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Higher order fluctuation fields and orthogonal duality
polynomials*

Mario Ayala† Gioia Carinci‡ Frank Redig§

Abstract

Inspired by the works in [2] and [11] we introduce what we call k-th-order fluctuation
fields and study their scaling limits. This construction is done in the context of particle
systems with the property of orthogonal self-duality. This type of duality provides us
with a setting in which we are able to interpret these fields as some type of discrete
analogue of powers of the well-known density fluctuation field. We show that the weak
limit of the k-th order field satisfies a recursive martingale problem that corresponds
to the SPDE associated with the kth-power of a generalized Ornstein-Uhlenbeck
process.
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1 Introduction

In the context of interacting particle systems with a conserved quantity (such as the
number of particles) in [6, 12] one studies the time-dependent density fluctuation field

X (n)(ϕ, η(n2t)) =
1

nd/2

∑
x∈Zd

ϕ(x/n)(ηx(n2t)− ρ).

Here ϕ denotes a test-function, and ηx the number of particles at site x ∈ Zd. The
quantity X (n)(ϕ, η(n2t)) is then considered as a random time-dependent (Schwartz)
distribution. In a variety of models with particle number conservation (such as zero-
range processes, simple exclusion processes, etc.), this time-dependent field is proved
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Higher order fluctuation fields

to converge, at equilibrium, to a stationary infinite-dimensional Ornstein-Uhlenbeck
process. This scaling limit behavior of the density fluctuation field can be thought of as a
generalized space-time central limit theorem.

The usual strategy of proof (see e.g. Chapter 11 of [12]) is to start from the Dynkin
martingale associated to the density field and prove convergence of the drift term via
the Boltzmann-Gibbs principle (the drift term becomes in the scaling limit a function of
the density field), and convergence of the noise term via characterization of its quadratic
variation (which becomes deterministic in the scaling limit). This then eventually leads
to the informally written SPDE

dXt = D∆Xt + σ(ρ)∇dWt

where ρ is the parameter of the invariant measure associated to the density, ∆ denotes
the Laplacian, and where σ(ρ)∇dWt is an informal notation for Gaussian white noise with
variance σ2(ρ)

∫
(∇ϕ)2dx.

In reversible interacting particle systems with (self-)duality, η0 is a self-duality func-
tion, and therefore the drift term in the equation for the density field is already mi-
croscopically (i.e., without rescaling) a (linear) function of the density field. As a
consequence, closing the equation and proving convergence to the limiting Ornstein-
Uhlenbeck process, is, for self-dual systems, particularly simple and do not require the
use of a Boltzmann-Gibbs principle. This simplification suggests that, in that context, we
can obtain more detailed results about fluctuation fields of more general observables.
Orthogonal polynomial duality is a useful tool in the study of fluctuation fields, and
associated Boltzmann-Gibbs principles, as we have seen in [3].

The density fluctuation field can be viewed as the lowest (i.e., first) order of a
sequence of fields associated to orthogonal polynomials. Indeed, in all the models with
orthogonal polynomial self-duality, the function (ηx − ρ) is the first-order orthogonal
polynomial up to a multiplicative constant. Orthogonal polynomials are indexed by
finite-particle configurations, i.e., the dual configurations. If we denote by D(x1, . . . xk; η)

the orthogonal polynomial associated to the dual configuration
∑n
i=1 δxi , then a natural

field generalizing the density fluctuation field is

X (n,k)(Φ, η) = n−kd/2
∑
xi∈Zd

D(x1, . . . , xk; η) · Φ
(
x1

n , . . . ,
xk
n

)
.

In the context of exclusion processes the case k = 2 (orthogonal polynomial of order
2) has been studied in [11], where this field, called the quadratic fluctuation field, is
shown to converge, in the limit n → ∞, to the solution of a martingale problem. The
quadratic variation of this 2nd-order field is proven to be a function of the 1st order field
(the density field). From the result on the quadratic (k=2) field one can conjecture the
existence of a more general structure where the kth-order orthogonal polynomials field
satisfies, in the scaling limit, a martingale problem with quadratic variation depending
on the k − 1-order field.

In this paper we show exactly the emergence of a scenario of this type: within a gen-
eral class of models with orthogonal polynomial self-duality we consider the fluctuation
fields associated to orthogonal polynomials and prove that they converge, in the scaling
limit, to the solution of a recursive system of martingale problems. We believe that this
can also be a first step in the direction of defining non-linear fields, such as the square of
the density field, via approximation of the identity, i.e., via a singular linear observable
(cf. [11]) of the field constructed in our paper.

The rest of our paper is organized as follows. In Section 2 we define the basic models,
and introduce orthogonal polynomial duality. In Section 3 we define the fluctuation fields,
in Section 4 we introduce a coordinate version of the dual process, a technical tool that
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Higher order fluctuation fields

will prove to be useful later on. In Section 5 we state the main result, Theorem 5.2 below,
and outline a strategy of its inductive proof. Finally, the rest of the sections are devoted
to the proof of Theorem 5.2.

2 The models

2.1 The infinite configuration process

We consider an interacting particle system where an infinite number of particles
randomly hop on the lattice Zd. Configurations are denoted by η, ξ, ζ and are elements
of Ω ⊆ NZd (where N denotes the natural numbers including zero). We denote by ηx
the number of particles at x in the configuration η ∈ Ω. We have in mind symmetric
processes of the type independent random walkers, inclusion or exclusion. We fix two
parameters (σ, α) ∈ {0, 1} × [0,∞) ∪ {−1} ×N and we define the generator working on
local functions f : Ω→ R as

L f(η) =
∑
i∈Zd

∑
r∈Zd

p(r)ηi(α+ σηi+r)(f(ηi,i+r)− f(η)) (2.1)

where ηi,i+r denotes the configuration obtained from η by removing a particle from i

and putting it at i+ r. The state space Ω has to be defined and its form depends on the
choice of the parameters α and σ.

We assume that p(r) is a symmetric, finite-range, irreducible Markov transition
function on Zd:

1. Symmetry. The function p : Rd → [0,∞) is of the form:

p(r1, . . . , rd) = p(|r1|, . . . , |rd|) (2.2)

and such that p(rσ) := p(rσ(1), . . . , rσ(d)) = p(r1, . . . , rd) for all σ ∈P(d), the set of
permutations of {1, . . . , d}.

2. Finite-range. There exists a finite subset R ⊂ Zd of the form R = [−R,R]d ∩ Zd,
for some R ∈ N, R > 1, such that p(r) = 0 for all r /∈ R.

3. Irreducibility. For all x, y ∈ Zd there exists a sequence i1 = x, . . . , in = y such that

n−1∏
k=1

p(ik − ik+1) > 0.

We will also assume, without loss of generality, that p(0) = 0, and denote by χ the second
moment:

χ :=
∑
r∈R

r2
` · p(r), for all ` ∈ {1, . . . , d}. (2.3)

Remark 2.1. The symmetry assumption (2.2) is crucial in order to be able to have and
apply orthogonal self-duality.

For the associated Markov processes on Ω, we use the notation {η(t) : t ≥ 0}, ηx(t)

denoting the number of particles at time t at location x ∈ Zd. These particle systems
have a one-parameter family of homogeneous (w.r.t. translations) reversible and ergodic
product measures νρ, ρ > 0, indexed by the density of particles, i.e.,∫

η0dνρ = ρ. (2.4)

The nature of the underlying dynamics and the type of reversible measure we obtain is
regulated by the parameter σ ∈ Z as follows.
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Higher order fluctuation fields

Independent random walkers (IRW): This particle system corresponds to the choice
σ = 0 and the intensity parameter α ∈ R regulates the rate at which the walkers
move. The reversible measures νρ, ρ > 0 are products of Poisson distributions with
parameter ρ, νρ = ⊗i∈ZdPois(ρ), i.e. the marginals are given by

Pνρ(ηi = n) =
1

Zρ
· ρ

n

n!
, Zρ = e−ρ, ∀ i ∈ Zd.

Symmetric exclusion process (SEP(α)): The choice σ = −1 results in exclusion inter-
action. For this process the parameter α takes values in the set of natural numbers
N, as it determines the maximum number of particles allowed per site. This system
is well known to have reversible measures νρ, ρ ∈ (0, α), that are products of
Binomial distributions: νρ = ⊗i∈ZdBinom

(
α, ρα

)
whose marginals are given by

Pνρ(ηi = n) =
1

Zα,ρ
·
(
α

n

)
·
(

ρ

α− ρ

)n
, Zα,ρ =

(
α

α− ρ

)α
, ∀ i ∈ Zd.

Symmetric inclusion process (SIP(α)): The choice σ = 1 gives rise to an interaction
of inclusion-type consisting of particles attracting each other. The SIP is known to
have products of Negative-Binomial distributions as reversible measures, i.e. νρ,

ρ > 0 with νρ = ⊗i∈ZdNeg-Binom
(
α, ρ

ρ+α

)
with marginals

Pνρ(ηi = n) =
1

Zα,ρ
· Γ(α+ n)

Γ(α) · n!

(
ρ

α+ ρ

)n
, Zα,ρ =

(
α+ ρ

α

)α
, ∀ i ∈ Zd.

Remark 2.2. Notice that for the three processes we have that all moments are finite.

