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1 Introduction
Car-following behaviour is a fundamental element for vehicle manoeuvre, which has been researched
extensively over the past decades. The heterogeneity among driving behaviour has gained significant
importance since some researchers argued that it might be relevant to capacity drop and traffic oscilla-
tions (S. Ossen & Hoogendoorn, 2011; Yuan et al., 2018; Makridis et al., 2022). Driver heterogeneity
is usually distinguished into inter-driver heterogeneity and intra-driver heterogeneity. The inter-driver
heterogeneity describes that different drivers may behave differently in the same environment because
of different vehicle types and driving styles (S. Ossen & Hoogendoorn, 2011; Zhang et al., 2022). The
stochasticity during decision-making is able to explain intra-driver heterogeneity, which potentially
influences the variation of the same driver’s behaviour under different conditions (Zhang et al., 2022).
Therefore, it is meaningful to investigate heterogeneity to model human behaviour more accurately
and thus improve the performance of traffic operation and control.

Due to the homogeneous behaviour assumption and ignorance of human factors, traditional math-
ematical car-following models and their extended models generally perform poorly in describing
car-following behaviour, as well as traffic flow features (Han et al., 2022). The inherent heterogeneity
among drivers makes it difficult to reproduce natural car-following behaviour accurately. Even though
heterogeneity of human factors with normal distribution has been taken into account in some studies
(Jiang et al., 2014; Tao et al., 2011; Zhu et al., 2020; Koutsopoulos & Farah, 2012), adding extra
human-related parameters would result in higher complexity in model calibration (Saifuzzaman &
Zheng, 2014; S. J. L. Ossen, 2008). Given the importance of the human factor in the decision-making
process, heterogeneity characteristics of human factors could be analysed and used as decision vari-
ables when a new model needs to be proposed or to identify driver’s features. Therefore, understand-
ing the heterogeneity in car-following behaviour and modelling observed behaviours precisely has
been attached to significant importance (Makridis et al., 2022).

With the development of Advanced Driver Assistant Systems (ADAS), such as Adaptive Cruise Con-
trol (ACC), Collaborative Adaptive Cruise Control(CACC), as well as Connected and Automated
Vehicle Systems(CAVs), personalised systems with consideration of heterogeneity benefits for the
improvement of the acceptance and use to customers. Particularly in the initial phase, customised
ADAS and CAVS could bring a higher satisfactory experience to users, which could improve the trust
of the system and willingness of future use (Qi & Guan, 2019; Sheng et al., 2022). Since it is crucial
for drivers to feel comfortable within the implemented system, understanding the heterogeneity of
driver space has enormous potential to develop better customised ADAS. However, there is a rela-
tively small amount of literature about the impact of heterogeneity on driver space.

Drivers are always inclined to put themselves in their comfort zone (Peeta et al., 2005; Bärgman et
al., 2015; Qi & Guan, 2019). The safe margins of drivers are not fixed numbers, and they are in-
fluenced by extensive factors from drivers’ characteristics and external situations (Bärgman et al.,
2015). Peeta et al. (2005) classified contributing factors for discomfort level into three categories: (1)
socioeconomic characteristics; (2) situational factors; (3) latent driver’s behaviour tendencies. Since
discomfort feeling is related to a wide range of factors, quantitative representation is needed to inves-
tigate the heterogeneity’s impacts.

This report investigates the impacts of heterogeneity on proximity resistance in terms of different
traffic states, vehicle types and driving styles. It is expected to help build a personalised car-following
model based on the probabilistic driver space inference.
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The rest of the report is organised as figure 1 shows: Section 2 reviews the state-of-the-art work
related to the heterogeneity of car-following behaviour and driver space. Section 3 introduces the
inference procedure of driver space and proximity resistance. Section 4 presents data processing for
driver clustering and proximity resistance calculation. Section 5 analyses the heterogeneity charac-
teristics of proximity resistance among drivers in terms of different traffic states, vehicle types and
driving styles. Finally, Section 6 conducts the conclusion and recommendation of potential future
works.

