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Abstract

We present a new family of fast and robust methods for the calculation of the

vapor–liquid equilibrium at isobaric-isothermal (PT-flash), isochoric-isothermal

(VT-flash), isenthalpic-isobaric (HP-flash), and isoenergetic-isochoric (UV-flash) condi-

tions. The framework is provided by formulating phase-equilibrium conditions for

multi-component mixtures in an effectively reduced space based on the molar spe-

cific value of the recently introduced volume function derived from the Helmholtz

free energy. The proposed algorithmic implementation can fully exploit the optimum

quadratic convergence of a Newton method with the analytical Jacobian matrix. This

article provides all required exact analytic expressions for the general cubic equation

of state. Computational results demonstrate the effectivity and efficiency of the new

methods. Compared to conventional methods, the proposed reduced-space iteration

leads to a considerable speed-up as well as to improved robustness and better con-

vergence behavior near the spinodal and coexistence curves of multi-component

mixtures, where the preconditioning by the reduction method is most effective.

K E YWORD S

constant volume flash, reduction method, vapor–liquid equilibrium, volume function

1 | INTRODUCTION

Robust, computationally efficient and accurate phase splitting or flash

calculations play a crucial role in many engineering disciplines, such as

chemical-process and reservoir simulations. In Computational Fluid

Dynamics (CFD) simulations of realistic multi-component vapor–liquid

fluid flows, millions of phase equilibrium calculations are required

every time step in the form of either the VT-flash or UV-flash,

depending on the chosen formulation of the governing equations: The

VT-flash is needed in cases where the overall specific volume, temper-

ature and composition are known, such as for the carbon dioxide

injection into subsurface reservoirs.1,2 Methods that solve the com-

pressible Navier–Stokes equations based on the conservation laws for

mass, linear momentum and total energy, such as applied for the

simulation of the trans-critical vaporization of liquid fuels,3-6 require a

UV-flash, where the input is the overall specific internal energy, vol-

ume, and composition. The calculation of thermodynamic equilibrium

properties of multi-component multi-phase mixtures typically con-

sumes more than three quarters of the total computational time7,8

and thus imposes severe limitation on the tractable space–time reso-

lution or even the computational feasibility of such numerical simula-

tions. At the same time, flash algorithms for CFD applications have to

be fault tolerant and robust, because even a method that fails to con-

verge only once in a billion will eventually spoil the entire simulation.

The simplest case and workhorse of most phase-equilibrium cal-

culations is the so-called PT-flash, where the equilibrium pressure and

temperature of the mixture are already given. Most methods for cal-

culating the isobaric-isothermal equilibrium volume fractions and
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compositions follow the approach proposed by Michelsen.9,10 For

solving flash problems at conditions other than constant pressure and

temperature, Michelsen11 introduced an indirect method based on

nesting simple and robust PT-flash calculations. For VT-flashes, for

example, Michelsen's method aims to find the pressure at which the

PT-flash results in the given total specific volume. This results in an

optimization algorithm, in which the pressure is adjusted in the outer

loop and a PT-flash is solved in the inner loop. Accordingly, UV-

flashes are solved by a bi-variant optimization of temperature and

pressure corresponding to the given internal energy and volume,

which define the thermodynamic state, for example, in mass and

energy conservative Navier–Stokes solvers.3

There are a few alternatives to the flash calculations constructed

based on Michelsen's PT-flash. For instance, Castier12 showed the possi-

bility of conducting UV-flashes directly by a constrained maximization of

the total entropy at the given mole numbers, volume, and energy. As

reported in the original article, the method suffers from robustness issues

and may give negative or imaginary numbers for the pressure or heat

capacities. Smejkal and Mikyška13 alleviated these convergence problems

via a systematic approach for executing the stability analysis and provid-

ing better initial conditions for the flash calculations. However, utilizing

mole numbers as the independent variables in the algorithm may still

result in convergence problems for states that lie close to the phase

boundaries.14,15 In addition, the computational expense of the initial sta-

bility check and the calculation of initial values for the UV-flash can be

significant, especially when there are many components in the mixture.

Nested iterative algorithms based on the PT-flash are also attrac-

tive for mixtures with many components. They offer the possibility of

adopting reduction methods,16 which provide a considerable speedup

and, in addition, improve the robustness of the algorithm.17 The first

reduction method was introduced by Michelsen,16 who found that

the phase-splitting problem is fully defined by only three reduced

parameters regardless of the number of components when all Binary

Interaction Coefficients (BICs) are zero. Hendriks and van Bergen18

successfully generalized the method for cases with some nonzero

BICs through an eigenvalue analysis of the binary interaction matrix.

Nichita and Graciaa19 found a new set of reduced parameters for

PT-flash calculations, for which they demonstrated a notable decrease

in the number of iterations relative to previous reduction methods

specifically near the phase boundary and the critical point.

Employing a direct VT-flash, on the other hand, could consider-

ably reduce the computational time by eliminating the outer pressure

iteration loop, provided that the method itself would be fast and

robust enough. To this end, Mikyška and Firoozabadi20 introduced an

alternative formulation of the VT-flash problem based on a new ther-

modynamic function, the so-called volume function. They solved the

problem directly by a successive-substitution iteration (SSI) algorithm

with nearly the same number of iterations as a conventional PT-flash

based solver requires for one inner iteration loop. Recently, Jindrová

and Mikyška21 and Nichita22 presented methods for solving the VT-

flash problem via direct minimization of the total Helmholtz free

energy. Cismondi et al.23 directly included the pressure equality and

volume constraint in a new algorithm very similar to the PT-flash, and

showed about 20% reduction in the computational time compared to

Michelsen's nested optimization technique. However, for working

fluids with a large number of components, these methods lead to a

significantly stronger increase of the computational time compared to

the nested approach that benefits from the quadratic Newton–

Raphson convergence rate in the reduced space.

Extending the work of Mikyška and Firoozabadi20 and Nichita and

Graciaa,19 we present a very fast and robust method for direct vapor–

liquid phase-split calculations based on formulating phase equilibrium

conditions in terms of the molar specific value of Mikyška and

Firoozabadi's volume function (instead of fugacity coefficients) and a

corresponding reduction method. This new formulation allows us to

solve isothermal flashes (both PT and VT) directly and with the exact

analytical Jacobian matrix, which results in optimum quadratic conver-

gence of the Newton–Raphson method. Nonisothermal cases, such as

UV and HP flashes, are solved through nested univariate optimization

with the corresponding isothermal flash (PT for HP and VT for UV) and

the readily available specific heat capacity at constant pressure (for HP-

flash) or at constant volume (for UV-flash) as exact Jacobian.

This article is structured as follows: First, the mathematical

description of the equilibrium problem is reformulated based on the

molar specific values of the volume function for the vapor and liq-

uid phases. Next, the classical reduction method is presented along

with the derivation of new reduced parameters in the context of

the new formulations, and all other thermodynamic relations

required for nonisothermal flashes are also derived from the

reduced parameters. Then, algorithms based on the Newton–

Raphson method with the analytical Jacobian matrix for the direct

solution of isothermal flashes and for the indirect solution of non-

isothermal ones, are presented. Last but not least, the reliability and

efficiency of proposed algorithms and its significantly improved

computational performance compared to a recently published imple-

mentation for high-fidelity CFD simulations3 will be demonstrated

and discussed for different multi-component mixtures at various

thermodynamic conditions.

