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Abstract. Epistemic logic can be used to reason about statements such
as ‘I know that you know that I know that ϕ’. In this logic, and its exten-
sions, it is commonly assumed that agents can reason about epistemic
statements of arbitrary nesting depth. In contrast, empirical findings on
Theory of Mind, the ability to (recursively) reason about mental states
of others, show that human recursive reasoning capability has an upper
bound.

In the present paper we work towards resolving this disparity by
proposing some elements of a logic of bounded Theory of Mind, built on
Public Announcement Logic. Using this logic, and a statistical method
called Random-Effects Bayesian Model Selection, we estimate the dis-
tribution of Theory of Mind levels in the participant population of a
previous behavioral experiment. Despite not modeling stochastic behav-
ior, we find that approximately three-quarters of participants’ decisions
can be described using Theory of Mind. In contrast to previous empirical
research, our models estimate the majority of participants to be second-
order Theory of Mind users.

Keywords: Theory of Mind · Public Announcement Logic · Epistemic
Logic · Behavioral Modeling · Random-Effects Bayesian Model
Selection · Cognitive Science

1 Introduction

Theory of Mind (ToM) is the ability to attribute and reason about mental states
of others, such as knowledge, beliefs, and intentions [10,30]. ToM can be used
recursively. For example, if Amy knows that Ben knows that Amy knows that
there will be a surprise party, Amy is using second-order ToM (ToM-2), by
reasoning about the way Ben is using his theory of mind to reason about her
own knowledge; and we are making a third-order attribution to Amy here. ToM
is commonly used to navigate social situations, and can improve the outcomes of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Gierasimczuk and F. R. Velázquez-Quesada (Eds.): DaĹı 2023, LNCS 14401, pp. 85–103, 2024.
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competitive [16,32], cooperative [13,28], and mixed-motive settings [39]. While
human ToM capabilities develop over early childhood [41], and can be trained
[1,38,40], it is generally found that there is a limit to human recursive ToM use,
which often does not exceed level 2 [7,9,12,27], and sometimes fails entirely [23].

Epistemic logic, a variant of modal logic, is used to formalize the kind of
recursive knowledge needed for ToM statements of the form ‘I know that you
know. . . ’ [19]. However, epistemic logics and their extensions classically assume
logical omniscience, contrary to the commonly found limits on ToM. It has
been suggested that these models should incorporate recursive reasoning lim-
its [17,39], and there have been previous attempts to model similar aspects of
bounded rationality [8,11,24,31]. The first formal attempt to incorporate ToM-
like limitations in epistemic logic appears to be [22], which describes an approach
close to our purposes: They define the epistemic depth of a formula based on the
nesting of its modal operators. However, their approach does not cover Public
Announcement Logic (PAL, introduced in Sect. 2.2), which we require for our
purposes, and is a general approach that does not define how it can be used to
encode the specific attributes of ToM.

While formal methods often do not take into account the ToM limits found
in behavioral research, the latter does not regularly employ the tasks and models
commonly used in epistemic logic, such as epistemic puzzles. Epistemic puzzles,
like the Wise Men puzzle [25], Muddy Children puzzle [14], and the one described
in Sect. 2.1, are puzzles where a set of agents, in a partially observable world,
have to deduce unobservable facts using the epistemic statements of other agents.
In the literature, reproducible experiments using these puzzles, especially ones
yielding reusable data, appear sparse (see e.g. [8,18,20]).

The present paper attempts to bridge the gap between logic and (boundedly
rational) cognition. We build on the work of Cedegao and colleagues [8] by adding
ToM limitations to PAL, which we use to predict the answers of different ToM
levels in the game of Aces and Eights (explained in Sect. 2.1). We validate our
novel method on the data of Cedegao et al. [8] by using Random-Effects Bayesian
Model Selection (RFX-BMS) [33], which we use to estimate the frequencies of
different ToM levels among the participants of [8].

In recent work, parallel to ours, Arthaud and Rinard [2] create several logics
of public announcements which place a limit on the number of nested knowledge
operators an agent can understand. Before we continue, we note some key differ-
ences with our work. In [2], any nested knowledge operator increases a formula’s
depth, whereas we assume that only switching between knowledge operators for
different agents requires higher ToM [39]. There should be a quantitative dif-
ference between recursively reasoning about your own knowledge, and that of
others. In [2], a formula Kaϕ is false if the depth of agent a is lower than that of
ϕ. Our ToM-0 agents act as if there are no relations for other agents. If an agent
has no outgoing relations, it vacuously knows everything, so ToM-0 agents know
that all other agents know everything. This could be similar to young children
without ToM, who may think that their parents are all-knowing [5]. Lastly, we
move beyond purely formal methods by fitting our models on human data.

In Sect. 2, we explain the tasks, data, and methods we use for predictive
modeling. In Sect. 3, we present the results of our novel predictive modeling
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Fig. 1. Model before announcements. Reflexive edges omitted for clarity.