Figure 1: Research Framework
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2 Literature Review
The interaction of driver-vehicle-environment combination can explain different characteristics of
car-following behaviour (Han et al., 2022). Research about driver heterogeneity has been carried
out over the past decades, and many researchers have approved the existence of heterogeneity for
car-following behaviour. Liao et al. (2022); Sheng et al. (2022); Zhang et al. (2022) have noticed
inter-driver differences in traffic-related parameters such as speed, distance headway, time headway
and TTC for different driving styles. In addition, S. Ossen & Hoogendoorn (2011) identified the
inter-heterogeneity caused by vehicle type that truck drivers drive with a more stable speed than car
drivers. Except for inter-heterogeneity, latent intra-heterogeneity has also been researched by many
researchers. Zhang et al. (2017) stated that drivers would adapt their driving styles under different
traffic states. Different leader-follower combinations also result in heterogeneous car-following be-
haviour (S. Ossen & Hoogendoorn, 2011; W. Wang et al., 2021; Peeta et al., 2005), four types of state
are divided into (1) car following car; (2) car following truck; (3) truck following truck; (4) truck
following car. More detailed research about car-following behaviour in terms of driver, vehicle, and
environmental factors can be found in these papers (Han et al., 2022; Saifuzzaman & Zheng, 2014).

Some indicators have been introduced to represent the discomfort feeling based on drivers’ accelera-
tion, such as "comfort index" (ratio between simulated acceleration and the sum of all vehicle’s accel-
eration) (Paddan & Griffin, 2002) and "Jerk" (change rates of acceleration) (Zhu et al., 2020; K. Wang
et al., 2022). However, discomfort feeling is affected by many factors, and only acceleration-related
parameters are insufficient to attribute to it. Peeta et al. (2005) quantified discomfort grading from 1 to
5 through a stated preference survey with the individual socioeconomic characteristics (age, gender,
education, household size) and the situational factors (weather, time of day, congestion level). This
paper’s discomfort index limitation is based on the stated preference survey, which might be incon-
sistent with the revealed car-following behaviour.

The concept of "comfort zone" was proposed by Näätänen & Summala (1974) based on work of Gib-
son & Crooks (1938). Discomfort will arise if the safety margin of a driver is intruded, which triggers
drivers to react to the current situations to remain in their comfort zone (Summala, 2007). However,
only a few researchers analysed the comfort zone using a quantitative representation. Bärgman et al.
(2015) conducted a test-track experiment to quantify driver’s comfort-zone boundaries in left-turn-
across-path scenarios based on post-encroachment time (PET), lateral acceleration and self-reports of
comfort and risk. In addition, Qi & Guan (2019) proposed a situational discomfort grading system
based on the driver’s situational reaction data from experiments. The discomfort is represented by
acceleration value, and a larger absolute value indicates a stronger willingness to leave the current
situation. However, none provided a quantitative representation of comfort zone using empirical data
to analyse the heterogeneity in driving behaviour.

Similarly to comfort zone, Jiao et al. (2022) proposed "driver space" to reflect the transition between
comfort and discomfort of drivers. Driver space is an area around a vehicle, and drivers will feel a
rapid increase in discomfort when their space boundary is intruded. The response intensity of dis-
comfort caused by spatial intrusion is represented by proximity resistance. Based on trajectory data,
heterogeneity of driver space for the same drivers is observed depending on different relative speeds.