2 | THERMODYNAMIC EQUILIBRIUM
FORMULATION

According to the Gibbsian thermodynamics,24 a multi-component sys-

tem consisting of vapor and liquid phases is in equilibrium when the

temperatures, pressures, and chemical potentials of phases are equal,

that is,

TL = TV , pL = pV , μLi = μ
V
i , ð1Þ

where T, p, and μi are temperature, pressure, and chemical potential of

component i = {1…n} in a mixture with n components, and superscripts

L and V refer to values of the liquid and vapor phases.

The pressures can be computed as a function of temperature,

molar specific volume and composition of each phase using the gen-

eral form of the cubic equation of states (EoS)
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p=
RT
v−b

−
a

v + δ1bð Þ v + δ2bð Þ , ð2Þ

where δ1 and δ2 are the two EoS parameters (see below), R is the uni-

versal gas constant, and v is the molar specific volume of the mixture.

The energy and co-volume parameters a and b are usually computed

using the van der Waals mixing rules

a=
Xn
i=1

Xn
j=1

zizj 1−κij
� � ffiffiffiffiffiffiffiffi

âiâj
q

, ð3Þ

and

b=
Xn
i=1

zib̂i , ð4Þ

in which zi is the mole fraction of the component i, and κij is the binary

interaction coefficient between component i and j in the mixture. âi

and b̂i are energy and co-volume parameters of the pure component i,

which are obtained through

âi =Ωa
R2T2

ci

pci
1+ c ωið Þ 1−

ffiffiffiffiffiffi
T
Tci

s !" #2
ð5Þ

and

b̂i =Ωb
RTci

pci
, ð6Þ

where Tci, pci are critical temperature and pressure of the component i.

The two constants Ωa and Ωb as well as the form of the function of c(ωi),

in which ωi is the acentric factor, depend of the selected cubic EoS: for

instance, in the Peng–Robinson (PR) EoS: δ1 = 1+
ffiffiffi
2

p
and δ2 = 1−

ffiffiffi
2

p
,

which result in Ωa = 0.45724, Ωb = 0.0778, and the functional c(ωi) is:

c ωið Þ= 0:37464+1:54226ωi−0:26992ω2
i , for ωi <0:5

0:3796+1:485ωi−0:1644ω2
i +0:01667ω

3
i , for ωi ≥0:5

(
:

In the Soave–Redlich–Kwong (SRK) EoS, with δ1 = 0 and δ2 = 1,

they are Ωa = 0.42748, Ωb = 0.08664, and c ωið Þ=0:48508+
1:55171ωi−0:15613ω2

i :

The equality of chemical potentials is typically expressed in terms

of the K-factor (also named K-value or equilibrium ratio, which is the

ratio of the mole fractions in the vapor (y) and liquid (x) phases), and

the fugacity coefficient derived from the Gibbs free energy. The loga-

rithmic form of this relation for a two-phase vapor–liquid mixture is

lnKi = lnφ
L
i − lnφV

i , for i=1…n, ð7Þ

with φ as the fugacity coefficient and K as the K-factor. Mikyška and

Firoozabadi20 derived a new thermodynamic function for the evaluation

of the equilibrium ratio via minimization of the Helmholtz free energy

that uses the specific volume, temperature, and mole fractions as its

primary variables and eliminates the need for knowing the equilibrium

pressure and for solving the state equation for the stable volume. They

proved that the following relationship exists between the K-factor and

the volume function coefficient for the liquid and vapor phases:

Ki =
vVΦi vV ,T,y1,…,yn

� �
vLΦi vL,T,x1,…,xnð Þ , ð8Þ

in which Φi is the volume function coefficient of the component i and

can be computed analytically as a function of temperature, specific

volume, and mole fractions via

lnΦi =
ð+∞
v

1
v
−

1
RT

∂p
∂zi

� �
T,v,zj≠i

" #
dv: ð9Þ

We define

ψ i � vΦi ð10Þ

as the molar specific value of the volume function, such that, instead of

using Equation (7), the natural logarithm of K-factors can be calculated by

lnKi = lnψ
V
i − lnψL

i , for i=1…n : ð11Þ

It can be shown that this (molar) specific volume function is

related to the fugacity coefficient via ψ i = RT/pφi. By substituting the

general cubic EoS (2) for the evaluation of the partial pressure term in

the integral (9), the following expression is obtained for this new ther-

modynamic function:

lnψ i = ln v−bð Þ− b̂i
v−b

+
avb̂i= bRTð Þ

v + δ1bð Þ v + δ2bð Þ−
ab̂i−2bgi
δ1−δ2ð Þb2RT ln

v + δ1b
v + δ2b

� �
ð12Þ

where gi is

gi =
Xn
j=1

zj 1−κij
� � ffiffiffiffiffiffiffiffi

âiâj
q

, for i=1…n: ð13Þ

The equality of chemical potentials and component material bal-

ances can be systematically expressed by means of K-factors in such a

way that the vapor mole fraction θ is determined by the classic

Rachford–Rice equation

Xn
i=1

ẑi Ki−1ð Þ
1+ θ Ki−1ð Þ =0, ð14Þ

where ẑi is the overall mole fractions of component i in the feed. Then,

molar compositions of the liquid and vapor phases are obtained:

xi =
ẑi

1+ θ Ki−1ð Þ and yi = xiKi, for i=1…n: ð15Þ
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This formulation leads to a remarkable reduction in the number of

variables in isothermal flash calculations; we know the overall compo-

sition of the feed hence, by knowing the n K-factors, we can compute

the molar compositions of the vapor and liquid. The molar specific vol-

umes of phases can then be computed by evaluating the state equa-

tions separately for vapor and liquid based on the given pressure in

PT-flash calculations,25 or by solving the pressure equality equation

along with a volume constraint based on the given volume in VT-flash

calculations.23

3 | REDUCTION METHOD

The basic idea of all reduction methods is to calculate the K-factors in

a lower-dimensional subspace spanned by parameters that are inde-

pendent of the number of components in the mixture. According to

the classical theory of reduction,24 such reduced parameters can be

obtained by decomposing the symmetric matrix βij = 1 − κij that repre-

sents the binary interactions into matrices composed of its eigenvec-

tors and eigenvalues, that is,

β = SDS−1 = SDST , ð16Þ

in which the diagonal matrix D = diag(λ1, …, λn) represents the eigen-

values λi(i = 1…n) of the matrix β, and the orthogonal matrix

S= s
!

