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Abstract

Graph neural networks (GNNs), while effective at
various tasks on complex graph-structured data, lack
interpretability. Post-hoc explainability techniques
developed for these GNNs in order to overcome
their inherent uninterpretability have been applied
to the additional task of detecting important subnet-
works in graphs. For example, the GNN-SubNet
program uses explanations of protein-protein inter-
action networks to detect the most important disease
subnetworks for specific types of cancer. However,
when using a post-hoc explanation for such addi-
tional tasks, evaluating the quality of the explanation
becomes critical.
This study implements four explainability evalua-
tion metrics to provide a fast and accurate way of
evaluating explainability, using the GNN-SubNet
program as a case study of explainable GNNs for
subnetwork detection. Fidelity and sparsity met-
rics are implemented as defined in existing litera-
ture, while validity+ and validity- are newly defined.
The results show that GNN-SubNet finds robust and
faithful but highly dense explanations.

1 Introduction
Graphs are a powerful way of capturing rich, non-linear in-
formation as a collection of nodes and edges. Deep-learning
models which operate on graphs, called Graph Neural Net-
works (GNNs), have been used to analyse such complex data
in many domains. However, the complex non-linear mecha-
nisms which make GNNs powerful also make them inherently
difficult to interpret. Explainability is one of the four key prin-
ciples of trustworthy AI, and the lack of interpretability limits
the application of GNNs in high-stake real-world domains
such as healthcare [1].

Multiple explainability techniques have been proposed
for GNNs [2], such as counterfactual explanations, self-
interpretable models, and factual post-hoc explanations.

Post-hoc explanations highlight the “important” nodes
and/or edges of the input graph, which were used by the GNN
to arrive at its decision. Apart from aiding human understand-
ing, post-hoc explanations have also been used for the task of
detecting important subnetworks in a graph, in applications
such as drug discovery using molecular substructures [3] and
detecting regions of interest in the brain [4].

Using post-hoc explanations for such downstream tasks
makes it critical to evaluate the quality of the explanation. The
BAGEL benchmark [5] proposes four general metrics that can
be used to evaluate an explanation:

• Faithfulness measures how well the explanation approxi-
mates the model’s behaviour.

• Sparsity measures the size of the explanation - a smaller
explanation can be more easily understood by a human.

• Correctness measures the explanation’s ability to detect
correlations that are injected into the graph.

• Plausibility measures to what extent the model uses a
decision-making process similar to human rationale.

In addition to providing empirical measures, these metrics
are also a fast and accurate tool to support domain experts
in validating the results of subnetwork detection. A quick
empirical evaluation strategy can also aid the development and
testing of new GNNs and explainer techniques.

This study focuses on the GNN-SubNet program [6] as a
case study for subnetwork detection using explainable GNNs.
GNN-SubNet operates on protein-protein interaction (PPI)
networks, where nodes represents proteins and edges represent
interactions between proteins. A GNN is trained to classify
PPI graphs that have been enriched with data from cancer
patients. The post-hoc explanation of the GNN is then used to
detect disease subnetworks. These subnetworks suggest novel
proteins that may be key to the activation and progression of a
certain type of cancer.

This study aims to answer the question, “How do different
explainability evaluation metrics evaluate GNN-SubNet?”.
The following research questions are used to guide the overall
goal:

• RQ1: How well do the explanations of GNN-SubNet
on synthetic data perform when assessed with the most
suitable metrics from the BAGEL benchmark?

• RQ2: How well do the explanations of GNN-SubNet on
KIRC data perform when assessed with the most suitable
metrics from the BAGEL benchmark, taking into account
the nature of the data, the GNN and the explainer used?

The GNN-SubNet program is further detailed in Section 2.
Section 3 presents various explainability metrics and their ap-
plication to the case of GNN-SubNet, while Section 4 presents
and discusses the results of the evaluation. Section 5 reflects
on responsible research. Finally, Section 6 presents the con-
clusions drawn and discusses the limitations and future scope
of work.

