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Abstract. Terrestrial microwave links are increasingly being
used to estimate path-averaged precipitation by determining
the attenuation caused by rainfall along the link path, mostly
with commercial microwave links from cellular telecommu-
nication networks. However, the temporal resolution of these
rainfall estimates and the method to derive them are often de-
termined by the temporal sampling strategy that is employed
by the mobile network operators. Currently, the links are
most often sampled at a temporal resolution of 15 min with
a recording of the minimum and maximum values, while
more recently, a form of instantaneous sampling with pos-
sible intervals up to 1 s has also been set up. For rainfall re-
search purposes, often high temporal resolutions in combi-
nation with averaged values are preferred. However, it is un-
certain how these various temporal sampling strategies affect
the estimated rainfall intensity. Here we aim to understand
how temporal sampling strategies affect the measured rain-
fall intensities using microwave links. To do so, we use data
from three collocated microwave links, two 38 GHz and one
26 GHz, sampled at 20 Hz and covering a 2.2 km path over
the city of Wageningen, the Netherlands. We aggregate the
microwave link power levels to multiple time intervals (1 s
to 60 min) and use a mean, instantaneous, and minimum and
maximum value to characterize the signal. Based on the ag-
gregated data, we compute rainfall intensities and compare
these with 20 Hz rainfall estimates, such that we isolate er-
rors and uncertainties caused by the sampling strategies from
instrumental effects, such as different biases between instru-
ments and representativeness errors. In general, our results
show that for all sampling strategies, an increase in sampling
time interval reduces the performance of the rainfall esti-

mates, which especially holds for the instantaneous sampling
strategy. Even the mean sampling strategy, which generally
performs best of all strategies, is sensitive to this reduction in
temporal resolution and could lead to significant underesti-
mations. This sensitivity of the mean sampling to the tempo-
ral resolution seems to be largely affected by the non-linear
relation between attenuation and rainfall. The min–max sam-
pling strategy is mostly prone to minor underestimations or
large overestimations of the path-averaged rainfall intensi-
ties. Moreover, our results, including a comparison with the-
oretical events, show that the attenuation due to wet anten-
nas not only affects the comparison between the rainfall es-
timates obtained with a microwave link and another refer-
ence instrument but also has a significant influence on the
performance of the rainfall retrieval algorithm, especially for
devices with relatively long duration of the wet-antenna at-
tenuation combined with the longer sampling time intervals.
Overall, this study demonstrates the effect a selected sam-
pling strategy can have on rainfall intensity estimates using
(commercial) microwave links.

1 Introduction

Accurate rainfall measurements are essential in many fields
of application. For example, water resources management
uses rainfall measurements for flood forecasting (e.g. Mag-
gioni et al., 2018), a major part of global agriculture is de-
pendent on rain (Molden, 2013) and urban runoff estimates
are highly dependent on rainfall estimates (e.g. Berne et al.,
2004; Cristiano et al., 2017; Niemczynowicz, 1988). Overall,
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these practices would benefit from increasing the spatial and
temporal resolution of rainfall measurements.

Currently, dedicated rainfall measurement techniques have
some important drawbacks. Ground-based point measure-
ment devices, such as rain gauges or disdrometers, are often
able to capture the temporal dynamics of precipitation but do
not represent the spatial character of precipitation (e.g. Berne
et al., 2004; Sun et al., 2018). Moreover, the placement of
the devices can decrease the measurement performance, for
example, through the wind causing an undercatch (e.g. Pol-
lock et al., 2018; Raupach and Berne, 2015). Weather radars
do provide the desired spatial rainfall information combined
with a sufficient temporal resolution. However, radars mea-
sure higher up in the atmosphere and indirectly retrieve rain-
fall, introducing uncertainty about the actual amount of pre-
cipitation near the surface (Berne and Krajewski, 2013). Ad-
ditionally, both methods are not available on a global scale,
due to costs and maintenance. On a global scale, including
the oceans, satellites provide rainfall information, but for hy-
drometeorological applications, these can come at too low
a spatial and temporal resolution combined with uncertainty
and bias that are too high, partly dependent on, for example,
terrain complexity, aridity and season (Maggioni et al., 2018;
Rios Gaona et al., 2017). Additionally, satellite rainfall prod-
ucts, and especially merged products, have a relatively long
latency (e.g. IMERG has about a 4 h latency for the earliest
run; NASA, 2024).

Another source of spatial rainfall estimates could come
from telecommunication networks, a so-called opportunis-
tic sensing technique. These networks consist of commer-
cial microwave links (CMLs), the rain-induced attenuation
of the electromagnetic signal of which can be used to com-
pute rainfall intensities (e.g. Chwala and Kunstmann, 2019;
Messer et al., 2006; Leijnse et al., 2007b; Uijlenhoet et al.,
2018). These CMLs are near-surface radio connections used
in cellular telecommunication networks. Thus, as a major ad-
vantage, the infrastructure required to spatially measure rain-
fall with these CMLs already exists. Furthermore, the rain-
fall estimates obtained with a single link are representative
of the entire path, overcoming the drawbacks of point mea-
surements. As shown by de Vos et al. (2018), CMLs are espe-
cially useful when considering spatial aggregation scales that
are too large to cover entirely with point measurements. Also,
for many applications, spatial rainfall estimates on scales on
the order of a couple of kilometres are more relevant than
point measurements.

Moreover, rainfall measurements by a CML network can
be beneficial in combination with other rainfall measure-
ments and are increasingly being used in hydrometeorologi-
cal applications. For example, Brauer et al. (2016) used CML
rainfall estimates as input in a rainfall–runoff model for low-
land catchments and showed, in general, that these rainfall
estimates are very suitable as input for hydrological appli-
cations. van het Schip et al. (2017) showed the complemen-
tary potential of CML and satellite data by determining wet

and dry periods using the satellite data, while Hoedjes et
al. (2014) proposed to use these data sources for a concep-
tual flash flood early warning system in Kenya. Fencl et al.
(2013) and Pastorek et al. (2023) used CMLs as input data
for an urban drainage model and demonstrated the benefits of
the relatively high spatial resolution on these models. Also,
Imhoff et al. (2020) showed that nowcasting rainfall events
could be performed using CML networks, with good results
when compared to weather radar precipitation estimates and
nowcasts. This is especially promising for regions without
weather radars. Moreover, the number of CMLs operating
worldwide in the 6–56 GHz range, which are most useful for
rainfall estimation, is expected to grow from 4.6 million in
2021 to 6 million in 2027 (ABI research, 2021). Overall, this
shows the potential of using CML networks for rainfall mea-
surements in many societally relevant hydrometeorological
applications.

In general, the attenuation of a microwave link signal can
be converted to rainfall intensity using (Atlas and Ulbrich,
1977; Olsen et al., 1978)

R = akb , (1)

where R is the rainfall intensity (mm h−1), k is the specific
attenuation (dB km−1), and a and b are coefficients depend-
ing on both signal characteristics (e.g. frequency and po-
larization) and precipitation characteristics (e.g. drop size
distribution) (Jameson, 1991). For frequencies typically ap-
plied in CML networks, b is close to 1; therefore signal
attenuation and rainfall intensity are nearly proportional.
Messer et al. (2006) and Leijnse et al. (2007b) showed that
the commercially employed microwave links could also be
used to measure rainfall intensities, in Israel and the Nether-
lands, respectively. Since then, studies have been performed
in Europe (Czech Republic, France, Germany, Italy, Lux-
embourg, Sweden and Switzerland), Africa (Burkina Faso,
Kenya and Nigeria), South America (Brazil), Asia (Lebanon,
Pakistan and Sri Lanka) and Oceania (Australia and Papua
New Guinea) (see Chwala and Kunstmann, 2019, for a par-
tial overview). Several open-source packages exist for rain-
fall retrieval (and mapping) from CML data. One of these is
RAINLINK (Overeem et al., 2016a). Chwala et al. (2016)
have developed an algorithm to extract real-time data from
CML networks and, based on these data, determined spatial
rainfall estimates (Graf et al., 2020). Habi and Messer (2021)
used a recurrent neural network to determine rainfall intensi-
ties using CML network data.

However, using these CML networks to estimate precip-
itation, the temporal resolution of these estimates is often
bound to the temporal sampling strategy employed by the
mobile network operator, which solely uses the information
on the link signal to ensure the functioning of the network.
Moreover, not all mobile network operators store the same
variables describing the link signal in their network manage-
ment system. Minimum and maximum values (and occasion-
ally mean and/or instantaneous values) are most commonly
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measured with a temporal resolution of 15 min. Additionally,
the method developed by Chwala et al. (2016) allows us to
actively select any instantaneous sampling method up to 1 s
intervals for these networks and is specifically designed to
estimate rainfall intensities, in contrast to using the data with
the sampling strategy chosen by the network operators. For
research purposes, data with a high temporal resolution are
often preferred; therefore the temporal sampling resolution is
higher than the dominant timescales of rainfall. Previously,
Leijnse et al. (2008) showed that different sampling strate-
gies together with non-linearities in the R–k relationship are
the dominating errors when estimating rainfall. For this anal-
ysis, Leijnse et al. (2008) used microwave link simulations
based on radar data with a 16 s interval and only studied the
effect for 15 min sampling strategies. Yet, it is uncertain how
larger variations in sampling strategies affect the computed
amount and intensity of rainfall together with the use of ac-
tual microwave link data.

