
 
 

Delft University of Technology

Kitaev chain in an alternating quantum dot-Andreev bound state array

Miles, Sebastian; Van Driel, David; Wimmer, Michael; Liu, C.

DOI
10.1103/PhysRevB.110.024520
Publication date
2024
Document Version
Final published version
Published in
Physical Review B

Citation (APA)
Miles, S., Van Driel, D., Wimmer, M., & Liu, C. (2024). Kitaev chain in an alternating quantum dot-Andreev
bound state array. Physical Review B, 110(2), Article 024520.
https://doi.org/10.1103/PhysRevB.110.024520

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevB.110.024520
https://doi.org/10.1103/PhysRevB.110.024520


PHYSICAL REVIEW B 110, 024520 (2024)

Kitaev chain in an alternating quantum dot-Andreev bound state array
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Qutech and Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands

(Received 26 October 2023; revised 16 May 2024; accepted 25 June 2024; published 30 July 2024)

We propose to implement a Kitaev chain based on an array of alternating normal and superconductor hybrid
quantum dots embedded in semiconductors. In particular, the orbitals in the dot and the Andreev bound states in
the hybrid are now on an equal footing, and both emerge as low-energy degrees of freedom in the Kitaev chain,
with the couplings being induced by direct tunneling. Due to the electron and hole components in the Andreev
bound state, this coupling is simultaneously of the normal and Andreev types, with their ratio being tunable by
varying one or several of the experimentally accessible physical parameters, e.g., strength and direction of the
Zeeman field, as well as changing the proximity effect on the normal quantum dots. As such, it becomes feasible
to realize a two-site Kitaev chain in a simple setup with only one normal quantum dot and one hybrid segment.
Interestingly, when scaling up the system to a three-site Kitaev chain, next-nearest-neighbor couplings emerge
as a result of high-order tunneling, lifting the Majorana zero energy at the sweet spot. This energy splitting is
mitigated in a longer chain, approaching topological protection. Our proposal has two immediate advantages:
obtaining a larger energy gap from direct tunneling, and creating a Kitaev chain using a reduced number of
quantum dots and hybrid segments.

DOI: 10.1103/PhysRevB.110.024520

I. INTRODUCTION

The Kitaev chain is a toy model comprised of an array
of spinless fermions with both normal and Andreev tunnel-
ings between neighboring sites [1]. As a one-dimensional
p-wave superconductor, the Kitaev chain in its topological
phase will host a pair of Majorana zero modes localized at
the end points of the chain [2–13]. These exotic quasipar-
ticles are non-Abelian anyons, i.e., exchanging or braiding
two Majoranas will transform between distinct ground-state
wave functions in the degenerate manifold [14]. Moreover,
since two Majorana modes are spatially separated, quantum
information encoded in such a Majorana pair will be more
robust against local perturbation and decoherence. With all
these intriguing physical properties, Majorana zero modes are
regarded as a promising candidate for implementing error-
resilient topological quantum computing [15–18].

In solid-state physics, one-dimensional topological super-
conductivity can be realized in several different types of hy-
brid materials, e.g., semiconductor-superconductor nanowires
[11,19–23], normal channels between planar Josephson junc-
tions [24–26], and ferromagnetic atomic chains on top of a
superconductor [27,28]. Despite much experimental progress,
a hybrid nanowire is inevitably subject to inhomogeneity and
disorder, which can give rise to topologically trivial subgap
states [29–35], hindering an unambiguous detection of a topo-
logical superconductor. Within this context, a very appealing
solid-state platform for implementing a Kitaev chain is based
on an array of semiconducting quantum dots [36], which is
much more immune to the effect of disorder due to the large
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level spacing of dot orbitals relative to the disorder fluctua-
tions. In particular, under a sufficiently strong magnetic field,
the spin-polarized dot orbitals serve as spinless fermions,
coupling with neighboring ones through both normal and An-
dreev couplings originating from elastic cotunneling (ECT),
and crossed Andreev reflection (CAR) mediated by a super-
conductor. Interestingly, even in a setup of only two quantum
dots, a two-site Kitaev chain can be realized and host a pair
of poor man’s Majorana zero modes at a fine-tuned sweet spot
[37].

Very recently, significant experimental progress has been
made to transform the above-mentioned theoretical proposals
and ideas into a physical realization. In a minimal Kitaev
chain device of double quantum dots, the conductance spec-
troscopies measured at the sweet spot are consistent with
the signatures of Majorana zero modes [38]. Here, the key
physical insight is to mediate the effective couplings be-
tween dot orbitals using Andreev bound states (ABSs) in a
semiconductor-superconductor hybrid [39] instead of the con-
tinuum states of superconductivity [36,37]. Coupling through
an ABS allows that the ratio of CAR and ECT amplitudes
can be controlled by varying the chemical potential in the hy-
brid segment via electrostatic gating [39–42]. This effect was
shown to be robust to Coulomb interactions in the dots as well
as strong coupling [43]. In spite of progress, current Kitaev
chain devices are still suffering from several shortcomings,
which may limit their application in quantum technology in
the future. First, the excitation energy gap is relatively small
(∼25 µeV), due to the fact that CAR and ECT couplings,
which are induced by second-order tunneling processes, scale
with the tunneling amplitude as ∼t2

0 /�0, with t0 the charac-
teristic dot-hybrid tunneling strength and �0 the induced gap
of an ABS. Second, when scaling up the system into an N-site
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FIG. 1. Schematic of a Kitaev chain device from alternating
quantum dots and Andreev bound states created in semiconductor-
superconductor hybrids. Quantum dots are formed by confinement
potentials induced by tunnel gates (vertical black lines), while the
ABS emerges in the quantum dot hosted in the hybrid segment
where the semiconductor is proximitized by superconductivity. The
tunneling strength (purple dashed lines) between the dot and the
ABS can be tuned by varying the voltage of the tunnel gates, and
the chemical potentials of the dot and the ABS can be adjusted by
changing the plunger gate voltages (black T-elements).

Kitaev chain, one needs to have N quantum dots and N − 1
pieces of hybrid segments, which makes the device fabrication
process increasingly challenging for a longer chain.

Alternatively to using normal quantum dots, Ref. [44] pro-
posed to use Andreev bound states in proximitized quantum
dots directly as spinless fermions in a Kitaev chain. There,
control over the proximity effect in each quantum dot was
required, e.g., by using a quantum point contact to couple to
the superconductor.

In the current work, we propose an alternative method
to create a Kitaev chain combining the advantages of previ-
ous proposals. Our implementation is based on an array of
alternating quantum dots and semiconductor-superconductor
hybrids (see Fig. 1). In particular, the orbitals in the quan-
tum dots and the ABS in the hybrids are now on an equal
footing to the spinless fermions in the Kitaev chain, with the
effective couplings being induced by direct tunneling. Due
to the electron and hole nature of the ABS, this coupling is
simultaneously of the normal and Andreev type, with their
ratio being tunable by varying one or several of the experi-
mentally accessible physical parameters, such as the strength
and direction of the Zeeman field, as well as changing the
tunnel coupling between normal and hybrid quantum dots.
As such, it becomes possible to implement a two-site Kitaev
chain in a simple setup with only one quantum dot and one
hybrid segment, and in general an N-site Kitaev chain requires
only N pieces of basic elements of either a dot or a hybrid
instead of 2N − 1 as proposed in Ref. [36]. At the same time,
our proposal does not require control of the proximity effect
in individual dots as in Ref. [44], and it can be realized in
the same type of devices as those in previous experiments
[39–42]. Moreover, the energy gap of the proposed Kitaev
chain will be readily enhanced ∼t0 due to the direct tunneling
between the dot and the hybrid. Interestingly, when scaling up
the system to a three-site Kitaev chain, next-nearest-neighbor
couplings emerge as a result of high-order tunneling, lifting
the Majorana zero energy at the sweet spot. Nevertheless, this

energy splitting is mitigated in a longer chain, giving a robust
zero mode within a larger parameter space, as topological
protection is approached.