1,…, s
!

n

� �
includes the corresponding eigenvectors

s
!
i i=1…nð Þ= si1,…,sinð ÞT . For most mixtures with a large number of

components, only a few (m< n) eigenvalues are significant as a result

of negligible binary interactions between many components; we can

hence use the following approximation for the evaluation of the

entries of the matrix β:

βij =
Xn
k =1

λkskiskj ≈
Xm
k =1

λkskiskj: ð17Þ

Defining ŝki � ski
ffiffiffiffî
ai

p
as entries of the reduction matrix with size

of m× n, we can express gi(i = 1…n) in Equation (13) as

gi =
Xn
j=1

zj
Xm
k =1

λkskiskj

 ! ffiffiffiffiffiffiffiffi
âiâj

q
=
Xm
k =1

λkŝki
Xn
j=1

zjŝkj

 !
=
Xm
k =1

λkŝkiqk , ð18Þ

as a function of the reduced parameters

qk =
Xn
i=1

ziŝki, for k =1…m: ð19Þ

Similarly, the energy parameter a of the mixture in Equation (3)

can be calculated from these reduced parameters via

a=
Xn
i=1

Xn
j=1

zizj
Xm
k =1

λkskiskj

 ! ffiffiffiffiffiffiffiffi
âiâj

q
=
Xm
k =1

λk
Xn
i=1

ziŝki

 !2

=
Xm
k =1

λkq
2
k : ð20Þ

Then, an equation for evaluation of the molar specific value of the

volume functions, ψ i, can be derived by substituting gi(i = 1…n) and a

into Equation (12) using Equations (18) and (20):

lnψ i =
Xm
k =1

hkŝki + hm+1b̂i + hm+2, for i= 1…n, ð21Þ

where coefficients h are functions of qk(k = 1…m), b, and v:

hk =2λkqk ln v + δ1bð Þ= v + δ2bð Þ½ �= δ1−δ2ð ÞbRT½ �, for k =1…m

hm+1 =
Xm
k =1

λkq
2
k

vb= v + δ1bð Þ v + δ2bð Þ½ �−
ln v + δ1bð Þ= v + δ2bð Þ½ �= δ1−δ2ð Þ

( )
= RTb2
� �

−1= v−bð Þ,

hm+2 = ln v−bð Þ:
ð22Þ

Because the entries of reduction matrix ŝki and b̂i are equal in the

liquid and vapor phases, all K-factors can be computed from:

lnKi =
Xm
k =1

hΔk ŝki + h
Δ
m+1b̂i + h

Δ
m+2, ð23Þ

with hΔα � hVα −hLα α= 1,…,m+2ð Þ. Performing the calculations in the h-

space with size m+2 leads to another remarkable reduction in the

number of variables in the multi-component flash calculation, that is,

to dimension m+2 instead of n regardless of the number of compo-

nents in the mixture.

We note that these h-based reduced parameters are Lagrange

multipliers of the classical reduced parameters, similar to the reduced

parameters introduced by Nichita and Graciaa.19 Hence, the reduced-

space iteration has a better condition number and will converge faster

than other methods.26

3.1 | Thermodynamic relations for nonisothermal
flashes

For nonisothermal flash calculations, it is necessary to compute addi-

tional thermodynamic quantities such as the specific molar enthalpy,

internal energy, and heat capacities at constant volume and pressure.

They are typically calculated as a summation of the ideal part, which is

here evaluated as a function of temperature using the 9-coefficient

NASA polynomials,27 and the excess part obtained from the state

equation using the reduced parameters. Overall mixture quantities are

computed through

ηmix = 1−θð ÞηL + θηV , ð24Þ

where η ∈ {u, h, cv, cp} are specific internal energy, enthalpy, and heat

capacities at constant volume and pressure. The molar specific inter-

nal energy of the liquid or vapor (superscripts L and V are not

repeated for brevity) is computed via
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u=
Xn
i=1

ziu
ig
i Tð Þ+ a−T ∂a=∂Tð Þ

δ2−δ1ð Þb ln
v + δ1b
v + δ2b

� �
, ð25Þ

where uigi is the ideal gas (NASA polynomial) molar specific internal

energy of pure component i; a is obtained from Equation (20) and its

first temperature derivative is

∂a
∂T

=2
Xm
k =1

λkqk
∂qk
∂T

, ð26Þ

with

∂qk
∂T

= −
R
2

ffiffiffiffiffiffi
Ωa

T

r Xn
i=1

zic ωið Þski
sgn ϑið Þ

ffiffiffiffiffiffi
Tci

pci

s
, ð27Þ

where sgn(ϑi) is the sign function of variable ϑi = 1+ c ωið Þ 1−
ffiffiffiffiffiffiffiffiffiffiffi
T=Tci

p� �
and its value is equal to plus one for ϑi>0 and equal to minus one oth-

erwise. The molar specific enthalpy of the mixture is defined as

h= u+ pv, ð28Þ

where p is either known or computed via Equation (2). The molar spe-

cific heat capacity at constant volume for a multi-component mixture

can be computed via

cv =
Xn
i=1

zic
ig
v,i Tð Þ+

T ∂2a=∂T2
� �
δ1−δ2ð Þb ln

v + δ1b
v + δ2b

� �
: ð29Þ

Here, cigv,i is the ideal gas molar specific heat capacity at constant

volume for the component i, which is computed as a function of tem-

perature using NASA polynomials, and the second derivative ∂2a/

∂T2 is

∂2a

∂T2
= 2
Xm
k =1

λk
∂qk
∂T

� �2

+ qk
∂2qk
∂T2

" #
ð30Þ

with

∂2qk
∂T2

=
R
4T

ffiffiffiffiffiffi
Ωa

T

r Xn
i=1

zic ωið Þski
sgn ϑið Þ

ffiffiffiffiffiffi
Tci

pci

s
: ð31Þ

The molar specific heat capacity at constant pressure of the mix-

ture is computed from the thermodynamic relation

cp = cv−T
∂p=∂Tð Þ2
∂p=∂v

, ð32Þ

where the derivatives of pressure with respect to the specific volume

and temperature are

∂p
∂v

= −
RT

v−bð Þ2
+

a 2v + δ1 + δ2ð Þb½ �
v + δ1bð Þ2 v + δ2bð Þ2

ð33Þ

and

∂p
∂T

=
R

v−b
−

∂a=∂T
v + δ1bð Þ v + δ2bð Þ : ð34Þ

4 | NUMERICAL ALGORITHMS

4.1 | Isothermal flashes

In this section, numerical solution procedures for two important

isothermal phase splitting cases, PT and VT-flashes, are presented.

In Algorithm 1, we need to estimate the initial K-factors at Step 0:

if there is no promising data available (blind flash), Wilson's

correlation

Ki =
pci
p
exp 5:373 1+ωið Þ 1−

Tci

T

� �	 

, for i=1…n ð35Þ

Algorithm 1

VT and PT flash calculations

Result: K-factors of a multi-component vapor-liquid

equilibrium

Step 0: Estimate initial values of K-factors using the

input values or via the Wilson's correlation in case of blind

flashes;

while convergence criteria not met do

Step 1: Calculate θ by solving the Rachford-Rice equa-

tion (Equation 14);

Step 2: Determine molar compositions x and y

(Equation 15) and then compute parameters qk and b

for both phases (Equations 19 and 4);

Step 3: Compute molar specific volumes vL and vV using

pressure equality and volume constraint equations in

case of VT-flash and two state equations of liquid and

vapor in case of PT-flash;

Step 4: Evaluate Jacobian matrix and update the

reduced principal variables for the Newton–Raphson

iteration or update the principal variables via their defi-

nitions in case of the successive substitution method;

Step 5: Update K-factors (Equation 23) and check the

convergence criteria.

end
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is commonly employed for the initialization of the iteration. This is

straightforward if the pressure and temperature are known as in the PT-

flash; in the case of a blind VT-flash, however, the pressure is unknown.