Here, we aim to understand how temporal sampling strate-
gies affect the measured rainfall intensities. To do so, we
compare 20 Hz rainfall estimates obtained with 38 and
26 GHz microwave links with rainfall estimates computed
with various temporal sampling strategies. One of these links
has formerly been employed in an operational CML network.
Ultimately, this allows us to isolate errors and uncertainties
caused by the sampling strategy from instrumental effects.
As a consequence of only having one sampling strategy set
by the mobile network operators, these errors and uncertain-
ties usually cannot be separated due to the comparison of
different instruments, which represent different measurement
volumes combined with different measurement uncertainties.
Thus, using this method, we are able to estimate the actual
errors and uncertainties due to the sampling strategy. We do
so for commonly selected sampling strategies (e.g. a min-
imum and maximum intensity per 15 min) as well as sam-
pling strategies that are selected less often or not at all, which
allows us to systematically illustrate the sensitivity of the
measured rainfall intensities to the various sampling strate-
gies. Overall, this could help to estimate the effects of the
strategies set by mobile network operators or help to choose
an optimal strategy when estimating rainfall intensities using
CMLs.

2 Methods

2.1 Instrumentation

In this study, we use data published online from van Leth et
al. (2018a), who reported on a measurement campaign (see
van Leth et al., 2018b) using three microwave links along
a 2.2 km path over the city of Wageningen, the Netherlands
(Fig. 1). In this section, we describe the essential information
required for understanding our analysis. For a more elaborate
description, we refer the reader to van Leth et al. (2018a).

We use data from a Nokia Flexihopper transmitting at
38.2 GHz with a bandwidth of 0.9 MHz, which was formerly
part of the cellular communication network operated by T-
Mobile NL, and two links built by Rutherford Appleton Lab-
oratories (RAL) transmitting at 26.0 and 38.0 GHz, with a
receiving bandwidth of 4 kHz and transmitting bandwidth of
much less than 1 kHz. All the microwave link signals are
sampled at 20 Hz using logarithmic detectors. The employed
frequencies for the Nokia and RAL 38 GHz links are close
and hence exhibit similar electromagnetic characteristics but
do not interfere with each other. However, these devices were
found to give a different response, likely due to the inter-
nal hardware in the Nokia link being designed differently,
reducing the high-frequency fluctuations in the signal, while
the RAL link has a different antenna cover than the Nokia
link, which affects the distribution of water remnants on the
cover (see van Leth et al., 2018a). On the RAL cover, water
droplets form once it gets wet, which induces a more signif-
icant attenuation of signal intensity than the water film that
forms on the Nokia cover after getting wet. Eventually, these
wet antennas cause an additional attenuation of the signal,
which causes an overestimation of rainfall intensities follow-
ing the R–k relation if not accounted for. The RAL 26 GHz
link is less prone to wet-antenna attenuation than the RAL
38 GHz link.

In this paper we only consider horizontal polarization,
since for both the Nokia and the RAL 26 GHz links only this
polarization is available. For the RAL 38 GHz link, both hor-
izontal and vertical polarized data are available, but we only
show results for horizontal polarization, due to the insignif-
icant differences between these polarizations in our results
and to make a fair comparison with the other devices. Re-
sults for the vertically polarized signal are included in the
Supplement.

In this study, we use the disdrometer data to distinguish
wet and dry periods and filter out snow, hail, graupel and
mixed-precipitation events when comparing the rainfall in-
tensities between the 20 Hz data and other temporal sam-
pling steps. Note that it is not our aim to compare the rain-
fall intensities from the disdrometers with the rainfall esti-
mates from the microwave links because we aim to under-
stand the influence of the temporal sampling strategies on es-
timated rainfall intensities. Along the 2.2 km path, five OTT
Parsivel laser disdrometers were installed in order to compute
path-averaged rainfall estimates, of which we also obtained
the post-processed rainfall intensities and precipitation types,
i.e. to remove non-liquid precipitation, from van Leth et al.
(2018a). The disdrometers measured raindrop size distribu-
tions every 30 s and were post-processed using the method of
Raupach and Berne (2015), which corrects for instrumental
biases. van Leth et al. (2018a) compared rainfall estimates of
the microwave links and the disdrometers and show large ad-
ditive and multiplicative biases for all instruments. The RAL
links exhibit an additive bias around 2.2 mm h−1, while the
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Figure 1. Map of Wageningen, with the path of the links in red. The receiving antennas are at the end labelled “Forum”; the transmitting
antennas are positioned at the end labelled “Biotechnion”. The yellow stars indicate the position of disdrometers along the path. At each
disdrometer location, one disdrometer is located, except at Forum, which has two disdrometers placed next to each other. Figure redrawn
after van Leth et al. (2018a) (© Google Maps).

Nokia link has an additive bias of 0.6 mm h−1. The multi-
plicative bias for all instruments ranges between 1.5 and 1.7.

The microwave links were operational over a period from
22 August 2014 to 8 January 2016, but not all disdrometers
were operational during the entire period. Therefore, we use
the data from the start of April 2015 to the end of December
2015, so that we have fully operational instruments except
for a power outage from 7 to 25 August 2015. By using all
the disdrometers along the path (instead of a single disdrome-
ter), we decrease the uncertainty in the wet–dry classification
and incorrect removal of other precipitation types, such that
errors and uncertainties arising in our results are most likely
to originate from the microwave link rainfall estimates.

To identify relevant precipitation climatologies for our
study area, we examine the disdrometer data. Note that the
data presented pertain to a 2.2 km path and do not necessarily
reflect exactly the same climatology as for the whole country
or region. This reveals that the average duration of a pre-
cipitation event longer than 5 min in our dataset is roughly

30 min, with a median duration of 12 min (Fig. 2), demon-
strating a positively skewed distribution, with many short
rainfall events and relatively few longer rainfall events. In
this figure, two contiguous rainy periods, which are sepa-
rated by a single 30 s dry time interval, are counted as sepa-
rate events and not combined into a single event. To refrain
from making any assumptions about if a rainfall event is con-
tinuous or not, we decided to use a single time interval in
the available disdrometer data as the threshold. The rainfall
intensities show, in general, higher peak intensities during
summer than winter. Due to the power outage between 7 and
25 August, the data for that month could be less reliable.

2.2 Rainfall retrieval from microwave links

To identify the influence of temporal sampling on rainfall es-
timates, we compare rainfall intensities obtained using var-
ious sampling strategies with high-resolution rainfall esti-
mates. We do this for the three devices, sampling a mean, in-
stantaneous, and minimum and maximum (“min–max strat-
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Figure 2. Box plots describing the duration of rainfall events per
month in 2015 (a) and all rainfall intensities per month in 2015 (b).
In the box plots, orange is the median, and green is the mean du-
ration or intensity. The box edges represent the first and third quar-
tiles, and the whiskers are the 10th and 90th percentiles. The val-
ues are computed using disdrometers installed along the 2.2 km
microwave link path. In the duration statistics, events shorter than
5 min are excluded. For the rainfall intensities, all rainfall intensities
larger than 0.1 mm h−1 are used.

egy”) value per time interval, which mimics various temporal
sampling strategies by network operators. As sampling time
intervals, we use 1 s, 30 s, 1 min, 5 min, 15 min, 30 min and
60 min. As reference data, we use rainfall intensities obtained
using the 20 Hz sampling of the same device, in order to be
able to solely study the influence of the sampling strategies
on the measured rainfall intensities.

We use a relatively straightforward method to compute the
rainfall intensities, to limit the effect of many parameters in
the algorithm. The rainfall measurements are done in a sim-
ilar fashion to van Leth et al. (2018a) combined with the
method of Overeem et al. (2016a) for the min–max sampling
strategy. This means no corrections on the rainfall estimates,
for example, for wet-antenna attenuation. The retrieval algo-
rithm is as follows:

1. Aggregate microwave link power levels to the mean,
minimum, maximum and instantaneous value of time
intervals: 1 s, 30 s, 1 min, 5 min, 15 min, 30 min and
60 min. For instantaneous sampling strategies, we chose
to use the last value per time interval to estimate the
rainfall intensity for the entire time interval, similar to
data provided by mobile network operators.