Fig. 2. State AA8888 in the ToM model before and after player 0 announces ‘I do not
know my cards’. This is a close-up of the orange rectangle in Fig. 1, with added ToM
levels. Refer to Sect. 2.4 for an in-depth explanation.

method, and compare it to the results we obtain when applying Random-Effects
Bayesian Model Selection to the models of [8]. Lastly, in Sect. 4, we discuss our
findings and identify possible shortcomings and directions for future work.
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2 Methods

Here, Sects. 2.1 through 2.3 describe existing work, leading into our novel work
as described in Sects. 2.4 and 2.5.

2.1 The Game of Aces and Eights

Aces and Eights [14] is a three-player epistemic game where each player receives
two cards out of a deck of four Aces and four Eights. Each player can only see the
four cards held by the other two players. No player can see her own cards or the
two remaining cards. Players take turns, in a fixed order, announcing whether
or not they know the ranks of the cards they are holding — a card’s suit does
not matter. These announcements provide information that may allow players
to work out which cards they have. Players are collectively informed of all these
rules, allowing common knowledge of the game rules to arise.1

Let us introduce the notation employed throughout this paper. We use ‘player
0’, ‘player 1’, and ‘player 2’ (or, in short, ‘0’, ‘1’ and ‘2’) for the player that makes
the first, second, and third announcement each round, respectively. Suppose 0
has two aces (AA), 1 has two eights (88), and 2 has two eights (88). We denote
the state of this game as AA8888, where the first two symbols are 0’s cards,
the second two symbols are 1’s cards, and the third two symbols are 2’s cards.
In this state, 0 knows her cards. She sees that all available Eights are held by
the other two players, so she must have two Aces. After 0 announces ‘I know
my cards’, 1 and 2 can also know their cards, because they can attribute this
reasoning to 0. For holding one Ace and one Eight (or one Eight and one Ace,
as order does not matter), we write ‘8A’.

Cedegao et al. [8] discuss an experiment where each of 306 participants played
ten games of Aces and Eights with two computer players that are perfect logical
reasoners. Participants were recruited and played online, on the Prolific platform.
The order and selection of games varied across participants, but each participant
played one game requiring epistemic level 0 (EL-0, see Sect. 2.3) to solve, three
games requiring EL-1, and two games each requiring EL-2, EL-3, and EL-4
(retrieved from their code). Participants switched between playing as player 0,
1, and 2 across games. Participants knew the rules and knew that the computer
agents gave perfect answers. A game ended if the participant answered ‘I know
my cards’, if the participant answered incorrectly (including answering ‘I don’t
know’ when they could have known), or if playing more rounds would not provide
more information. Participants responding with ‘I know my cards’ also had to
state the cards they thought they had. Participants were paid $5 with a $0.50
bonus for each game correctly solved. Participants were excluded if they failed
more than 20% of attention checks, spent more than 87 min, gave impossible
responses according to the rules, or had data recording errors. Following [8], this
paper only uses the data for the remaining 211 participants.

1 For solving the game of Aces and Eights, all players also need to be truthful, perfect
logical reasoners, and there needs to be common knowledge of this.
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2.2 Public Announcement Logic

Public Announcement Logic (PAL) [3,4,29] is an extension of epistemic logic
that models how the knowledge of agents changes after public announcements are
made. Here, the knowledge of all agents in some epistemic situation is encoded
in a Kripke model (thus, assuming logical omniscience). A Kripke model can
be represented using a directed graph. The graph for Aces and Eights is found
in Fig. 1. Each node, or state, is a possible situation, such as the distribution
of cards in Aces and Eights. Each edge is labelled with player(s), and indicates
uncertainty for those players: A player i edge from state s1 to s2 means ‘if s1 is
the true state (the state corresponding to the actual distribution of cards), then
player i considers it possible that s2 is the true state’ (here, we may have s1 = s2).
For example, if 2 sees that 0 has 8A and 1 has 88, then 2 considers it possible
that she has either 8A or AA, so there is a symmetric player 2 edge between
8A888A and 8A88AA, as well as reflexive edges at both states. This situation can
be found in Fig. 1, where it is indicated with a cyan, dashed, rectangle (reflexive
edges omitted). If, in state s, all outgoing player i edges connect to worlds where
i has the same cards, then i knows her cards. An example of this is player 0 in
AA8888, found in the solid orange rectangle in Fig. 1.

2.3 Bounded Models

Cedegao et al. [8] model an epistemic level l as follows: Take as an agent’s
initial states those states that the agent considers possible based on the game
rules and the cards held by the other two players. For example, if agent 1 sees
that 0 holds AA and 2 holds 8A, then agent 1’s initial states are AA888A and
AA8A8A. Modifying Definition 2.32 of [6], the height of a state is defined by
induction: the height of all initial states is 0, and the states of height n+1 are the
immediate successors (states that can be reached in one step along any outgoing
edge) of states of height n that have not yet been assigned a height smaller
than n+1. States with height l are marked peripheral states, and their outgoing
edges are removed. States with a height exceeding l are removed entirely. When
an announcement is made, a bounded model is updated by removing those non-
peripheral states (and connecting edges) where the announced formula is false.
Answers are based on the remaining initial states. Since our models differ from
those in [8], we use ‘ToM order’ when talking about our models, and ‘epistemic
level’ (EL) when talking about the models of [8].