The discomfort is related to extensive factors, especially human-related factors, making it challenging
to evaluate heterogeneity’s impacts directly. Instead of discomfort level, the proximity resistance will
be used in this report to reflect the discomfort response caused by the spatial intrusion.
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3 Driver Space Representation
In this report, the concept and methodology of driver space representation are obtained from Jiao
et al. (2022). Based on urban trajectory data, the accumulative density of infrequent presence sur-
rounding vehicles is used to express two-dimensional driver space quantitatively. In this report, only
longitudinal driver space is inferred, the lateral driver space made by lane-changing behaviour is not
considered. Proximity resistance is not a probability density, its mathematical expression is shown in
formula 1, which indicates that proximity resistance p is a function of x, r and β based on the condi-
tion of different relative speed. x represents the relative position between two vehicles; r denotes how
far the driver space boundary is; β reflects how fast the discomfort transition is; r>0 and β >2. The
distribution of proximity resistance is displayed in figure 2.

p(x|r, β) = exp(−|x
r
|β) (1)

Figure 2: One-dimensional Driver Space with Parameters r and β

The inference of driver space mainly includes two steps: (1) Estimation of scale parameter r and shape
parameter β for driver space; (2) Inference of proximity resistance based on the function of relative
position. If there is a pair of ego vehicle i at xi, yi and preceding vehicle j at xj, yj . The likelihood
of the presence of the preceding vehicles are in formula 2. Proximity resistance pij between vehicle
i and j is inferred by maximising likelihood L until r and β converge, where β are estimated given r
and r given β.

L =
n∏

j=1

[1− pij(xj|r, β)] (2)

For more convenient computation, the sum of log-likelihood and ϵ = 10−4 are added to alleviate the
bias of overly small r and β caused by minimal driver space. The final adjusted log-likelihood of the
presence of n surrounding vehicles is in formula 3.

ln(L) =
n∏

j=1

ln[1 + ϵ− pij(xj|r, β)] (3)
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4 Data Processing
Three major steps will be carried out sequentially in the data processing stage to obtain the datasets
for driver clustering and proximity resistance. Firstly, it is essential to determine the datasets that
will be used to investigate the impacts of heterogeneity on proximity resistance. Secondly, driver
clustering in terms of driving style will be performed through the K-means clustering method and
visualised by the T-SNE approach. Meanwhile, the different driving characteristics of each cluster
will be summarised. Thirdly, the quantitative drive space will be calculated based on the methodology
described in Section 3. The detailed inference process of driving styles characteristics and proximity
resistance is shown in figure 4.

4.1 HighD Dataset
In this study, HighD dataset is used for driving style clustering and proximity resistance inference.
HighD (Krajewski et al., 2018) is a dataset including naturalistic vehicle trajectories recorded on Ger-
man highways using a drone covering a road segment of about 420 m as shown in 3a. At six different
locations around Cologne (3b), 60 recordings are made with an average duration of 17 minutes. In
order to improve the data quality, resolution 4K camera recordings are only made during sunny and
windless weather from 8 AM to 5 PM to reduce the influence of movements. In addition, state-of-
the-art computer vision algorithms are applied to extract information like vehicle characteristics and
manoeuvres at a frame rate of 25 Hz.

(a) Recording Setup of HighD Dataset (b) Locations of Recordings in HighD Dataset

Figure 3: HighD Dataset (Krajewski et al., 2018)

The recordings information is summarised in Table 2 in Appendix. In order to reduce the influence
of the external environment, it is better to choose recordings at the same location in the same driving
direction. This report selected location 1 (37 recordings) because it has the largest dataset among 60
recordings. It has three lanes in each direction, and the speed limit is 120 km/h.
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Figure 4: Overview of Data Processing

4.2 Driver Clustering
After selecting the dataset successfully, the next step is distinguishing different car-following driving
styles. Trajectories should be filtered to ensure that drivers are in a steady car-following state, and
therefore several constraints are set based on literature (Kurtc, 2020; W. Wang et al., 2021; Z. Wang
et al., 2022):

• Exclude trajectories without preceding vehicle.

• Exclude trajectories with lane changes to avoid rapid velocity.

• Exclude the duration of trajectories less than 15s (375 frames) to make the characteristics of
car-following be explained.

• Exclude distance headway larger than 150 m to guarantee the influence of the preceding vehicle.