2. For each sampling strategy, including the original 20 Hz
data, determine the baseline signal power level for each
interval by selecting the median power level during
all dry periods in the preceding 24 h (Overeem et al.,
2016a). In the next step, this baseline power level is
used to determine the rain-induced attenuation. For the
min–max sampling strategy, the baseline power level is
obtained by averaging the maximum and minimum re-
ceived power levels, assuming a symmetrical distribu-
tion of these values, and subsequently computing the
median of the preceding 24 h. Of the previous 24 h, at

least 1 h should be dry in order to determine a baseline.
If all of these time intervals indicate rain, a baseline can-
not be determined, and as such, rain intensities cannot
be determined. The selection of dry periods is based on
disdrometer data. This method of baseline determina-
tion is based on Overeem et al. (2011).

3. Based on the power and baseline levels, compute the
specific attenuation of the signal k (dB km−1),

k =
Pref−P

L
, (2)

in which Pref is the baseline power level, P is the re-
ceived power levels (both in dBm) and L is the path
length (km). For the min–max sampling, the specific at-
tenuation is calculated for both the minimum and max-
imum attenuation using the same baseline for both.

4. Convert the specific attenuation to rainfall intensity, us-
ing Eq. (1). The values for the parameters a and b are
the same as applied by van Leth et al. (2018a) (Ta-
ble 1). They obtained these values from non-linear least-
squares fits of disdrometer-derived rainfall intensities
and specific attenuations at the frequencies employed
by the microwave links combined with scattering com-
putations. For the min–max sampling, the rainfall inten-
sities using the minimum and maximum attenuation are
calculated separately and are combined into one rainfall
intensity in step (6). These values differ from the rec-
ommendations by ITU-R (2005).

5. Set the computed rainfall intensities during dry periods
(based on disdrometer data) to zero. Since we treat the
data as if they originate from a CML network, this im-
plies that if it rains for part of a time interval, the whole
interval is seen as wet. Also, for the comparison of all
rainfall intensities, we remove snow, hail, graupel and
mixed-rain events from the data based on the disdrome-
ter data, since these have a different effect on the signal
in comparison to rain.

6. For the min–max sampling strategy, combine the rain-
fall intensities obtained using the minimum attenuation
and maximum attenuation following

R = αRmax+ (1−α)Rmin , (3)

in which R is the estimated mean (based on the min-
imum and maximum rainfall intensities) rainfall in-
tensity, Rmax and Rmin are the rainfall intensities de-
rived from the maximum and minimum attenuations
(mm h−1), and α is the parameter determining the con-
tribution of the minimum and maximum received power
levels. In this study, we use an optimized α and a non-
optimized α of 0.33, as determined for an operational
microwave link network in the Netherlands by Overeem
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et al. (2011). The optimization of α is done for each de-
vice and sampling strategy by comparing the rainfall in-
tensities obtained through min–max sampling per time
interval with the 20 Hz rainfall intensities and selecting
the α for which the root mean square error (RMSE) is
lowest in combination with an absolute mean bias er-
ror (MBE) smaller than 0.02 mm h−1. Overeem et al.
(2011) used the residual standard deviation for this,
which is the same as the RMSE if the MBE is equal to
zero. For this computation, values of α ranging between
0 and 1 with intervals of 0.001 are used. The 20 Hz in-
tensities are averaged to the same time interval as the
min–max sampled intensity. The RMSE is computed as

RMSE=

√∑
(Robs−R20 Hz)

2

n
, (4)

in which Robs is the observed rainfall intensity
[mm h−1] with the sampling strategy, R20 Hz the refer-
ence rainfall intensity with the 20 Hz sampling strategy
and n the number of observations. MBE is computed as

MBE=
∑
(Robs−R20 Hz)

n
. (5)

Note that, unless specifically mentioned, when we re-
fer to min–max sampling strategies in the text and fig-
ures, we refer to the optimized version of this sampling
strategy. This way, we prevent introducing an additional
source of error and uncertainty into the study.

7. To compare the obtained rainfall intensities for the
20 Hz sampling with the other time intervals, we apply
a linear regression in which the 20 Hz estimates are the
independent variable, and the estimates from the other
sampling strategies are the dependent variable. To do
so, again we use the 20 Hz rainfall intensities averaged
to the various time intervals. We compute the MBE;
RMSE; r2, representing the fraction of explained vari-
ance; and the slope of the fit (without intercept). r2 is
computed as

r2
= 1−

∑
(Robs−R20 Hz)

2∑(
Robs−Robs

)2 , (6)

in which Robs is the average observed rainfall intensity.

Note that averaging the 20 Hz rainfall estimates is not
the same as the mean sampling, since the averaging
occurs in a different step during the rainfall intensity
computation, and the R–k relation is non-linear (Eq. 1).
This causes the rain intensities obtained using averaged
attenuation to be different compared to the averaged
rainfall intensities. For example, if a rain event takes
place exactly for 30 s in an hour with an attenuation
of 10 dB km−1 (i.e. on average 0.083 dB km−1 for an

Table 1. Values for the a (mm h−1 dB−b kmb) and b (–) parameters
in Eq. (1) specifically derived for the dataset from van Leth et al.
(2018a) and general recommendations by the ITU-R (2005) for 38
and 26 GHz horizontally polarized signals.

a38 GHz b38 GHz a26 GHz b26 GHz

van Leth et al. (2018a) 3.83 1.05 7.70 0.93
ITU-R (2005) 2.82 1.13 5.92 1.01

hour), this would result in a decrease in the rainfall for
the 60 min estimate in comparison to the estimate based
on the 30 s time interval:

R̂

R
=

akb60 min

akb30 s/120
=
(10/120)1.05

101.05/120
= 0.79, (7)

in which R is the reference averaged rainfall intensity,
R̂ is the estimated averaged rainfall intensity and the b
value is used for a 38 GHz horizontally polarized de-
vice (Table 1). At 26 GHz link, for which b is 0.93, this
equation would result in 1.40. Other differences could,
for example, exist between baseline power levels, due to
not setting the exact same part of the time series to dry
as a consequence of time intervals during which it rains
only partially (step 5).

2.3 Comparison with theoretical events

To examine the influence of precipitation climatology on our
results, we compare the obtained relationships between de-
vice and sampling strategies to theoretical rain events. We
prescribe three types of rain events: (1) a rain event with
a constant intensity of 5 mm h−1, (2) a high-intensity event
with a maximum intensity of 40 mm h−1 and declining fol-
lowing an exponential function, and (3) a low-intensity event.
We compute these using three sinusoidal functions (Fig. 3).
All events take 2 h. The latter two events resemble the two
real rain events that are studied in Sect. 3.1. First, we re-
calculate these events to 20 Hz power levels using Eqs. (1)
and (2); subsequently we add normally distributed noise with
a device-specific standard deviation to these power levels.
This device-specific standard deviation is computed by av-
eraging hourly standard deviations for all dry hours in the
dataset. For the Nokia link, this results in a standard devia-
tion of 0.15 dB and for both RAL links of 0.20 dB. Using this
method, we obtain a similar dataset to van Leth et al. (2018a);
therefore we can apply the algorithm as described above. We
apply the normally distributed noise for 100 different random
states to remove the influence of a single random state on the
comparison. After averaging the statistical metrics of these
states, we compare these metrics for the theoretical events
with the dataset from van Leth et al. (2018a) in order to at-
tribute which part of the uncertainties originates from the al-
gorithm and which part from the actual rainfall variations.

Atmos. Meas. Tech., 17, 2811–2832, 2024 https://doi.org/10.5194/amt-17-2811-2024
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Figure 3. Three theoretical rainfall events for estimating the sole
influence of the sampling strategies. The constant intensity is
5 mm h−1. The low-intensity event consists of three sinusoidal
waves: R = 1− 0.5cos

(
2π ·t

2

)
− 0.25cos

(
2π ·t
0.25

)
+ 0.1sin

(
2π ·t
0.1

)
.

The high-intensity event follows the following function: R =
40exp(−3t). In these, t is the time (h) since the start of the event.

Additionally, we study the influence of the starting times of
the theoretical rain events on the statistical metrics. To do
so, we create 30 theoretical events, each with a shift in start-
ing time compared to the original theoretical events. These
shifts are uniformly distributed between 2 and 60 min (i.e. a
2 min interval). This allows us to estimate the robustness of
the sampling strategies against (possibly unfavourable) start-
ing times of rain events.

3 Results

3.1 Influence of temporal sampling on rainfall
estimates for two individual events

We consider two individual precipitation events to illustrate
the influence of temporal sampling on estimating rainfall.
Figure 4, which shows a low-intensity event, and Fig. 5,
which shows a high-intensity event, include the 1 s, 5 min
and 60 min time intervals, to demonstrate the influence of the
sampling methods on individual events (see Figs. S5 and S6
in the Supplement for the conventional 1 and 15 min time in-
tervals). The analysis in Sect. 3.3 also includes the other time
intervals.