90 J. D. Top et al.

Since all states other than the peripheral states have the same relations as
the full model, which is an S5(3)-model, Cedegao’s models allow for paths with
an infinite number of switches between different agents (e.g., . . . (sn−1, sn) ∈
R(0), (sn, sn+1) ∈ R(1), (sn+1, sn+2) ∈ R(0), . . .). We argue that paths with
infinitely many perspective switches are contrary to human recursive ToM limits.
Furthermore, an agent with epistemic level 4, playing Aces and Eights, uses the
same graph as a logically omniscient agent. In contrast to Cedegao and colleagues
[8], we instead attempt to limit the number of recursive reasoning steps an agent
can use, as outlined in the next section.

2.4 Theory of Mind Models

This section introduces our novel methods for modeling ToM, in a logic we call
TOMPAL. We work in the language LK[](A,P ), taken directly from [37]:

Definition 1. The language of public announcement logic is inductively defined

LK[](A,P ) � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [ϕ]ϕ

with i ∈ A, a set of agents, and p ∈ P , a finite set of propositional atoms.

The usual abbreviations are used for ∨, →, and ↔. For ¬Ki¬ϕ we use Miϕ.
We consider that repeated nestings of knowledge operators for the same agent

do not require additional ToM levels to be understood (see [39]), and that reason-
ing about one’s own knowledge does not require ToM at all. Instead, we assume
only switching to the perspective of a different agent requires an additional
level of ToM. For example, player 0 needs ToM-2 to reason about the sentence
K0K0K1K1K1K0p.2 When an agent switches perspectives, she attributes her
own order, minus one, to the other agent. To keep track of this, we modify the
definition of models in [36] by adding a map T , as follows:

Definition 2. A ToM model M = (S,R, V, T ) consists of a non-empty set of
states S, an accessibility function R : A → P(S ×S), a valuation V : P → P(S),
where V (p) is the set of states where p is true, and a ToM map T : S → P(A×N)
(with 0 ∈ N), which maps each state to a set of tuples (i, l) with i ∈ A and l ∈ N.
For s ∈ S, i ∈ A, and l ∈ Z, the pair (M, (s, (i, l))) is a perspective state.

Intuitively, having (i, l) ∈ T (s) means ‘agent i, at ToM order l, has not yet
eliminated state s due to new information’. Conversely, (i, l) �∈ T (s) means
‘agent i, at ToM order l, either due to some previous announcement no longer
considers state s to be possible, or did not consider it possible to begin with’.

Visually, to each state in the model found in Fig. 1 we add one row for
each player, consisting of the player’s name, followed by a colon, followed by

2 Note that this differs from [11], where the horizon of a player i at (M, s) contains all
states player i can ‘reach’ by taking one step along one of her own edges, followed
by any number of steps along any agent’s edges. Closer to our intentions, but more
general, is the notion of admissibility on E [22,24].
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that player’s possible ToM levels, e.g., ‘0: 0, 1, 2, 3, 4, 5’ at state s means
(0, 0) ∈ T (s), (0, 1) ∈ T (s), . . . , (0, 5) ∈ T (s). An example for state AA8888
can be found in the leftmost half of Fig. 2. Here, considering it possible that the
actual distribution of cards is AA8888 is consistent with reasoning at ToM levels
0 through 5 for all players. In our software implementation of Aces and Eights,
we ignore ToM levels beyond 5, because these yield identical answers to ToM-5.

A perspective state is an epistemic state viewed from the perspective of agent i
at ToM order l; such states are used in our semantics. The semantics of TOMPAL
are a modification of those in [37] and are as follows:

Definition 3. Assuming a ToM model M = (S,R, V, T ), i ∈ A, and l ∈ Z:

M, (s, (i, l)) |= p ⇔ s ∈ V (p)
M, (s, (i, l)) |= ¬ϕ ⇔ M, (s, (i, l)) �|= ϕ
M, (s, (i, l)) |= ϕ ∧ ψ ⇔ M, (s, (i, l)) |= ϕ and M, (s, (i, l)) |= ψ
for i = j : M, (s, (i, l)) |= Kjϕ ⇔ M, (t, (j, l)) |= ϕ for all (t, (j, l)) with

(s, t) ∈ R(j) and (j, l) ∈ T (t)
for i �= j : M, (s, (i, l)) |= Kjϕ ⇔ M, (t, (j, l − 1)) |= ϕ for all (t, (j, l − 1)) with

(s, t) ∈ R(j) and (j, l − 1) ∈ T (t)
M, (s, (i, l)) |= [ϕ]ψ ⇔ M, (s, (i, l)) |= ϕ implies M |ϕ, (s, (i, l)) |= ψ

where the model restriction M |ϕ = (S,R, V, T ′) is defined as (i, l) ∈
T ′(s) iff (i, l) ∈ T (s) and [M, (s, (i, l)) |= ϕ or [l ≤ 0 and ϕ contains an operator
Kj with i �= j]].