In this case, one could estimate the pressure from the state equation of

the mixture by using the total specific volume v̂ , temperature T, and

overall mole fractions ẑi as an input, but this will result in negative pres-

sures in many cases. A simple remedy is to set a minimum value in pres-

sure estimation,23 or to employ the initialization method based on the

vapor pressures of the components.28,29 We propose to use the geomet-

ric average of the pressures of the dew and bubble points estimated as

p ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i=1

ẑipsati =
Xn
i=1

ẑi
psati

vuut , ð36Þ

where psati is the vapor pressure of the pure component i, which can

be estimated from Raoult's law and Wilson's correlation.

In Step 1, we need to solve the Rachford–Rice Equation (14) to

determine the vapor mole fraction. Usually, a Newton method is

coupled with a bisection method for reasons explained by Michelsen

and Mollerup.25 In order to preserve the fully quadratic convergence

rate of the Newton method, we rather use the convex transformation

technique of Nichita and Leibovici.30 In the convex transformation

technique, the first and last index are assigned to the components

with maximum and minimum K-factors, and vectors ci = 1/(1 − Ki) and

di = (c1 − ci)/(cn − c1) are obtained for all components. Two convex

functions of the variable σ = (θ − c1)/(cn − θ), can be then computed:

G σð Þ= 1 + σð ÞS σð Þ, ð37aÞ

H σð Þ= −σ 1+ σð ÞS σð Þ, ð37bÞ

where

S σð Þ=
Xn
i=1

zi
di + σ 1+ dið Þ : ð38Þ

For any starting value σ0 in the range of (0, +∞), monotonic con-

vergence of the Newton iteration is guaranteed for one of these two

functions. The estimated value of σ is updated via

σnew =
σ−G σð Þ=G0 σð Þ, forG σð Þ>0
σ−H σð Þ=H0 σð Þ, forG σð Þ<0

�
ð39Þ

where G
0
and H

0
are derivatives of G and H with respect to σ:

G0 σð Þ= S σð Þ+ 1+ σð ÞS0 σð Þ, ð40aÞ

H0 σð Þ= − 1+2σð ÞS σð Þ−σ 1+ σð ÞS0 σð Þ, ð40bÞ

and

S0 σð Þ=
Xn
i=1

−zi 1+ dið Þ
di + σ 1+ dið Þð Þ2

: ð41Þ

The Newton iteration is repeated with σnew until the convergence

criteria is met. The vapor mole fraction is then obtained via

θ = (c1 + σcn)/(1 + σ)..

In Step 2, molar compositions of the liquid xi and vapor yi for

(i = 1…n) are computed using Equation (15). Then m reduced parame-

ters qk and mixture co-volume parameter b are obtained using Equa-

tions (19) and (4) for both phases.

In Step 3, the energy parameter a is computed for the liquid and

vapor phases using their m reduced parameters via Equation (20). For

the case of PT-flash, in which the value of the equilibrium pressure p

is given, the specific volume is then computed for the vapor and liquid

phases separately. For general cubic EoS Equation (2) this means to

find the roots of the cubic equation that is written below for the liquid

phase:

v3L + ϱ2v
2
L + ϱ1vL + ϱ0 = 0, ð42Þ

where

ϱ0 = −aLbL=p− bL +RT=pð Þδ1δ2b2L ,
ϱ1 = δ1δ2b

2
L + aL=p− δ1 + δ2ð ÞbL bL +RT=pð Þ,

ϱ2 = δ1 + δ2−1ð ÞbL−RT=p:
ð43Þ

The same equation is holds for the vapor phase. We use

Cardano's algorithm to determine all roots of Equation (42). If more

than one real root is found, the root associated with the lowest Gibbs

free energy is selected.25

For the VT-flash, in which the value of the total molar specific

volume v̂ is given, we first compute the molar specific volume of one

phase from the volume constraint 1−θð ÞvL + θvV = v̂ and then substi-

tute it into the pressure equality equation. The resulting equation is a

quintic function of the other phase specific volume that is given below

for the liquid phase:

ς5v
5
L + ς4v

4
L + ς3v

3
L + ς2v

2
L + ς1vL + ς0 = 0 ð44Þ

where

ς0 = αL2α
V
5 −αV2α

L
5

� �
θ3− αL5α

V
1 −αV4α

L
2

� �
v̂θ2 + αL2α

V
3 −αL5

� �
θv̂2 + αL2v̂

3,

ς1 = αL1α
V
5 −αL5α

V
1 + α

V
4α

L
2−αV2α

L
4

� �
θ3 + αL1α

V
3 + 3α

L
2−αL4

� �
v̂2θ + v̂αL1−3αL2

� �
v̂2

+ 2 αL5−αL2α
V
3

� �
v̂θ + αL1α

V
4 −αV1α

L
4 + 2α

L
2α

V
3 −2αL5

� �
v̂θ2 + αL5α

V
1 −αV4α

L
2

� �
θ2,

ς2 = αL1α
V
4 −αV1α

L
4 + α

L
2α

V
3 −αV2α

L
3−αL5 + α

V
5

� �
θ3 + v̂2−3v̂αL1 + 3α

L
2

� �
v̂

+ 2αL1α
V
3 −αV1α

L
3 + 3α

L
2−2αL4 + α

V
4

� �
v̂θ2 + αV1α

L
4−αL1α

V
4 −2αL2α

V
3 + 2α

L
5

� �
θ2

+ 3αL1−αL3 + α
V
3

� �
v̂2θ +2 αL4−αL1α

V
3 −3αL2

� �
v̂θ + αL2α

V
3 −αL5

� �
θ,

ς3 = αL1α
V
3 −αV1α

L
3 + α

L
2−αV2 −αL4 +α

V
4

� �
θ3 + 3αL1−αV1 −2αL3 + 2α

V
3

� �
v̂θ2

+ αV1α
L
3−2αL1α

V
3 −αV4 −3αL2 + 2α

L
4

� �
θ2 + −6αL1 + 2α

L
3−2αV3

� �
v̂θ

+ 2v̂2 + αL1α
V
3 + 3α

L
2−αL4

� �
θ−3v̂2 + 3v̂αL1−αL2,

ς4 = αL1−αV1 −αL3 +α
V
3

� �
θ2 + v̂−2αL1 +α

L
3−αV3

� �
θ−3v̂ + αL1

� 
θ−1ð Þ,

ς5 = − θ−1ð Þ2:
ð45Þ
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Here, parameters αi(i = 1…5) are computed via the following

expressions using the liquid and vapor co-volume and energy

parameters:

α1 = b δ1 + δ2ð Þ−a=RT,

α2 = b bδ1δ2 + a=RTð Þ,
α3 = b δ1δ2−1ð Þ,
α4 = b2 δ1 + δ2−δ1δ2ð Þ,
α5 = −b3δ1δ2:

ð46Þ

Since there is no analytical solution, Equation (44) has to be

solved by iterative methods to obtain vL. We use a Newton method

with a starting point very close to the co-volume of the mixture in this

study. Afterward, the vapor's specific volume is obtained through the

volume constraint vV = v̂− 1−θð ÞvL½ �=θ.
In Step 4, we update the principal variables via their definitions in

the first iteration (corresponding to a SSI) or evaluate Jacobian matrix

and update the reduced principal variables for the Newton–Raphson

iteration (NRI). In the case of the SSI, the new values of the reduced

principal variables are obtained as the difference between the h values

of the vapor and liquid phase calculated via Equation (22). In the case

of the NRI, first the error functions

eα = h
V
α −hLα−hΔα , for α=1…m+2 ð47Þ

and the associated Jacobian matrix

Jαβ =
∂eα
∂hΔβ

=
∂hVα
∂hΔβ

−
∂hLα
∂hΔβ

−δαβ , for α,β =1…m+2 ð48Þ

are calculated, in which δαβ is the Kronecker delta function. Next, the

resulting set of linear equations JΔh
!Δ

= e
!
, can be solved by using the

Gauss elimination method with partial pivoting to compute

Δh
!Δ

= h
!Δ

new− h
!Δ

old and the new values of the reduced principal

variables

h
!Δ

new = h
!Δ

old +Δh
!Δ

: ð49Þ

In order to find the analytical expressions of the entries of the

Jacobian matrix (48), we used the classical m + 2 reduced parameters

including qk(k = 1…m), b, and θ as the helping variables in the deriva-

tive chain rule for the required partial derivatives

∂hjα
∂hΔβ

=
Xm
k =1

∂hjα
∂qjk

+
∂hjα
∂vj

∂vj

∂qjk

 !
∂qjk
∂hΔβ

+
∂hjα
∂bj

+
∂hjα
∂vj

∂vj

∂bj

� �
∂bj

∂hΔβ
+
∂hjα
∂vj

∂vj

∂θ

∂θ

∂hΔβ
,

for j= L,V:

ð50Þ

The required partial derivatives of the coefficients h are obtained

via Equation (22). The derivatives with respect to the reduced variable

qk are

∂hα=∂qk =2δαkλkqk ln v + δ1bð Þ= v + δ2bð Þ½ �= δ1−δ2ð ÞbRT½ �, for α=1…m

∂hm+1=∂qk =2λkqk
vb= v + δ1bð Þ v + δ2bð Þ½ �−
ln v + δ1bð Þ= v + δ2bð Þ½ �= δ1−δ2ð Þ

( )
= RTb2
� �

,

∂hm+2=∂qk =0:

ð51Þ

In addition, the derivatives with respect to the co-volume of the

phase are

∂hα=∂b=2λαqα
vb= v + δ1bð Þ v + δ2bð Þ½ �−
ln v + δ1bð Þ= v + δ2bð Þ½ �= δ1−δ2ð Þ

� �
= RTb2
� �

, for α=1…m

∂hm+1=∂b= av
2ln v + δ1bð Þ= v + δ2bð Þ½ �= bv δ1−δ2ð Þ½ �−
4δ1δ2b2 + 3vb δ1 + δ2ð Þ+2v2� 

= v + δ1bð Þ v + δ2bð Þ½ �2
( )

=

RTb2
� �

−1= v−bð Þ,
∂hm+2=∂b= −1= v−bð Þ,

ð52Þ

where a is computed via Equation (20) as a function of reduced

parameters The derivatives respect to the specific volume of the

phase are

∂hα=∂v = −2λαqα= RT v + δ1bð Þ v + δ2bð Þ½ �, for α=1…m
∂hm+1=∂v = a 2bδ1δ2 + v δ1 + δ2ð Þ½ �= RT v + δ1bð Þ2 v + δ2bð Þ2

h i
+1= v−bð Þ,

∂hm+2=∂v =1= v−bð Þ:
ð53Þ

Next, the partial derivatives of the specific volume in Equa-

tion (50) are obtained through the implicit function theorem. For PT-

flashes, we directly utilize the general cubic EoS (2) for each phase as

follows:

∂vj=∂qjk = − ∂p=∂qkð Þj= ∂p=∂vð Þj , for j = L,V ð54Þ

with ∂p/∂v from Equation (33). By using the relationship between the

a and qk, we can compute ∂p/∂qk as

∂p=∂qk = −2λkqk= v + δ1bð Þ v + δ2bð Þ½ �: ð55Þ

Moreover, the derivatives with respect to the co-volume of the

mixture are

∂vj=∂bj = − ∂p=∂bð Þj= ∂p=∂vð Þj, for j= L,V ð56Þ

with

∂p=∂b=RT= v−bð Þ2 + a 2δ1δ2b+ v δ1 + δ2ð Þ½ �= v + δ1bð Þ v + δ2bð Þ½ �2: ð57Þ

It is obvious that, in PT-flashes, the partial derivatives of the spe-

cific volumes with respect to the vapor mole fraction are zero, that is,

∂vj=∂θ = 0, for j= L,V: ð58Þ
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For utilizing the implicit function theorem for the VT-flashes, we

define the function f ≡ pL − pV and then compute the required deriva-

tives as

∂vj=∂qjk = − ∂f=∂qjk

� �
= ∂f=∂vj
� �

, for j= L,V, ð59Þ

∂vj=∂bj = − ∂f=∂bj
� �

= ∂f=∂vj
� �

, for j= L,V, ð60Þ

where partial derivatives of f can be computed using the chain rule.

For instance, when j = L, we obtain

∂f=∂vL = ∂p=∂vð ÞL− ∂p=∂vð ÞV ∂vV=∂vL
� �

, ð61Þ

∂f=∂qLk = ∂p=∂qkð ÞL− ∂p=∂qkð ÞV ∂qVk =∂q
L
k

� �
, ð62Þ

∂f=∂bL = ∂p=∂bð ÞL− ∂p=∂bð ÞV ∂bV=∂bL
� �

, ð63Þ

along with ∂vV=∂vL = ∂qVk =∂q
L
k = ∂b

V=∂bL = θ−1ð Þ=θ . Subsequently, the
partial derivatives of specific volumes respect to the vapor mole frac-

tion are computed through

∂vj=∂θ = − ∂f=∂θð Þj= ∂f=∂vj
� �

, for j = L,V, ð64Þ

where ∂f/∂θ for the liquid and vapor phases are

∂f=∂θð ÞL =
Xm
k =1

qLk−qVk
� �

∂f=∂qVk
� �

+ bL−bV
� �

∂f=∂bV
� �

+ vL−vV
� �

∂f=∂vV
� �" #

=θ,

ð65Þ

∂f=∂θð ÞV =
Xm
k =1

qVk −qLk
� �

∂f=∂qLk
� �

+ bV−bL
� �

∂f=∂bL
� �

+ vV−vL
� �

∂f=∂vL
� �" #

= 1−θð Þ: ð66Þ

Finally, partial derivatives of the reduced parameters qk(k = 1…m)