When comparing the signals of all devices during the
two precipitation events, the largest differences between the
Nokia (a–h) and the RAL links (i–p and q–x) are the re-
duced wet-antenna attenuation and fluctuations in the sig-
nal for the Nokia link. For example, considering the wet-
antenna attenuation, the tail after the high-intensity event,
around 11:00 UTC (coordinated universal time; all instances
of time in the text are in UTC), shows 1–2 dB larger attenu-
ation for the RAL links compared to the Nokia link (Fig. 5a
and i). These differences in wet-antenna attenuation for the
Nokia and RAL 38 GHz links are caused by different be-
haviour of rain remnants on the antenna covers, in the form

of a water film and droplets, respectively (Fig. 14 in van Leth
et al., 2018a). In general, this causes the wet-antenna attenu-
ation for the RAL link to be roughly 2 dB higher than for the
Nokia link shortly after a rain event. For this specific setup,
this would result in roughly a 4 mm h−1 increased rainfall in-
tensity. The differences in the fluctuations are clearest in the
20 Hz signal for all devices (e.g. Fig. 4a, i and q). These high-
frequency fluctuations in the signal are roughly reduced by
0.5 dB, which is likely caused by the different internal elec-
tronics in the Nokia link. Yet, this only seems to affect the
difference between minimum and maximum intensity values
(Fig. 4d, l and t) but not the computed rainfall intensity us-
ing this sampling strategy (Fig. 4h, p and x). Compared to the
RAL 38 GHz link, the RAL 26 GHz link shows slightly more
fluctuations in the estimated rainfall intensities for the min–
max sampling strategies, which could possibly be caused by
the different exponent in the R–k relation.

During the event on 24 November 2015, the baseline
changes slightly during the precipitation event. In the pre-
ceding 24 h to this event, the signal intensity fluctuates com-
bined with precipitation events. As a result, during the 12 h of
the event, the baseline algorithm computes slight changes in
power level, as the initial baseline power levels are not based
on the same power levels as the final baseline power levels.
We expect that this occurs throughout the entire dataset and
not only for this specific event.

When comparing the sampling strategies, the instanta-
neous sampling strategy shows the largest sensitivity of
the estimated rainfall intensities to the sampling time inter-
val. Especially for the longest time intervals with the RAL
26 GHz and 38 GHz links, the intensities derived with in-
stantaneous sampling show major fluctuations, which are not
necessarily fully representative of the entire interval. This
mostly holds for the event on 24 November, as the signal-
to-noise ratio of the event on 21 June is relatively large. The
min–max sampling strategy shows a large sensitivity to the
extreme values, either caused by a rainfall event or an outlier
in signal intensity. This especially holds for the maximum
attenuation, as the minimum attenuation is bounded at zero
(i.e. no attenuation), while the maximum attenuation could
theoretically attain very large values (e.g. more than 20 dB in
Fig. 5d and l around 10:00). Overall, this seems to cause the
min–max sampling strategy to be mostly prone to overesti-
mations, especially for the higher rainfall intensity event on
21 June. In general, the mean sampling seems to represent
the 20 Hz rainfall intensities best, though with some minor
differences between the sampled time intervals.

Generally, the instantaneous and min–max sampling
strategies seem to be more prone to errors in retrieving high
rainfall intensities. For the event on 21 June (Fig. 5), the
mean sampling strategy results, as expected, in decent esti-
mates of the evolution of the rainfall event on average, both in
timing and intensities (though the peak rainfall intensities are
obviously averaged out). The instantaneous sampling strat-
egy seems to be most sensitive to an increase in the length of
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Figure 4. Comparison of received (solid) and baseline (dashed) power levels (a–d, i–l, q–t) and retrieved rainfall intensities (e–h, m–p, u–x)
during a low-intensity precipitation event on 24 November 2015 obtained with the Nokia (a–h), RAL 38 GHz (i–p) and RAL 26 GHz (q–x)
microwave links for all sampled variables and the 1 s, 5 min and 60 min time intervals. Grey areas indicate dry periods based on disdrometer
data.

the time interval because its performance depends on the rep-
resentativeness of a single measurement for the whole time
interval. The timing and intensity of the estimated peak rain-
fall intensity for the shortest time intervals are often rela-
tively good, due to the large signal intensity fluctuations as

a consequence of variations in rainfall intensity in compari-
son to the instrument noise, while for longer time intervals
the sensitivity of the performance to the representativeness
of a single measurement for the whole time interval heav-
ily increases (e.g. the 5 min instantaneous sampling strategy
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Figure 5. Comparison of received (solid) and baseline (dashed) power levels (a–d, i–l, q–t) and retrieved rainfall intensities (e–h, m–p,
u–x) during a high-intensity precipitation event on 21 June 2015 obtained with the Nokia (a–h), RAL 38 GHz (i–p) and RAL 26 GHz (q–x)
microwave links for all sampled variables and the 1 s, 5 min and 60 min time intervals. Grey areas indicate dry periods based on disdrometer
data.

in Fig. 5 captures the peak intensity at 12:00 better than the
mean and min–max sampling strategies). For the min–max
sampling strategy, the timing of the peak intensity is gener-
ally well-captured, but the estimated peak rainfall intensity
can be inaccurate. Additionally, for this specific case, this

method strongly overestimates the rainfall sum for the 60 min
interval, due to the peak taking place around the full hour;
therefore two subsequent intervals cover this peak.
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3.2 Theoretical events

Before analysing all rain events in the whole Wageningen
dataset, we examine the theoretical events. This allows us
to determine which part of the uncertainties originates from
the rainfall retrieval algorithm and which from the instru-
ments. We compare the statistical metrics of three theoretical
rain events to which we added three levels of noise, so that
these resemble the microwave link signals of the three de-
vices (Fig. 6). Additionally, we compare these with the sta-
tistical metrics of the same theoretical events but without the
added noise, which resemble a 38 and a 26 GHz horizontally
polarized link, in order to estimate the influence noise has on
our comparison (Fig. 7).

The theoretical events demonstrate the sensitivity of in-
stantaneous sampling to individual events, for both the noisy
and noiseless signals, especially for longer time intervals.
This sampling shows an erratic behaviour for these intervals,
reflecting the strong influence of temporal variability on this
sampling strategy. For the high-intensity event, the MBE and
slope strongly decrease for 1 min intervals and longer, while
the RMSE strongly increases. At these timescales the signal
changes significantly, due to the decrease in rainfall intensity
being relatively large compared to the noise. The peak atten-
uation in this case is roughly 21 dB, while the standard devi-
ation of the noise ranges roughly between 0.15 and 0.20 dB.
This illustrates the sensitivity of instantaneous sampling to
signal fluctuations as a consequence of rainfall variability.

The RMSE for the theoretical events with and without
noise barely increases for longer time intervals, except for
instantaneous sampling with the high-intensity event. Simi-
larly, r2 is close to 1 and independent of interval length for
the theoretical events. The same also holds for MBE and
slope. Sampling a mean value or min and max values per
time interval also seems to have a minor influence on the the-
oretical events, since the noiseless events show no difference
between the mean and min–max sampling strategy. Gener-
ally, this shows that each of the sampling strategies is capa-
ble of producing correct rainfall estimates, especially for the
shortest time intervals. For longer time intervals, in particu-
lar the instantaneous sampling strategy does not perform as
well as the other two sampling strategies. Additionally, the
influence of noise on rainfall intensities cannot be neglected
when using CMLs to measure rainfall.

The instantaneous sampling strategy for the 26 GHz link
with noise added performs significantly worse than the other
strategies and links in terms of RMSE and the r2 for the low-
intensity event. This is caused by the relatively low signal-to-
noise ratio for the 26 GHz link in comparison to the 38 GHz
link. Following from the R–k relationship, the attenuation of
a 26 GHz device is lower than the attenuation of a 38 GHz
device for the same rainfall intensities (e.g. for our setup
a 2 mm h−1 rainfall intensity results in an attenuation of
1.2 dB for a 38 GHz device and an attenuation of 0.5 dB for
a 26 GHz device). Especially for low rainfall intensities, this

causes the added noise to occasionally compensate for the
rainfall attenuation; therefore some of the attenuations are
negative. In the rainfall retrieval algorithm, these negative at-
tenuations are corrected to 0 dB, also affecting the overall
statistics.

It should be noted that differences in baseline power levels
between sampling strategies and wet-antenna attenuation are
not included in these theoretical events, while in Sect. 3.1
these clearly affected the rainfall intensity estimates. For
example, wet-antenna attenuation makes the previously de-
scribed behaviour of the instantaneous sampling strategy for
the RAL 26 GHz link less likely to occur in the actual data
because the lowest attenuation levels will increase as a conse-
quence of wet antennas. Differences in baseline power levels
are only slightly reflected in the theoretical events as caused
by the added noise, which might slightly affect the median
signal intensity for the computation of the baseline power
levels.

Moreover, a comparison between the rainfall estimates for
the noiseless signals starting at the fixed full hour (Fig. 7)
and the shifted starting times (Fig. 8) shows that the mean
sampling strategy is most robust against different starting
times of rainfall events. The instantaneous sampling strat-
egy is most sensitive to different starting times of the events,
as the spread of all the statistical metrics is large, especially
for the longer time intervals and the high-intensity event. For
the min–max sampling strategy, the shifting of starting times
also introduces additional uncertainties into the rainfall esti-
mates but still outperforms the instantaneous sampling strat-
egy.