2 Background - GNN-SubNet
The GNN-SubNet [6] project uses an explainable GNN to de-
tect novel disease subnetworks from a dataset of enriched PPI
networks. PPI networks model the interaction between pro-
teins as the edges of a graph. GNNs trained on PPI networks
have been used for tasks such as predicting protein function,
identifying essential proteins and predicting protein interfaces
[7].

Figure 1 gives an overview of the methodology of GNN-
SubNet. The nodes (proteins) of the PPI network are enriched
with two patient-specific features: DNA methylation and gene
expression. This results in a multi-omic dataset of graphs with
one graph per patient, such that all graph share the same PPI
topology but have patient-specific node features.

The dataset consists of patients with different types of can-
cers. Focusing on one type of cancer, the graphs are labelled
as either “cancer-specific”, if they belong to the chosen cancer
type, and as “cancer-random” if they are of a different cancer
type. A GNN with the Graph Isomorphism Network (GIN)
architecture [8] is then trained to classify the enriched patient-
specific graphs as either cancer-specific or cancer-random.



A modified version of the GNNExplainer technique [9] is
then used to optimize a global explanation in the form of a
soft node mask. A node mask contains a single importance
value for each node - the higher the value, the more important
the node. The traditional method of GNNExplainer optimizes
a node mask on a single input graph, to create a “local” expla-
nation. For the purpose of GNN-SubNet, the authors optimize
the node mask over a sample of graphs from the dataset, re-
sulting in a “global” explanation. Such an explanation aims to
obtain a node mask that explains the GNN as a whole, rather
than the GNN’s action on a specific input graph.

GNNExplainer results in soft node masks. Soft masks as-
sign a value between 0 and 1 to each node, with higher values
indicating higher importance. On the other hand, hard mask
explanations assign a binary value, 0 or 1, to each node. The
type of node mask used influences the implementation of eval-
uation metrics, as further discussed in Section 3.5.

Finally, having found the global explanation as a soft node
mask, the edges of the PPI network are weighted using the
importance values from the mask, and a community detection
algorithm is applied. The communities with the highest aver-
age importance values represent the most important disease
subnetworks.

3 Methods
Metrics from the BAGEL [5] benchmark and from other ex-
isting literature [10], [11] are presented and analysed here to
determine their applicability to GNN-SubNet.

3.1 Faithfulness
The fidelity of an explanation quantifies how faithful an ex-
planation is to the behaviour of the GNN model. BAGEL [5]
proposes two measures to quantify faithfulness: rate-distortion
based fidelity (RDT-fidelity), and comprehensiveness and suf-
ficiency.

RDT-Fidelity
The approach taken by RDT-fidelity perturbs the feature values
in the nodes of the input graph in proportion to the importance
of the node. Nodes with a higher importance are perturbed
to a smaller extent. This perturbation approach is suitable for
GNN-SubNet, as the feature values are meaningful representa-
tions of the DNA methylation and mRNA expression values.
More formally, the perturbation YS of an input graph X by
explanation S is defined by [5] as follows:

YS = X ⊙M(S) + Z ⊙ (1−M(S)), Z ∼ N (1)

where M(S) is the node mask corresponding to explanation
S, containing one value for each node, and N is a noise
distribution taken to be the same as the global distribution of
the dataset.

To measure RDT-fidelity, 10 sample perturbations of each
test graph are created using the soft node mask of the global
explanation found by GNN-SubNet. 10 samples were chosen
in order to have a reasonable number of random perturbations
while still being computationally feasible within the scope of
the study. The proportion of these samples that have the same
prediction as the original input is reported as the RDT-fidelity

Figure 1: Existing workflow of GNN-SubNet: constructing a multi-
omic dataset, training a GNN classifier, and generating a global
explanation in the form of a node mask. The node mask is further
used to construct edge importances and detect potential disease sub-
networks.

score. A higher score indicates a better, more robust expla-
nation, where the perturbations do not affect the classifier’s
prediction.