as well as b with respect to principal variables hΔβ β =1…m+2ð Þ can be

obtained via their definitions: for all m reduced parameters

∂qk=∂h
Δ
β =

Xn
i=1

∂zi=∂h
Δ
β

� �
ŝki, ð67Þ

and for the co-volume parameter

∂b=∂hΔβ =
Xn
i=1

∂zi=∂h
Δ
β

� �
b̂i: ð68Þ

In both equations, we need the derivatives of the phase mole

fractions zi, which is equal to xi and yi for liquid and vapor

phases, with respect to the principal variables. Using the

Rachford–Rice equation and the definition of the equilibrium ratio,

we obtain

∂xi=∂h
Δ
β = di θ∂Ki=∂h

Δ
β + Ki−1ð Þ∂θ=∂hΔβ

h i
, ð69Þ

and

∂yi=∂h
Δ
β = di 1−θð Þ∂Ki=∂h

Δ
β +Ki Ki−1ð Þ∂θ=∂hΔβ

h i
, ð70Þ

where di = − zi/[1 + θ(Ki − 1)]2. The partial derivative with respect to

principal variables is expressed as follows for all K-values:

∂Ki=∂h
Δ
β =Kiŝβi , for β =1…m

∂Ki=∂h
Δ
m+1 =Kib̂i ,

∂Ki=∂h
Δ
m+2 =Ki,

ð71Þ

and for the vapor mole fraction and the index the index in the range

from β = 1 to m + 2:

∂θ=∂hΔβ =
Xn
i=1

di ∂Ki=∂h
Δ
β

� �
=
Xn
i=1

di Ki−1ð Þ2: ð72Þ

In Step 5, the logarithm of equilibrium ratios are computed from

the updated principal variables via Equation (23) and the following

convergence criterion is checked:

lnKnew
i − lnKold

i

�� ��≤ εk: ð73Þ

We propose and use εk = 10−2 for the initial SSI and εk = 10−10

for NRI, but one SSI step is usually enough for the most of cases. If

the solution is not converged, we jump back to Step 1 with the new

K-values.

4.2 | Nonisothermal flashes

In this section, the numerical solution method for the HP- and UV-

flashes are explained. The main idea is to use the most appropriate

isothermal flash (that is, PT for HP and VT for UV) and iterate its input

temperature in such a way that the specific internal energy (UV) or

enthalpy (HP) converge to the given value. The numerical procedure is

summarized in Algorithm 2 and explained in more detailed in the

following:

In Step 0, the temperature of the mixture is estimated. To provide

an initial guess at regions close to the critical point or near phase

boundaries, one can estimate the temperature by considering the mix-

ture as single-phase and then iterate the EoS for the given specific

internal energy or enthalpy.

In Step 1, we perform an isothermal flash calculation using the

method that most closely corresponds to the targeted nonisothermal

problem, that is, we perform a PT-flash in the case of the HP problem

and a VT-flash for the case of the UV-flash. It is clear that for the first

iteration these iso-thermal flashes require an estimate of the K-factors
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(it might exist from previous data otherwise those can be estimated

via Wilson's correlation as discussed above) whereas for the subse-

quent iterations, the previously computed values of K-factors can be

used to accelerate computations.

In Step 2, the internal energy of the mixture umix and its deriva-

tives with respect to the temperature, that is, cmix
v , for the case of UV-

flash and the specific enthalpy of the mixture hmix and its derivative

with respect to the temperature, that is, cmix
p , for the case of HP-flash

are computed. All derivatives are computed from the reduced vari-

ables as explained in section of thermodynamic relations for non-

isothermal flashes.

In Step 3, the estimated temperature is updated by a Newton

iteration with line search ℒ in the range of [0, 1] for the case of UV-

flashes:

Tnew = T−L û−umix
� �

=cmix
v ð74Þ

and for the case of HP-flashes:

Tnew = T−L ĥ−hmix
� �

=cmix
p ð75Þ

Using the line search L ensures global convergence of the algo-

rithm and renders the temperature initial guess less important. Subse-

quently, the relative error is computed, that is, εr = ĥ−hmix
� �

=ĥ
��� ��� or

εr = û−umix
� �

=û
�� �� for HP or UV-flashes, respectively. Steps 1–3 are

repeated until the convergence criterion is satisfied, for the calcula-

tions presented in this article until εr<10
−10.

5 | NUMERICAL RESULTS

We have developed a Fortran implementation of the proposed flash

algorithms for the four discussed isothermal and nonisothermal flash

calculations, and tested it for a large number of different multi-

component mixtures and different cubic EoS. The selected represen-

tative cases that we will discuss in the following use the PR EoS and

the values for the critical temperatures, critical pressures and acentric

factors that are listed in Table 1.

5.1 | Convergence behavior and robustness

Two mixtures with specified compositions including a synthetic

condensate gas and synthetic oil are selected in order to validate

and evaluate the performance of proposed flash algorithms. The

first fluid is the Y8 mixture introduced by Yarborough.31 It is a six-

component synthetic gas condensate of normal alkanes including

80.97 C1, 5.66 C2, 3.06 C3, 4.57 nC5, 3.30 nC7, and 2.44 nC10

mole percents with a zero binary interaction matrix. With our

reduction method, the latter results in only three governing equa-

tions for the reduced variables. The second fluid is the MY10 mix-

ture introduced by Metcalfe and Yarborough.32 It is a ten-

component mixture with overall molar fractions of 0.35 C1, 0.03

C2, 0.04 C3, 0.06 nC4, 0.04 nC5, 0.03 nC6, 0.05 nC7, 0.05 nC8,

0.30 nC10, and 0.05 nC14. For this mixture, all binary interaction

coefficients are zero except those between the methane and the

other components as reported by Firoozabadi and Pan.33 This

sparse binary interaction matrix results in three nonzero eigen-

values λ1 = 9.9574, λ2 = 0.0707, and λ3 = − 0.0280.

In Figure 1, the phase diagrams for the two mixtures with con-

tours of vapor mole fractions are shown. These diagrams are gener-

ated without any convergence problems of the blind PT-flashes over

a fine Cartesian grid with 800 × 800 nodes for the pressure - temper-

ature range shown in the figure. This very fine grid is selected in order

to check the applicability of the PT-flash algorithm at many different

conditions very quite close to the phase boundaries and the critical

point, where other methods may converge either very slowly or not

at all.

Next, VT-flashes have been conducted along isochores drawn on

the phase diagram. Selected isochoric lines are drawn in Figure 1 to

show the pressure evolution during constant volume heating or

cooling of a typical condensate gas or synthetic oil. The corresponding

vapor mole fraction curves shown in Figure 2 were computed using

the proposed VT-flash algorithm with the starting temperature of 200

(K) and a step size of 1 (K) up-to the saturation point. The retrograde

behavior of MY10 for specific volumes lower than or equal to 0.2874

(L/mol) is an interesting phenomenon: by increasing the temperature

from 200 (K) the vapor mole fraction first increases with temperature

and then decreases to zero. We verified that the results agree with

our previous implementation of Michelson's methods3 and that the

results of the VT-flashes are the same as those obtained with the PT-

flashes up to machine round-off precision.