3.3 Influence of temporal sampling on rainfall
estimates for all events

In this section, we examine how the rainfall estimates are
affected by all sampling methods considered for all combi-
nations of methods and time intervals. Figure 9 shows an
example scatter plot and corresponding statistics for a time
interval of 15 min. We present the statistical metrics (MBE,
RMSE, r2 and the slope of the linear regression line through
the origin) for all considered time intervals in Fig. 10. The
corresponding scatter plots are provided in Figs. S1 to S4.
In these scatter plots, we compare the rainfall estimates for
a specific device, method and time interval with the 20 Hz
rainfall estimates obtained using the same device.

When examining the statistical metrics for all sampling
methods, it is clear that the mean sampling strategy generally
outperforms the other sampling methods in terms of RMSE
and r2. The instantaneous sampling strategy is generally out-
performed by the min–max sampling strategy. Regarding
MBE, the min–max sampling outperforms mean sampling,
though it should be noted that part of the optimization of
α was based on the MBE (next to the RMSE) for the en-
tire dataset (Sect. 2). This also causes all the min–max lines
in Fig. 10a to be close to zero. The non-optimized min–max
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Figure 6. Statistical metrics as a function of time interval for three theoretical rain events (Fig. 3) for all sampling methods (line colour)
and added noise levels that resemble the three devices (line style). The markers indicate the values for the 15 min min–max and 1 min
instantaneous sampling strategies.

sampling strategy performs slightly worse than the optimized
strategy, but no major differences between both occur, except
for the longest time intervals (see the Supplement).

For the shortest time intervals, absolute differences in
RMSE and r2 between mean and min–max sampling are in-
significant (smaller than 0.1 mm h−1 in terms of RMSE), but
an increase in time interval length causes the performance of
mean sampling to decrease less than for the min–max sam-
pling, resulting in an absolute difference between the mean
and min–max sampling on the order of 0.5–1.5 mm h−1 for
the RMSE for the Nokia and RAL links.

3.3.1 Mean sampling strategy

The mean sampling shows a decrease in the slope of the re-
gression line as the length of the time interval increases, espe-
cially for the Nokia link, culminating in a value of 0.86 for a
60 min time interval, while we would have expected it to stay
equal to 1, as roughly occurs for the RAL links. We attribute
this to two opposing causes for error at long time intervals
with mean sampling. The first is the reduced impact of the
non-linearity of the power law, which decreases as a conse-
quence of longer averaging time intervals, resulting in lower
average attenuation values (step 7 in Sect. 2.2). The second is
the wet-antenna attenuation, which reduces significantly on
hourly timescales due to the drying of the antenna cover. In
the 20 Hz data, any erroneously estimated rainfall due to wet
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Figure 7. Statistical metrics as a function of time interval for a
theoretical low-intensity and high-intensity rain event (Fig. 3) for
all sampling methods (line colour) for 38 and 26 GHz horizontally
polarized noiseless devices (line style). The markers indicate the
values for the 15 min min–max and 1 min instantaneous sampling
strategies.

antennas has been filtered out (i.e. set to 0 mm m−1) based on
the path-weighted disdrometer data indicating dry weather,
while for long time intervals the wet-antenna attenuation is
included in the computation of the rainfall intensity for the
mean sampling because of the antennas still being wet during
dry weather, causing an overestimation of the rainfall inten-
sities. For the Nokia link, the influence of wet-antenna atten-
uation is reduced, which results in an increased underestima-
tion for longer time intervals, in contrast to the RAL 38 GHz
link. The RAL 26 GHz link exhibits less wet-antenna atten-
uation than the RAL 38 GHz link but somewhat more than

the Nokia link. Moreover, at this frequency the exponent of
the R–k relation is below 1; therefore this would cause an
overestimation instead of the underestimation for the 38 GHz
links (step 7 in Sect. 2.2). Still, the mean sampling at this
frequency also results in an overall slope of the linear regres-
sion line through the origin below 1, though minor, which
suggests that the mean sampling has a slight tendency to un-
derestimate the rainfall intensity. Overall, this shows the po-
tential influence that even mean sampling can have on rain-
fall estimates, although it is relatively small in comparison
to the other sampling methods. We attribute a large part of
these differences to wet-antenna attenuation and differences
in estimated baseline power levels, as the behaviour of these
statistics is not reflected in the theoretical events (Fig. 6 ver-
sus Fig. 10).

3.3.2 Instantaneous sampling strategy

For instantaneous sampling with short time intervals, the
RMSE is larger than for the mean sampling method, being
0.69 mm h−1 versus 0.17 mm h−1, respectively, for the RAL
38 GHz link at a 30 s time interval. Yet, this spread results
in a relatively low MBE of 0.01 mm h−1 and relatively high
r2 of 0.99, suggesting a symmetric distribution of the resid-
uals around the reference (Fig. 10). For both RAL links, this
distribution appears to be even present at the longest time in-
terval (Fig. 11b). We would have expected that the rainfall
intensity measured at the end of a long interval does not pro-
vide any information on the other rainfall intensities during
that interval, given the 30 min average duration of rainfall
events in our data. The Nokia link behaves more as expected
(Fig. 11a), as the spread is larger, also resulting in a lower r2,
i.e. 0.17 versus 0.37, at a 60 min time interval for instanta-
neous sampling.

Based on the individual events, it seems that the majority
of the differences in performance between the devices for the
instantaneous sampling strategies are related to the variations
in rainfall intensity, i.e. 30 min average duration (Fig. 2), in
combination with wet-antenna attenuation. This is supported
by the absence of any similar differences in the theoretical
events. For the shortest time intervals, the rainfall intensities,
and thus measured attenuations, do not vary much in these
few seconds, which results in relatively good scores. For the
longer time intervals, the RAL devices are still wet, as these
were found to have an average drying time of the order of
20 min (van Leth et al., 2018a), resulting in higher estimated
rainfall intensities for both the averaged 20 Hz measurements
and the instantaneous sampling. The Nokia antenna covers
are already mostly dry after a few minutes (van Leth et al.,
2018a), such that the estimated rainfall intensity gives very
little information on the preceding rainfall intensities, result-
ing in the lowest MBE for the Nokia link. We suspect that
this role of wet-antenna attenuation also causes the MBE to
be positive for all devices compared to the other sampling
strategies.
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Figure 8. Statistical metrics as a function of time interval for theoretical low-intensity and high-intensity rain events (Fig. 3), with a sliding
2 min start time window for all sampling methods (colour) for a 38 GHz horizontally polarized noiseless device. In the box plot, the coloured
bar is the median value, the box edges represent the first and third quartiles, and the whiskers are the 10th and 90th percentiles. The statistical
metrics for a 26 GHz noiseless device reveal the same overall patterns, though with a reduced performance and increased spread for most of
the metrics for the high-intensity event (not shown).

3.3.3 Min–max sampling strategy

For the min–max sampling with an optimized α, the role of
the minimum attenuation increases with time interval; i.e.
α decreases from just below 0.5 to around 0.2 (Fig. 12).
For the shortest time intervals, this points to a roughly sym-
metrical distribution of the minimum and maximum attenu-
ations around the mean. For the longer time intervals, this
suggests a positively skewed distribution of the attenuations,
with relatively many outliers to the maximum attenuation.
For the non-optimized min–max sampling, where with in-
creasing time intervals the maximum attenuation becomes

increasingly dominant, this results in an increasing slope of
the fit (Figs. S1 to S4).

For the 15 min min–max sampling strategy, the optimized
values of α for the links range between 0.30 and 0.35. This
is close to the default RAINLINK value (Overeem et al.,
2016a), which uses 0.33 for the contribution of minimum at-
tenuation and maximum attenuation. This is also reflected in
the RMSE, MBE, r2 and slope of the fit (Figs S1–S4). This
shows that for microwave links in similar frequency domains
and precipitation climatologies, this default value is a good
estimate when using 15 min minimum and maximum signal
intensities.
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Figure 9. Comparison of rainfall intensities derived with mean sam-
pling and 15 min time interval (y axis) versus time-averaged rain-
fall intensities computed with the 20 Hz data (x axis) for the Nokia
Flexihopper microwave link. The dashed red line is the 1 : 1 line,
and the black line represents the best linear fit through the origin of
which the slope is reported in the statistics box.