We make three deviations from the usual semantics for public announcement
logic: first, formulas are interpreted at a perspective state M, (s, (i, l)). They are
true or false from the perspective of a specific agent with a specific ToM order.
Secondly, our knowledge operator has two clauses: when an agent reasons about
her own knowledge, she does not switch perspectives. When an agent reasons
about the knowledge of a different agent, she switches perspectives to the other
agent, and attributes her own ToM order, minus one, to the other agent. In
doing so, a ToM-0 agent attributes ToM-(-1) to other agents. Since by definition
we have (i,−1) �∈ T (s) for all i and s, a ToM-0 agent reasons as if there are no
outgoing relations for other agents. Lastly, we modify the model restriction such
that tuples (i, l) are removed instead of states. A ToM-0 agent cannot switch
perspectives, and therefore ‘ignores’ announcements that she cannot understand
because they contain K-operators for other agents.3

Next, we show some theorems that capture the properties of TOMPAL. First,
we want ToM-0 agents to ignore announcements they do not understand. From
a ToM-0 agent’s perspective, no tuples are removed due to such announcements:

3 We use l = 0 as the only special case, but for situations other than Aces and Eights
we need a more general solution, found in Appendix A. Furthermore, our semantics
can be made equivalent to one with the usual knowledge operator if we ‘unfold’ our
models such that we have R : (A × N) → P(S × S).
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Theorem 1. If ϕ contains a Kj operator, then for all M, (s, (i, 0)) with i �= j:

M, (s, (i, 0)) |= (ϕ → ψ) ↔ [ϕ]ψ.

Proof. The key point is showing that T ′ = T and hence M |ϕ = M . Details are
left to the reader. ��

Secondly, ToM-0 agents should act as if there are no outgoing relations for
other agents, so we should have:

Theorem 2. For all M, (s, (i, 0)) with i �= j: M, (s, (i, 0)) |= Kjϕ.

Proof. The key point is that there are no (t, (j,−1)) with (s, t) ∈ R(j) and
(j,−1) ∈ T (s), due to the definition of T . Details are left to the reader. ��

Note that Theorem 2 implies that M, (s, (i, 0)) |= Kjϕ ∧ Kj¬ϕ when i �= j.
Lastly, there should be no paths which infinitely alternate between differ-

ent agents, as ToM puts a limit on the number of times any agent can switch
perspectives:

Theorem 3. For all non-empty sequences (Mj1Mj2 , . . . ,Mjn−1 ,Mjn) of M-
operators such that |{k : jk �= jk+1}| > l ≥ 0, respectively for all M, (s, (i, l))
and for all M, (s, (i, l + 1)):

Clause 1: M, (s, (i, l)) |= ¬Mj1Mj2 . . . Mjn−1Mjnψ for i = j1
Clause 2: M, (s, (i, l + 1)) |= ¬Mj1Mj2 . . . Mjn−1Mjnψ for i �= j1

Proof. First, we denote Mj1Mj2 . . . Mjn−1Mjn as Mn. We rewrite ¬Mnψ as
Kn¬ψ, which, as we prove for all ψ ∈ LK[], we rewrite to Knψ. We prove
the theorem through mutual induction over l.

Base case, clause 2: our base case is that for all M, (s, (i, 0)) with i �= j1:
M, (s, (i, 0)) |= Kj1 . . . Kjnψ, which is shown in Theorem 2 by taking Kj1 as Kj

and Kj2 . . . Kjnψ as ϕ.
Inductive step from clause 2 to clause 1: our induction hypothesis

is that for some arbitrary l ≥ 0, for all M, s, i with i �= j1: M, (s, (i, l)) |= Knψ.
We have to show that, for some non-empty sequence (Ki, . . . ,Ki), M, (s, (i, l)) |=
Ki . . . KiK

nψ. For s we write s1, for (Ki, . . . ,Ki) we write (Ki1 , . . . ,Kim). We
omit all text after the first ‘for all’:

M, (s1, (i, l)) |= Ki1Ki2 . . . KimKnϕ ⇔
M, (s2, (i, l)) |= Ki2 . . . KimKnϕ for all (s2, (i, l)) with

(s1, s2) ∈ R(i) and (i, l) ∈ T (s2) ⇔
...

...
...

M, (sm, (i, l)) |= KimKnϕ for all . . . ⇔
M, (sm+1, (i, l)) |= Knϕ for all . . .

The latter holds because of our induction hypothesis.
Inductive step from clause 1 to clause 2: our induction hypothesis

is M, (s, (i, l)) |= Knψ for some arbitrary M, (s, (i, l)) with l ≥ 0, and i = j1.
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We have to show that for i �= k, M, (s, (k, l + 1)) |= Knψ. Through a series
of equivalences, it can be shown that both are equivalent to M, (t, (j1, l)) |=
Kj2 . . . Knψ for all (t, (j1, l)) with (s, t) ∈ R(j1) and (j1, l) ∈ T (t).

By starting at our base case for clause 2 and alternating between both induc-
tive steps, any instance of the theorem can be constructed. No base case for clause
1 is needed. For all M, (s, (i, l)) with l < 0, Knψ holds vacuously, as by definition
(i, l) �∈ T (s) and (i, l − 1) �∈ T (s). ��

Aces and Eights. For Aces and Eights, we use A = {0, 1, 2} and P =
{880, 8a0, aa0, 881, 8a1, aa1, 882, 8a2, aa2}, where 880 means ‘agent 0 is holding
two eights’, 8a1 means ‘agent 1 is holding an Ace and an Eight’, et cetera.
S and R are as depicted in Fig. 1. V is as would be expected. For example,
V (aa0) ∩ V (881) ∩ V (882) = {AA8888}. We have (i, l) ∈ T (s) for all s ∈ S,
i ∈ A, and l ∈ N (though we do not consider l > 5). Agent i announcing ‘I know
my cards’ is a public announcement of Ki88i ∨ Ki8ai ∨ Kiaai, announcing ‘I do
not know my cards’ is a public announcement of its negation.