The performance of the isothermal and nonisothermal flash algo-

rithms is investigated for six algorithmically challenging points (A–F)

marked in the phase diagrams of the mixtures, see Figure 1. The over-

all thermodynamic properties at these points are listed in Table 2 and

Algorithm 2

UV and HP flash calculations

Result: Equilibrium temperature

Step 0: Estimate the initial value of temperature;

while convergence criteria not met do

Step 1: Execute one VT-flash or PT-flash according to

the availability of the specific volume or pressure and

the latest available temperature;

Step 2: In case of UV-flash, compute the specific inter-

nal energy and cv of the mixture, or in case of HP-flash,

compute the specific enthalpy and cp of the mixture;

Step 3: Update the temperature and check the conver-

gence criteria;

end
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results for the molar composition of the vapor and liquid in equilib-

rium are shown in Table 3. These values are equal for all types of flash

calculations.

The evolution of the Euclidean residual norm for the PT-flash cal-

culations at points A (198.1 [bar], 295.4 [K]), B (134.5 [bar], 335.2 [K]),

and C (194.8 [bar], 375.3 [K]) for the Y8 mixture, and at points D

TABLE 1 Critical properties and
acentric factors of components used in
this study

Name Tc (K) pc (bar) ω (−) Name Tc (K) pc (bar) ω (−)

C1 190.6 45.4 0.008 nC6 507.5 30.1 0.305

C2 305.4 48.2 0.098 nC7 540.3 27.4 0.305

C3 369.8 41.9 0.152 nC8 568.8 24.9 0.396

nC4 425.2 37.5 0.193 nC10 617.9 21.0 0.484

nC5 469.6 33.3 0.251 nC14 691.9 15.2 0.747

F IGURE 1 Phase diagrams for the Y8 and MY10 mixtures including isochores and the states selected for the detailed analysis of the
convergence of the flash algorithms [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Vapor mole fraction curves as a function of temperature generated by the VT-flash algorithm corresponding to the lines shown in
Figure 1 [Color figure can be viewed at wileyonlinelibrary.com]
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(104.9 [bar], 509.1 [K]), E (75.4 [bar], 566.6 [K]), and F (32.7 [bar],

566.6 [K]) for the MY10 mixture are plotted in Figure 3. For all points,

one SSI has been carried out on the initial K-factors obtained from

Wilson's correlation before switching to the NRI. Results indicate that

PT-flash algorithm requires about 6 − 8 iterations for the points at

the heart of the two-phase domain, near the phase boundaries, and

close to the critical point.

The convergence of the residuals of VT-flash calculations are

shown in Figure 4 for the points A (0.0806 [L/mol], 295.4 [K]), B

(0.1533 [L/mol], 335.2 [K]), and C (0.1273 [L/mol], 375.3

[K]) corresponding to the marked points on the phase diagram of the

Y8 mixture, and for the points D (0.2281 [L/mol], 509.1 [K]), E

(0.3847 [L/mol], 566.6 [K]), and F (1.0596 [L/mol], 563.5

[K]) corresponding to the tagged points on the phase diagram of the

MY10 mixture. Initial values for the K-factors were obtained from

Wilson's correlation using a pressure obtained from the state equation

by the overall composition and given temperature and volumes, that

is, p = {188.8, 119.3, 193.2, 95.5, 74.1, 33.2} [bar] for points {A–F}. As

for the PT-flashes, one initial SSI was executed before switching to

NRI. The VT-flash results show the same excellent convergence

behavior as observed for the PT-flashes, that is, both algorithms have

optimum quadratic convergence and require only very few iterations,

with only two iterations difference between points close to and far

from the extreme conditions.

Figure 5 shows the convergence of the relative errors for the

blind HP-flash calculations at points A (−94.704 [kJ/mol], 198.1 [bar]),

B (−90.637 [kJ/mol], 134.5 [bar]), and C (−87.896 [kJ/mol], 194.8

[bar]) for the condensate gas and at points D (−142.741 [kJ/mol],

104.9 [bar]), E (−124.941 [kJ/mol], 75.4 [bar]), and F (−120.734

[kJ/mol], 32.7 [bar]) for the synthetic oil. We initialize the iteration

TABLE 2 Total mixture properties of the test fluids

Properties (unit)

Y8 mixture MY10 mixture

Point A Point B Point C Point D Point E Point F

Temperature (K) 295.40000 335.20000 375.30000 509.10000 566.60000 563.50000

Pressure (bar) 198.10000 134.50000 194.80000 104.90000 75.400000 32.700000

Volume (L/mol) 0.0805680 0.1533446 0.1273056 0.2280903 0.3846589 1.0596464

Enthalpy (kJ/mol) −94.704181 −90.636841 −87.895981 −142.74142 −124.94053 −120.73426

Int. energy (kJ/mol) −96.300235 −92.699326 −90.375895 −145.13409 −127.84086 −124.19930

TABLE 3 Molar composition of vapor and liquid in equilibrium at the states selected for the detailed analysis of the convergence of the flash
algorithms

Y8

Point A Point B Point C

Liquid Vapor Liquid Vapor Liquid Vapor

C1 0.74744792 0.84906008 0.47658529 0.87746005 0.60400388 0.81762325

C2 0.06057858 0.05408446 0.06296756 0.05530475 0.05844115 0.05652908

C3 0.03589832 0.02725004 0.05092726 0.02646516 0.03965730 0.03025112

nC5 0.06266242 0.03497518 0.13974651 0.02656967 0.09067889 0.04396745

nC7 0.05032462 0.02204618 0.13898012 0.01144221 0.09260111 0.03070421

nC10 0.04308814 0.01258406 0.13079327 0.00275817 0.11461768 0.02092489

MY10

Point D Point E Point F

Liquid Vapor Liquid Vapor Liquid Vapor

C1 0.32277170 0.65714256 0.27245022 0.42483512 0.07783597 0.38155198

C2 0.02889804 0.04243037 0.02539431 0.03444446 0.00953245 0.03237280

C3 0.03944780 0.04622895 0.03581565 0.04403788 0.01633421 0.04274357

nC4 0.06033169 0.05625849 0.05673424 0.06315144 0.03147630 0.06330675

nC5 0.04080501 0.03091922 0.03964769 0.04033998 0.02627885 0.04159069

nC6 0.03095915 0.01918057 0.03106314 0.02897407 0.02441470 0.03064750

nC7 0.05206707 0.02668295 0.05397352 0.04616557 0.05015849 0.04998163

nC8 0.05247517 0.02207942 0.05603950 0.04417191 0.06088237 0.04873841

nC10 0.31843114 0.09209178 0.36069877 0.24142602 0.52938744 0.27340711

nC14 0.05381324 0.00698568 0.06818296 0.03245354 0.17369922 0.03565955
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with a temperature of 250 [K] for Y8 and 400 [K] for MY10, far away

from the true solution, in order to test the robustness of the non-

isothermal flashes at extreme conditions. As the convergence plots

show, they rapidly converge within very few iterations even with a

poor initial temperature guess.