• Change the Time-to-Collision(TTC) larger than 10s equal to 10s and do not take negative TTC
into account when calculating.

• Add an additional indicator to reflect the driving stability: the ratio of constant speed duration
compared to the duration of acceleration.

Before applying driver clustering, the correlation between variables of both cars and trucks like mean,
min, max, std of velocity, acceleration, deceleration, dhw, thw, ttc, and duration ratio of constant
speed will be made to decide which variables should be included for clustering, which is shown in
figure 5. Afterwards, Elbow-method will be used to determine the cluster number after the z-score
normalisation, and then the k-means methodology will be applied for clustering.
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4.2.1 Correlation Table

Figure 5: Correlation Table for the Whole Dataset

According to figure 5, it is noted that several groups of factors have a considerable correlation, which
is summarised as follows.

• Mean, maximum and minimum of Velocity

• Mean, maximum and standard deviation of acceleration and deceleration

• Mean, maximum and minimum of distance headway and time headway

• Mean, maximum and minimum of distance headway and the counterparts s of time headway

• Mean, maximum and minim of TTC

This step aims to select factors that help to cluster precisely and explain the characteristics powerfully,
so factors can be kept despite having a high correlation with others. This report uses the mean value to
reflect the driving magnitude, and the standard deviation value represents the stability. Since distance
headway and time headway have a significant correlation relationship, thus only distance headway
will be used. The minimum distance headway and TTC are used to reflect the risky behaviour in
the collision. The ratio of constant speed duration can also reflect the stability of drivers. Figure 6
illustrates the final correlation table for cars and trucks.

4.2.2 K-means Clustering

The Elbow method is commonly used to find the optimal number of clusters in the K-means clustering
algorithm. The sharp decrease is observed before the actual clustering number 2 in Figure 7. Thus two
clusters are determined for both cars and trucks. Figure 8 visualises the characteristics difference of
driving styles for each driver cluster. In addition, the T-distributed Stochastic Neighbour Embedding
(T-SNE) algorithm (Van der Maaten & Hinton, 2008) is used to reduce the dimension of the high-
dimensional clustering indicators, which is visualised in figure 9.
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(a) Correlation Table for Car Dataset (b) Correlation Table for Truck Dataset

Figure 6: Correlation Tables for Drivers

(a) The Elbow Method for Car (b) The Elbow Method for Truck

Figure 7: The Elbow Method for Cars and Trucks

(a) Driving Style for Car Drivers (b) Driving Styles for Truck Drivers

Figure 8: Radar Map for Driving Styles
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4.2.3 TSNE Visualisation

(a) Car Clustering with TSNE Projection (b) Truck Clustering with TSNE Projection

Figure 9: Driver Clustering with TSNE Projection

According to figure 8, cluster 0 is defined as "unstable drivers" and cluster 1 as "stable drivers" in this
report. After clustering drivers based on the indicators of driving styles, the information on drivers
with different driving styles is listed in Table 3 in Appendix. Therefore, 86.1% stable car drivers,
13.9% unstable car drivers, 92.8% stable truck drivers and 7.2% unstable truck drivers are observed
from the dataset, which will be used as driver space inference in the next step.

4.2.4 Characteristics of Driving Style

From the perspective of driving style, stable drivers have steady performance in all indicators. In
contrast, unstable drivers tend to have unstable car-following behaviours even though they drive more
slowly, which can be proven by the higher standard deviation of velocity, acceleration, deceleration,
distance headway, TTC, and lower constant speed duration ratio. In addition, unstable drivers have
more intense behaviour because of the large magnitude of acceleration and deceleration, which means
they are more often to slam on the brake and accelerator pedals. Furthermore, even though stable
drivers keep lower minimum distance headway, the lower minimum TTC reflect more risky car-
following behaviours to a collision.