Consider state AA8888 in the leftmost half of Fig. 2, with for AA8888 only
(AA8888, AA8888) ∈ R(0). As an example, we show what happens to this state
when agent 0 announces that she does not know her cards (AA8888 may not be
the true state). For brevity, we use the simpler announcement ‘I do not know that
I have two Aces’. We compute T ′(AA8888) for M |¬K0aa0 (and hence M |¬K0aa0

itself). We consider each type of tuples on a case by case basis:
For tuples of the type (i, 0) with i �= 0, the formula contains an operator Kj

with i �= j and l = 0, so, by definition, these tuples are not removed.
For tuples of the type (i, l) with i �= 0 and l > 0, we have that l �= 0, so we

have to check whether M, (AA8888, (i, l)) |= ¬K0aa0. If not, they are removed.
We use a series of equivalences:

M, (AA8888, (i, l)) |= ¬K0aa0 ⇔ (definition of ¬)
M, (AA8888, (i, l)) �|= K0aa0 ⇔ (def. of K)
M, (t, (0, l − 1)) �|= aa0 for some (t, (0, l − 1)) with

(AA8888, t) ∈ R(0) and (0, l − 1) ∈ T (AA8888) ⇔ (def. of R(0))
M, (AA8888, (0, l − 1)) �|= aa0 for (0, l − 1) ∈ T (AA8888).

We have (0, 0), (0, 1), . . . , (0, 5) ∈ T (AA8888) and AA8888 ∈ V (aa0), so
M, (AA8888, (i, l)) |= ¬K0aa0 is false for any i �= 0 and l > 0. Hence, all tuples
of the type (i, l) with i �= 0 and l > 0 are removed. For similar reasons, all tuples
of the type (0, l) for all l are also removed. The resulting T ′(AA8888) can be
found in the rightmost half of Fig. 2.

Answers. With these TOMPAL models, we can model which answer any player
i with ToM level l would give, given a distribution of cards (corresponding
to state s) and a sequence of previous announcements, as follows: Using the
methods previously described in this section, update the model with all pre-
vious announcements in order. Then, if exactly one of M, (s, (i, l)) |= Ki88i,
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M, (s, (i, l)) |= Ki8ai, and M, (s, (i, l)) |= Kiaai holds, player i answers ‘I know
my cards’, and states the cards she has. In any other case, player i answers that
she does not know her cards. Note that this deviates from standard epistemic
logic where, if there are no outgoing edges for an agent i, all statements of the
type ‘agent i knows ϕ’ are true, whereas all statements ‘agent i does not know ϕ’
are false. Recall from Sect. 1 that we will use TOMPAL to predict the answers
and usage of different ToM levels in [8]’s data of Aces and Eights. To be able to
employ our statistical methods, we need our models to give single answers. Not
only is ‘I do not know’ the most common answer in the data, but it is also an
intuitively good response when you consider nothing to be possible.

2.5 Random-Effects Bayesian Model Selection

Random-Effects Bayesian Model Selection (RFX-BMS) is a statistical method
that estimates the frequencies of a set of strategies occurring in a population.
Whereas fixed-effects Bayesian model selection methods assume there is a single
strategy which best fits all participants, RFX-BMS assumes each subject was
drawn from a fixed distribution of strategies, and estimates this distribution.
Unlike Maximum Likelihood Estimation, RFX-BMS allows us to make more gen-
eral claims about this distribution, and is robust to small differences between
participants and strategies [9,33,38]. In our case, we estimate the frequencies
of ToM levels in the participant population of Cedegao et al. [8]. RFX-BMS
uses equation (14) of [33], which maximizes the log-likelihood of each partici-
pant using each ToM level by iteratively updating the strategy frequencies until
convergence. This log-likelihood is n(1 − ε) · ln(1 − ε) + nε · ln (p · ε), where a
ToM level’s error rate ε for a participant is its number of incoherent predictions
for that participant, divided by n, the total number of decision points of the
participant. A predicted answer is coherent if it is the same as the participant’s
answer, otherwise it is incoherent. A decision point is a turn in a game where
a participant has to give an answer. The parameter p is a penalty coefficient,
which is applied when a participant does not follow a certain ToM level, but
does match its actions. We set it to 0.5. Predicted answers are generated as
described at the end of Sect. 2.4. We deviate from [8], where models are fitted
to full games instead of decision points. After all, participants can have multiple
decision points in each game (one for each round).