While our approach is based on alternating normal and
hybrid quantum dots, a parallel work considers the case of
two superconducting quantum dots showing that a phase dif-
ference alone can be used to tune to a sweet spot [45].

The remainder of the work is structured as follows: Sec-
tion II focuses on the study of a minimal Kitaev chain based
on a single pair of quantum dots and ABSs. We introduce the
model Hamiltonian in Sec. II A, and we derive its low-energy
effective theory in Sec. II B. In particular, in Secs. II C–II E
we show how one can systematically fine-tune the sweet spot
using experimentally accessible physical parameters, e.g., the
strength and direction of the Zeeman field, as well as an
induced pairing gap on the quantum dots. In Sec. III, we
consider scaling up of the dot-ABS chain, highlighting the
emergence of next-nearest-neighbor couplings and the effects
on the Majorana properties at the sweet spot. Section IV is
devoted to discussions, and we summarize our work in Sec. V.

II. MINIMAL KITAEV CHAIN IN A DOT-ABS PAIR

We first consider a minimal setup comprised of one quan-
tum dot in the normal part and one ABS in the hybrid section.
In particular, we derive the effective normal and Andreev
couplings between them and the dependence of their ratio
on experimentally accessible parameters. Importantly, such
a simple setup is sufficient for realizing a two-site Kitaev
chain, and it can host poor man’s Majorana zero modes at a
fine-tuned sweet spot.

A. Model Hamiltonian

The model Hamiltonian for a quantum dot-ABS pair is

HDA = HD + HA + HT ,

HD = (εD + EZD)nD↑ + (εD − EZD)nD↓ + UDnD↑nD↓,

HA = (EA + EZA)γ †
A↑γA↑ + (EA − EZA)γ †

A↓γA↓,

HT = t0
∑

σ,η=↑,↓
c†
σ (Uso)σηdη + H.c. (1)

Here, HD is the Hamiltonian for a quantum dot with a single
spinful orbital, which is a valid approximation when the dot
level spacing is large. nDσ = d†

σ dσ is the occupancy number
of the dot orbital with spin σ , εD is the orbital energy, EZD

is the strength of the induced Zeeman spin splitting, and
UD is the Coulomb energy. HA is the Hamiltonian of the
semiconductor-superconductor hybrid. We assume that the
low-energy physics of the hybrid is well described by a pair of
subgap ABSs, with all the above-gap continuum states being
neglected. γAσ = σucσ + vc†

σ is the Bogoliubov operator of
the ABS with σ = ±1 for spin ↑↓, and u2 = 1 − v2 = 1/2 +
εA/2EA are the BCS coherence factors. EA =

√
ε2

A + �2
0 is

the excitation energy, εA is the normal-state energy, �0 is
the induced pairing gap, and EZA is the strength of the in-
duced Zeeman spin splitting. Here the Zeeman energy for
both quantum dots and ABSs is induced by the same globally
applied magnetic field, and thereby their spin polarization
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axes coincide. However, due to the g-factor renormalization at
the semiconductor-superconductor interface [46–48], EZA can
be much weaker than EZD. In our numerical simulations, we
set EZA = EZD/2 without loss of generality. HT is the tunnel
Hamiltonian between the dot and the ABS, with t0 being the
tunneling amplitude, which can be controlled by varying the
tunnel gate voltage. Uso is a unitary matrix,

Uso = e−iασθ

=
(

cos α − i sin α sin θ − sin α cos θ

sin α cos θ cos α + i sin α sin θ

)
, (2)

with the diagonal and off-diagonal elements denoting the
spin-conserving and spin-flipping processes, respectively.
Here α is the amount of spin precession accumulated in the
tunnel region due to spin-orbit interaction. σθ = cos θσy +
sin θσz is the spin-orbit field, which is perpendicular to the
quantum dot chain axis. Without loss of generality, here we
have chosen a frame where the magnetic field direction and
thus the dot spin polarization axis are fixed, and a rotation of
the magnetic field is now equivalently described by rotating
the spin-orbit field. In particular, θ is the angle between the
magnetic field and the dot chain axis, with θ = 0 (θ = π/2)
corresponding to being perpendicular (parallel) to the applied
magnetic field.

B. Low-energy effective theory and sweet spot conditions

We now derive the low-energy effective theory of the dot-
ABS pair introduced in Eq. (1). In the strong Zeeman field
regime, the spin-down ABS gets closer to the Fermi energy
while the spin-up ABS becomes higher in energy and can be
projected away in the leading-order approximation. For the
quantum dot, either of the spin-polarized orbitals can be closer
to the Fermi energy than the other, depending on the value of
the dot’s chemical potential. Here, without loss of generality,
we restrict our discussions to the spin-down states as the
low-energy degrees of freedom in both segments, leaving the
discussions of other spin configurations to the Appendix B.
Therefore, in the weak tunneling, i.e., t0 � EZD, EZA, the
effective Hamiltonian of a dot-ABS pair is

H eff
DA ≡ PHDAP = (εD − EZD)d†

↓d↓ + (EA − EZA)γ †
A↓γA↓

− tuγ
†
A↓d↓ − tsovγA↓d↓ + H.c., (3)

where P projects the original Hamiltonian onto the spin-down
states, t and tso are the tunnel amplitudes for the spin-
conserving and spin-flipping processes, respectively, which
are defined as

t = (Uso)↓↓ = t0(cos α + i sin α sin θ ),

tso = (Uso)↓↑ = t0 sin α cos θ, (4)

according to Eq. (2). Crucially, because an ABS is a coherent
superposition of both electron (u) and hole (v) components,
single-electron tunneling from the quantum dot to the hybrid
will simultaneously create and annihilate an ABS Bogoliubov
excitation, giving both normal and Andreev-like effective cou-
plings

teff = −tu, �eff = −tsov (5)

between the dot and the ABS, as shown in Eq. (3). On the
other hand, the Hamiltonian for a two-site Kitaev chain is

HK2 = ε1 f †
1 f1 + ε2 f †

2 f2 + t12 f †
2 f1 + �12 f2 f1 + H.c., (6)

where fi is the annihilation operator of a spinless fermion on
site i, εi is the on-site energy, and t12 and �12 are the normal
and Andreev-like tunneling between adjacent sites. By com-
paring Eq. (3) with Eq. (6), we obtain the first main finding
in the current work, namely that the low-energy physics of a
dot-ABS pair in the strong Zeeman regime is a two-site Kitaev
chain. In particular, the correspondence between the two is as
follows:

f1 → d↓, f2 → γA↓, ε1 → εD − EZD,

ε2 → EA − EZA, t12 → teff = −tu, �12 → �eff = −tsov.

(7)

Furthermore, the sweet spot of a two-site Kitaev chain is
defined as ε1 = ε2 = 0 and |t12| = |�12|. That is, both the dot
orbital energy

εD − EZD = 0, (8)

and the ABS energy√
ε2

A + �2
0 − EZA = 0, (9)

need to be adjusted to be on resonance. In addition, the mag-
nitudes of normal and Andreev-like couplings need to be in
perfect balance,

|tu| = |tsov|. (10)

Once the sweet spot conditions indicated by Eqs. (8)–(10)
are all satisfied, a pair of poor man’s Majorana zero modes
will emerge and localize themselves on the dot and hybrid
segments, respectively; see also Fig. 2(d).