The definition of the state space Ω is different in each case, depending on whether
there are restrictions or not on the total number of particles allowed per site. This
is finite for the exclusion process, thus, for SEP(α), we have Ω = {0, 1, . . . , α}Zd . The
situation is different in the cases of IRW and SIP, for which, in principle, there are no
restrictions. Nevertheless, one has to avoid explosions of the number of particles in a
given site. For this reason the characterization of Ω in these cases (i.e. for σ ≥ 0) is
a more subtle problem whose treatment is beyond the scope of this thesis. Here we
will restrict ourselves by implicitly defining Ω as the set of configurations in NZ

d

whose
evolution η(t) is well-defined and belonging to Ω for all subsequent times t ≥ 0. We
refer the reader to [1] and [7] for examples on conditions sufficient to guarantee the
well-definedness. A possible such subset is the set of tempered configurations. This is
the set of configurations η such that there exist C, β ∈ R that satisfy |η(x)| ≤ C|x|β for
all x ∈ R. From this set of configurations, and via a finite volume approximation using
self-duality one can follow the lines of [1] and [7] to show the well-definedness.

2.2 The finite configuration processes

The process introduced in Section 2.1 can also be realized with a fixed finite number
of particles. For a process with k ∈ N particles we denote by Ωk its state space, more
precisely:

Ωk =
{
ξ ∈ Ω : ‖ξ‖ :=

∑
x∈Zd

ξx = k
}
. (2.5)

We will then denote by {ξ(t) : t ≥ 0} the Ωk-valued Markov process, with infinitesimal
generator given by

L (k)f(ξ) =
∑
i∈Zd

∑
r∈R

p(r)ξi(α+ σξi+r)(f(ξi,i+r)− f(ξ)) (2.6)

working on functions f : Ωk → R.
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Remark 2.3. Notice that from the fact that any configuration ξ ∈ Ωk has exactly k

particles, there is no room for explosions (meaning infinitely many particles coexisting
on one site). Therefore the process {ξ(t) : t ≥ 0} is well-defined.

We now define the following inner product for functions f, g : Ωk → R:

〈f, g〉Λ =
∑
ξ∈Ωk

f(ξ)g(ξ)Λ(ξ). (2.7)

where the weight Λ : Ωk → R, which does not depend on k, is given by:

Λ(ξ) =
∏
i∈Zd

λ(ξi) with λ(m) =



1
m! , m ∈ N for σ = 0 IRW

α!
m!(α−m)! , m ∈ {0, . . . , α} for σ = −1 SEP(α)

Γ(α+m)
Γ(α)m! , m ∈ N for σ = 1 SIP(α).

(2.8)
The weight Λ(·) satisfies detailed balance and as a consequence of this we can infer that
the k-particles generator L (k) is self-adjoint with respect to the inner product 〈·, ·〉Λ, i.e.
for all f, g ∈ L2(Ωk,Λ) we have

〈f,L (k)g〉Λ = 〈L (k)f, g〉Λ. (2.9)

Therefore Λ(·) can be thought of as a reversible σ-finite measure on each Ωk.

2.3 Orthogonal polynomial self-duality

The processes defined in Section 2.1 share a self-duality property that will be crucial
in our analysis. Define the set

Ωf =
⋃
k∈N

Ωk (2.10)

of configurations with a finite number of particles, the self-duality functions that we
consider in this paper are functions Dρ : Ωf × Ω→ R parametrized by the density ρ > 0

satisfying the following properties.

1. Self-duality:

Eη [Dρ(ξ, η(t))] = Eξ [Dρ(ξ(t), η)] for all ξ ∈ Ωf , η ∈ Ω (2.11)

or, equivalently,

[LDρ(ξ, ·)](η) = [L (k)Dρ(·, η)](ξ) for all ξ ∈ Ωf , η ∈ Ω. (2.12)

2. Factorized polynomials:

Dρ(ξ, η) =
∏
i∈Zd

dρ(ξi, ηi)

where dρ(0, n) = 1, and dρ(k, ·) is a polynomial of degree k.

3. Orthogonality: ∫
Dρ(ξ, η)Dρ(ξ

′, η) dνρ(η) = δξ,ξ′ ·
1

µρ(ξ)
(2.13)

where

µρ(ξ) :=

(∫
Dρ(ξ, η)2 dνρ(η)

)−1

. (2.14)
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Remark 2.4. Notice that, as a consequence of the orthogonality property (2.13), we
have that ∫

Eη [Dρ(ξ, η(t))] ·Dρ(ξ
′, η) dνρ(η) = pt(ξ, ξ

′) · 1

µρ(ξ′)
(2.15)

where pt(·, ·) is the transition probability function of the dual process {ξ(t) : t ≥ 0}.
Moreover, if we use the reversibility of the measure νρ on the LHS of (2.15) we obtain

pt(ξ, ξ
′) · 1

µρ(ξ′)
=

∫
Eη [Dρ(ξ, η(t))] ·Dρ(ξ

′, η) dνρ(η)

=

∫
Dρ(ξ, η) · Eη [Dρ(ξ

′, η(t))] dνρ(η)

= pt(ξ
′, ξ) · 1

µρ(ξ)
(2.16)

which, by detailed balance, implies the reversibility of the measure µρ(ξ). This in turn
implies that there exists a constant c(k, ρ) such that

Λ(ξ) = c(k, ρ) · µρ(ξ) for all ξ ∈ Ωk. (2.17)

Remark 2.5. Notice that by Remark 2.2 we have that µρ(ξ) < ∞ for every ξ ∈ Ωf .
Moreover, the measure µρ is not a probability measure.

From now on we will often suppress the dependence on the parameter ρ, of the duality
functions D(·, ·) = Dρ(·, ·), in order not to overload the notation. The same omission
will be done for the single site duality-polynomials d(·, ·), and any other orthogonal
polynomial introduced below.

For each of the processes we are considering, the orthogonal duality polynomials are
given as follows.

IRW: Charlier polynomials. The duality polynomials are given by

d(m,n) = C(m,n)

where C (m, ·) is the Charlier polynomial of degree m that we characterize by
means of the following generating function:

∞∑
m=0

C(m,n) · t
m

m!
= e−t

(
ρ+ t

ρ

)n
. (2.18)

We can differentiate the RHS of (2.18) with respect to t, and evaluate at t = 0, to
obtain that the first three Charlier (and self-duality) polynomials are:

d(0, n) = C(0, n) = 1,

d(1, n) = C(1, n) =
1

ρ
(n− ρ) ,

d(2, n) = C(2, n) =
1

ρ2

(
n(n− 1)− 2ρn+ ρ2

)
. (2.19)

SEP(α): Krawtchouk polynomials. For the SEP the duality polynomials are given by

d(m,n) =
m!(α−m)!

α!
·K(m,n)

whereK(m, ·) is the Krawtchouk polynomial of degreem whose generating function
is

∞∑
m=0

K(m,n) · tm = (1− t)α
(

1 + (α−ρρ )t

1− t

)n
. (2.20)
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With analogous computations to the IRW case, the first Krawtchouk polynomials
are:

K(0, n) = 1,

K(1, n) =
α

ρ
(n− ρ) ,

K(2, n) =

(
α

ρ

)2

n(n− 1)− 2

(
α

ρ

)
(α− 1)n+ α(α− 1), (2.21)

with corresponding single-site duality polynomials:

d(0, n) = 1,

d(1, n) =
1

ρ
(n− ρ) , (2.22)

d(2, n) =
2α

ρ2(α− 1)

(
n(n− 1)− 2ρ(α− 1)

α
n+

ρ2(α− 1)

α

)
.

Remark 2.6. Notice that these polynomials are only defined for m,n ≤ α.

SIP(α): Meixner polynomials. In this case the polynomials satisfying the self-duality
relation are given by the following normalization of the Meixner polynomials

d(m,n) =
Γ(α)

Γ(α+m)
·M(m,n) (2.23)

where M(m, ·) is the Meixner polynomial of degree m with generating function

∞∑
m=0

M(m,n) · t
m

m!
= (1− t)−α

(
1− (α+ρ)t

ρ

1− t

)n
. (2.24)

The first Meixner polynomials are:

M(0, n) = 1,

M(1, n) = −α
ρ

(n− ρ) ,

M(2, n) =

(
α

ρ

)2

n(n− 1)− 2

(
α

ρ

)
(α+ 1)n+ α(α+ 1). (2.25)

with corresponding single-site duality polynomials are:

d(0, n) = 1,

d(1, n) = −1

ρ
(n− ρ) ,

d(2, n) =
α

ρ2(α+ 1)

(
n(n− 1)− 2ρ(α+ 1)

α
n+

ρ2(α+ 1)

α

)
. (2.26)

We refer the reader to [13] and [5] for more details on these polynomials and their
generating functions. For proofs of self-duality with these orthogonal polynomials we
refer to [10] and [14].

3 Fluctuation fields

The density fluctuation field X is the stochastic object usually defined to study
fluctuations of density around its expected limit. This field corresponds to a central limit
type of rescaling of the density field, i.e.

X
(n)
t (ϕ, η) := n−d/2

∑
x∈Zd

ϕ(x/n)(ηx(n2t)− ρ). (3.1)
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where ϕ is an element of the Schwartz space S(Rd), i.e., the space of all smooth functions
whose derivatives are rapidly decreasing:

S(Rd) = {ϕ ∈ C∞(Rd) : sup
x∈Rd

|xαDβϕ| <∞,∀α, β ∈ N} (3.2)

where C∞(Rd) is the space of smooth functions.
Fields of this type have been intensively studied in the literature. For different models,

see for example [12] for the case of the ZRP, the sequence X
(n)
t is proven to converge to

a limiting field Xt that is identified as the distribution-valued random variable satisfying
the following martingale problem: for any ϕ ∈ S(Rd) the process

Mt(ϕ) = Xt(ϕ)−X0(ϕ)− χα

2

∫ t

0

Xs(∆ϕ)ds (3.3)

is a square integrable continuous martingale of quadratic variation given by the expres-
sion:

χρ(α+ σρ) ‖∇ϕ(x)‖2 · t. (3.4)

Remark 3.1. The factors χα
2 and χρ(α+ σρ) come from the symmetry assumption (2.2).