4.3 Driver Space Inference
The dataset for driver space inference should include both ego vehicle and preceding vehicle infor-
mation to calculate the proximity resistance for each cluster at each frame. The r and β in different
relative velocities for each cluster will be calculated through the driver space inference algorithm
(Jiao et al., 2022). Afterwards, proximity resistance can be calculated based on the relative position,
r, and β at each frame by using equation 1. The final processed dataset consists of driver cluster and
car-following information like vehicle type, vehicle size, Lane ID, speed difference, distance headway
and proximity resistance at each frame.
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5 Heterogeneity Analysis
In this section, because the sample size of cars and trucks is different in the two traffic states, the
impacts of heterogeneities on proximity resistance will be analysed using a density histogram. Ac-
cording to the figure 2, the corresponding proximity resistance at the boundary of a driver space r is
e−1 in Section 3, which will be used to divide the driver state into non-intrusive (smaller than e−1) and
intrusive (larger than e−1). In addition, Mahajan (2019) used the Gaussian Mixture algorithm on ag-
gregated density and speed to differentiate the traffic state using HighD dataset. Because of the same
dataset and road layout used in this paper, the boundary value of the average flow speed 70 km/h is
also applied to analyse the impacts of traffic states on proximity resistance. Table 1 gives the overview
of driver space based on Table 4 in Appendix. Figure 10 illustrates the driver space boundaries for
different drivers under different relative speeds, drivers with larger r need larger driving space, which
will be used to explain the potential reasons for heterogeneity’s impacts on proximity resistance. In
addition, index in equation 4 represents the area where proximity resistance over the threshold value
e−1, which helps in understanding the heterogeneity more efficiently.

Table 1: Summary of Driver Space Intrusion Information

Free-Flow State Congested State

Car Truck Car Truck

U S U S U S U S

Non-intrusive 96.6% 94.1% 94.2% 95.9% 90.7% 89.8% 93.3% 97.2%

Intrusive 3.4% 5.9% 5.8% 4.1% 9.3% 10.2% 6.7% 2.8%
* Cluster U: unstable Drivers; Cluster S: stable Drivers

Figure 10: Driver Space Boundary Profile for Different Drivers

index =

∫ 1

e−1

p(pr) · pr (4)

5.1 Impacts of Traffic States on Proximity Resistance
Based on figure 11, except for the stable truck drivers, drivers experience higher proximity resistance
in the congested state than in the free-flow state. It can be explained that drivers have to keep a smaller
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distance headway between the preceding vehicles in the congested state than in the free-flow state.
In contrast, it is interesting that stable truck drivers have higher proximity resistance in the free-flow
state than in the congested state. It might be because traffic states might not affect the performance of
stable truck drivers, and they might always stay close to the preceding vehicles in both states. Another
potential reason is insufficient samples of stable truck drivers in the congested state. Furthermore, it is
meaningful to observe that driving styles have a more significant impact on the proximity resistance
of truck drivers than car drivers.

(a) Unstable Car Drivers (b) Stable Car Drivers

(c) Unstable Truck Drivers (d) Stable Truck Drivers

Figure 11: Impacts of Traffic States on Proximity Resistance

5.2 Impacts of Vehicle Types on Proximity Resistance
Based on figure 12, higher proximity resistance is experienced by unstable truck drivers than unstable
car drivers in the free-flow state, which might not be the case in reality. Since unstable truck drivers
need a larger driving space than unstable car drivers based on figure 10. In the congested state, car
drivers are more likely to intrude driver space of others than truck drivers because truck drivers need
larger driving space than car drivers and tend to keep a larger distance between the preceding vehicles
to avoid a rear collision.