C. Tuning Zeeman field strength

We now consider how to reach the sweet spot in a dot-
ABS pair by varying experimentally accessible parameters.
The most crucial step is the capability of tuning the relative
amplitude of teff and �eff. In this subsection, we focus on using
the Zeeman field strength as the tuning knob, which means
one only varies the strength of the applied magnetic field, with
its direction being fixed to be perpendicular to the Rashba
spin-orbit field. Setting θ = π/2, we thereby have t = t0 cos α

and tso = t0 sin α in Eq. (4). Among the three sweet spot con-
ditions, the zero-energy dot orbital defined in Eq. (8) can be
readily satisfied by merely varying the dot chemical potential.
By contrast, the other two defined in Eqs. (9) and (10) are
more subtle and mutually constrained. Specifically, under a
sufficiently large Zeeman field (EZA > �0), a zero-energy
ABS is obtained only when the normal-state energy is pinned
at

ε∗
A ≡ −

√
E2

ZA − �2
0 < 0. (11)

Note that here we particularly choose the negative εA solution,
corresponding to a hole-dominant ABS (u < v) such that a
balance between teff and �eff indicated in Eq. (10) can be
obtained in the weak spin-orbit interaction regime tso < t (a
complete overview of all possible sweet spot conditions is
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FIG. 2. (a) Strength of the effective couplings teff and �eff as a function of EZA in a dot-ABS configuration. Analytic (numerical) results are
presented with solid lines (dots). In the numerical calculations, the normal dot Zeeman energy is chosen to be EZD = 2EZA. At EZA = E∗

ZA, we
find |teff| = |�eff|. (b) Sweet spot Zeeman energy E∗

ZA and excitation gap Egap as a function of α due to spin-orbit interaction. (c) Charge-stability
diagram at EZA = E∗

ZA. Here �E = Eodd, gs − Eeven, gs is the energy difference between the ground states in opposite fermion parity subspaces.
The sweet spot is indicated by a yellow cross. (d) Majorana wave functions ρ

(i)
MZM at the sweet spot in (c). (e) Local conductance GRR as a

function of bias voltage Vbias and ABS detuning δεA.

given in the Appendix B). As a result, the dependence of the
magnitudes of the effective couplings on the Zeeman field
strength is as follows:

|teff(EZA)| = t0 cos α√
2

√
1 −

√
1 − �2

0/E2
ZA,

|�eff(EZA)| = t0 sin α√
2

√
1 +

√
1 − �2

0/E2
ZA. (12)

Equations (11) and (12) show that increasing the Zeeman field
strength is changing the electron and hole components of the
zero-energy ABS, i.e., increasing v from 1/

√
2 to close to

1, while decreasing u from 1/
√

2 to nearly zero. Therefore,
with EZA increasing from �0, the Andreev coupling |�eff|
is enhanced from t0 sin α/

√
2 to ∼t0 sin α while the normal

coupling |teff| is suppressed from t0 cos α/
√

2 to zero in the
large Zeeman limit [see Fig. 2(a)]. As a result, in the weak
spin-orbit interaction regime (α < π/4), which is experimen-
tally relevant for InAs and InSb hybrid nanowires [38,40–42],
the two coupling strengths will become equal at

E∗
ZA = �0

sin(2α)
, (13)

as indicated by the black dashed line in Fig. 2(a). Furthermore,
the excitation gap at this fine-tuned point is

Egap = 2|teff(E
∗
ZA)| = t0 sin(2α), (14)

which is defined as twice the effective coupling strength.
As shown in Fig. 2(b), E∗

ZA is a decreasing function of the
spin-orbit interaction strength α, while Egap is increasing. In
general, a larger E∗

ZA is preferable in order to allow for a wider

detuning range of the ABS energy δεA ∼
√

E∗2
ZA − �2

0. There-
fore, in choosing the optimal value of spin-orbit interaction α

for the dot-ABS pair, there exists a tradeoff between a sizable
gap Egap and a large range of allowed δεA for the effective
Kitaev model.

To corroborate the analytic results obtained from the low-
energy theory, we perform numerical simulations of the
dot-ABS pair based on the full many-body Hamiltonian in-
troduced in Eq. (1). In particular, we choose �0 = 1 to be
the natural unit, UD = 5, t0 = 0.2, and α = 0.3, putting the
system into the weak tunneling and weak spin-orbit interac-
tion regime. As shown in Fig. 2(a), the numerically calculated
|teff| and |�eff| as a function of EZA are in excellent agreement
with the analytic results shown in Eq. (12). In Fig. 2(b), the
calculated E∗

ZA and Egap also match very well with the analyt-
ical predictions in Eqs. (13) and (14). Figure 2(c) shows the
charge-stability diagram in the (εD, εA) plane. A sweet spot,
which is defined as the degeneracy point between even- and
odd-parity ground states along with balanced normal and An-
dreev coupling strengths, appears in the right-bottom corner
when EZA ≈ 1.75 �0, consistent with the analytically pre-
dicted value of E∗

ZA = 1.77 �0. Here, the right-bottom corner
corresponds to a spin-down dot orbital and a hole-dominant
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ABS, which is the focus of this section. Furthermore, the
calculated wave functions in Fig. 2(d) show that indeed a pair
of Majorana zero modes emerge at the sweet spot [yellow
cross in Fig. 2(c)], localized at the quantum dot and hybrid,
respectively. In Fig. 2(e), the calculated tunnel conductance
spectroscopy in the (Vbias, δεA) plane shows a stable zero-bias
peak and a parabola-shaped gap peak, consistent with the
conductance features of poor man’s Majorana zero modes.

D. Tuning Zeeman field direction

We now consider rotating the applied magnetic field in
order to find the sweet spot, with the field strength being
fixed. Inside the rotation plane, the field direction can be either
parallel or perpendicular to the spin-orbit field [49,50]. In
our consideration, this field rotation is equivalently described
by rotating the spin-orbit field while fixing the Zeeman field
and spin polarization axis, as explained after Eq. (2). While
increasing field strength changes u and v of the zero-energy
ABS, the effect of field rotation is to change the ratio of the
spin-conserving t and spin-flipping amplitudes tso, as indi-
cated in Eq. (4). Plugging Eq. (4) into Eq. (5), we thus obtain

|teff(θ )| = t0
√

1 − sin2 α cos2 θ · u(EZA),

|�eff(θ )| = t0 sin α cos θ · v(EZA), (15)

where u and v do not depend on the angle θ . Here we only
focus on 0 � θ � π/2, since the strength of the effective cou-
plings are π -periodic and symmetric about θ = 0. As shown
in Fig. 3(a), |teff| (|�eff|) is an increasing (decreasing) function
of the field angle θ . In particular, when the magnetic field
aligns with the spin-orbit field (θ = π/2), |�eff|, which is
of triplet nature, is suppressed completely due to spin con-
servation. To obtain a sweet spot in the angle sweep, one
thereby needs to start with a sufficiently strong Zeeman field
(EZA > E∗

ZA), giving |�eff| > |teff| at θ = 0, and then rotate
the magnetic field to reach the balance between |�eff| and
|teff|. Thus, in general, a larger excitation gap would appear
in the vicinity of θ = 0, where the spin-flipping processes are
maximized.

