribution (σ = 0.3),
both centered around μ = 0. The resulting noise model, shown
in (25) best matches the recorded TdoA data for a relative weight
of the Cauchy distribution of rht = 0.5.

f(x) = (1− rht) · 1

σ
√
2π

exp

(
− x2

2σ2

)

+ rht ·
[
πγ

(
1 +

(
x

γ

)2
)]−1

(25)

Using these noise models, we compare the performance of
MHE and EKF on a mix of real IMU data combined with
simulated UWB measurements from 4 anchors (IDs 1, 3, 4, 6)
that provide measurements on average every 0.05 s (TWR) or
0.1 s (TdoA) each. We run the simulation 5 times on every set
of IMU data collected, for a total of 120 runs per value of sht

and rht. Fig. 5 and Fig. 6 show the average RMSE of these runs
for TWR and TdoA measurements respectively, with the shaded
regions representing the standard error of the mean.

In the case of TWR, both estimators perform similarly well,
with the EKF having a slight edge for Gaussian noise and the
MHE showing an advantage for noise with a stronger heavy
tail. In the case of TdoA, the MHE performs better over the full
range of simulated noise, with the difference increasing at higher

Fig. 4. Probability Density Function (PDF) of the heavy-tailed noise distri-
bution used for generating UWB measurements. The scale factor sht is used
to change the influence of the heavy-tailed Gamma distribution added to the
underlying Gaussian.

Fig. 5. Estimator performance on TWR measurements with increasingly
heavy-tailed noise. Shaded regions represent the standard error of the mean.

Fig. 6. Estimator performance on TdoA measurements with increas-
ingly heavy-tailed noise. Dashed lines show success rate of the estimator
(RMSE<1 m). Unsuccessful runs are excluded from the calculation of the mean
RMSE.

values of rht. The cause for this difference between TWR and
TdoA (also for the Gaussian noise) most likely stems from the
larger standard deviation for TdoA, which also leads to more
outliers.
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Fig. 7. Estimator performance on TWR measurements with varying number
of beacons. Dashed lines show the success rate (RMSE<1 m), shaded regions
represent the standard error of the mean.

Fig. 8. Estimator performance on TdoA measurements with varying number
of beacons. Dashed lines show the success rate (RMSE<1 m), shaded regions
represent the standard error of the mean.

C. Removing UWB Anchors

Of particular interest in the field of UWB localization is the
reduction of required fixed infrastructure, namely the number
of beacons that need to be placed in the environment. To assess
the performance of our estimator in applications with respect
to the number of beacons, we use our full data sets (IMU and
UWB) and remove the measurements from randomly selected
beacons. Specifically, we run the filters with real UWB data with
the number of enabled beacons ranging from 1-8 for TWR and
2-8 for TdoA (TdoA measurements require two beacons). We
perform 10 runs for every number of beacons on each of the 12
corresponding (TWR or TdoA) data sets, for a total of 120 runs
per number of beacons. For each individual run, we randomly
select the beacons used, since the placement of beacons with
respect to the trajectory was found to have a significant effect
on performance for low numbers of beacons. Due to beacons
losing connection on three TdoA trajectories, we only use 9 of
the 12 data sets for the TdoA comparison. Results of these runs
are shown in Fig. 7 and Fig. 8 respectively.

One of the downsides of the proposed gradient-descent
method is that the magnitude of the cost function’s gradient
∇J(ξ̂t−N |t) varies with the number of measurements. This

means that the value of the step sizeα had to be slightly adjusted
depending on the number of beacons.

As was to be expected, the lower number of beacons causes
a significant increase in the estimation error. While the MHE
still shows an advantage, the observed errors are higher than
with simulated measurements. This is likely due to inaccuracies
in measuring out the anchor positions, and spatially varying
biases that have also been mentioned by [16]. In fact, we
found that measurements from some beacons exhibit far more
challenging noise than what is modeled by a heavy-tailed distri-
bution, such as multiple peaks. For TDOA measurements, both
estimators are failing quite often. Indeed, there seems to be a
much larger discrepancy between simulated and real TDOA
data than for TWR. This is probably due to the fact, that with
a large number of beacons, the TDOA algorithm requires a lot
of communication between beacons, causing the frequency of
the individual measurements to go down as more beacons are
present. When removing beacons after the measurements were
taken, this leads to much lower measurement frequencies than
otherwise expected. It is however still visible, that the reduced
measurement frequency seems to have a smaller effect on the
MHE’s performance.

D. Computational Complexity

To compare the computational complexity, we implement our
algorithm as a separate task on a Crazyflie drone which performs
these computations on an STM32F405 microcontroller. This
task replaces the EKF task in the original Crazyflie firmware, so
that only one estimator is running at the same time.

By analyzing task dumps, we can identify how much of the
available computational resources a task uses. When using the
same settings as in simulation, the MHE task accounted for
about 15% of the CPU load, while the EKF only accounted
for about 11%. This shows the potential of the algorithm to
indeed be used on computationally limited devices. With more
potent microprocessors being released continuously, we believe
that computationally efficient MHE algorithms can become
useful for many applications, for which they were previously
considered too expensive.

VI. CONCLUSION

A computationally efficient MHE algorithm for quadrotor
localization with UWB was developed and tested. We showed
that by simplifying the problem to an output noise MHE and
using a single-iteration gradient descent method, MHE can yield
good results on computationally limited devices. While these
simplifications helped us in reducing the computational cost of
MHE, they also pose some limitations on the applications of the
algorithm.

The simplification to an output noise MHE assumes that
the process model is perfectly known and does not exhibit
any process noise, which is rarely the case. Even though the
algorithm performed well, there is potential for improvement,
especially when only few measurements are available.

Using a simple single-iteration gradient descent algorithm
causes the optimization for the correct state to happen over
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several time steps, and requires the step-size α to be well chosen
to keep the algorithm stable. Especially when the number of
measurements is varying, this can become difficult, due to the
varying magnitude of the gradient of the cost function. We found
that conservative values of α can yield stable results for large
variations in the number of measurements, but the performance
will be worse when fewer measurements are available.

We plan to address these issues in future research to further
improve the accuracy of the proposed method and make it useful
for a wider variety of tasks.
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