We refer to Section 6.1 for more details on how these factors emerge on the fields of order
k. Under the absence of (2.2) we cannot guarantee obtaining the same multiplicative
factors.

Following a procedure analogous to the one given in Chapter 11, pages 290-291, of
[12], the martingale problem (3.3)-(3.4) can be rewritten as:

Xt(ϕ) = X0(ϕ) +
χα

2

∫ t

0

Xs(∆ϕ)ds+
√
χρ(α+ σρ) ‖∇ϕ(x)‖Wt(ϕ) (3.5)

where Wt is a generalized Brownian motion with covariance

cov [Wt(ϕ),Ws(ψ)] = min(t, s)

∫
R

∇ϕ(x)

‖∇ϕ(x)‖
∇ψ(x)

‖∇ψ(x)‖
dx. (3.6)

Formally speaking, (3.5) is equivalent to say that the limiting field Xt satisfies (cf. [12],
pages 290-291) the Ornstein-Uhlenbeck equation:

dXt = χα
2 ∆Xt dt+

√
χρ(α+ σρ)∇dWt, (3.7)

Here ∇dWt has to be interpreted by saying that the integral∫ t

0

∇dWs(ϕ) (3.8)

is a continuous martingale of quadratic variation:

t · ‖∇ϕ(x)‖ . (3.9)

We refer the reader to [6] for a precise statement on the convergence for the case of the
exclusion process, corresponding, in our setting, to the case α = 1 and σ = −1.

The density field (3.1) can be written, in our context, in terms of our orthogonal
polynomial dualities Dρ(ξ, η) by choosing ξ ∈ Ω1. Indeed, in all models considered we
have that there exists a constant cσ,α,ρ such that

Dρ(δx, η) = cσ,α,ρ (ηx − ρ) (3.10)
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where

cσ,α,ρ =


1/ρ if σ = 0

−1/ρ if σ = 1

1/ρ if σ = −1

. (3.11)

Later on, in order not to overload notation we will suppress the dependence on ρ and α
and just write cσ. From (3.10) we observe that the field (3.1) can be rewritten (modulo a
multiplicative constant) as

X
(n,1)
t (ϕ) = n−d/2

∑
x∈Zd

ϕ
(
x
n

)
Dρ(δx, η(n2t)) (3.12)

where the superindex (n, 1) suggests that, in some sense, this is the first-order density
field. Using (3.10) and (3.7) the formal limiting SPDE for Xt is

dXt =
χα

2
∆Xtdt+ cσ

√
χρ(α+ σρ)∇dWt (3.13)

The observation that the field (3.1) can be expressed in terms of duality polynomials
opens the possibility of defining higher-order fields and study their scaling limits. For
k ∈ N, k ≥ 1 we define the k-th order field as

X (n,k)(ϕ(k), η) := Y (n,k)(Φ, η) := n−kd/2
∑
ξ∈Ωk

 ∏
x∈Zd

ϕ
(
x
n

)ξxΛ(ξ) ·Dρ(ξ, η) (3.14)

= n−kd/2
∑
ξ∈Ωk

 ∏
x∈Zd

ϕ
(
x
n

)ξx · λ(ξx) · dρ(ξx, ηx)


where ϕ ∈ S(Rd) is a test function, Λ is as in (2.8), and

ϕ(k) :=

k⊗
i=1

ϕ (3.15)

Φ(ξ) =
∏
x∈Zd

ϕ(x)ξx , Φn(ξ) =
∏
x∈Zd

ϕ
(
x
n

)ξx (3.16)

In the rest of this work, we will refer to test functions of the type ϕ(k) as symmetric
elements of the Schwartz space S(Rkd). Likewise, the functions Φ : Ωk → R, given
by (3.16), will be considered as elements of the Schwartz space of test functions over
configuration space.

Notice that there is no difference between X (n,k)(ϕ(k), η) and Y (n,k)(Φ, η) besides
that the latter works on test functions over configuration space, i.e., Φ ∈ S(Ωk), while
the former works on test functions ϕ(k) ∈ S(Rkd). Then, using the notation

Dρ(ξ, η) := Λ(ξ) ·Dρ(ξ, η), dρ(m,n) = λ(m) · dρ(m,n) (3.17)

Dρ(ξ, η) =
∏
i∈Zd

dρ(ξi, ηi) (3.18)

we can rewrite the k-th order field (3.14) as

Y (n,k)(Φ, η) := n−kd/2
∑
ξ∈Ωk

Φn(ξ) ·Dρ(ξ, η) (3.19)

and define:
Y

(n,k)
t (Φ) := Y (n,k)(Φ, η(n2t)). (3.20)

The choice of multiplying the duality function by the measure Λ(·) in (3.17) is dictated
simply by computational convenience that, even if obscure at the moment, will be made
clearer in the course of this work.
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First example: second-order fluctuation fields for the SEP(1)

Let us specialize these fields to the case of the one-dimensional symmetric exclusion
process for k = 2. This means that we are taking:

d = 1, α = 1, and σ = −1. (3.21)

In this case we have:

X (n,2)(ϕ(2), η) =
1

n

∑
ξ∈Ω2

(∏
x∈Z

ϕ
(
x
n

)ξx)
Λ(ξ) ·Dρ(ξ, η)

=
1

2n

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
Λ(δx + δy)Dρ(δx + δy, η)

=
1

2ρ2

 1

n

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
(ηx − ρ) (ηy − ρ)

 (3.22)

where in the second line, in order to get rid of the sum at the diagonal, we used the fact
that for SEP(1) we have Dρ(2δx, η) = 0. Notice that in the last line we used (2.8) and
(2.22).

Remark 3.2. Notice that the previous field corresponds, modulo a multiplicative factor,
to the quadratic field introduced earlier in [11]. Also notice that the previous field is not
the same as the quadratic field introduced in [2].

Second example: second-order fluctuation fields for IRW(1)

Let us now look at the case of one-dimensional independent random walkers. This means
that we are taking:

d = 1, α = 1, and σ = 0. (3.23)

Analogous to the case of SEP(1), in this case we have:

X (n,2)(ϕ(2), η) =
1

n

∑
ξ∈Ω2

(∏
x∈Z

ϕ
(
x
n

)ξx)
Λ(ξ) ·Dρ(ξ, η)

=
1

2n

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
Λ(δx + δy)Dρ(δx + δy, η)

+
1

n

∑
x∈Z

ϕ
(
x
n

)2
Λ(2δx)Dρ(2δx, η)

=
1

2nρ2

∑
x,y∈Z
x 6=y

ϕ
(
x
n

)
ϕ
(
y
n

)
(ηx − ρ) (ηy − ρ)

+
1

2nρ2

∑
x∈Z

ϕ
(
x
n

)2 (
ηx(ηx − 1)− 2ρηx + ρ2

)
(3.24)

Remark 3.3. Notice that different to the case of SEP(1), in this case we have that
the second-order duality polynomials do not vanish and as a consequence we have a
contribution coming from the diagonal (i.e., the second summation in the RHS of (3.24)).
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4 The coordinate process

The coordinate process can be described in words as the process obtained by labeling
the particles of a process with a finite number of particles. Thinking of k ∈ N as the
number of particles, we want to introduce a family of permutation-invariant coordinate
processes {X(k)(t) : t ≥ 0} compatible with the finite configuration processes {ξ(t) : t ≥
0} on Ωk. Here the coordinate process is a Markov process on Zdk with

X(k)(t) = (X1(t), . . . , Xk(t)), Xi(t) ∈ Zd, ∀i = 1, . . . , k (4.1)

Xi(t) being the position of the i-th particle at time t ≥ 0. For a further explanation of the
notion of compatibility we refer the reader to [4].

Denote by x ∈ Zkd the coordinate vector x := (x1, . . . , xk), with xi ∈ Zd, for i =

1, . . . , k. The coordinate process {X(k)(t) : t ≥ 0} is defined by means of its infinitesimal
generator:

L(k)f(x) =

k∑
i=1

∑
r∈R

p(r)

(
α+ σ

k∑
j=1
j 6=i

1xj=xi+r

)(
f(xi,i+r)− f(x)

)
(4.2)

where xi,i+r denotes x after moving the particle in position xi to position xi + r ∈ Zd.
Notice that for x ∈ Zkd the compatible configuration ξ(x) ∈ Ωk is given by

ξ(x) =
(
ξi(x), i ∈ Zd

)
with ξi(x) =

k∑
j=1

1xj=i. (4.3)

4.1 Product σ-finite reversible measures

It is possible to verify, by means of detailed balance, that the coordinate-process
{X(k)(t) : t ≥ 0} admits a reversible σ-finite measure that is given by

Π(x) =
Λ(ξ(x))

N(ξ(x))
=

1

k!

∏
i∈Zd

ξi(x)! · λ(ξi(x)) for x ∈ Zkd (4.4)

where λ is given as in (2.8), and with

N(ξ) := |{x ∈ Zkd : ξ(x) = ξ}| = k!∏
i∈Zd ξi!

(4.5)

then we can rewrite Π in the product form:

Π(x) =
1

k!

∏
i∈Zd

π(ξi(x)), x = (x1, . . . , xk) ∈ Zkd (4.6)

with π given as follows:

π(m) = λ(m) =



1
m! , m ∈ N for σ = 0 IRW

α!
(α−m)!m! , m ∈ {0, . . . , α} for σ = −1 SEP(α)

Γ(α+m)
Γ(α)m! , m ∈ N for σ = 1 SIP(α)

. (4.7)

Given the measures Π, we now consider the spaces of permutation-invariant functions:

L̂2(Zkd,Π) :=
{
f ∈ L2(Zkd,Π) : f(x) = f(xσ), ∀σ ∈P(k)

}
(4.8)
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with P(k) denoting the set of all possible permutations of the set {1, 2, 3, . . . k}. We
endowed the space L̂2(Zkd,Π) with the inner product given by:

〈f, g〉Π =
∑

x∈Zkd
f(x)g(x)Π(x). (4.9)

Remark 4.1. Notice that any function f ∈ L̂2(Zkd,Π) can be interpreted also as a
function on the configuration space. In this work we will extensively use this fact by
changing between interpretations sometimes from one line to another in the same
derivation.