E. Tuning induced pairing gap in the quantum dot

The third tuning knob we consider in the current work
is the superconducting pairing gap in the normal quantum
dot, which can be induced from the adjacent hybrid by the
proximity effect. Microscopically, this proximity effect can
originate from either the ABS or the continuum states, with
the forms being

�ABS = (
t2 + t2

so

) uv

EA + EZA
,

�cont = (
t2 + t2

so

) χ

�0
, (16)

up to the leading order. Here �ABS comes from the high-
energy spin-up ABS, while �cont is obtained assuming a
zero-bandwidth model for the continuum states, with χ char-
acterizing the continuum density of states, which can be quite
different from the ABS. Since both �ABS and �cont increase
with the tunnel amplitude t0, their strength can be experi-
mentally enhanced by lowering the tunnel barrier between

(a)

(b)

FIG. 3. (a) Strength of the effective couplings |teff| and |�eff| as
a function of the field angle θ at EZA = E∗

ZA + δEZA (δEZA = 0.2).
Here θ is the angle between the magnetic field and the dot chain
axis, and in particular, θ = 0 corresponds to the magnetic field being
perpendicular to the spin-orbit field. (b) |teff| and |�eff| as a function
of induced gap �D at EZA = E∗

ZA − δEZA. In both scenarios, a perfect
balance between |teff| and |�eff| can be obtained.

the dot and the hybrid. In the following calculations, we do
not distinguish between the microscopic origins of the prox-
imity effect. We consider instead their combined effect in a
phenomenological way (examples of a microscopic model to
change the induced superconductivity by tuning t0 are given
in the Appendix D). Now the dot Hamiltonian becomes

H ′
D = HD + Hind, Hind = �Dd†

↑d†
↓ + H.c., (17)

where HD is the bare dot Hamiltonian defined in Eq. (1),
and �D is the total induced gap on the dot. As a result, the
dot orbital in the quantum dot is now proximitized into a
Yu-Shiba-Rusinov state [51–54], with the electron and hole
components being

uD =
√

1

2
+ ξD

2(UD/2 + EZD)
≈ 1 − 1

8

(
�D

UD/2 + EZD

)2

,

vD =
√

1

2
− ξD

2(UD/2 + EZD)
≈ 1

2

(
�D

UD/2 + EZD

)
, (18)

where

ξD ≡ εD + UD/2 =
√(

UD

2
+ EZD

)2

− �2
D (19)

is determined by the zero-energy condition for the bound
state. Note that the approximations in Eq. (18) are made in
the weak proximity effect regime (�D � UD), and thereby,
up to the leading order of �D/UD, uD = 1 becomes a constant
and only vD ∝ �D grows linearly with �D. As a result, the
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effective couplings between the dot and the ABS become

teff = t (uAuD − vAvD) ≈ t (uA − vAvD),

�eff = tso(vAuD + uAvD) ≈ tso(vA + uAvD). (20)

That is, teff decreases with the magnitude of the induced pair-
ing, while �eff increases with it. In Fig. 3(b), the solid lines
show the analytic curves of |teff| and |�eff| as a function of �D

derived in Eq. (20), which agree with the numerical results ob-
tained from the full many-body Hamiltonian (dots and dashed
lines). Note that here the Zeeman field is perpendicular to the
spin-orbit field, and its strength is chosen to be EZA < E∗

ZA
such that |teff| > |�eff| at zero proximity effect, and a balance
between them is reached at a sufficiently strong �D.

III. SCALING UP THE KITAEV CHAIN

We now go beyond the minimal setup of a dot-ABS pair
and scale up the system into a longer chain. Without loss of
generality, we consider tuning up the sweet spot and Majorana
modes by varying the Zeeman field strength, with its direction
being fixed to be perpendicular to the spin-orbit field and no
superconducting proximity effect on normal quantum dots.
Moreover, we assume homogeneity in the long-chain system,
i.e., all the physical parameters for the dots/ABS/tunneling
are identical.

A. Three-site Kitaev chain: Dot-ABS-dot

As a first example of the three-site Kitaev chain, we con-
sider a dot-ABS-dot chain, focusing on its physical properties
around the sweet spot. The Hamiltonian is given by

HDAD = HDL + HA + HDR + HTLA + HTRA, (21)

where HDL, HA, and HDR are the Hamiltonians for the left
dot, the middle ABS, and the right dot, respectively. HTLA

(HTRA) is tunnel Hamiltonian between the ABS and the left
(right) dot. The specific forms of these individual Hamiltonian
terms are the same as those introduced in Eq. (1). Under the
assumption of homogeneity, one can simultaneously tune both
dot-ABS pairs into their own sweet spot by applying a global
Zeeman field EZA = E∗

ZA and setting εDL = εDR = ε∗
D and

εA = ε∗
A as indicated in Fig. 2(c), such that the whole system

is automatically entering the sweet spot regime. Indeed, as
shown in Fig. 4(a), two unpaired Majorana modes are com-
pletely localized on the outermost quantum dots, precisely
as expected for the sweet spot of a three-site Kitaev chain
[1]. However, a surprising fact is that the energy of the two
Majoranas is split into EMZM ≈ 0.01, which is approximately
one-tenth of the excitation gap [see Fig. 4(b) at δε = 0], even
though there is no wave function overlap between them at all
[see Fig. 4(a)]. Furthermore, as shown in Fig. 4(b), the energy
spectrum of the whole system as a function of the detuning
energy deviates from the cubic scaling behavior E ∝ (δε)3 of
an idealized three-site Kitaev chain. Here the detuning energy
is defined as δε = εDL − ε∗

D = εDR − ε∗
D = εA − ε∗

A.
To understand the physical mechanism underlying this in-

triguing energy splitting, we develop a low-energy effective
theory for the dot-ABS-dot chain, including both the first- and

(a)

(b)

FIG. 4. (a) Majorana wave functions at the sweet spot of a dot-
ABS-dot chain. (b) Energy spectrum of the system as a function
of detuning energy δε. The solid lines are calculated for the full
many-body Hamiltonian, while the gray dashed lines are based on
the low-energy effective theory. The energy splitting at δε = 0 is due
to effective next-nearest-neighbor coupling between the two outer
dots.

second-order contributions,

HDAD,eff = H (1)
DAD,eff + H (2)

DAD,eff. (22)

Here H (1)
DAD,eff includes only the low-energy states and direct

tunneling terms, which is a straightforward generalization of
the dot-ABS pair, giving

H (1)
DAD,eff = PHDADP

= (εDL − EZD)d†
L↓dL↓ + (EA − EZA)γ †

A↓γA↓

+ (εDR − EZD)d†
R↓dR↓ + teffLAγ

†
A↓dL↓

+ �effLAγA↓dL↓ + teffRAγ
†
A↓dR↓

+ �effRAγA↓dR↓ + H.c. (23)

Indeed, the first-order effective Hamiltonian H (1)
DAD,eff is a

three-site Kitaev chain. In particular, the sweet spot is reached
when all the on-site energies are zero and EZA = E∗

ZA, giving
teffLA = teffRA = �effLA = �effRA. In addition, unlike the dot-
ABS pair, we now also include the second-order perturbation
terms in the effective Hamiltonian as follows:

H (2)
DAD,eff = PHT

1 − P

HA
HT P

= tDDd†
L↓dR↓ + �DDdL↓dR↓ + H.c., (24)

where HT = HTLA + HTRA. Equation (24) indicates that ef-
fective next-nearest-neighbor couplings between the outer
dots can be mediated by the high-energy ABS in the hybrid
via second-order tunnelings (see Fig. 5). Specifically, these
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(a) (b)