Comprehensiveness and Sufficiency

Comprehensiveness answers the question, “whether all
nodes/edges needed to make a prediction were selected”,
while sufficiency answers the question “whether the selected
nodes/edges are sufficient to come up with the original predic-
tion” [5].

However, these involve testing the model’s output on graphs
where the important nodes are removed. If applied to GNN-
SubNet, this would amount to removing proteins and interac-
tions between proteins, which render the PPI topology invalid.
These metrics are thus not implemented in the evaluation of
GNN-SubNet.



3.2 Validity+ and Validity-
Fidelity+ and Fidelity- have been proposed by [10] and are
similar to comprehensiveness and sufficiency. They describe
removing either the important nodes or the unimportant nodes
from the graph and observing the change in the GNN’s predic-
tion.

Rather than removing nodes from the PPI network, we adopt
the approach of setting the feature values of some nodes to a
baseline. This approach is described by [11] in their definition
of the explainability metric “validity”. Within GNN-SubNet,
this is done by setting the DNA methylation and mRNA ex-
pression (features) of a protein (node) to the average value of
that protein’s DNA methylation and mRNA expression over
the entire dataset.

Two metrics, Validity+ and Validity- are thus defined. These
use hard node masks to define whether the features of a specific
node are set to average or are left unchanged. Such hard masks
are obtained using the transformation described in Section 3.5.

Validity- sets the features of unimportant nodes in a graph
to average values. If the explanation has selected the important
nodes used by the model, this will not lead to a change in the
GNN’s prediction on the altered graph. The Validity- score is
reported as the proportion of graphs for which the prediction
does not change. The higher this score, the better.

With N the number of graphs in the test dataset, and f
a function representing the GNN (such that f(Gi) gives the
decision of the GNN on the i-th input graph of the dataset),
Validity- is defined as:

V alidity− =
1

N

N∑
i=1

1f(Gi)=f(Gmi
i ), (2)

where the altered graph G′
i is given by:

G′
i = Gi ⊙M(S) +A⊙ (1−M(S)) (3)

Here M(S) is the node feature mask corresponding to ex-
planation S. This mask is over both node and feature values,
thus has dimension n ∗ d for a graph with n nodes and d fea-
tures per node. A contains the average node feature values for
each node over the whole dataset and is also of the dimension
n ∗ d.

Validity+ sets the features of important nodes to average
values. A good explanation should select the nodes with the
most discriminative power, and averaging the features of im-
portant nodes should lead to a loss in the accuracy of the GNN
model. The Validity+ score is reported as the proportion of
graphs for which the prediction is different from the original
prediction. The higher this score, the better.

Using the same notation described above, Validity+ is for-
mally defined as:

V alidity+ =
1

N

N∑
i=1

1f(Gi)!=f(G′
i)
, (4)

where the altered graph is given by:

G′
i = A⊙M(S) + f(Gi)⊙ (1−M(S)) (5)

3.3 Sparsity

A meaningful explanation should be sparse in order to be
useful - i.e. it should clearly select a small number of nodes
as being important. Formally, this is defined as entropy in the
BAGEL benchmark [5] and by [11] as follows:

Let M be a node mask, containing one value per node.
mask(n) represents the value of node n in the given mask.
The normalised node mask p is then computed:

p =
mask(n)∑

n′∈M mask(n′)
(6)

and from this, the entropy is computed:

H(p) = −
∑
f∈M

p log p (7)

Explanations with lower entropy are considered more sparse.
A uniform node mask of length N (having all values identi-
cal) lacks any significant meaning as an explanation. Such a
node mask has the highest possible entropy, max entropy =
−log(1/|N |). To convert the entropy into a clear sparsity
score between 0 and 1 such that a higher sparsity score indi-
cates a better explanation, we define the sparsity score as:

1−H(p)/max entropy (8)

.
GNN-SubNet finds a single global explanation over the

entire dataset, which results in a single value of the sparsity
metric. For a better representation, the average sparsity score
over ten runs of the explainer is reported.