Remark 4.2. As a consequence of reversibility of the measures Π, we can infer that the
k-particles generator L(k) is self-adjoint with respect to the inner product 〈·, ·〉Π, i.e.

〈f, L(k)g〉Π = 〈L(k)f, g〉Π (4.10)

for all f, g ∈ L̂2(Zkd,Π).

4.2 The fluctuation fields in coordinate notation

It is possible to rewrite the fluctuation field (3.14) in the coordinate variables. Notice
that in this context the test function Φ defined in (3.16) becomes a tensor function:

Φ(ξ(x)) =

k∏
i=1

ϕ(xi) (4.11)

i.e. it is the homogeneous k-tensor test function ϕ⊗k ∈ S(Rkd) of the form

Φ ◦ ξ = ϕ⊗k :=

k⊗
i=1

ϕ (4.12)

then, after a change of variable in the sum we can rewrite the k-th field as follows

X (n,k)(ϕ(k), η) = Y (n,k)(Φ, η) = n−kd/2
∑

x∈Zkd
ϕ(k)

(
x
n

)
·Π(x) ·D(ξ(x), η). (4.13)

Notice that we can also let the field X act on a general f ∈ S(Rkd) as expected, i.e.,

X (n,k)(f, η) = n−kd/2
∑

x∈Zkd
f
(
x
n

)
·Π(x) ·D(ξ(x), η). (4.14)

Remark 4.3. Because we deal with unlabeled particle systems it is natural to define
the higher-order fluctuation fields acting on symmetric test functions Φ i.e. on ele-
ments of the Schwartz space S(Rkd) that are permutation-invariant: Φ(xσ(1), . . . , xσ(k)) =

Φ(x1, . . . , xk) for all σ ∈P(k), the set of permutations of {1, . . . , k}.
Remark 4.4. The set of test functions of the form ϕ⊗k is dense in the space of symmetric
Schwartz test functions. This can be seen in two steps. First, linear combination of
tensors are dense in S(Rkd). Second, restricting to symmetric linear combinations of
elements in S(Rkd), we have that by polarization linear combinations of powers of the
form ϕ⊗k are dense in this restriction (see for example Remark 2.5 in [9]).

5 Main result

5.1 Heuristics: macroscopic dynamics

The goal of this section is to provide some intuitions on the type of limiting field that
we should expect for fields of order greater than one. We will start by considering the
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cases k = 1, 2 and, inspired by the results obtained in [11], we will propose a heuristic
interpretation of the two SPDEs obtained as scaling limits and their relation. Based on
this interpretation we will conjecture a possible generalization to the kth-order case. In
Section 5.2 we will give the rigorous result confirming the validity of the conjecture.

Here we will informally use the notation Y
(k)
t and X

(k)
t for the distributional limits

of Y (n,k) and X (n,k) respectively.
Recall that from (3.13) we know that formally the distribution valued first order field

X
(1)
t (x) is a solution to the Ornstein-Uhlenbeck equation

dX
(1)
t (x) =

χα

2
∆X

(1)
t (x) dt+ cσ

√
χρ(α+ σρ)∇dWt(x) (5.1)

where for x ∈ Rd, Wt(x) is a space-time white noise and ∇dWt(x) should be interpreted
as in (3.8)-(3.9).

Additionally, from the martingale problem given in [11], we can deduce that the
distribution-valued second-order field X

(2)
t (x, y) is a solution to the SPDE

dX
(2)
t (x, y) =

χα

2
∆(2)X

(2)
t (x, y)dt+ cσ

√
χρ(α+ σρ) X

(1)
t (x)∇dWt(y)

+ cσ
√
χρ(α+ σρ) X

(1)
t (y)∇dWt(x) (5.2)

where Wt(x) is the same white noise as in (5.1) and ∆(2) is the usual 2d-dimensional
Laplacian, which is the sum of the Laplacian in the x variable plus the Laplacian in the y
variable.

The key idea to extrapolate these relations to higher orders is to interpret the non-
linearity on the RHS of (5.2) as some product of fields, that we denote by �, that satisfies
the Leibniz rule of differentiation. This interpretation suggests that the second-order
field X

(2)
t (x, y) is, in turn, a second power of the first-order field X

(1)
t (x). More precisely

conjecturing
X

(2)
t (x, y) = X

(1)
t (x) �X

(1)
t (y),

since the product � follows the Leibniz rule we would have that

dX
(2)
t (x, y) = d

(
X

(1)
t (x) �X

(1)
t (y)

)
= dX

(1)
t (x) �X

(1)
t (y) + X

(1)
t (x) � dX (1)

t (y)

=
(χα

2
∆X

(1)
t (x)dt+ cσ

√
χρ(α+ σρ)∇dWt(x)

)
�X

(1)
t (y)

+ X
(1)
t (x) �

(χα
2

∆X
(1)
t (y)dt+ cσ

√
χρ(α+ σρ)∇dWt(y)

)
=

χα

2
∆(2)X

(2)
t (x, y)dt+ cσ

√
χρ(α+ σρ) X

(1)
t (x) � ∇dWt(y)

+ cσ
√
χρ(α+ σρ) X

(1)
t (y) � ∇dWt(x) (5.3)

which indeed agress with (5.2).

Remark 5.1. This section is created with the intention to develop some intuition on
the type of martingale problem we should expect for higher-order fields. The precise
product to be used in this section is not relevant since after all our derivations are just
made at a formal level. What is important is that the product should satisfy the Leibniz
rule.

After the discussion above, it seems natural to expect that the kth-order field is a kth
�-power of the first-order one. More precisely we conjecture that a relation of the type

X
(k)
t (x1, x2, . . . , xk) = X

(1)
t (x1) �X

(1)
t (x2) � · · · �X

(1)
t (xk).
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is satisfied. If this holds true, computations analogous to (5.3) would imply the formal
SPDE

dX
(k)
t (x) =

χα

2
∆(k)X

(k)
t (x)dt+ cσ

√
χρ(α+ σρ)

k∑
j=1

X
(k−1)
t (x−j) � ∇dWt(xj)

(5.4)

where ∆(k) is the kd-dimensional Laplacian, defined as the sum of the Laplacians at each
coordinate and x−j is the (k − 1)d-dimensional vector obtained from x by removing its
coordinate xj .

In the following section we formulate rigorously the meaning of the heuristic equation,
via a martingale problem.

5.2 Main theorem

Let us spend one paragraph to introduce the probability notions which are relevant
for our main result. As we already mentioned, the kth-order fluctuation field can be
considered as taking values in S′(Rkd), the space of tempered distributions which is dual
to S(Rkd). Our original process ηn2t has state space Ω(n) corresponding to the rescaled
lattice 1

nZ. We then denote by Pn, respectively En, the probability measure, respectively
expectation, induced by the measure νρ and the diffusively rescaled process ηn2t on

D([0, T ]; Ω(n)). We also denote by Q
(k)
n the probability measure on D([0, T ];S′(Rkd))

induced by the density fluctuation field X
(n,k)
t over Pn.

In what follows we will view the trajectory of the limiting fields up to order k as a
vector

X
(k)
t = (X (1), . . . ,X (k))(t)

where 0 ≤ T . This means that the trajectory {X(k)
t : 0 ≤ t ≤ T} can be seen as an element

of the path-space:
k⊗
l=1

D([0, T ];S′(Rld))

where, for each 1 ≤ l ≤ k, we have that X (l) is an element of the path-space D([0, T ];

S′(Rld)).
Motivated by this point of view, we equip the product path-space

k⊗
l=1

D([0, T ];S′(Rld))

with the filtration {F k
t : t ≥ 0} generated by the projections

πt,l,ϕl(ω1, ω2, . . . , ωk) = ωl(t)[ϕl]

where for 1 ≤ l ≤ k, we have that ϕl ∈ S(Rld) is a symmetric Schwartz function.

Theorem 5.2. The process {X (n,k)
t : t ∈ [0, T ]} converges in distribution, with respect

to the J1-topology of D([0, T ];S′(Rkd)), as n→∞ to the process {X (k)
t : t ∈ [0, T ]} being

the unique solution of the following recursive martingale problem.

Recursive martingale problem: for any symmetric ϕ(k) ∈ S(Rkd) the process

M
(k)
t (ϕ(k)) = X

(k)
t (ϕ(k))−X

(k)
0 (ϕ(k))− χα

2

∫ t

0

X (k)
s (∆(k)ϕ(k))ds (5.5)
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is a continuous F k
t -square integrable martingale of quadratic variation

c2σχρ(α+ σρ)

∫ t

0

∫
Rd
‖∇ϕ(x)‖2

(
X (k−1)
s (ϕ(k−1))

)2

dx ds (5.6)

with initial condition X
(1)
t given by the solution of (5.1).

Remark 5.3. This recursive martingale problem is the rigorous counterpart of the
formal SPDE (5.4) that we heuristically obtained. Moreover, the specification of the
filtration F k

t guarantees that the driving noise is the same.