FIG. 5. Schematic of the second-order tunneling processes that
are responsible for the next-nearest-neighbor couplings in a dot-
ABS-dot or ABS-dot-ABS chain.

couplings have the following form:

tDD = t2v2 + t2
sou2

2EZA
≈ t2v2

2EZA
,

�DD = 2ttsouv

2EZA
� tDD, (25)

where we assume that the weak spin-orbit limit tso � t and
u � v holds in the vicinity of the sweet spot. Therefore, up to
the second order in t0, the low-energy physics of a dot-ABS-
dot chain is well described by a generalized three-site Kitaev
chain,

HK3 =
3∑

i=1

εi f †
i fi +

2∑
i=1

(t f †
i+1 fi + � fi+1 fi )

+ t31 f †
3 f1 + �31 f3 f1 + H.c., (26)

where fi is the spinless fermion on the ith site, εi is the
on-site energy, t and � are the normal and Andreev tunnelings
between adjacent sites, and t31 and �31 are the next-nearest-
neighbor tunnelings. Indeed, as shown in Fig. 4(b), the energy
spectrum of the full many-body Hamiltonian in Eq. (21) is
in excellent agreement with that of the effective model in
Eq. (26), supporting our perturbation theory analysis. In the
calculation of the generalized Kitaev model, the Hamiltonian
parameters are chosen as t = � = teff(E∗

ZA), t31 = tDD,�31 =
0, and εi = δε. Therefore, our new finding here is that even
though the two Majorana modes have no wave-function over-
lap in space at the sweet spot [see Fig. 4(a)], they are still
coupled to each other via next-nearest-neighbor couplings,
giving a finite-energy splitting [see Fig. 4(b)]. In Appendix E,
we expand our discussion to the case of inhomogeneities of
g-factors and spin-orbit interaction between the constituent
dots of the array.

B. Three-site Kitaev chain: ABS-dot-ABS

We briefly discuss the physics of an ABS-dot-ABS chain,
which is somewhat dual to a dot-ABS-dot chain. The Hamil-
tonian is given by

HADA = HAL + HD + HAR + HTLD + HTRD, (27)

which has two outer ABSs connected by a quantum dot in
the middle. Similar to the analysis performed in the previous
subsection, the low-energy physics of the system is

HADA,eff = H (1)
ADA,eff + H (2)

ADA,eff, (28)

(a)

(b)

FIG. 6. (a) Majorana wave functions at the sweet spot of an
ABS-dot-ABS chain. (b) Energy spectrum of the system as a function
of detuning energy δε. The solid lines are calculated for the full
many-body Hamiltonian, while the gray dashed lines are based on
the low-energy effective theory. The energy splitting at δε = 0 is due
to effective next-nearest-neighbor coupling between the two outer
ABS.

where the first-order term is

H (1)
ADA,eff = (EAL − EZA)γ †

L↓γL↓ + (εD − EZD)d†
↓d↓

+ (EAR − EZA)γ †
R↓γR↓+teffLDd†

↓γL↓+�effLDd↓γL↓

+ teffRDd†
↓γR↓ + �effRDd↓γR↓ + H.c., (29)

and the second-order term is

H (2)
ADA,eff = tAAγ

†
L↓γR↓ + �AAγL↓γR↓ + H.c., (30)

with

tAA = t2v2 + t2
sou2

2EZD
≈ t2v2

2EZD
,

�AA = 2ttsouv

2EZD
� tAA. (31)

We thus see that the low-energy physics of an ABS-dot-ABS
chain is also a generalized three-site Kitaev chain, with only
the roles of quantum dots and ABSs being interchanged. Actu-
ally the sweet spot of the system is also reached at EZA = E∗

ZA,
giving an excitation energy gap of a similar size with its
dual system. The only difference is a more suppressed Majo-
rana energy splitting [see Fig. 6(b)] because a larger Zeeman
spin splitting in the quantum dot suppresses the second-order
tunnelings, as indicated in Eq. (31). As for the dot-ABS-
dot setup, in Appendix E we expand the discussion to
situations in which the dots have inhomogeneities in either g-
factors or spin-orbit interaction. In particular, we find that the
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FIG. 7. Energy spectra of N-site alternating quantum dot-ABS chains around the sweet spot. For intermediate length chains (e.g., N = 3),
the next-nearest-neighbor coupling has an appreciable effect on the Majorana energy splitting at the sweet spot. As the chain is further scaled
up (N � 4), this Majorana energy splitting is quickly suppressed due to the short-range nature of this effective coupling, as shown in Eq. (33).

ABS-dot-ABS system yields more resilient sweet spots due to
the larger separation of levels on the central normal dot.

C. Longer Kitaev chain

For a general Kitaev chain with N alternating quantum
dots and ABSs in total, its low-energy physics can be well
described by an effective Hamiltonian up to the (N − 1)th
order, i.e.,

HN,eff =
N−1∑
k=1

H (k)
N,eff. (32)

In particular, the strength of the effective couplings between
two arbitrary sites in such an N-site chain has the following
scaling behavior:

�k ∼ t k
0

(2EZ )k−1
∼ t0 exp{−(k − 1) log(2EZ/t0)} (33)

for 1 � k � N − 1. Here �k denotes the effective normal
or Andreev coupling between any two sites separated by a
distance of k (e.g., �1 for the nearest-neighbor coupling),
and EZ is the Zeeman spin splitting of either the dot or the
ABS located between the two sites considered. Physically,
�k originates from virtual tunnelings that include k times
of single-electron tunneling events via k − 1 different high-
energy states that are gapped from the Fermi energy due to
Zeeman spin splitting. From Eq. (33), we see that �k decays
exponentially with the distance between the coupled two sites,
with the decay length being approximately

ξ−1
� ∼ log(2EZ/t0). (34)

The range of the effective couplings thus decreases with an
increase of Zeeman energy in the dot-ABS chain, and as
a result, the low-energy physics of the dot-ABS chain will
asymptotically approach the idealized spinless Kitaev chain
only in the large Zeeman energy limit (EZ  t0). Another
crucial feature of �k is being short-ranged in nature, making
it possible to reach topological protection in the long-chain
limit. Indeed, the numerical simulations based on the full

many-body Hamiltonian for the N-site dot-ABS chain (see
Fig. 7) show that the finite Majorana energy splitting become
strongly suppressed to nearly zero once there are as many as
four or five sites. Moreover, for N as large as six, the range
of δε for hosting zero-energy excitation extends asymptoti-
cally to the long-wire limit −teff(E∗

ZA) � δε � teff(E∗
ZA), and

signatures of gap closing and reopening begin to appear near
|δε| ∼ teff, indicating the emergence of a topological phase
transition.