3.4 Other metrics

Correctness and plausibility are two metrics defined in BAGEL
which are not applied to the GNN-SubNet task.

Correctness tests whether the explanation can detect exter-
nally injected biases in the model. This is suitable for explana-
tions of a node classification task and cannot be applied to the
graph classification task that is found in GNN-SubNet.

Plausibility measures how similar the model’s decision-
making process is to human rationale. This requires data from
human experts, which is neither readily available nor feasible
to collect within the scope of this study.

3.5 Transforming Soft Masks to Hard Masks

The validity metrics require explanations to be hard node
masks that contain binary values. However, GNNExplainer
gives the output in the form of a soft mask, containing values
in the range between 0 and 1. The approach proposed by [11]
is implemented as follows: using a threshold k, the top k% of
entries with the highest soft mask value are set to 1 in the hard
mask, and the rest are set to zero. [11] report metrics by using
the top-30% and top-50% masks, which are denoted as S-0.5
and S-0.7.



Table 1: Average metric scores over 10 iterations (training, expla-
nation and evaluation) on the synthetic dataset. Validity metrics are
evaluated using two different hard masks obtained by different thresh-
olds, RDT-fidelity and sparsity use soft masks.

Metric Threshold Average Std.deviation
RDT-fidelity NA 1.0 0.0
Sparsity NA 0.058 0.024

Validity+ S-0.7 0.508 0.021
S-0.5 0.526 0.039

Validity- S-0.7 1.0 0.0
S-0.5 1.0 0.0

4 Results and Discussion
RQ1: How well do the explanations of GNN-SubNet
on synthetic data perform when assessed with the
most suitable metrics?
The four explainability metrics chosen following the analysis
in Section 3 are evaluated on a synthetic dataset as a sanity
check. This dataset of Barabasi graphs was created and used
by [6]. It consists of 1000 graphs with 30 nodes each and a
single feature for each node.

Two connected nodes in each graph are assigned discrimi-
native values that determine to which class the graph belongs.
For half the graphs, these two nodes are assigned values from
N(µ = 1, σ), and for the other half N(µ = −1, σ).The rest
of the nodes are assigned values from N(µ = 0, σ). Figure 2
visualises this spread of values.

Figure 2: Distribution of the node feature values of the synthetic
dataset: each colour represents one node. All nodes are assigned
values from N(µ = 0, σ) except for the two “important” nodes
whose values are taken from either N(µ = 1, σ) for one class or
from N(µ = −1, σ) for the other.

Using the known truth that these two nodes are important,
[6] shows that the correct explanation is uncovered in close to
100% of the cases. Therefore, the RDT-fidelity scores, as well
as the Validity+ and Validity- scores, are expected to be very
high for the explanations of this dataset.

Table 2: Average metric scores over 10 iterations (training, expla-
nation and evaluation) on the KIRC dataset. Validity metrics are
evaluated using two different hard masks obtained by different thresh-
olds, RDT-fidelity and sparsity use soft masks.

Metric Threshold Average Std.deviation
RDT-fidelity NA 0.826 0.11
Sparsity NA 0.040 0.02

Validity+ S-0.7 0.232 0.19
S-0.5 0.292 0.20

Validity- S-0.7 0.840 0.15
S-0.5 0.843 0.01

Table 1 shows the results of the evaluation, taking the av-
erage value of the metric over 10 iterations. Each iteration
involves training the GNN, finding a single global explanation
using 10 runs of the explainer and calculating the metrics on
this explanation. The RDT-fidelity and Validity- scores are 1.0,
indicating a highly robust explanation where the prediction
does not change if the unimportant nodes are perturbed or
averaged.