5.3 Strategy of the proof

We will show Theorem 5.2 by using induction on k. In the proof we will take advantage
of the fact that the base case, k = 1, is already proved in the literature. On the other
hand, the inductive step will be proven by means of an approach based on the natural
Dynkin martingales:

M
(n,k)
t (Φ) = Y

(n,k)
t (Φ)− Y

(n,k)
0 (Φ)− n2

∫ t

0

L Y (n,k)
s (Φ)ds (5.7)

and

N
(n,k)
t (Φ) = (M

(n,k)
t (Φ))2 − n2

∫ t

0

ΓY (n,k)
s (Φ)ds (5.8)

where Γ is the so-called carré-du-champ operator given by:

Γ(f) = L (f2)− 2fL (f). (5.9)

Notice that the Dynkin martingales can also be expressed in terms of the fields X
(n,k)
t .

Roughly our approach consists of the following steps:

1. we express the integrand term of equation (5.7) in terms of the kth-order fluctuation
field Y (n,k) using duality (Section 6.1);

2. we close the equation (5.8) by expressing the integrand in the RHS in terms of the
(k − 1)th-order fluctuation field Y (n,k−1) (Section 6.2);

3. we show tightness for the sequence of probability measures Q(k)
n (Section 6.3);

4. finally we characterize the limiting field by showing uniqueness of the solution of
the martingale problem (Sections 6.4-6.5).

5.4 Inductive argument

The proof is done by induction over the order of the field k. The base case k = 1,
corresponding to the density fluctuation field (3.1), is assumed to be true. Indeed, as
mentioned in Section 3, a proof of Theorem 5.2 for exclusion dynamics and zero-range
processes (of which independent random walkers are a particular case) is given in [6]
and [12] respectively. By similar arguments the result can be extended to the case of
inclusion process.

To implement the inductive argument we formalize the following inductive hypothesis
that will be referred to several times in the course of the proof of Theorem 5.2.

INDUCTIVE HYPOTHESIS 5.1. For any k0 ∈ {1, 2, . . . , k−1} the sequence {X (n,k0)
t : t ∈ [0, T ]}

converges in distribution, with respect to the J1-topology of D([0, T ];S′(Rk0d)), as n→∞
to the process {X (k0)

t : t ∈ [0, T ]} being the unique solution of the following martingale
problem.
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Martingale problem: for any symmetric ϕ(k0) ∈ S(Rk0d) the process

M
(k0)
t (ϕ(k0)) = X

(k0)
t (ϕ(k0))−X

(k0)
0 (ϕ(k0))− χα

2

∫ t

0

X (k0)
s (∆(k0)ϕ(k0))ds (5.10)

is a continuous square integrable martingale of quadratic variation

c2σχρ(α+ σρ)

∫ t

0

∫
Rd
‖∇ϕ(x)‖2

(
X (k0−1)
s (ϕ(k0−1))

)2

dx ds. (5.11)

6 Proof of Theorem 5.2

6.1 Closing the equation for the drift term: k ≥ 2

In order to close the equation (5.7) for the drift term (i.e., the integral term), thanks
to Remark 4.2 we can just proceed as follows

n2L Y (n,k)(Φ, η) = n−kd/2
∑
ξ∈Ωk

n2Φn(ξ) · [LD(ξ, ·)](η)

= n−kd/2
∑
ξ∈Ωk

n2Φn(ξ) · Λ(ξ) · [LD(ξ, ·)](η)

= n−kd/2
∑
ξ∈Ωk

n2Φn(ξ) · Λ(ξ) · [L (k)D(·, η)](ξ)

= n−kd/2
∑
ξ∈Ωk

n2[L (k)Φn](ξ) · Λ(ξ) ·D(ξ, η)

= n−kd/2
∑
ξ∈Ωk

n2[L (k)Φn](ξ) ·D(ξ, η).

We proceed evaluating the action of the k-particles generator on Φn. We then have

n2[L (k)Φn](ξ) =
∑
x∈Zd

∑
r∈R

p(r) · ξx(α+ σξx+r) · n2(Φn(ξx,x+r)− Φn(ξ))

=
∑
x∈Zd

Φn(ξ − δx)
∑
r∈R

p(r) · ξx(α+ σξx+r) · n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
= α

∑
x∈Zd

Φn(ξ − δx) · ξx
∑
r∈R

p(r) · n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
+ σ

∑
x∈Zd

Φn(ξ − δx)
∑
r∈R

p(r) · ξxξx+r · n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
. (6.1)

Remark 6.1. Notice that the contribution coming from the second term in the RHS of
(6.1) does not appear in the case k = 1.

First of all we prove that

n2
∑
r∈R

p(r)
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
= χ

2 ·∆ϕ
(
x
n

)
+ 1

nψn
(
x
n

)
(6.2)

for a suitable ψn ∈ S(R) such that

sup
n

1

nd

∑
x∈Zd

ψn
(
x
n

)
<∞. (6.3)

To prove this we use the Taylor expansion:

ϕ
(
x+r
n

)
− ϕ

(
x
n

)
=

1

n

d∑
j=1

rj ·
∂ϕ

∂xj

(
x
n

)
+

1

2n2

d∑
j,`=1

rjr`
∂2ϕ

∂xj∂x`

(
x
n

)
+ . . . (6.4)
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and then

n2
∑
r∈R

p(r)
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
= n

d∑
j=1

(∑
r∈R

rjp(r)

)
· ∂ϕ
∂xj

(
x
n

)
+

1

2

d∑
j,`=1

(∑
r∈R

rjr`p(r)

)
∂2ϕ

∂xj∂x`

(
x
n

)
+ . . .

for some ψn satisfying (6.3). From the assumption (2.2), it follows that:

R∑
rj=−R

rjp(r) = 0 (6.5)

thus, from the fact that R = [−R,R]d ∩Zd we have∑
r∈R

rjp(r) = 0 and
∑
r∈R

rjr`p(r) = 0 for j 6= ` (6.6)

as a consequence,

n2
∑
r∈R

p(r)
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
=

1

2

d∑
`=1

(∑
r∈R

r2
`p(r)

)
∂2ϕ

∂x2
`

(
x
n

)
+ 1

nψn
(
x
n

)
= χ

2 ·
d∑
`=1

∂2ϕ

∂x2
`

(
x
n

)
+ 1

nψn
(
x
n

)
from which it follows (6.2).

Now we have

n2[L (k)Φn](ξ) = α
∑
x∈Zd

Φn(ξ − δx) · ξx ·
(
χ
2 ·∆ϕ

(
x
n

)
+ 1

nψn
(
x
n

))
+ En(ϕ, ξ)

with

En(ϕ, ξ) := σ
∑
x∈Zd

Φn(ξ − δx)
∑
r∈R

p(r) · ξxξx+r · n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))
(6.7)

then we have

L Y (n,k)(Φ, η)− 1

nkd/2

∑
ξ∈Ωk

En(ϕ, ξ) ·D(ξ, η)

=
α

nkd/2

∑
ξ∈Ωk

D(ξ, η)
∑
x∈Zd

Φn(ξ − δx) · ξx ·
(
χ
2 ·∆ϕ

(
x
n

)
+ 1

nψn
(
x
n

))
.

It is now convenient to pass to the coordinate notation to treat sums of the type:∑
ξ∈Ωk

D(ξ, η)
∑
x∈Zd

Φn(ξ − δx) · ξx · ψ( xn )

for some ψ ∈ S(Rd). First of all we notice that summing over ξ ∈ Ωk is the same as
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summing over x ∈ Zkd:∑
ξ∈Ωk

D(ξ, η)
∑
x∈Zd

Φn(ξ − δx) · ξx · ψ( xn )

=
∑

x∈Zkd

1

N(ξ(x))
·D(ξ(x), η)

k∑
i=1

Φn(ξ(x)− δxi) · ψ(xin )

=
∑

x∈Zkd

Λ(ξ(x))

N(ξ(x))
·D(ξ(x), η)

k∑
i=1

ψ(xin )

k∏
`=1
` 6=i

ϕ(x`n )

= k
∑

x∈Zkd
Π(x) ·D(ξ(x), η)

k−1∏
`=1

ϕ(x`n ) · ψ(xkn )

= knkd/2 X (n,k)(ϕ(k−1) ⊗ ψ, η)

where the last identity follows using the expression of the field acting on more general
(i.e., non-symmetric) test functions (4.14). Then, substituting in (6.8) we get

L Y (n,k)(Φ, η)− 1

nkd/2

∑
ξ∈Ωk

En(ϕ, ξ) ·D(ξ, η)

= αkX (n,k)
(
ϕ(k−1) ⊗ (χ2 ∆ϕ+ 1

nψn), η
)

where we used the fact that ϕ is uniformly bounded on Z. From this we can see that it
is possible to close the equation for the second order fluctuation field, modulo an error
term that we define as follows

E (n,k)(ϕ, η) := L Y (n,k)(Φ, η)− αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η). (6.8)

Then we have

E (n,k)(ϕ, η) = E
(n,k)
1 (ϕ, η) + E

(n,k)
2 (ϕ, η) (6.9)

with

E
(n,k)
1 (ϕ, η) :=

αk

n
X (n,k)

(
ϕ(k−1) ⊗ ψn, η

)
and

E
(n,k)
2 (ϕ, η) :=

1

nkd/2

∑
ξ∈Ωk

En(ϕ, ξ)D(ξ, η) (6.10)

that has to be estimated. Analogously to the previous computation we have

En(ϕ, ξ(x)) = σn2
k∑
i=1

( k∏
`=1
` 6=i

ϕ(x`n )
)
·
∑
r∈R

p(r)

 k∑
j=1

1xj=xi+r

(ϕ(xi+rn )− ϕ(xin )
)

= σn2
k∑
i=1

( k∏
`=1
` 6=i

ϕ(x`n )
)
·
k∑
j=1

p(xj − xi)
(
ϕ(

xj
n )− ϕ(xin )

)

= σn2
k∑

i,j=1

( k∏
`=1
` 6=i,j

ϕ(x`n )
)
· p(xj − xi)ϕ(

xj
n )
(
ϕ(

xj
n )− ϕ(xin )

)

= σ
∑
{i,j}

1≤i,j≤k

( k∏
`=1
6̀=i,j

ϕ(x`n )
)
· p(xj − xi)n2

(
ϕ(

xj
n )− ϕ(xin )

)2
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where in the last step we used the symmetry of p(·). Then

E
(n,k)
2 (ϕ, η) =

=
1

nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) · En(ϕ, ξ(x))

=
σ

nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) ·
∑
{i,j}

1≤i,j≤k

( k∏
`=1
` 6=i,j

ϕ(x`n )
)
· p(xj − xi) · n2

(
ϕ(

xj
n )− ϕ(xin )

)2

=
k(k − 1)σ

2nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) ·
( k−2∏
`=1

ϕ(x`n )
)
· p(xk − xk−1) · n2

(
ϕ(xk−1

n )− ϕ(xkn )
)2
.