IV. DISCUSSION

In the current work, we proposed an alternative way of
implementing a Kitaev chain in an alternating quantum dot-
Andreev bound state array. Although the configuration of
the proposed hybrid devices resembles those considered in
Refs. [36,37,39,43], a fundamental difference is the role of
ABSs. In Refs. [39,43], the ABSs are gapped and only serve
as a virtual coupler to mediate the effective couplings between
quantum dots. By contrast, here the spin-polarized ABS is
taken close to the Fermi energy and is on an equal footing
with the dot orbitals as the spinless fermions. Consequently,
an immediate advantage of our proposal is to emulate a Kitaev
chain using a reduced number of quantum dots and hybrid
segments in a device. In particular, it becomes possible to
implement a two-site Kitaev chain and poor man’s Majoranas
using only one quantum dot and one hybrid segment. Further-
more, the existing two-site Kitaev chain device comprised of
a double quantum dot linked by a hybrid [38] is now suitable
for realizing a three-site Kitaev chain exhibiting the physics
of bulk-edge correspondence in the vicinity of its sweet spot.
On the other hand, our proposal differs from the ABS chain
proposed in Ref. [44] in that we require only half the number
of superconducting leads, and we do not need to control the
quantum point contact between the semiconductor wire and
the superconductor leads, making our theoretical proposal
more experimentally accessible. Another advantage of our
proposal is the ability to obtain a relatively large excitation
gap, because now the effective couplings originate from direct
couplings of the dot-ABS pair, i.e., Egap ∼ t0, in stark contrast
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with the second-order tunneling processes Egap ∼ t2
0 /�0 in

previous work [39].
Throughout the work, we have assumed perfect homogene-

ity when considering a long Kitaev chain device (N � 3),
but this has to be relaxed in a realistic device. That is, the
quantum dots can have different values of charging energy
UD, g-factor EZD, while EZA and the induced gap �0 of the
ABS may vary from piece to piece. Therefore, it would be
rather unlikely to drive the whole long chain into the sweet
spot by merely controlling a global magnetic field, and as a
result, the tuning knob of the induced gap on the quantum
dots becomes particularly crucial, because it will allow for
fine-tuning the couplings in each individual dot-ABS pair into
perfect balance.

Another finding of our work is the presence of couplings
beyond the nearest neighbors, which originate from high-
order tunneling processes. Their effect will be most prominent
in a three-site device (e.g., a dot-ABS-dot chain), where the
Majorana energy at the sweet spot becomes split, even though
their wave functions are completely separated on the outer-
most dots. This raises a new question of whether it is possible
to define such a sweet spot that simultaneously satisfies three
conditions: (i) complete spatial separation of the Majoranas,
(ii) robustness against on-site-energy detuning, and (iii) min-
imizing the Majorana energy to nearly zero. To obtain an
idealized Kitaev chain model, as shown in Eqs. (25) and (31),
the couplings between two distant sites would be suppressed
in the strong Zeeman limit, similar to the findings in the Ma-
jorana nanowire scenarios [55]. In addition, in the tunneling
regime t0 � EZ , such couplings are short-ranged in nature,
and therefore the effect will be mitigated as the number of
sites is scaled up. As we show, when the number of sites is
as large as six, the whole chain becomes very close to a topo-
logical Kitaev chain with robust zero energy and signatures of
gap closing and reopening near the quantum phase transition.

V. SUMMARY

To summarize, we have proposed an alternative route to
simulating a Kitaev chain in an alternating quantum dot-
Andreev bound state array. In particular, both the dot orbitals
and the ABS are now on an equal footing as spinless fermions,
and the relative amplitude of normal and Andreev couplings
between adjacent sites, are highly tunable by the strength and
direction of the magnetic field, as well as the magnitude of
the induced pairing gap on quantum dots. As the quantum
dot-ABS chain is scaled up, couplings beyond the nearest
neighbors emerge, affecting the Majorana energy at the sweet
spot. Nonetheless, due to the short-range nature of these cou-
plings, topological protection of Majorana zero modes will
recover in the long chain limit. Our proposal will allow for a
more efficient simulation of an artificial Kitaev chain using a
reduced number of quantum dots or hybrid segments, and at
the same time it will enable us to obtain a larger excitation
gap above the Majorana zero modes. In recent experiments
[40,56], it was shown to be possible to isolate a single ABS
in a short hybrid region, making our proposal particularly
appealing and relevant to the ongoing studies.

All codes related to the results of the present manuscript
can be found in the accompanying Zenodo repository [57].

Note added. We have been made aware of Ref. [45] by
its authors. In contrast to [45], we consider the limit of both
quantum dots being maximally asymmetric in their proximity
coupling to the superconductor.
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APPENDIX A: DETAILS OF THE NUMERICAL
CALCULATIONS

The numerical results in this work are obtained by ex-
act diagonalization of the full many-body Hamiltonian, e.g.,
Eq. (1), in Fock space. The dimension of the total Hamiltonian
is 22N , where N is the number of quantum dots plus ABS in the
chain. Due to fermion parity conservation, we can decompose
the Hamiltonian into even- and odd-parity subspace of dimen-
sion 22N−1. As a result, the excitation energy E , as depicted in
Figs. 4, 6, and 7, has been obtained through

Eλ = E (λ)
odd − E (0)

even (A1)

for λ = 0, 1, 2, . . . , 22N−1 − 1. In a similar fashion, �E in the
charge-stability diagrams, as depicted in Fig. 2(c), is obtained
by restricting λ in Eq. (A1) to λ = 0. To obtain teff and �eff ,
we make use of the following relation:

�eff = (E1 + E0)/2,

teff = (E1 − E0)/2, (A2)

where E0, E1 are defined in Eq. (A1).
Here teff is related to the cost of exciting an unpaired

electron while �eff is related to splitting the lowest Cooper
pair into two unpaired electrons. The gap energy, depicted in,
e.g., Fig. 2(b), is obtained directly through

Egap ≡ E1. (A3)

In addition, the spectrum plots also contain the energy of the
MZM itself in the lowest-lying line following

EMZM ≡ E0. (A4)

The Zeeman energies characterizing the sweet spot depicted
in Fig. 2(b) have been determined by using the properties of
the CSD [see Fig. 2(c)]. As Fig. 3 shows, if EZA is slightly
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below the sweet spot E∗
ZA, the degeneracy crossing vanishes

in favor of an teff dominated (�E > 0) anticrossing. For
EZA > E∗

ZA, the same anticrossing is caused by a dominating
�eff process (�E < 0). Therefore, the sweet spot is char-
acterized by the root �E (E∗

ZA) = 0 at the point where the
charge degeneracy lines have their smallest distance in the
(εD, εA) plane. To determine the point of minimal distance,
we perform a transformation of the chemical potentials into
polar coordinates,

(εD, εA) → (rε cos(ϕε ), rε sin(ϕε )) rε =
√

ε2
D + ε2

A,

tan(ϕε ) = εA/εD. (A5)

In polar coordinates, the point with minimal distance between
the degeneracy lines is found to satisfy

(rε, ϕε ) ∈ {rε, ϕε : min[�E (rε, ϕε )] ∧ max[�E (rε, ϕε )]}.
(A6)

The bottom right corner we discuss has the further constraint
that ϕε ∈ [−π/2, 0]. To obtain the MZM wave functions,
ρ

(i)
MZM, depicted in Figs. 2, 4, 6, we define the spin-dependent

on-site MZM operators

wσ = (dσ + d†
σ ), (A7)

zσ = i(dσ − d†
σ ). (A8)

The MZM on the ABS are defined analogously with the corre-
sponding creation and annihilation operators. From Eq. (A7)
we find the MZM wave functions through

ρ
(w)
MZM = ∣∣〈ψ (0)

odd

∣∣wσ + wσ

∣∣ψ (0)
even

〉∣∣2
, (A9)

ρ
(z)
MZM = ∣∣〈ψ (0)

odd

∣∣zσ + zσ

∣∣ψ (0)
even

〉∣∣2
, (A10)

where |ψ (λ)〉 denotes an eigenstate of the many-body Hamil-
tonian; cf. Eq. (1). The conductance plot in Fig. 2(e) has
been obtained by implementing the rate equations listed in
the supplemental material of [43]. The energies of the Kitaev
model [1] in Figs. 4 and 6 have been obtained by exact
diagonalization and replacing the parameters by their corre-
sponding partners from perturbation theory; cf. Eq. (7). Lastly,
the perturbative analysis has been performed in part by using
Pymablock [58]. All codes related to the results presented in
the manuscript can be found in the accompanying Zenodo
repository [57].