Moreover, for low rainfall intensities, especially below
2 mm h−1, the rainfall retrieval algorithm for the min–max
sampling strategy overestimates rainfall intensities (Fig. 13).
Reasons for this seem to be twofold. Firstly, the minimum at-
tenuation is set to 0 dB km−1, due to the maximum received
power (resulting in minimum attenuation) being higher than
the baseline power level. Part of this is caused by the as-
sumption that the median of the average of the minimum and
maximum received power levels represents the baseline is
not always valid, due to a skewness towards minimum power
levels. For example, between 09:00 and 11:00 in Fig. 4t for
the hourly time intervals, the maximum attenuations are con-
stant, while the minimum attenuation changes between the
intervals 09:00–10:00 and 10:00–11:00. Still, this results in
a constant rainfall intensity (Fig. 4x). Secondly, the mini-
mum received power level (resulting in the maximum atten-
uation) is nearly always significantly lower than the baseline
power level. This means that for low rainfall intensities, espe-
cially around and below 1 mm h−1, the minimum attenuation
is corrected (i.e. set to 0 dB km−1), while the maximum at-
tenuation is treated as is, preventing the min–max retrieval
algorithm to work the way it has been designed. In the rain-
fall intensity computation, both attenuations are treated in a
similar manner, giving too much weight to the maximum at-
tenuation, causing an overestimation of the rainfall intensity.
For slightly higher precipitation intensities (1–2 mm h−1),
the maximum power levels are still close to the baseline, so
that barely any increase in rainfall intensity in the min–max
sampling is computed, while the 20 Hz rainfall intensity esti-

mates do increase, causing the bend seen in Fig. 13. For even
higher rainfall intensities (> 2 mm h−1), both the minimum
and maximum received power levels are lower than the base-
line, so that the min–max sampling method can be used the
way it was designed.

3.3.4 Influence of signal frequency

When focusing on the influence of the signal frequency on
the rainfall estimates, the RAL 26 GHz link shows a larger
RMSE and lower r2 for the instantaneous and min–max
sampling in comparison to the RAL 38 GHz link (Fig. 10).
For both sampled variables, the RMSE is roughly constantly
0.1 to 0.3 mm h−1 higher, while the r2 only differs at the
longest time intervals around 0.1 to 0.2. These differences
can predominantly be attributed to the difference in fre-
quency, which causes different exponents in the R–k relation
and minor differences in wet-antenna attenuation, as the de-
vices do not contain any other significant differences. How-
ever, these differences in behaviour are of a smaller magni-
tude than the differences between the Nokia and the RAL
38 GHz links. Overall, this indicates that a reduced duration
of wet-antenna attenuation and hardware reducing the signal
fluctuations can significantly reduce the influence of the se-
lected temporal sampling strategy.

3.3.5 Comparison with theoretical events

Also, a general comparison between the theoretical events
and all rain events in the dataset reveals the influence of
wet-antenna attenuation on the performance of the rainfall
retrieval algorithm. The increase in RMSE with longer time
intervals found for all rain events is not reflected in the the-
oretical events (only minor for the min–max sampling). As
discussed, we expect this difference to be caused by the in-
fluence of wet-antenna attenuation on the RMSE. Moreover,
the wet-antenna attenuation seems to have a major influence
on the estimated rainfall intensities for the individual events
in Sect. 3.1. Additionally, differences in baseline power lev-
els between sampling strategies could play a role here. These
differences in the baseline in the dataset vary due to the dif-
ferences in wet and dry periods between sampled intervals
and strategies and also due to longer term changes in power
levels (e.g. as a consequence of temperature). This shows
that the wet-antenna attenuation and differences in baseline
power levels can play a relatively important role in the perfor-
mance of the sampling strategy, next to the general sensitivity
to sampling interval and method. This will be more elabo-
rately discussed and put into context with previous studies in
Sect. 4.

4 Discussion

This study aimed to determine the influence of temporal sam-
pling strategies on measuring rainfall using microwave links.
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Figure 10. Statistical metrics as a function of time interval for all devices (line style) and sampling methods (line colour). The markers
indicate the values for the 15 min min–max and 1 min instantaneous sampling strategies. The values for the metrics are obtained from
Figs. S1 to S4.

To do so, we resampled a 20 Hz signal to various tempo-
ral sampling strategies, partly mimicking sampling strategies
employed by mobile network operators, and compared the
resulting rainfall intensities with averaged 20 Hz rainfall in-
tensities. This way, we were able to exclude the instrumental
bias and uncertainty from the total bias and uncertainty and
focus on comparing the influence of the temporal sampling
strategies.

4.1 Influence of sampling strategies on rainfall
estimates

Our results allow us to estimate the source of error for esti-
mated rainfall intensities originating from the applied sam-
pling strategy and put rainfall estimates of previous and fu-
ture studies into perspective in relation to their reference

data. When examining the influence of time interval on esti-
mating rainfall intensity, as expected, an increase in sampled
time interval reduces the performance of the resampled rain-
fall estimates compared to the 20 Hz estimates. For the short-
est intervals, the performance, 1 s to 1 min, often does not
vary largely with respect to the reference, especially when
compared to the longest intervals. An increase in resolution
does not necessarily add much more information on the rain-
fall intensity for these short intervals, due to the generally
limited variability in rainfall intensity for these intervals. As
described by de Vos et al. (2018), the performance of the
rainfall retrieval algorithm is strongly dependent on the em-
ployed temporal sampling strategy. Moreover, Leijnse et al.
(2008) stress the importance of sufficient sampling, which al-
lows the temporal behaviour of a rain event to be covered. For
example, considering that a precipitation event in our dataset
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Figure 11. Comparison of rainfall intensities derived for the instan-
taneous 60 min time intervals for the Nokia Flexihopper and the
RAL 38 GHz microwave links versus time-averaged rainfall inten-
sities computed with the 20 Hz data of these devices. The dashed
red line is the 1 : 1 line, and the black line represents the linear re-
gression line through the origin of which the slope is reported in the
statistics box.

Figure 12. Optimized fractional contribution of the maximum and
minimum attenuation, α, as a function of time interval for each
device for the optimized min–max sampling method. The dashed
black line represents the default RAINLINK value, which is 0.33.
The data are based on Figs. S1 to S4.

takes on average 30 min, the commonly used 15 min sam-
pling interval would undersample an average precipitation
event, which is also reflected in our analyses, showing that
the performance for almost all sampling methods decreases
significantly from around 1 to 5 min and onwards.

As expected, a comparison between the considered sam-
pling methods demonstrates that mean sampling generally
outperforms the other methods. For the shortest time in-
tervals, min–max sampling, especially the optimized ver-
sion, performs roughly equally to mean sampling. For longer
time intervals, the performance decreases, as the minimum
and maximum attenuation are no longer representative of
the average precipitation during the interval. When compar-
ing the different starting times of the theoretical events, the

Figure 13. Comparison of rainfall intensities derived for min–max
sampling at a 5 min time interval (using an optimized weight) versus
time-averaged rainfall intensities computed with the 20 Hz data for
the RAL 26 GHz microwave link. The dashed red line is the 1 : 1
line, and the black line represents the linear regression line through
the origin of which the slope is reported in the statistics box.

mean sampling strategy is also most robust to potentially
unfavourable starting times, while the min–max sampling
strategy is more sensitive, especially for longer time inter-
vals. Generally, the non-optimized min–max sampling strat-
egy also performs relatively well but a bit less than the opti-
mized version. This decay in performance is also partly re-
flected in the statistical metrics of the high-intensity theoret-
ical event but not for the constant and low-intensity event,
partly caused by the still fairly constant intensity of the low-
intensity event. Additionally, the min–max sampling con-
tains a change in slope at low rainfall intensities at longer
time intervals, which we expect to be caused by the baseline
level selection (i.e. the median of the average of the minimum
and maximum received power levels during the dry hours
preceding a rain event). This method for baseline determina-
tion causes the minimum attenuation (i.e. maximum power
levels) during the interval to be higher than the baseline at
low rainfall intensities and be set to zero, which interferes
with the algorithm as it was designed. This causes an offset
when using min–max sampling for low rainfall intensities.

Moreover, the minimum and maximum sampling strategy
is mostly prone to overestimations of the rainfall intensity,
especially for longer time intervals. For both the optimized
and non-optimized sampling strategy, the residuals around
the 1 : 1 line are asymmetrically distributed, especially for
longer time intervals. In general, underestimations of rainfall
intensity are frequently present but relatively minor, while
overestimations happen less frequently but often have a rel-
atively large magnitude. We hypothesize that this is either
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caused by short high-intensity rainfall intensities during a
time interval or a short and severe reduction in signal in-
tensity due to other causes (e.g. refraction, obstacles), which
causes a relatively large maximum attenuation, so that the
estimated rainfall intensities during the entire time interval
overestimate the 20 Hz rainfall estimates. The timing of the
peak intensities is often estimated well when using this sam-
pling strategy, especially in comparison to the instantaneous
sampling strategy.