Hence we have

E (n,k)(ϕ, η) =
k

nkd/2

∑
x∈Zkd

Π(x) ·D(ξ(x), η) ·Ψn(x) (6.11)

with

Ψn(x) := ϕ(k−2)(x1, . . . , xk−2)⊗
(
α
n ϕ(xk−1) · ψn(xkn )

+ σ(k−1)
2 p(xk − xk−1)n2

(
ϕ(xk−1

n )− ϕ(xkn )
)2)

. (6.12)

It remains to show that the L2(Pn) norm of E (n,k)(ϕ, η(n2t)) vanishes in the limit as n
goes to infinity. This is done in the following lemma:

Lemma 6.2. Let E (n,k)(ϕ, η) be given by (6.8), then, for every test function ϕ ∈ Ŝ(Rd),
the space of permutation-invariant Schwartz functions, there exists C > 0 such that, for
all t ≥ 0 and n ∈ N,

En

[(∫ t

0

E (n,k)(ϕ, η(n2s))ds

)2
]
≤ C · t

2

n
. (6.13)

Proof. Using the fact that ϕ is bounded and that p(·) has finite range we can conclude
that there exists an M > 0 such that

sup
n

sup
x∈Zkd

|Ψn(x)| ≤M. (6.14)

We recall here that the duality function is parametrized by the density parameter ρ, i.e.
D(·, ·) = Dρ(·, ·) and that {Dρ(ξ, ·), ξ ∈ Ω} is a family of products of polynomials that are
orthogonal with respect to the reversible measure νρ. From the stationarity of νρ we
have

En

[(∫ t

0

E (n,k)(ϕ, η(n2s))ds

)2
]

=

∫ t

0

∫ t

0

En

[
E (n,k)(ϕ, ηn2s)E

(n,k)(ϕ, ηn2u)
]
du ds

= 2

∫ t

0

∫ s

0

∫
Eη

[
E (n,k)(ϕ, ηn2(s−u))

]
E (n,k)(ϕ, η)νρ(dη)du ds.

(6.15)

The fact that we can exchange expectations and integral is a consequence of Proposition
6.4 in Section 6.2.2, which does not use any results of the current section.
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Let us denote by Vn(ϕ) the integrand in (6.15), then, using (2.15), we have

Vn(ϕ) =
1

nkd

∑
x,y∈Zkd

Ψn(x)Ψn(y) ·Π(x)Π(y) ·
∫
Eη
[
Dρ(ξ(x), ηn2(s−u))

]
Dρ(ξ(y), η)νρ(dη)

=
1

nkd

∑
x,y∈Zkd

Ψn(x)Ψn(y) ·Π(x)Π(y) · 1

µρ(ξ(y))
· pn2(s−u)(ξ(x), ξ(y))

=
c

nkd

∑
x∈Zkd

Ψn(x) ·Π(x)
∑

y∈Zkd

1

N(ξ(y))
·Ψn(y) · pn2(s−u)(ξ(x), ξ(y))

≤ cM

nkd

∑
x∈Zkd

| Ψn(x) | ·Π(x)
∑

y∈Zkd

1

N(ξ(y))
· pn2(s−u)(ξ(x), ξ(y))

=
cM

nkd

∑
x∈Zkd

| Ψn(x) | ·Π(x)
∑
ξ′∈Ωk

pn2(s−u)(ξ(x), ξ′)

≤ c′M

nkd

∑
x∈Zkd

| Ψn(x) | (6.16)

where we used (2.15) in the second identity, (4.4) and (2.17) in the third identity (with
c = c(k, ρ)) and (6.14) in the fourth line. From (6.12) we have

1

nkd

∑
x∈Zkd

| Ψn(x) | ≤ α

nkd+1

∑
x∈Zkd

| ψn |
(
xk
n

)
·
k−1∏
`=1

| ϕ(x`n ) | (6.17)

+
σ(k − 1)

2nkd

∑
x∈Zkd

k∏
`=3

| ϕ(x`n ) | ·p(x2 − x1)n2
(
ϕ(x2

n )− ϕ(x1

n )
)2
.

Using (6.3) we have that the first term in the r.h.s. of (6.17) is bounded by a constant
times n−1. For what concerns the second term, we have:

σ(k − 1)

2n(k−2)d

 k∏
`=3

∑
x`∈Zd

ϕ(x`n )

 · 1

n2d

∑
x1,x2∈Zd

p(x2 − x1)n2
(
ϕ
(
x2

n

)
− ϕ

(
x1

n

))2
≤ c

n2d

∑
x1,x2∈Zd

p(x2 − x1)n2
(
ϕ
(
x2

n

)
− ϕ

(
x1

n

))2
.

Now, from the Taylor expansion (6.4) we know that there exists a sequence of functions
where, using the fact that the range of p(·) is R = [−R,R]d, and the Taylor expansion
(6.4) we have that there exists a smooth function ψ̃ ∈ S(Rd) such that, for all x ∈ Zd,

sup
r∈R
{n2

(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))2} ≤ ψ̃ ( xn) (6.18)

as a consequence we obtain the upper bound

1

n2d

∑
x1,x2∈Zd

p(x2 − x1)n2
(
ϕ(x2

n )− ϕ(x1

n )
)2

=
1

n2d

∑
x∈Zd

∑
r∈R

p(r)n2
(
ϕ
(
x+r
n

)
− ϕ

(
x
n

))2
≤ 1

n2d

∑
r∈R

∑
x∈Zd

p(r) · ψ̃
(
x
n

)
≤ c

n2d

∑
x∈Zd

ψ̃
(
x
n

)
≤ c′

nd
(6.19)

where the inequality holds for a suitable c′ > 0. In conclusion we have that there exists a
constant C > 0 such that

Vn(ϕ) ≤ C

n
(6.20)

from which the statement follows.
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As a consequence of Lemma 6.2 we can close the drift term, i.e.

L Y (n,k)(Φ, η) = αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) + E (n,k)(ϕ, η)

= αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) +O(n−1). (6.21)

6.2 Closing the equation for the carré-du-champ

In this section we will show that the integrand in the RHS of equation (5.8) can be
expressed in terms of the (k − 1)th-order fluctuation field Y (n,k−1). To achieve this we
consider the expression for the carré-du-champ given by (7.2) in the Appendix. For the
case of our kth-order fluctuation field this becomes

n2ΓY (n,k)(Φ, η) =
1

nd

∑
x∈Zd
r∈R

C(r, η)
[
nd/2+1

(
Y (n,k)(Φ, ηx,x+r)− Y (n,k)(Φ, η)

)]2
(6.22)

where

C(r, η) = p(r)ηx(α+ σηx+r).

Notice that here we multiplied by a factor nd/2+1 the squared term in order to cancel
the n2 in front of the carré-du-champ and get a general factor n−d in front of the sum.

In the next section we find some recursion relations for duality polynomials. The
main application of these relations consists in allowing us to rewrite any polynomial
depending on ηx,x+r in terms of polynomials depending on the unmodified η.

6.2.1 Recursion relation for duality polynomials

In this section we obtain a recurrence relation for the single-site orthogonal polynomials.
Before giving the result it is convenient to summarize the expression for the self-duality
generating function by defining the function

fσ(t, n) :=

∞∑
m=0

d(m,n) · tm (6.23)

then fσ can be written in the form

fσ(t, n) = eσ(t) · hσ(t)n, hσ(t) =
1 + cσbσt

1− σ2t
, eσ(t) =

{
e−t if σ = 0

(1− t)−σα if σ = ±1
(6.24)

with cσ given by (3.11), and bσ is given as follows:

bσ =


1 if σ = 0

α+ ρ if σ = 1

α− ρ if σ = −1

. (6.25)

Then we define the functions gσ, g̃σ : N→ R given by

gσ(m) :=
1

m!

dm

dtm
hσ(t)

∣∣∣∣
t=0

and g̃σ(m) :=
1

m!

dm

dtm
1

hσ(t)

∣∣∣∣
t=0

for m ≥ 1

and gσ(0) = g̃σ(0) := 1 (6.26)
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that are exactly computable:

gσ(m) =



1
ρ · 1m=1 σ = 0

−αρ σ = +1

α
ρ σ = −1

g̃σ(m) =



(
1
ρ

)m
σ = 0

(
− 1
ρ

)m−1

· (α+ ρ)
m−1

(
−αρ
)

σ = +1

(
1
ρ

)m−1

· (α− ρ)
m−1

(
α
ρ

)
σ = −1

for m ≥ 1, that can be rewritten as

g̃σ(1) = cσ = gσ(1), (6.27)

and

gσ(m) =
(
cσbσ + σ2

)
· σ2m−2 , g̃σ(m) = cm−1

σ bm−1
σ

(
cσbσ + σ2

)
for m ≥ 2.(6.28)

We have the following result.