In addition to ToM levels 0 through 5, we also fit a random model. We
determine the best fitting random model by considering that each player guesses
among the four options with a fixed but personal probability. The log-likelihood
for the random model is ∑

a∈Ans

a · ln(
a

n
)

where n is the total number of decision points, and Ans = (k¬, k88, k8A, kAA)
is a list of numbers, where we define k¬ as the number of times the participant
answered ‘I do not know my cards’, k88 as the number of times the participant
answered ‘I know I have two Eights’, et cetera.
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Given these likelihoods, RFX-BMS estimates a vector α, containing one ele-
ment for each ToM level and an additional element for the random model.4

3 Results

In Sect. 3.1, we explore the use of RFX-BMS by combining it with the epistem-
ically bounded models of Cedegao and colleagues [8], as outlined in Sect. 2.3.
In Sect. 3.2, we use the TOMPAL models introduced in Sect. 2.4 as models in
RFX-BMS (as described in Sect. 2.5), which we use to predict the frequencies of
each ToM level in the data of [8].
3.1 Predicted Epistemic Levels of Participants

Before employing our novel models, we validate the use of RFX-BMS by using
it to estimate the relative frequencies of epistemic levels for subjects in [8] by
using as model a non-stochastic version of SUWEB, the best-fitting model in
[8], which employs the bounded models described in Sect. 2.3. SUWEB models
have an update probability, the probability with which a state is removed after
an announcement, and a noise parameter, the probability of the model guessing
‘I know’ when it does not know. We set these to 1 and 0, respectively. When
SUWEB considers no states to be possible, it answers ‘I know’ or ‘I don’t know’

Fig. 3. In red, relative frequencies of each epistemic level and the random model as
predicted by RFX-BMS, for [8]’s data, using bounded models. In blue, the original
fit of [8]’s stochastic SUWEB models, which also are bounded models. (Color figure
online)

4 All code used for this article can be found at https://github.com/jdtoprug/
EpistemicToMProject and doi: 10.5281/zenodo.8382660. Note that we implemented
the model updates needed for Aces and Eights and related games, and not a general
logical framework.

https://github.com/jdtoprug/EpistemicToMProject
https://github.com/jdtoprug/EpistemicToMProject
https://doi.org/10.5281/zenodo.8382660
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with equal probability. In these cases we have this non-stochastic SUWEB answer
‘I don’t know’ instead. We combine this non-stochastic SUWEB with RFX-BMS
as described in Sect. 2.5, in order to estimate the relative frequencies of each
epistemic level, as well as the random model, across all 211 participants.

The predicted frequencies of epistemic levels in the population can be found in
Fig. 3. Here, the blue bars are the original fit of [8], obtained by using Maximum
Likelihood Estimation to estimate SUWEB’s parameters and the epistemic level
(EL) of each participant. The red bars are the predictions of RFX-BMS on non-
stochastic SUWEB (EB), as explained in the previous paragraph. As a reminder,
both red and blue bars use bounded models as explained in Sect. 2.3. For non-
stochastic SUWEB, less than 1% of the population is classified as using the
random model, which validates the epistemically bounded models presented in
[8]. Over 40% of the population is classified as EL-2. This differs from the original
SUWEB, which fits over 45% of participants to EL-1. We believe this is because
many of the games that reportedly require levels 3 or 4 can be correctly solved
by simply answering ‘I don’t know’ in every round, which our non-stochastic
EL-2 models consistently do, as opposed to the original SUWEB models, which
sometimes answer ‘I know’ due to noise. Many participants that were fitted
as EL-3 or EL-4 can be reclassified as EL-2 users who use this heuristic. For
non-stochastic models, update probabilities are 1, which should make higher-
level behavior less similar to lower-level behavior, as it causes models to say
‘I don’t know’ less frequently. Zero noise may also decrease similarity between
models, as noisy models are less likely to reach later rounds, where levels can be
distinguished. These effects should be reflected in our findings.5

3.2 Predicted ToM Levels of Participants

In this section, we employ the same methods as described in Sect. 3.1, using our
ToM models as described in Sect. 2.4, instead of [8]’s bounded models.

The predicted frequencies of ToM levels in the population can be found in
Fig. 4. Less than 1% of the population is classified as using the random model,
which shows that participant behavior is better described as ToM reasoning as
described in Sect. 2.4 than it is described as guessing. Over 35% of the population
is predicted to use ToM-2. A surprising result is the peak at ToM-5: it turns out
that RFX-BMS estimates that 14% of the population fits ToM-5 better than
any other ToM level. This is not dissimilar to [8], where 15% of participants is
fitted to epistemic level 4 (the rightmost blue bar in Fig. 3). In our models, in
order to solve all games, ToM-5 is needed, whereas in [8], non-stochastic EL-4
accomplishes the same.

When comparing the RFX-BMS results for the epistemically bounded and
ToM models, we see that the estimated frequency of ToM-2 users is lower than
that of EL-2 users. We believe this is because there are some games where non-
stochastic EL-2 correctly answers ‘I do not know my cards’ due to becoming

5 We cannot test these predictions as we do not have access to the computational
power required to fit the SUWEB model of [8] in a reasonable amount of time.
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Fig. 4. Relative frequencies of each ToM level and the random model as predicted by
RFX-BMS, for the data of [8], using ToM models.

‘confused’ and removing all non-peripheral nodes, whereas our ToM-2 models
incorrectly answer ‘I know my cards’ due to mistakenly attributing ToM-1 to
the other players (which are ToM-5). For one such example, see Appendix B.