The instantaneous sampling strategy performed well for
the shortest time intervals. For longer time intervals, espe-
cially 30 and 60 min, and high-intensity events, this strategy
shows the largest sensitivity to different starting times of the
theoretical events. Also for these longer time intervals, the
performance is mostly related to the amount and duration
of wet-antenna attenuation combined with the average du-
ration of a precipitation event in our dataset. For a device
with a relatively short duration of the wet-antenna attenua-
tion, the Nokia link, the r2 was significantly less than for a
device with relatively long-lasting wet-antenna attenuation,
the RAL 38 GHz link. However, it is important to note that
the high r2 in that case is not caused by the measurement of
rainfall but solely due to the fact that for long time intervals
wet-antenna attenuation is interpreted as rainfall in the algo-
rithm. Potentially, an improvement in performance of the in-
stantaneous sampling strategy could be found in adapting the
timing of the time intervals, so that the values of the received
power levels represent the middle of the intervals. Intuitively,
especially for relatively large changes in rainfall intensity
during a time interval, it seems that these values could be
more representative of rainfall intensities than the last value
of the interval. Additionally, for high peak rainfall intensi-
ties, the performance of the instantaneous sampling strategy,
both in timing and maximum rainfall intensity, seems to be
dependent on how well single instantaneous measurements
represent the entire time interval.

When comparing the conventional 15 min min–max and
1 min instantaneous sampling strategies, the overall statistics
are similar. For the theoretical low-intensity event with a slid-
ing window for a 38 GHz noiseless link (Fig. 8), the 15 min
min–max sampling strategy shows a reduced performance
in comparison to the 1 min instantaneous sampling strategy.
For the high-intensity event, the performances of the sam-
pling strategies are on average more comparable. Overall,
this could imply that in regions where low rainfall intensities
are more prevalent than high intensities, it could be benefi-
cial to use a 1 min instantaneous sampling strategy instead of
the 15 min sampling strategy. For the actual data (Fig. 10),
the r2 and the slope for the 15 min min–max sampling strat-
egy are on average for all devices slightly lower (i.e. further
from one) than for the 1 min instantaneous sampling strat-
egy. However, these differences are not of the same order
of magnitude as differences with other time intervals. A re-
duction in sampling time interval for both sampling strate-
gies (namely instantaneous versus min–max) would result in

a larger increase in performance than the difference in per-
formance between these sampling strategies, especially for
the 15 min min–max sampling strategy.

Previous studies demonstrated the performance of various
sampling strategies for measuring rainfall with CML net-
works. Our results are not fully in line with Pudashine et
al. (2021), who show that the min–max sampling strategy
slightly outperforms the mean sampling strategy, though it
should be noted that their study uses gauge-adjusted radar
data as reference data, which makes an objective compar-
ison difficult. At a 15 min sampling time interval, de Vos
et al. (2019) demonstrate that min–max sampling generally
outperforms instantaneous sampling in the Netherlands. Lei-
jnse et al. (2008) compared 18 Hz sampling, averaged 15 min
sampling and instantaneous 15 min sampling methods with
each other (together with simulated microwave link data
based on 15 s radar data) and showed the limitations of the
instantaneous sampling compared to the other two methods.
These findings are in line with our results and confirm that
the differences are not solely caused by instrumental biases
between the microwave links and the reference instrument
used (e.g. rain gauge or radar).

4.2 Additional sources of uncertainties and errors

Our study shows the significant influence of wet-antenna at-
tenuation on the performance of sampling strategies, espe-
cially with increasing sampling intervals. The rainfall inten-
sities measured with the Nokia link, which is only affected
during a relatively short period by wet-antenna attenuation,
were less affected by the temporal sampling strategy than
the RAL 38 GHz link, a device transmitting in the same fre-
quency domain but with an increased wet-antenna attenua-
tion effect. An additional difference between these devices is
the reduced signal fluctuation in the Nokia link, likely caused
by the different hardware employed in the Nokia link. How-
ever, these differences do not have an influence of the same
order of magnitude on the raw signal. Where the hardware
causes the fluctuations to reduce roughly by 0.5 dB, the ad-
ditional wet-antenna attenuation for the RAL link is roughly
2 dB higher. Therefore, we attribute the largest differences
between the Nokia and RAL 38 GHz links to the difference
in wet-antenna attenuation.

This is confirmed when studying the statistical metrics of
the theoretical rain events and comparing these with the ac-
tual rain events. The simulated Nokia and RAL links do not
show significant differences for the theoretical rain events.
The implemented differences in noise between the theoret-
ical links do not result in differences between the statisti-
cal metrics similar to the actual events for the two devices
in any of the theoretical rainfall events. A comparison be-
tween theoretical events with and without noise shows that
the addition of noise has a significant contribution to the rain-
fall estimates, especially for the instantaneous sampling strat-
egy at longer time intervals. The most significant differences
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between the theoretical events and the actual events can be
found in wet-antenna attenuation and differences in baseline
power levels between sampling strategies, which shows the
importance of these two mechanisms on rainfall estimates.
Additionally, it should be noted that the duration of the the-
oretical events is not equal to the average duration of a rain-
fall event in the Wageningen data (2 h and roughly 30 min,
respectively) but was chosen to resemble the two individ-
ual events studied in Sect. 3.1. However, we do not expect
this mismatch in timescales to have a major effect on the
differences between the theoretical and actual data, i.e. the
influence of wet-antenna attenuation and different baseline
power levels. Overall, this shows that knowing the attenu-
ation caused by a wet antenna and the total drying dura-
tion would be beneficial when estimating rainfall using mi-
crowave links. Additionally, it would create more need to ad-
just for the instrumental bias of microwave links, for exam-
ple, as a consequence of different antenna covers or temper-
ature dependence (e.g. van Leth et al., 2018a).

Different algorithms to correct for wet-antenna attenuation
exist. Kharadly and Ross (2001) developed a model allowing
wet-antenna attenuation to be corrected for, which was ex-
tended by Minda and Nakamura (2005) to be able to cope
with the drying of antennas. Schleiss et al. (2013) first ex-
perimentally studied the role of wet-antenna attenuation in
a 38 GHz microwave link signal during and after a precipi-
tation event and showed that the attenuation increases expo-
nentially during the first part of a rain event towards a maxi-
mum of 2.3 dB and also decreases exponentially afterwards.
Subsequently, they proposed a model applicable without the
need for additional measurements. In parallel, Overeem et al.
(2013) also found a value of 2.3 dB for the wet-antenna at-
tenuation as an average for a complete telecom network in
the Netherlands. Subsequently, Overeem et al. (2016b) ap-
plied this value as a constant for correcting attenuation due to
wet antennas for each microwave link. Leijnse et al. (2008)
propose using a more physics-based model to compute the
wet-antenna attenuation, which uses signal frequency, an-
tenna cover properties and rainfall intensities and seems es-
pecially useful for shorter time intervals. Graf et al. (2020)
found that for a telecom network in Germany, a correction
based on rainfall intensity (based on Leijnse et al., 2008) out-
performed a method based on the time (based on Schleiss et
al., 2013) during and after a precipitation event. Similarly,
Pastorek et al. (2022) compared multiple wet-antenna atten-
uation corrections and also concluded that corrections based
on rainfall intensity outperformed other methods. Addition-
ally, they found that these corrections can be applied to inten-
sities obtained from sub-links with various frequencies and
path lengths and thus can also be applicable to other networks
with similar antenna characteristics. Note that algorithms are
applied irrespective of the number of wet antennas (0, 1 or
2). It may even be raining along the CML path, whereas an-
tennas remain dry.

Using 20 Hz data as reference data to compare the esti-
mated rainfall intensities has the advantage that the direct
instrumental bias is excluded in our analysis. These instru-
mental biases are included in the comparisons done by van
Leth et al. (2018a) and similar to our comparison between
the 20 Hz estimates and the disdrometer (Sect. 2). Zinevich
et al. (2010) describe various errors and uncertainties that
arise when comparing rainfall estimates from commercial
microwave links with rain gauges, for example, uncertainty
in the drop size distribution, wet antennas or baseline varia-
tions. Also, Leijnse et al. (2008) describe similar influences
of these uncertainties and stress the need to include all poten-
tial error sources in an analysis. Our results and those from
van Leth et al. (2018a) suggest that these uncertainties, es-
pecially wet-antenna attenuation, baseline variation and the
non-linear effect of the power law, affect the performance of
the rainfall estimates, even when using the same microwave
link as reference.

Additionally, we illustrate that the magnitude of these
additional biases could depend on the selected sampling
method. These biases can be separated into a directly affected
part and an indirect part. Rainfall intensities are most often
directly affected when choosing an instantaneous sampling
method, especially for longer time intervals. Moreover, wet-
antenna attenuation and the role of the exponent in the R–k
relation also seem to play a direct role in the performance
of the selected sampling strategy, especially when consid-
ering the individual rain events and compare the theoretical
events with the whole dataset. Indirectly, we suspect that ob-
served biases, especially between sampling strategies, can
occur mostly due to variations in baseline power levels be-
tween selected sampling methods. The latter group is hard to
consider beforehand and will most often be an unavoidable
source of uncertainty for other studies. In general, our ef-
forts allow future studies to estimate the uncertainty of their
observed rainfall intensities as a consequence of the chosen
sampling strategy and potentially uncover the instrumental
bias of these links.