The Validity+ score of 0.5 indicates that 50% of graphs
change prediction after averaging the important nodes. Specifi-
cally, since the important nodes are sampled from N(µ = 1, σ)
for one class and N(µ = −1, σ) for the second class, aver-
aging these values across the dataset gives values centered
around 0. With no way for the classifier to distinguish be-
tween the two classes, a 50-50 random classification is seen
as the result.

This demonstrates that it is essential to interpret the results
of Validity+ in comparison with a baseline score of 0.50, rather
than with the maximum possible score of 1.0. An ideal ex-
planation that highlights all the nodes that are important to
the GNN’s decision-making would result in all those nodes
being averaged out over both classes in the dataset, nullifying
their discriminative power and reducing the GNN to a blind,
random classifier.

RQ2: How well do the explanations of GNN-SubNet
on KIRC data perform when assessed with the most
suitable metrics?
The kidney renal clear cell carcinoma (KIRC) cancer dataset
used by the GNN-SubNet program [6] is reused here. It con-
sists of 506 graphs sharing the same PPI topology and having
two patient-specific node features. The graph topology is very
complex, containing 2049 nodes and 13588 edges.

Table 2 shows the average results of evaluation metrics on
the KIRC dataset over 10 iterations. Each iteration involves
training the GNN for 20 epochs, finding a single global ex-
planation using 10 runs of the explainer and calculating the
metrics on this explanation. A GIN architecture with a modi-
fied GNNExplainer was used for training. Following a train-
validation-test split, 80 test graphs were used in evaluating the
explanation.
RDT-fidelity and sparsity GNN-SubNet achieves an RDT-
fidelity score of 0.826, indicating that the explanations found
are quite robust to perturbations. The sparsity score of 0.04,
which was observed consistently across all iterations with little



variation, is quite low and indicates a very dense explanation.
This sparsity is equivalent to that of a hard mask which selects
1500 nodes out of the 2049 nodes present in the PPI network
as important. Figure 3 shows that node masks have frequent
occurences of high importance values, confirming that the
explanation is very dense. Such an explanation that selects a
large number of nodes as important is considered poor, since
they are less interpretable for humans.

Figure 3: Distribution of normalised node importance values, based
on the node masks obtained from 5 iterations of training and explana-
tion. Each coloured line represents a different iteration.

Validity- The high validity- score of 0.84 shows that the
important nodes highlighted by the explanation have high dis-
criminative power. This is in accordance with the findings of
the authors of GNN-SubNet [6], who show that by re-training
the GNN based only on the selected proteins from the most
important disease subnetwork, a median classification accu-
racy of 79% is obtained, implying that the nodes highlighted
by the explanation have high discriminative power.
Validity+ Based on the interpretation that the ideal validity+
score is 0.5, as seen in the synthetic dataset, the observed
validity+ score is somewhat poor. Additionally, it has a very
high standard deviation. The lowest observed validity+ score
was 0.037, and the highest 0.487. This suggests that the ex-
planations found in each iteration are very different from each
other.

The difference between the high validity- score and the low
validity+ score shows that while the most important nodes
have high discriminative power, the model is still able to rely
on less important nodes to reach the correct prediction. The
difference is observed even when using a hard-mask of the
top 50% of important nodes, showing that the model relies
on a large proportion of nodes present in the graph to make
its classification. This suggests that the explanations must
necessarily be very dense in order to be faithful and valid, as
the model uses a large number of nodes for its prediction.

Investigating the tradeoff between RDT-fidelity and
sparsity
In a dense explanation where most nodes have a relatively
high importance, the perturbations done by RDT-fidelity are

smaller and have less impact. Thus, a correlation is expected
between RDT-fidelity and sparsity. This is investigated by
evaluating the RDT-fidelity score while controlling the sparsity,
as suggested by [10].

Figure 4: RDT-fidelity score calculated using hard masks where
different percentages of nodes are selected as important, over 5 iter-
ations of training and explanation. Each coloured line represents a
different iteration.