APPENDIX B: SYMMETRIES OF THE
CHARGE-STABILITY DIAGRAM

The CSD depicted in Fig. 2 shows six distinct regions with
alternating ground-state properties. If the low-energy sub-
space is described by the Hamiltonian given in Eq. (3), then
varying the chemical potentials εi on the two sites changes the
charge state of the dots. The possible charge states on each
site depending on the chemical potential are

|↓ ↑〉, εD < −UD − EZD, (B1)

|↓〉, −UD − EZD < εD < EZD, (B2)

|0〉, εD > EZD (B3)

FIG. 8. ABS energy depending on the on-site chemical potential
of the ABS dot for varying Zeeman energies EZA. Depending on the
Zeeman energy, at most two ABS solutions will become available to
potentially host sweet spots of the system.

on the normal dot, and

u|0〉 + v|↑ ↓〉, εA < −
√

E2
ZA − �2

0, (B4)

|↓〉, −
√

E2
ZA − �2

0 < εA <

√
E2

ZA − �2
0, (B5)

u|0〉 + v|↑ ↓〉, εA >

√
E2

ZA − �2
0 (B6)

on the proximitized dot, where u > v in Eq. (B4), and v >

u in Eq. (B6). The precise choice of the corner in the CSD
depends on (i) the choice of the degeneracy on the normal

dot, and (ii) the choice of the ABS, i.e., εA = ±
√

E2
ZA − �2

0.
The choice of the normal dot degeneracy yields different low-
energy Hamiltonians due to the different spin orientations that
are relevant for the transition. For the right two corners, the
normal dot orbital is spin-down, so we have

HT ≈ −tsoc†
↑d↓ + tc†

↓d↓ + H.c.

≈ −tsovγ↓d↓ − tuγ
†
↓ d↓ + H.c., (B7)

where we have used the Bogoliubov transformation

c†
↑ = uγ

†
↑ + vγ↓, c†

↓ = −uγ
†
↓ + vγ↑. (B8)

So we have

teff = −tu, �eff = −tsov (B9)

for both bottom-right and top-right corners. On the other hand,
for the left two corners, the dot orbitals are spin-up states,
giving

HT ≈ t∗c†
↑d↑ + tsoc†

↓d↑ + H.c.

≈ t∗vγ↓d↑ − tsouγ
†
↓ d↑. (B10)

Thus

teff = −tsou, �eff = t∗v. (B11)

The choice of top or bottom corner depends on the choice
of the ABS. In Fig. 8 we have depicted the different options
in the parameter regimes relevant for the problem. Choosing

the negative energy ABS (εA = −
√

E2
ZA − �2

0) yields v > u,

024520-10



KITAEV CHAIN IN AN ALTERNATING QUANTUM … PHYSICAL REVIEW B 110, 024520 (2024)

TABLE I. Definition of the corners visible in the charge-stability diagram, Fig. 2. The given constraints on u, v and t, tso determine whether
the corresponding corner in the charge-stability diagram is a viable sweet spot.

Left Right
Dot D: |↓ ↑〉; |↓〉 Dot D: |↓〉; |0〉

Top t > tso t < tso

Dot A: u|0〉 + v|↑ ↓〉; |↓〉 u > v u > v

Bottom t < tso t > tso

Dot A: |↓〉; u|0〉 + v|↑ ↓〉 u < v u < v

H eff
DA terms teff = −tsou ; �eff = t†v teff = −tu ; �eff = −tsov

while it is the opposite (u > v) for the positive energy ABS.
Finally, the availability of a corner to host a sweet spot
depends on the relation between t and tso. The main text
discusses the behavior at the bottom-right sweet spot when
t > tso, a condition that needs to be satisfied for the bottom-
right corner to be a viable sweet spot. The choice of corner
is then determined by the ABS, i.e., for the bottom-right

corner that is εA = −
√

E2
ZA − �2

0, which yields v > u. This
is necessary to enable |teff | = |�eff |; see Eq. (B9). Choosing

the opposite ABS, i.e., εA =
√

E2
ZA − �2

0, one switches from
the bottom-right to the top-right corner. This corner, however,
cannot host any sweet spot when t > tso since

u =
√

1

2

(
1 +

√
1 − �2

0/E2
ZA

) �0
EZA

↗1

≈
√

2

2
+

√
1 − �2

0/E2
ZA

2

+
√

2

8

(
�2

0

E2
ZA

− 1

)
, (B12)

v =
√

1

2

(
1 −

√
1 − �2

0/E2
ZA

) �0
EZA

↗1

≈
√

2

2
−

√
1 − �2

0/E2
ZA

2

+
√

2

8

(
�2

0

E2
ZA

− 1

)
(B13)

showing that u > v for EZA > �0 (see also Fig. 8). If,
however, tso > t , the constraint on u, v is inverted and the
availability of the two corners flips. For clarity, we introduce
the precise definitions by which we refer to the corners of the
CSD in Table I. There, we list the participating, i.e., degen-
erate states, on the normal dot (dot D) and the proximitized
dot (dot A). Furthermore, we give the conditions relevant for
the existence of the sweet spot, e.g., that a bottom-right sweet
spot becomes viable if both v > u and t > tso are met.

APPENDIX C: FINITE CHARGING ENERGY UABS IN THE
ANDREEV BOUND STATE

The main text discusses a configuration without charging
energy on the ABS dot. Removing this constraint, we obtain
the Hamiltonian on the ABS dot as

HA = (ε − EZA)c†
↓c↓ + (ε + EZA)c†

↑c↑ + �0c†
↑c† ↓

+ UABSc†
↑c†

↓c ↓ c ↑ +H.c. (C1)

in the electronic basis. UABS is the charging energy on the
ABS, and the remaining symbols are defined in Sec. II A. In
the many-body basis, {|0〉, |↓ ↑〉, |↓〉, |↑〉}, we can write the

Hamiltonian

HA =

⎛
⎜⎜⎝

0 � 0 0
� 2ε + UABS 0 0
0 0 ε − EZA 0
0 0 0 ε + EZA

⎞
⎟⎟⎠. (C2)

We substitute ξ = 2ε + UABS and define Eξ =
√

ξ 2 + �2.
With these replacements, we can write the ground state of the
even- and odd-parity subspaces as

E (even)
GS = ξ −

√
ξ 2 + �2,

|GSodd〉 =
√

Eξ + ξ

2Eξ

|0〉 +
√

Eξ − ξ

2Eξ

|↑ ↓〉, (C3)

E (odd)
GS = ε − EZA, |GSeven〉 = |↓〉. (C4)

To induce MZMs on the dots, the two ground states need
to be degenerate. They are connected through a quasiparti-
cle excitation |GSeven〉 = (uc†

↓ − vc†
↑)|GSodd〉 with u, v to be

determined. We obtain the condition

u

√
Eξ + ξ

2Eξ

+ v

√
Eξ − ξ

2Eξ

= 1, (C5)

which is solved by u(UABS) =
√

Eξ +ξ

2Eξ
, v(UABS) =

√
Eξ −ξ

2Exi

since u(UABS)2 + v(UABS)2 = 1. The degeneracy condition
requires

E (even)
GS = E (odd)