Theorem 6.3. For any m,n ∈ N we have

d(m,n+ 1) =
m∑
j=0

g(m− j) · d(j, n) (6.29)

and

d(m,n− 1) =

m∑
j=0

g̃(m− j) · d(j, n) (6.30)

with g, g̃ : N→ R as in (6.26)-(6.28).

Proof. From (6.24) we have that

f(t, n+ 1) = f(t, n)h(t) (6.31)

then, from the generating function definition (6.23), we deduce that

d(m,n) =
1

m!
· d

m

dtm
f(t, n)

∣∣∣∣
t=0

(6.32)

hence, the recurrence relation (6.31) and an application of Leibniz product rule for
differentiation in the RHS above give

d(m,n+ 1) =
1

m!
·
m∑
j=0

(
m

j

)
dj

dtj
f(t, n)

∣∣∣∣
t=0

· d
m−j

dtm−j
h(t)

∣∣∣∣
t=0

=
1

m!
·
m∑
j=0

(
m

j

)
j! · d(j, n) · d

m−j

dtm−j
h(t)

∣∣∣∣
t=0

=

m∑
j=0

1

(m− j)!
· d

m−j

dtm−j
h(t)

∣∣∣∣
t=0

· d(j, n)

=

m∑
j=0

g(m− j) · d(j, n)

where in the second equality we used (6.32). This concludes the proof of (6.29). Equation
(6.30) can be proved from the same reasoning, with the difference that we now have the
inverse relation

f(t, n− 1) = f(t, n) · 1

h(t)
. (6.33)
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This change results, after the application of Leibniz rule, in the relation

d(m,n− 1) =
1

m!
·
m∑
j=0

(
m

j

)
j! · d(j, n) · d

m−j

dtm−j
1

h(t)

∣∣∣∣
t=0

=

m∑
j=0

g̃(m− j) · d(j, n)

that concludes the proof.

6.2.2 Controlling the moments of the fields

The objective of this section is to take advantage of the ergodic properties of our process
to introduce a result that will allow us to make multiple replacements, in the appropriate
sense, inside the expression of the carré-du-champ given in (6.22). Let us start first with
a uniform estimate for moments of the fields Y (n,l)(Φ, η).

Proposition 6.4. Let l,m ∈ N then we have

sup
n∈N

Eνρ

[
Y (n,l)(Φ, η)m

]
≤ C(ρ, ϕ) (6.34)

Proof. As claimed in the statement of the proposition, this result holds for any finite
natural number m. Nevertheless for simplicity we will only show how to obtain the
estimates for m ∈ {2, 4} (which indeed are the only two uses that we make of this result).
Let us start with the simplest non-trivial case, m = 2, for which the result comes directly
from orthogonality

Eνρ

[
Y (n,l)(Φ, η)2

]
= n−ld

∑
ξ,ξ′∈Ωl

Φn(ξ)Φn(ξ′)Λ(ξ)Λ(ξ′)Eνρ [D(ξ, η)D(ξ′, η)] (6.35)

= n−ld
∑
ξ∈Ωl

Φn(ξ)2Λ(ξ)2 1

µρ(ξ)
(6.36)

≤ K · n−ld
∑
ξ∈Ωl

Φn(ξ)2 <∞ (6.37)

where in the second line we used (2.13) and K is given by

K = sup
ξ∈Ωk

Λ(ξ)2

µρ(ξ)
.

Notice that the previous estimate was possible due the fact that orthogonality, in the
form of expression (2.13), allowed us to reduce the summation in the RHS of (6.35) from
a 2ld dimensional sum to an ld dimensional sum in (6.36).

For the case m = 4 we have

Eνρ

[
Y (n,l)(Φ, η)4

]
= n−2ld

∑
ξ(j)∈Ωl

4∏
j=1

Φn(ξ(j)) · Λ(ξ(j)) ·

Eνρ

[
D(ξ(1), η)D(ξ(2), η)D(ξ(3), η)D(ξ(4), η)

]
(6.38)

For this case the sum in the RHS of (6.38) is 4ld-dimensional. Given the factor n−2ld in
front of the RHS, in order to obtain a uniform estimate, we would like this summation to
be 2ld dimensional instead. In order to see that this is indeed the case, we analyze the
non-zero contribution coming from

Eνρ

[
D(ξ(1), η)D(ξ(2), η)D(ξ(3), η)D(ξ(4), η)

]
.
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By the product nature of the measure νρ and the duality polynomials we have

Eνρ

[
D(ξ(1), η)D(ξ(2), η)D(ξ(3), η)D(ξ(4), η)

]
=
∏
x∈Zd

Eνρ

[
d(ξ(1)

x , η)d(ξ(2)
x , η)d(ξ(3)

x , η)d(ξ(4)
x , η)

]
. (6.39)

Notice that for every x for which ξ
(j)
x = 0 for all j ∈ {1, 2, 3, 4}, the corresponding

contribution in the RHS of (6.39) is equal to 1 and therefore negligible. This is precisely
the reason why the summation in the RHS of (6.38) is at most 4ld-dimensional. We have
indeed that the maximum number of x ∈ Zd contributing to the product in the RHS of
(6.39) is at most 4l, i.e. one for each of the 4l particles that all the ξ(j) have in total. In
reality we can see that there are less xs giving a non-zero contribution. In order to see
is, consider an x ∈ Zd such that there exists a unique j ∈ {1, 2, 3, 4} for which ξ

(j)
x 6= 0.

In this case, because of the zero mean of the single-site duality function we have

Eνρ

[
d(ξ(1)

x , η)d(ξ(2)
x , η)d(ξ(3)

x , η)d(ξ(4)
x , η)

]
= 0 (6.40)

this means that whenever x ∈ Zd is such that there exists a j ∈ {1, 2, 3, 4} for which

ξ
(j)
x 6= 0 there must be another j′ ∈ {1, 2, 3, 4} for which ξ(j′)

x 6= 0. In other words we only
have a possibility of 2l particles to distribute freely, and hence the summation in the RHS
of (6.38) is at most 2ld-dimensional.

Proposition 6.5. Let f : Rd → R be a test function, and {Mn : Ω×R→ R : n ∈ N} be a
sequence of uniformly bounded cylindrical functions of the form

Mn(η, x) = f(x/n)
∏
j∈N

d(bj , ηx) (6.41)

where only a finite number of bj are different from zero. Let also {an : n ∈ N} be a
sequence of real numbers converging to 0, we then have

lim
n→∞

En


∫ t

0

an
nd

∑
x∈Zd
r∈R

C(r, η(n2s))Mn(ηx(n2s)) · Y (n,l)(Φ, η(n2s))m ds


2 = 0

for all l ∈ {1, 2, . . . , k − 1}, and m ∈ N.

Proof. By Cauchy-Schwarz we have

En


∫ t

0

an
nd

∑
x∈Zd
r∈R

C(r, η(n2s)) ·Mn(ηx(n2s)) · Y (n,l)(Φ, η(n2s))m ds


2

≤ a2
nt

n2d

∫ t

0

En

Y (n,l)(Φ, η(n2s))2m ·

∑
x∈Zd
r∈R

C(r, η(n2s)) ·Mn(ηx(n2s))


2 ds

=
a2
nt

2

n2d
En

Y (n,l)(Φ, η)2m ·

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r) ·Mn(ηx)·

2
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=
a2
nt

2

n2d

∑
x,y∈Zd

∑
r1,r2∈R

p(r1) · p(r2) · En
[
Mn(ηx) ·Mn(ηy) · Y (n,l)(Φ, η)2m

]
≤ a2

nt
2

n2d

∑
x,y∈Zd

∑
r1,r2∈R

p(r1) · p(r2) ·
√
En [Mn(ηx)2 ·Mn(ηy)2] ·

√
En
[
·Y (n,l)(Φ, η)4m

]
≤ Kt2a2

n (6.42)

where in the last line we used Proposition 6.4, the boundedness of the single-site duality
polynomials d(bj , ηx) and the smoothness of f in the representation (6.41). The result
then follows from the convergence an → 0.

6.2.3 The gradient of the fluctuation fields

Our goal for this section is to rewrite the square inside the RHS of (6.22) in terms of
lower order fluctuation fields. We will see that this can be expressed, in agreement
with (5.6), only in terms of the field of order k − 1. Let us then denote by ∇i,i+rd the
d-dimensional gradient

∇i,i+rd Y (n,k)(Φ, η) = nd/2+1
(
Y (n,k)(Φ, ηi,i+r)− Y (n,k)(Φ, η)

)
. (6.43)

Notice that, by linearity of the k-th order field, we have

∇i,jY (n,k)(Φ, η) := n−
(k−1)d

2 +1
∑
ξ∈Ωk

Φn(ξ)
[
D(ξ, ηi,j)−D(ξ, η)

]
(6.44)

with D(·, ·) as in (3.18). We define now, for i, j ∈ Zd, ` ≤ k, the auxiliary field

Z
(n,k,`)
i,j (Φ, η) := n−kd/2

∑
ξ∈Ωk

1ξi+ξj=` · Φn(ξ)D(ξ, η) (6.45)

then we have the following formula for the gradient of the fluctuation field.

Proposition 6.6.