Figure 4 shows how the RDT-fidelity score increases when
more nodes are selected as important, and the explanation
becomes more dense. Over 5 different iterations of training,
finding a global explanation and evaluating the explanation,
the RDT-fidelity score at low thresholds (selecting the top 10%
or top 20% of nodes) is highly variable and ranges from 0.5
to 0.77. The score found has no significant correlation with
model accuracy, judging by the Pearson correlation coefficient,
and appears to be based solely on the explanation itself.

Investigating the size and variability of subnetworks
The high variance in the validity+ score, as well as the highly
varying fidelity score when taking the top 10% and 20% of
nodes (Figure 4) suggests that the explanation of GNN-SubNet
is variable and highlights different nodes each iteration.

Hence the disease subnetworks found would also be highly
variable with each iteration. In the ideal case, a subnetwork
detection task would reveal stable subnetworks when trained
on a certain dataset. Additionally, it is the important subnet-
works that are directly assessed by human experts, regardless
of how sparse or dense the node mask is. Therefore, small
subnetworks are also desirable.

The size and variability of the disease subnetworks found
by GNN-SubNet is thus investigated as an extension to RQ2.
Figure 5 shows that the most important subcluster found (rank
1) varies in size between a minimum of 8 and a maximum of
49 nodes, with the average size being 31 nodes.

Over 10 iterations, where each iteration involved training
the GNN, finding a global explanation and detecting important
subclusters, 2 iterations found an identical most important
subcluster of 43 nodes. 2 other iterations found subclusters
with significant overlap (one with 49 nodes and one with
40 nodes, sharing 40 nodes in common). The remaining 6



Figure 5: Sizes of the five most important subclusters found over 10
iterations (where each iteration consists of training, explaining and
detecting the subclusters), with rank 1 being most important

iterations contained highly varying subclusters with no nodes
in common.

This affirms the hypothesis based on the metric results that
the explanations and the resulting subclusters found by GNN-
SubNet are highly unstable and change from iteration to iter-
ation on the same dataset. This variability that occurs every
time the training and explanation are done afresh should be
taken into account before conducting expert domain-specific
analysis of the subnetworks. This could ensure that expert
investigation is focused on stable, re-occuring subnetworks in
the data.

5 Responsible Research
5.1 Ethical considerations of trust and safety
The use of artificial intelligence for biological and medical
issues requires ethical consideration. As GNN-SubNet is a
means of detecting disease subnetworks to guide potential ex-
pert research, it has an indirect impact on patients’ healthcare.
It is explicitly designed to be an ’expert-in-the-loop’ approach,
with the goal of explainability being to ’promote reliability
and trust, ensuring that humans remain in control’ [6].

While increasing trust in black-box models is the goal of
explanable AI, this also has the potential to lead to overre-
liance and blind trust in models once they have been shown to
be explainable. From this perspective, integrating empirical
metrics into the process of using such tools acts as a clear
sign for human experts on the quality and faithfulness of the
explanations found. Reporting metric scores together with the
results every time the tool is used, regardless of the explainer
or dataset, indicates to the user to what extent the results can
be trusted.

5.2 Access to code and data
The KIRC dataset used is fully anonymised and is originally
sourced from TCGA (The Cancer Genome Atlas Program).
The processed dataset as used in this study is available as part

of the GNN-SubNet project on GitHub.1.
The code developed for this study as an extension of GNN-

SubNet is openly published on GitHub.2

5.3 Reproducibility and Integrity
The FAIR principles (Findable, Accessible, Interoperable,
Reusable) for scientific data management [12] have been fol-
lowed. Section 5.2 details how the code and datasets can be
found and accessed. The code is based on standardized Python
packages to ensure interoperability. To ensure reusability, doc-
umentation including instructions on how to set up and run the
code, examples of usage have been provided. Within the code,
clear descriptions of the functionality of each module result in
a reusable and easily extendable tool.