GS (C6)

leading to ξ being constrained to

ξ 2 =
(

UABS

2
+ EZA

)2

− �2. (C7)

To satisfy v(UABS) > u(UABS) (see Appendix B) we choose
the negative root solution for ξ . Gathering all findings into
u(UABS) and v(UABS), we can write

u(UABS) =
√

Eξ + ξ

2Eξ

UABS→0≈ u − u

4

�2

ξ0EZA(EZA − ξ0)
UABS,

(C8)

v(UABS) =
√

Eξ − ξ

2Eξ

UABS→0≈ v + v

4

�2

ξ0EZA(EZA − ξ0)
UABS,

(C9)
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(a) (b)

(c) (d)

FIG. 9. Sweet spot recovery through adjustment of t0. Panels (a) and (b) show how, when starting with t0 = 0.2 but EZA = E∗
ZA − δEZA,

a sweet spot can be recovered by increasing t0. Particularly (b) demonstrates the corresponding t0 > �0, strongly coupling the two dots. We
lastly want to highlight that, despite the slope of |teff | − |�eff | being negative towards smaller t0 in (a), it is impossible to recover a sweet spot
by decreasing the hopping further. Panels (c) and (d) demonstrate sweet spot recovery when t0 = 1.5 initially and EZA = E∗

ZA + δEZA.

where we used ξ0 =
√

E2
ZA − �2, and u, v as defined in

Sec. II A. We recognize that u decreases while v increases.
It is therefore to be expected that the Zeeman energy at which
the sweet spot is observed reduces. Indeed, we find E∗

ZA for
θ = 0 at the sweet spot as

E∗
ZA = �0

sin(2α)
− UABS

2
. (C10)

Since two corners of the charge-stability diagram are roughly
separated by � 2EZA + UABS, a finite UABS can serve to
help make the sweet spot more resilient towards single-
parameter perturbations. Furthermore, Eq. (C10) shows that
large enough UABS can push the sweet spot Zeeman energy
below �0. Hence, sweet spots can emerge even if EZA < �0

as a result of the separation of the ABS states in εA and
Eq. (C10). This final property might be particularly useful
when the platform inherent g-factor might be limited through
other constraints.

APPENDIX D: CONTROLLING THE EFFECTIVE
PAIRING THROUGH t0

In Sec. II E we used a phenomenological pairing parameter
�D on the initially normal dot to demonstrate how a change
on the pairing on the dot can recover a sweet spot. This
Appendix builds upon Sec. II E, demonstrating explicitly on
the many-body system how the induced pairing from the ABS
is controlled through the bare hopping t0. In particular, when
the ABS dot is tuned slightly off the sweet spot in EZA, we can
adjust t0 to recover a sweet spot. Figure 9 demonstrates sweet
spot recovery along two examples: (a) and (b) show how large
t0 recovers a sweet spot when starting with an initially small

t0 (= 0.2) and EZA = E∗
ZA − δEZA; (c) and (d) demonstrate

recovery for small t0 when beginning with t0 = 1.5, i.e., strong
coupling of the dots, at EZA = E∗

ZA + δEZA.

APPENDIX E: INHOMOGENEITY IN
THE DOT-ABS ARRAY

In this Appendix, we consider the effect of Hamiltonian
parameter inhomogeneity in a dot-ABS array. This captures
the realistic situation of an experimental device. To demon-
strate the main physical effect, we focus on the three-site
Kitaev chain with four different scenarios: DAD and ADA
with inhomogeneous spin-orbit interaction, and DAD and
ADA with an inhomogeneous g-factor. Here we choose the
level of inhomogeneity to be 10% to generate the results in
Figs. 10 and 11, and we emphasize that our results are robust
even for larger values. We find that the physical findings and
main conclusions presented in the main text are still valid, e.g.,
the presence of long-range coupling between Majoranas with
negligible wave-function overlap, and energy spectra against
chemical potential detuning. In our simulation here, we need
to first figure out the sweet spots in each two-site DA pair by
varying the tunnel strength t0. After that, the sweet spot of a
three-site DA pair is obtained by putting them together. It is
likely that the middle site (either dot or ABS) may reach dif-
ferent values of chemical potential for the left and right pairs,
respectively, and we choose to take the average of them. In
addition, to capture the proximity effect from the continuum
states, we add a pairing term �D,induced ≈ t2

0 δ� on normal
quantum dots, with δ� = 0.5�0. We note that the induced
gap is proportional to t2

0 due to the second-order process of
local Andreev reflection, and that δ� is a phenomenological
parameter that is proportional to the superconductor density
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(a) (c)

(b) (d)

FIG. 10. Inhomogeneous spin-orbit interaction between the two pairs. We allow for a deviation of 10% between the different αi (αL =
0.3, αR = 0.27). We see that the ADA setup reproduces the behavior suggested in the main text (d) despite the inhomogeneity and yields well
separated Majoranas (c). This is explained by the better protection against next-nearest-neighbor hopping from the larger g-factor in the central,
normal dot. The DAD setup, however, is more sensitive to changes of the chemical potential of the middle dot. The smaller g-factor in the ABS
dot generally leads to poorer protection against next-nearest-neighbor hopping. Yet, we obtain still well separated Majoranas despite the sweet
spot only being metastable against global changes of the chemical potential.

of states. We have checked that our simulation results do not
depend on the precise value of δ�. To summarize, we have
shown that even in the presence of parameter inhomogeneity,
the sweet spot of an extended Kitaev chain can still be found
by varying the tunnel strength between dot and ABS. Further-
more, the main findings presented in the main text are still
valid.

1. Inhomogeneous spin-orbit interaction

We first consider inhomogeneous spin-orbit interaction in
both ADA and DAD setups. We consider αL and αR, i.e., the
spin-orbit interaction of the two pairs. The results of this anal-
ysis are depicted in Fig. 10. We recognize that, for both setups,
we can well recover the spectral behavior discussed in Sec. III.

(a) (c)

(b) (d)

FIG. 11. Inhomogeneous g-factors between the dots. For the DAD setup, (a) and (b), we let the inhomogeneity be as large as 10% (gL =
2, gR = 1.8). We find that, despite the stark difference, the spectrum reproduces the findings of the main text well and the Majoranas yielded
by the system are well separated from each other. This resilience is due to the larger level separation of the levels on the normal dots. For the
ADA setup we allow for an inhomogeneity of 10% (gL = 1, gR = 0.9). In both cases, we recover spectral lines akin to those demonstrated in
the main text despite the presence of inhomogeneities. Consequently, also the Majorana wave functions remain well separated between the
dots.
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Furthermore, we see that the Majorana wave functions shown
in Figs. 10(a) and 10(c) are still well separated.

2. Inhomogeneous g-factor

Lastly, we consider inhomogeneous g-factors between the
dots. The different g-factors of the outer dots between the two
setups make them differently susceptible to inhomogeneities

of the g-factor. We choose gL = 2, gR = 1.8 for the DAD
and gL = 1, gR = 0.9 for the ADA setup. This choice yields
reasonably different sweet spots of the two pairs of two-site
chains that can still be connected by barrier tuning of the
second pair, i.e., varying t0. The results of this analysis are
depicted in Fig. 11. For both situations, we find that the
behavior of the spectrum suggested in the main text can still
be reasonably well reproduced and that the Majoranas that the
systems yield are still well separated.
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