To see how well, on average, our models’ predictions correspond to partici-
pant behavior, the distribution of coherence across participants can be found in
Fig. 5. A participant’s coherence is the number of coherent predictions for that
participant’s best-fitting model, divided by that participant’s total number of
decision points. Coherence is at least .736 for over half of the participants, and
only 15 participants have a coherence of 0.5 or lower. There are only six par-
ticipants where the random model has the best coherence, which are indicated
using an ×. Upon visual inspection of the data for the low-coherence outliers, it

Fig. 5. Distribution of 1-ε for the best-fitting ToM levels for each of the 211 partici-
pants. Mean 0.723, median 0.737, IQR 0.143. Crosses indicate participants for whom
the random model fits better than any of the ToM models. The vertical axis has no
meaning and is used to separate data points for improved readability.
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seems that these participants frequently answered ‘I know my cards’ when they
could not, which our ToM models never do.

4 Discussion/Conclusion

Humans do not have the logical omniscience that modal logics based on Kripke
models presuppose [21,39]. For one, human ToM is limited [23,27]. In this paper
we propose a novel method of representing ToM limitations in Public Announce-
ment Logic, building on the work of Cedegao et al. [8] (see also [22] and [11]).
We use Random-Effects Bayesian Model Selection to predict the frequencies of
ToM levels in the data of [8], and find some striking differences and similarities
when comparing the estimates of ToM and epistemically bounded models.

We predict the majority of the participants of Cedegao and colleagues [8] to
be using ToM-2, possibly bolstered by the heuristic of answering ‘I don’t know’
in cases where a random answer would be given in the SUWEB model of [8]. For
the latter, the majority of participants is fitted as Cedegao et al.’s epistemic level
1 (EL-1). We believe this difference is due to SUWEB’s stochasticity, as well as
EL-2 and higher overestimating human (recursive) reasoning capabilities. Our
results are a refinement that show that participants are better described as ToM-
2 than ToM-1, where the former lies between non-stochastic EL-1 and EL-2 in
terms of game-solving capabilities. Our novel method also predicts a portion of
participants to use ToM-5. However, since participants can solve many higher-
level puzzles by always answering ‘I don’t know’, it is difficult to distinguish
higher-order reasoning from heuristics, so it is important to emphasize that the
participants themselves may not necessarily be using fifth-order reasoning. We
recommend employing games where to be correct, one must eventually answer
‘I know’ as diagnostic cases in future research.

A drawback of our approach is that we do not consider deviations from our
ToM models’ predictions, even though some participants exhibit clear guessing
strategies where they answer ‘I know my cards’ when they cannot know. Also,
our models do not consider the possibility that agents may attribute different
levels of ToM reasoning to other players. For example, a ToM-2 model attributes
ToM-1 to every other agent, and does not consider the possibility that one agent
is using ToM-0, whereas another agent is using ToM-1. Furthermore, we assume
that participants use a single ToM level throughout the experiment, but it could
be possible that some participants switch ToM levels between games or even
rounds. Lastly, recall that our models answer ‘I do not know my cards’ when there
are no outgoing edges. When this answer is changed to a different answer, or any
random distribution over the four answers, we find that mean coherence never
drops under 0.72. However, we assume that all participants use the same strategy
in such cases, whereas a richer model could try to find the best-fitting answering
behavior for each player. In future work it may be possible to incorporate all these
behaviors in our models, though even without covering these cases our models
have a mean 0.723 coherence - a decent fit, and an indication that participant
behavior can, at least partially, be described using our ToM models.
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In Sect. 2.5, we calculate the log-likelihood of a ToM level fitting a partici-
pant by introducing a penalty for deviating from our models, the value of which
strongly affects the relative fit of the random model compared to ToM models.
Random-Effects Bayesian Model Selection must assign each participant to one
of our defined models. Though we included ToM and random models, there may
be other models that fit even better. For example, participants may be using a
representation similar to the number triangles in [15], they may be generalizing
such as the participants in [18], or they may be using other strategies. More
research and data is needed to find all relevant behavioral features. Eye-tracking
data could be used to distinguish between strategies, allowing for more accu-
rate logically inspired models [26,34,35]. These models need not be based on
formal logics: we also encourage cognitive scientists to model higher-order ToM
in Aces and Eights. Nonetheless, we demonstrate that a large part of participant
behavior can be attributed to ToM limitations as represented in our models.
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Ministry of Education, Culture and Science through the Netherlands Organisation for
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Appendix A

This appendix describes how to extend our work beyond Aces and Eights.
In [22], concatenation of sequences is defined: e ◦ e′ = (i1, . . . , im, j1, . . . , jk)

for e = (i1, . . . , im), e′ = (j1, . . . , jk). The empty sequence is ε, and e◦ε = ε◦e = e.
The epistemic depth δ(F ) of a formula F is inductively defined as follows:

D0: δ(p) = {ε} for any p ∈ P ;
D1: δ(¬F ) = δ(F );
D2: δ(F → G) = δ(F ) ∪ δ(G);
D3: δ(∧Φ) = δ(∨Φ) = ∪F∈Φδ(F );
D4: δ(Ki(F )) = {(i) ◦ e : e ∈ δ(F )}.
D5 : δ([F ]G) = {f ◦ e : e ∈ δ(F ), f ∈ δ(G)}

We added D5, which is not present in [22]. Moving to novel work, we define the
ToM structure T(p,l), with p ∈ A and l ∈ N inductively as follows:

Base Case: e ∈ T(p,l) for every e = (i1, . . . , im) where 0 ≤ m ≤ l, and
for every ij ∈ e we have that ij ∈ A and [if 0 < j < m,
then ij �= ij+1]. If m ≤ 0 then e = ε.