The exact code used to run the experiments in this study are
provided in the repository. While the results obtained by run-
ning them may not exactly be the same due to the randomness
used in some evaluation metrics and the fluctuations in what
the model learns each time it is trained, the results reported
here are averaged over multiple iterations and it is expected
that a similar average over iterations can reproduce this study
in its entirety.

6 Conclusion
With the goal of implementing explainability evaluation met-
rics to assess explainable GNNs used for subnetwork detection,
four metrics were implemented: RDT-fidelity and sparsity
as defined in the BAGEL benchmark [5], and validity+ and
validity-, newly defined in this study.

Focusing on the case study of GNN-SubNet, its explana-
tions are found to be robust but very dense (with a high RDT-
fidelity and low sparsity). They were also found to be highly
variable, with different subnetworks detected each time the en-
tire pipeline (training, explaining and evaluating) is executed.

The following findings can be more broadly applied to
evaluate subnetwork detection in other domains:

• Metrics should be chosen based on their suitability to the
domain at hand. For GNN-SubNet, metrics that remove
edges and nodes from the graph are unsuitable, as they
would make the PPI topology invalid.

• The results of the individual metrics are most useful in
complement to each other:

– A tradeoff is observed between RDT-fidelity and
sparsity: the denser the explanation, the higher its
RDT-fidelity. It can be useful to analyse the RDT-
fidelity score at different levels of sparsity using
hard-masks of different thresholds.

– Validity+ and validity- also complement each other:
in the case of GNN-SubNet, a high validity- score
and low validity+ score showed that the model is
able to rely on less important nodes to still reach the
correct prediction.

1https://github.com/pievos101/GNN-SubNet
2https://github.com/Sucharitha-R/evaluating gnn subnet

https://github.com/pievos101/GNN-SubNet
https://github.com/Sucharitha-R/evaluating_gnn_subnet
https://github.com/pievos101/GNN-SubNet
https://github.com/Sucharitha-R/evaluating_gnn_subnet


• For the task of subnetwork detection, measuring the size
and the stability of the subnetworks found is useful. Ide-
ally, the subnetworks found are small (thus easy to in-
terpret by experts) and are stable (do not vary across
repeated runs).

Limitations and future work
Accuracy The average accuracy of the GNN was observed
to be quite low, at 66.9%. The observed min/median/max
accuracy of 60/66/77 contrasts with the 79/85/91 accuracy
reported by [6]. Since the GNN itself is used in the implemen-
tation of the metrics to observe whether the classification of a
certain input graph changes after perturbing it, the possibility
that the low accuracy of the GNN lead to a negative bias in
the model scores was investigated. For all four metrics, the
Pearson coefficient calculated between the model accuracy
and the metric score has an absolute value lower than 0.2,
showing that no significant correlation exists between them.
The reasons for this difference in accuracy is unclear, as the
same KIRC training data and the same training setup was used
as by [6]. The factors leading to the mismatch may potentially
be a limitation to this evaluation of explainability.
Metrics The validity+ and validity- metrics, newly defined
in this study, would benefit from additional investigation to
determine their effectiveness. Validity+ could be re-defined
such that it is interpreted as a range between 0 and 1, rather
than by comparing with 0.5 as an ideal value.
Domain knowledge To improve the evaluation, the perturba-
tions for RDT-fidelity could be sampled from a known biolog-
ical distribution of the DNA methylation and gene expression
of proteins. Similarly, the average values taken for the validity
metrics could be based on domain knowledge rather than the
empirical average from the given dataset.
Subnetwork variability The high variability observed in
the disease subclusters found by GNN-SubNet when the train-
ing and explanation are done multiple times merits further
investigation. Defining and implementing a dedicated metric
to measure the variability in subclusters can augment the eval-
uation of explainers that are specifically used for the task of
subnetwork detection.
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