Figure 6 shows results for the blind UV-flash at the points A

(−96.300 [kJ/mol], 0.0805 [L/mol]), B (−92.699 [kJ/mol], 0.1533

[L/mol]), and C (−90.376 [kJ/mol], 0.1273 [L/mol]) for Y8 and at the

points D (−145.134 [kJ/mol], 0.2281 [L/mol]), E (−127.841 [kJ/mol],

0.3847 [L/mol]), and F (−124.199 [kJ/mol], 1.0596 [L/mol]) for the

MY10 mixture. As before, the initial temperature guess is 250

(K) for the Y8 gas condensate and 400 (K) for the MY10 oil mixture.

The initial values for the pressure are the same as used for the VT-

flash at these points, see above. We observe rapid convergence

within 4–7 iterations to within a relative error of 10−8. For the most

of engineering applications, it is, however, not necessary to know

the temperature with such a high precision and a much larger error,

say 0.1 (K) can be tolerated. The algorithms for both nonisothermal

flashes yield temperature differences of less than 0.1 (K) in just

three iterations.

F IGURE 3 PT-flash convergence for the Y8 and MY10 mixtures at the points marked in Figure 1 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 VT-flash convergence for the Y8 and MY10 mixtures at the points marked in Figure 1 [Color figure can be viewed at
wileyonlinelibrary.com]
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5.2 | Computational time

In this section, we analyze the computational performance of the pro-

posed flash algorithms for different mixtures and demonstrate the

improved efficiency resulting from using a reduction method and

direct VT-flashes instead of PT-flashes in the inner iteration loop of

UV-flashes. For a fair quantitative evaluation, the computational time

required for the new flash algorithms that we propose in this article is

compared with the highly optimized implementation of a conventional

method that was developed by Matheis and Hickel34 for the large-

scale turbulence-resolving CFD simulations of transcritical fuel injec-

tion. Both algorithms use a Newton method to achieve fast conver-

gence. The calculations are performed on an Intel Xeon W-2123 CPU

at 3.60 GHz and the Intel Fortran compiler was used.

The test fluid is a mixture of ethane and normal heptane. The

phase diagrams of this binary mixture for various molar compositions

are shown in Figure 7. To study the effect of the component number

in the mixture, we have added pseudo-components with properties

identical to ethane and normal heptane and adjust the mole fractions

in a way that the total composition remains constant. First, PT-flash

F IGURE 5 HP-flash convergence for the Y8 and MY10 mixtures at the points marked in Figure 1 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 UV-flash convergence for the Y8 and MY10 mixtures at the points marked in Figure 1 [Color figure can be viewed at
wileyonlinelibrary.com]
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calculations were carried out for a mixture with 26.54% ethane and we

record the total computational time 100 × 100 states in the pressure–

temperature range that is enclosed by the black box in Figure 7. Then,

the mixture internal energy and specific volume that were computed

by the PT-flashes are used for executing the corresponding UV-flashes.

In order to assess the performance of the proposed UV-flash at condi-

tions that are similar to what we typically encounter in CFD simula-

tions, initial guesses of pressure and temperature were computed by

adding random perturbations to the true values, that is:

Tguess = Ttrue + rΔT, ð76aÞ

pguess = ptrue + rΔp, ð76bÞ

where r is a random number generated in the range [−0.5,0.5]. The

perturbation amplitudes ΔT and Δp are set to 20 (K) and 20 kPa,

which corresponds to the maximum change that we can expect

between two subsequent time steps in CFD simulations.

The results are shown in Figure 8. The computational time for the

current PT-flash algorithm is always lower than the highly optimized ref-

erence method. The difference becomes more significant as the number

of components is increased, which shows the importance of reduction

methods for the both iso-thermal and nonisothermal flashes. Surpris-

ingly, we also measure a performance gain for the two-component mix-

ture, where the number of variables is not reduced by the new method.

In this case, the reduction method acts as a preconditioner and reduces

the number of required iterations for the PT-flash. Furthermore, it

should be noted that the computational performance the UV-flash

based on the VT-flash is much less sensitive to the amplitude of the

imposed pressure perturbation Δp than the conventional method based

on the PT-flash. For instance, the conventional method becomes more

F IGURE 7 Phase diagram of binary mixtures of n-heptane and
ethane at various molar compositions computed by the proposed
algorithm. The symbols denote experimental reference data for the
dew-point and bubble-point lines.35,36 The black box encloses the
pressure–temperature domain that was used for measuring the
computational performance of the flash algorithms [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 8 Computational time for PT-flashes and UV-flashes versus number of mixture components. Shown is the total CPU time for
100 × 100 flash calculations in the part of the phase diagram highlighted in Figure 7 [Color figure can be viewed at wileyonlinelibrary.com]
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than five times slower for Δp = 400 kPa, whereas the overall time

needed for the new method remains unchanged.

6 | DISCUSSION AND CONCLUSIONS

This work was motivated by the need for computationally efficient and

very robust vapor–liquid phase-split calculations in turbulence-resolving

CFD simulations of high-pressure liquid-fuel injection and reacting tran-

scritical multiphase flows in modern energy conversion systems, such as

rocket engines, gas turbines and jet engines. Such simulations require

typically 1010–1016 flash calculations for given overall specific internal

energy, volume and composition and unknown pressure, temperature,

volume fractions and phase compositions (isoenergetic-isochoric flash—

UV-flash). The standard methods for such applications that we used in

the past3,34 are based on a nested PT-flash and suffer from poor condi-

tioning near the spinodal and coexistence curves and polynomial growth

of the computational cost in terms of the number of mixture compo-

nents. To this end, and building upon and extending the work of

Mikyška and Firoozabadi20 and Nichita and Graciaa,19 we have devel-

oped a new multi-component reduction method for direct PT-flash and

VT-flash calculations based on the formulation of phase equilibrium con-

ditions in terms of the molar specific value of Mikyška and Firoozabadi's

volume function and a corresponding adaptation of Nichita and

Graciaa's reduction method. The computational cost of solving the PT-

flash and VT-flash in terms of the new reduced set of variables is almost

independent of the number of components and the point in the phase

diagram. The reduced-space Newton–Raphson iteration, using the exact

analytical Jacobian matrix, results in optimum quadratic convergence in

very few iterations. We further showed that the nonisothermal UV and

HP flashes are efficiently solved through univariate residual minimization

with the naturally corresponding isothermal flash (PT-flash for HP-flash

and VT-flash for UV-flash) and the specific heat capacity at constant

pressure (for HP-flash) or at constant volume (for UV-flash) as exact

Jacobian. We have thoroughly verified the reliability and efficiency of

the algorithmic implementation. The computational results show a con-

siderable speed-up compared to conventional methods, as well as

improved robustness and better convergence behavior near the spinodal

and coexistence curves of multi-component mixtures, where the

preconditioning by the reduction method is most effective.
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