Inductive Step 1: If e ∈ T(p,l) and l ≥ 0, then (p) ◦ e ∈ T(p,l)

Inductive Step 2: If, for any e1, i, e2; e1 ◦ ((i) ◦ e2) ∈ T(p,l), then
(e1 ◦ (i)) ◦ ((i) ◦ e2) ∈ T(p,l)
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Our base case corresponds to our requirement that the number of ‘perspective
switches’ is limited by an agent’s ToM order. Inductive steps 1 and 2 correspond
to not switching perspectives, not requiring additional ToM.

For zero or more repetitions of i we write i∗. As an example, consider A =
{0, 1}. Then, T(0,2) = {ε, (0∗), (1∗), (0∗, 1∗), (1∗, 0∗), (0∗, 1∗, 0∗)}.

We then modify our semantic definition of [ϕ]ψ in Definition 3:

M, (s, (i, l)) |= [ϕ]ψ ⇔ M, (s, (i, l)) |= ϕ implies M |ϕ, (s, (i, l)) |= ψ

where we define the model restriction M |ϕ = (S,R, V, T ′) with (i, l) ∈ T ′(s) iff
(i, l) ∈ T (s) and [M, (s, (i, l)) |= ϕ or [δ(ϕ) �⊆ T(i,l)]].

Note that δ(ϕ) �⊆ T(i,0) is equivalent to “ϕ contains an operator Kj with
i �= j”, as T(i,0) = {ε, (i∗)}. With this substitution, our proofs for Theorems 1–3
hold, and our models can be used with any announcements.

Appendix B

There are two games where non-stochastic EL-2 answers correctly whereas our
ToM-2 models answer incorrectly.6 In both of these, the participant is player
0. The distribution of cards in these games is AA8A88 and 8A8AAA. For the

Table 1. Tuples at each relevant state during a series of announcements.

AA8888 AA8A88 AAAA88 8AAA88 88AA88 8A8A88 next

0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5

1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 0: k¬
2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5

0: 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5

1: 0 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: k¬
2: 0 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5

0: 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0,1,2,3,4,5 0: 0 0: 0,1,2,3,4,5

1: 0 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 0,1,2,3,4,5 1: 1: 0,1,2,3,4,5 2: k¬
2: 0 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0,1,2,3,4,5 2: 0 2: 0,1,2,3,4,5

0: 0: 0,1,2,3,4,5 0: 0 0: 0,1,2,3,4,5 0: 0 0: 0,1,2,3,4,5

1: 0 1: 0,1,2,3,4,5 1: 0 1: 0,1,2,3,4,5 1: 1: 0,1,2,3,4,5 0: k¬
2: 0 2: 0,1,2,3,4,5 2: 2: 0,1,2,3,4,5 2: 0 2: 0,1,2,3,4,5

0: 0: 0,1,2,3,4,5 0: 0 0: 0 0: 0 0: 0,1,2,3,4,5

1: 0 1: 0,1,2,3,4,5 1: 0 1: 0,1 1: 1: 0,1,2,3,4,5 1: k

2: 0 2: 0,1,2,3,4,5 2: 2: 0,1 2: 0 2: 0,1,2,3,4,5

0: 0: 0,1,2,3,4,5 0: 0 0: 0 0: 0 0: 0,1,2,3,4,5

1: 1: 0,1,2,3,4,5 1: 1: 1: 1: 0,1,2,3,4,5 2: k¬
2: 0 2: 0,1,2,3,4,5 2: 2: 0 2: 0 2: 0,1,2,3,4,5

0: 0: 0,1,2,3,4,5 0: 0 0: 0 0: 0 0: 0,1,2,3,4,5

1: 1: 0,1,2,3,4,5 1: 1: 1: 1: 0,1,2,3,4,5

2: 0 2: 0,1,2,3,4,5 2: 2: 0 2: 0 2: 0,1,2,3,4,5

6 Because knowledge can be false, using ‘knowledge’ and K may not be entirely accu-
rate. We use it because the model for Aces and Eights is S5, but for future work we
recommend using ‘beliefs’ and B.
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former, we show the removal of tuples after each announcement in Table 1, where
each column is a relevant state, and each row corresponds to an announcement.
Column ordering corresponds to the order of states in Fig. 1. The rightmost
column shows the next announcement, where the index denotes the player, k
is ‘I know my cards’, and k¬ is ‘I do not know my cards’. Tuples that will be
removed after the next announcement are red. After six announcements, player
0 at ToM-2 will incorrectly answer ‘I know my cards’, whereas at ToM-5 she will
answer ‘I do not know my cards’, which is the correct answer. When working
through the example, it is recommended to use Fig. 1 as a companion.
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