5.3 Impacts of Driving Styles on Proximity Resistance
Based on figure 13, stable car divers experience higher proximity resistance than unstable car drivers
in both states. It means that stable car drivers are more likely to intrude driver space of others than
unstable car drivers, which might not align with reality. In contrast, stable truck drivers have less
proximity resistance than unstable truck drivers in both states, which can be explained by the larger
driving space needed for stable truck drivers than unstable truck drivers based on figure 10, and
stable truck drivers tend to keep larger distance headway between the preceding vehicles. Another
interesting finding is that traffic state impacts truck drivers more than car drivers.
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(a) Free-flow Unstable Drivers (b) Free-flow Stable Drivers

(c) Congested Unstable Drivers (d) Congested Stable Drivers

Figure 12: Impacts of Vehicle Types on Proximity Resistance

(a) Free-flow Car Drivers (b) Congested Car Drivers

(c) Free-flow Truck Drivers (d) Congested Truck Drivers

Figure 13: Impacts of Driving Styles on Proximity Resistance
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6 Conclusion
This report aims to analyse the impacts of heterogeneity on driver’s proximity resistance, which can be
beneficial for developing personalised car-following models. HighD dataset was processed to make a
distinction between driving styles for car and truck drivers and infer their frame-dependent proximity
resistance. The K-means algorithm clustered the driving styles based on the selected performance
indicators of car-following behaviours. Radar maps were used to compare the heterogeneous driving
styles. After successfully inferring the proximity resistance for each driver at each frame, the im-
pacts of inter-heterogeneity (driving styles, vehicle types) and intra-heterogeneity (traffic states) on
proximity resistance were analysed. The main findings are shortly summarised below:

• Except for the stable truck drivers, drivers always experience higher proximity resistance in the
congested state than in the free-flow state.

• Except for the unstable drivers in the free-flow state, truck drivers are experience lower prox-
imity resistance than car drivers.

• Stable car drivers experience higher proximity resistance than unstable car drivers, while stable
truck drivers experience lower proximity resistance than unstable truck drivers.

• Traffic states have a larger impact on the proximity resistance of truck drivers than car drivers.

• Driving styles have a larger impact on the proximity resistance of truck drivers than car drivers.

However, this report has several limitations that cannot be ignored. Firstly, the one-dimensional prox-
imity resistance representation is a simplified version of two-dimensional driver space in Jiao et al.
(2022). The influence of surrounding vehicles on the other lanes and lane-changing behaviour are
not taken into account, which might cause overestimated proximity resistance experienced by drivers.
Secondly, the boundary value of average speed for dividing free-flow and congested conditions was
obtained from paper Mahajan (2019), which might not be the most accurate and suitable value for
this report. Moreover, there are several observations about truck drivers that might contrasts with the
reality because of insufficient samples, which also needs further improvement.

Therefore, it is recommended to apply a two-dimensional proximity resistance considering the in-
fluence of surrounding vehicles and lane-changing behaviours for more precise representation. In
addition, a fundamental diagram based on trajectory data can be constructed to distinguish free-flow
and congested states more accurately.Moreover, future work could study the quantitative impacts of
heterogeneity on proximity resistance to better understand the extent of the effects. Furthermore,
conducting an in-depth study on the heterogeneity of proximity resistances at different bottlenecks
is also worthwhile. Last but not least, a car-following model incorporating the proximity resistance
index could be proposed.
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Appendix

Table 2: Summary of HighD Recordings Information

Location Id Number of
Recordings

Number of
Lanes

Number of
Cars

Number of
Trucks

Speed Limits (km/h)

1 37 3+3 69751 16211 120

2 3 2+2 2400 674 No speed limit

3 3 3+3 2710 1037 130

4 4 3+3 3799 952 No speed limit

5 10 2+2 8192 1887 No speed limit

6 3 4+3 2287 616 120

Table 3: Number of Driving Style Clustering Information

Car Truck

Stable Driver 6237 5570

Unstable Driver 1005 451

Total 7242 6221

Table 4: Summary of Driver Space Intrusion Infomration

Free-Flow State Congested State

Unit:Frame Car Truck Car Truck

Cluster U S U S U S U S

Non-intrusive 240718 2084778 116097 1729366 219843 106505 65212 32520

Intrusive 8516 130055 7098 74796 22655 12141 4647 944
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