4.3 Extrapolation to CML networks

When extrapolating our results to CML networks, first of
all it should be noted that not all CML networks contain
similar frequencies and link lengths. Next to a change in
the parameters for the R–k relationship, our results show a
slightly increased RMSE and reduced r2 for the RAL 26 GHz
link compared to the RAL 38 GHz link. These devices oper-
ate similarly, except at a different frequency, which results
in different a and b parameter values in the R–k relation-
ship. For 38 GHz, b is larger than 1, while for 26 GHz, b
is smaller than 1. Also, between the devices a minor dif-
ference in wet-antenna attenuation can be observed, which
could be a consequence of differences in frequency. There-
fore, we attribute the observed differences to differences in
frequency and wet-antenna attenuation (possibly as a con-
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sequence of frequency). For an increase in link length, we
expect a reduced sensitivity of the sampling strategies to in-
creasing time intervals, while the differences between sam-
pling strategies also decrease. As suggested by Leijnse et
al. (2008), this is caused by the increase in characteristic
timescales of the path-averaged rainfall intensities when in-
creasing link lengths. Similarly, Berne and Uijlenhoet (2007)
showed, for longer link lengths, a decrease in uncertainty in
rainfall estimates and, moreover, a reduction in sensitivity
to sampling effects. For shorter link lengths, an opposite be-
haviour is expected. This could, for example, imply that some
of the overestimations found for short 38 GHz links are not
only a consequence of wet-antenna attenuation (Fencl et al.,
2019), which does play a significant role, but also of sam-
pling strategy.

The International Telecommunication Union (ITU-R,
2005) reports values for the a and b parameters, though sev-
eral studies found location-dependent parameter values. Lei-
jnse et al. (2007a) showed differences up to 10 % in the b pa-
rameter compared to the ITU recommendations, when deriv-
ing these parameters using raindrop size distributions mea-
sured in the Netherlands by Wessels (1972). In this study,
we used the a and b parameter values as reported by van
Leth et al. (2018a), who determined these based on the five
disdrometers along the path. However, overall, Chwala and
Kunstmann (2019) illustrated that the a and b parameters are
relatively independent of the drop size distribution at low fre-
quencies, especially below 40 GHz. Additionally, Berne and
Uijlenhoet (2007), Overeem et al. (2011), and Overeem et
al. (2021) demonstrate that using a and b parameter values
which are not specifically calibrated to the area of application
only results in minor errors in the rainfall estimates. This is
likely a consequence of the near-linear relation between at-
tenuation and rainfall intensity.

Other differences between our results and actual CML net-
works can be found in the difference in polarization. Most
microwave links in CML networks are vertically polarized,
instead of the horizontal polarization that we study. For this
specific study, however, there are no significant differences
between the vertical and horizontal polarization of the RAL
38 GHz link, probably due to the fact that our reference
data, i.e. the 20 Hz estimates, have the same polarization and,
thus, attenuation at the same frequencies. Network operators
choose the vertical polarization, due to the oblate raindrop
shape which induces an increased attenuation for horizontal
polarization compared to the vertical polarization. For pur-
poses other than this study, it can be important to consider
the polarization of the device.

Furthermore, CML networks often employ a signal power
quantization (i.e. the discretization of the signal intensity) of
1 dB, while the data we use in this experiment have been de-
signed to prevent the power quantization effect on the rain-
fall estimates. Leijnse et al. (2008) demonstrate that power
quantization can have a significant effect on the estimated
rainfall intensities when using CML networks, especially for

low rainfall intensities. Ostrometzky et al. (2017) show that
min–max sampling combined with the quantization effect
can lead to significant biases for rainfall retrieval. Chwala
and Kunstmann (2019) show that the quantization effect lim-
its the minimal detectable rainfall intensity. Future studies
could complement our study by focussing on the influence of
power quantization on the rainfall estimates using the same
dataset. Additional uncertainties arise from the wet–dry clas-
sification. We used disdrometer observations to classify the
weather as dry or wet, while these nearby in situ data are
usually not available in a CML network, which could, for ex-
ample, result in baseline variation uncertainties. For exam-
ple, Messer and Sendik (2015) provide an overview of vari-
ous wet–dry classifications and how this affects the baseline
power levels.

5 Conclusions

In this study, we examined the influence of temporal sam-
pling strategies on estimating rainfall using microwave links
based on a dataset containing three different microwave links
obtained by van Leth et al. (2018a). We compared the mean,
instantaneous and min–max sampling strategies and various
time intervals ranging from 1 s to 60 min with 20 Hz rain-
fall estimates of the same device, allowing us to exclude the
direct instrumental bias in this comparison. Some of the sam-
pling methods applied are also employed in current CML
networks. Moreover, we used disdrometer data for a wet–dry
classification to determine the baseline power levels.

In general, our results show that an increase in the dura-
tion of the sampled time interval reduces the performance of
the resampled rainfall estimates. The instantaneous sampling
method is most sensitive to this dependency on sampling in-
terval, while the mean sampling is most robust. This is also in
line with expectations, as the instantaneously sampled power
levels at longer time intervals do not contain any information
on the rainfall during the preceding time interval and so only
describe what occurs exactly at the moment of sampling.
However, for the mean sampling, differences with respect to
the reference can still occur due to the exponent in the R–
k relationship being different from 1. For the shortest time
intervals, both instantaneous and mean sampling perform
roughly equally, except that instantaneous sampling shows
a larger RMSE than mean sampling. Similarly, for the short-
est time intervals, min–max sampling performs roughly the
same as mean sampling, but with an increase in time inter-
val, the performance of min–max sampling shows a slightly
larger decay than mean sampling (but smaller than instanta-
neous). For the common 15 min sampling strategy and the
former Nokia CML, mean and min–max sampling strategies
clearly outperform instantaneous sampling. To a lesser ex-
tent, the mean sampling strategy outperforms the min–max
sampling strategy, except for the MBE value, due to the op-
timization based on the MBE.
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The partitioning between the minimum and maximum at-
tenuation, represented by α in the rainfall retrieval algorithm,
shows a decrease (i.e. more influence of the minimum atten-
uation), with an increase in time interval when optimizing
this parameter, as for longer time intervals, the maximum at-
tenuation is less representative of that entire interval. For all
min–max sampling time intervals, a change in slope occurs
roughly below 2 mm h−1, which induces a positive offset for
these low intensities when employing a min–max sampling
method. Generally, this sampling strategy is mostly prone to
slightly underestimating or largely overestimating individual
rainfall intensities, which on average results in a relatively
good fit. The large overestimations are caused by the sen-
sitivity of the maximum attenuation to incidental high at-
tenuations, either as a result of short high-intensity rainfall
episodes or due to an outlier in maximum attenuation.

When comparing devices, the Nokia Flexihopper link,
which was formerly part of a CML network, transmitting at
38.2 GHz, outperforms the other devices. This device mostly
differs from the other two devices, the RAL 38 and 26 GHz
links, in terms of reduced magnitude and duration of wet-
antenna attenuation and is designed with hardware that re-
duces signal fluctuations. Of these, the wet-antenna attenu-
ation seems to dominate over the reduced noise; therefore
we attribute a significant part of the differences between
the Nokia Flexihopper and RAL 38 GHz links to the wet-
antenna attenuation. The RAL 38 GHz device is specially
sensitive to wet-antenna attenuation, which causes the RAL
38 GHz link to still have a relatively high r2 compared to
the Nokia link, even for long time intervals. If we compare
the RAL 38 GHz link to the 26 GHz link, the RMSE and r2

are higher and lower, respectively, for the 26 GHz link. This
is mostly caused by the somewhat increased uncertainty for
the RAL 26 GHz link, which we attribute to the difference in
frequency. Also, the difference in exponent of the R–k rela-
tionship between 26 GHz (b = 0.95) and 38 GHz (b = 1.05)
could contribute to the found differences.

Additionally, a comparison of the results with theoretical
events reveals the influence of wet-antenna attenuation and
possibly variations in baseline power levels between sam-
pling strategies. In these theoretical events, the minor dif-
ferences in statistical metrics between the signal mimicking
the Nokia link and that mimicking the RAL 38 GHz link can
be attributed to noise levels. In general, even between all
the sampling strategies, minor differences occur for the the-
oretical events, except when shifting starting times, to which
the instantaneous sampling strategy shows a large sensitiv-
ity, especially for longer time intervals and high-intensity
events. Other processes, of which wet-antenna attenuation is
the most significant, are excluded in these theoretical events.
This illustrates the significant influence wet-antenna attenua-
tion during rain events can have on the rainfall estimates, for
all sampling strategies. On individual rainfall event levels,
additional differences in rainfall estimates can arise due to
variations in baseline power levels between devices and sam-

pling methods. Overall, our study illustrates the influence a
selected sampling strategy and related effects can have on the
estimated rainfall intensity using microwave links but does
leave the instrumental bias to consider for future studies.
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