∇i,jY (n,k)(Φ, η) =

k∑
s=1

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (ϕ, η − δi)

Proof. Using the product nature of the polynomials D(·, η) and of Φn(·) we get

∇i,jY (n,k)(Φ, η) = n

k∑
s=1

n−
(s−1)d

2 ·Z (n,k−s,0)
i,j (ϕ, η) ·

s∑
a=0

Y
(n,a,s−a)
i,j (ϕ, η) (6.46)

and

Y
(n,a,b)
i,j (ϕ, η) := ϕ( in )aϕ( jn )b {d(a, ηi − 1)d(b, ηj + 1)− d(a, ηi)d(b, ηj)}

= ϕ( in )aϕ( jn )b {d(a, ηi − 1) [d(b, ηj + 1)− d(b, ηj)]

+ d(b, ηj) [d(a, ηi − 1)− d(a, ηi)]}
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hence, using (6.29) we get

s∑
a=0

Y
(n,a,s−a)
i,j (ϕ, η) =

s−1∑
a=0

ϕ( in )aϕ( jn )s−ad(a, ηi − 1) [d(s− a, ηj + 1)− d(s− a, ηj)]

−
s−1∑
b=0

ϕ( in )s−bϕ( jn )bd(b, ηj) [d(s− b, ηi)− d(s− b, ηi − 1)]

=

s−1∑
a=0

s−a−1∑
κ=0

ϕ( in )aϕ( jn )s−a · g(s− a− κ) · d(a, ηi − 1)d(κ, ηj)

−
s−1∑
b=0

s−b−1∑
m=0

ϕ( in )s−bϕ( jn )b · g(s− b−m) · d(m, ηi − 1)d(b, ηj)

now, calling b = κ and m = a we get

s−1∑
a=0

s−a−1∑
κ=0

ϕ( in )aϕ( jn )s−a · g(s− a− κ) · d(a, ηi − 1)d(κ, ηj)

−
s−1∑
κ=0

s−κ−1∑
a=0

ϕ( in )s−κϕ( jn )κ · g(s− a− κ) · d(a, ηi − 1)d(κ, ηj)

=

s−1∑
a=0

s−1∑
`=a

(
ϕ( in )aϕ( jn )s−a − ϕ( in )s+a−`ϕ( jn )`−a

)
· g(s− `) · d(a, ηi − 1)d(`− a, ηj)

=

s−1∑
a=0

s−1∑
`=a

(
ϕ( jn )s−` − ϕ( in )s−`

)
ϕ( in )aϕ( jn )`−a · g(s− `) · d(a, ηi − 1)d(`− a, ηj)

=

s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `)

∑̀
a=0

ϕ( in )aϕ( jn )`−a · d(a, ηi − 1)d(`− a, ηj)

where the first identity follows from the change of variable ` = κ+ a. Then

Z
(n,k−s)
i,j (Φ, η) ·

s∑
a=0

Y
(n,a,s−a)
i,j (ϕ, η)

=

s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `) ·Z (n,k−s,0)

i,j (Φ, η) ·

∑̀
a=0

ϕ( in )aϕ( jn )`−a · d(a, ηi − 1)d(`− a, ηj)

=

s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `) ·Z (n,k−(s−`),`)

i,j (Φ, η − δi) (6.47)

then

∇i,jY (n,k)(Φ, η)

= n

k∑
s=1

n−
(s−1)d

2 ·
s−1∑
`=0

(
ϕ( jn )s−` − ϕ( in )s−`

)
· g(s− `) ·Z (n,k−(s−`),`)

i,j (Φ, η − δi)

=

k∑
s=1

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (Φ, η − δi).

This concludes the proof.

EJP 26 (2021), paper 27.
Page 26/35

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP586
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Higher order fluctuation fields

The advantage that Proposition 6.6 gives us is that we now have an expression in
terms of the auxiliary field (6.45):

∇i,jY (n,k)(Φ, η) =

k∑
s=1

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (Φ, η − δi)

= n
(
ϕ( jn )− ϕ( in )

)
· g(1) ·Z (n,k−1,0)

i,j (Φ, η − δi) (6.48)

+

k∑
s=2

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (Φ, η − δi).

Recall that we claimed that we are able to close the carré-du-champ in an expression
depending only on the field of order k − 1. In order to achieve this it remains to:

1. replace the first term in the RHS of (6.48) by some expressions depending on the
field of order k − 1;

2. show that the second term in the RHS of (6.48) vanishes as n→∞.

We will achieve this in several steps, the first one being the proof of the following
proposition.

Proposition 6.7. For all k ∈ N we have

lim
n→∞

En


∫ t

0

1

nd

∑
x∈Zd
r∈R

C(r, η(n2s))
(
Z

(n,k,0)
x,x+r (Φ, η(n2s))− Y (n,k)(Φ, η(n2s))

)2

ds


2 = 0.

(6.49)

Proof. Notice that for any fixed x we have

Y (n,k)(Φ, η(n2s)) =

k∑
l=0

Z
(n,k,l)
x,x+r (Φ, η(n2s)) (6.50)

which implies

(
Z

(n,k,0)
x,x+r (Φ, η(n2s))− Y (n,k)(Φ, η(n2s))

)2

=

(
k∑
l=1

Z
(n,k,l)
x,x+r (Φ, η(n2s))

)2

≤ k

k∑
l=1

Z
(n,k,l)
x,x+r (Φ, η(n2s))2.

Moreover, we can also estimate each Z
(n,k,l)
x,x+r (Φ, η(n2s)) in terms of the coordinates field

X (n,k−l) given by (4.13) as follows:

Z
(n,k,l)
x,x+r (Φ, η)2 ≤ n−ld/2Mn(η, l) ·X (n,k−l)(ϕ(k−l), η)2 (6.51)

where Mn is made of terms of the form (6.41), i.e.

Mn(η, l) =

l∑
ξx=0

Φ(ξxδx + (l − ξx)δx+r) · d(ξx, ηx) · d(l − ξx, ηx+r). (6.52)

Thanks to Proposition 6.5 we conclude the proof.
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For what concerns the second step, let us denote by Ĝ(n,k)
i,j (Φ, η) the second term in

the RHS of (6.48), i.e.

Ĝ
(n,k)
i,j (Φ, η) :=

k∑
s=2

n−
(s−1)d

2 ·
s∑

m=1

n
(
ϕ( jn )m − ϕ( in )m

)
· g(m) ·Z (n,k−m,s−m)

i,j (Φ, η − δi)

we have the following result supporting our claim:

Proposition 6.8. Under the inductive hypothesis 5.1 we have

lim
n→∞

En

∫ t

0

 1

nd

∑
x∈Zd
r∈R

C(r, η(n2s)) · Ĝ(n,k)
x,x+r(ϕ, η(n2s))2 ds


2 = 0. (6.53)

Proof. After expanding Ĝ(n,k)
x,x+r(ϕ, η(n2s))2, the statement follows from applying multiple

times Propositions 6.7 and 6.5.

Proposition 6.9. Let

G
(n,k)
i,j (ϕ, η) := ∇i,jY (n,k)(Φ, η) + cσ 〈j − i,∇ϕ( in )〉 · Y (n,k−1)(Φ, η)

then, under the inductive hypothesis 5.1, we have

lim
n→∞

En

∫ t

0

 1

nd

∑
x∈Zd
r∈R

C(r, η(n2s)) ·G(n,k)
x,x+r(ϕ, η(n2s))2 ds


2 = 0. (6.54)

Proof. Due to the fact that

Z
(n,k−1,0)
i,j (Φ, η − δi) = Z

(n,k−1,0)
i,j (Φ, η) (6.55)

if we isolate the term s = 1 in (6.46) we obtain

∇i,jY (n,k)(Φ, η) = −cσn
(
ϕ( jn )− ϕ( in )

)
·Z (n,k−1,0)

i,j (Φ, η) + Ĝ
(n,k)
i,j (Φ, η) (6.56)

then the statement follows from Proposition 6.7 and Proposition 6.8.

6.2.4 Conclusion

From (6.22) and (6.54) we have

n2ΓY (n,k)(Φ, η)

=
1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r)
(
cσ 〈r,∇ϕ( xn )〉 · Y (n,k−1)(Φ, η)−G(n,k)

x,x+r(ϕ, η)
)2

=
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)ηx(α+ σηx+r) + G
(n,k)
1 (Φ, η)

with

G
(n,k)
1 (Φ, η) :=

1

nd

∑
x∈Zd

∑
r∈R

p(r)ηx(α+ σηx+r) ·G(n,k)
x,x+r(ϕ, η)

·
(
G

(n,k)
x,x+r(ϕ, η)− 2cσ〈r,∇ϕ( xn )〉Y (n,k−1)(Φ, η)

)
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then we can write

n2ΓY (n,k)(Φ, η) = (6.57)

= ρ(α+ σρ)
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd
r∈R

|〈r,∇ϕ( xn )〉|2 p(r) + G
(n,k)
1 (Φ, η) + G

(n,k)
2 (ϕ, η)

with

G
(n,k)
2 (ϕ, η) := (6.58)

c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)
{
α(ηx − ρ) + σ(ηxηx+r − ρ2)

}
.

We first estimate the term due to the error G
(n,k)
1 (Φ, η).

Proposition 6.10. For every t > 0 and every test function ϕ ∈ S(R) there exists C > 0

such that, for all n ∈ N,

lim
n→∞

En

[(∫ t

0

G
(n,k)
1 (Φ, η(n2s))ds

)2
]

= 0 (6.59)

Proof. It follows from Proposition 6.8 and the convergence, by inductive hypothesis, of
Y (n,k−1)(ϕ, η).

The two following propositions allow us to estimate the error G
(n,k)
2 and then to

perform the replacement in (6.57).

Lemma 6.11. For every t > 0 and every test function ϕ ∈ S(R) there exists C > 0 such
that, for all n ∈ N,

lim
n→∞

En


∫ t

0

1

nd

∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)(ηx(n2s)− ρ)ds

2
 = 0. (6.60)

Proof. From (3.10) we can write the integrand in (6.60) as

1

nd/2
Y (n,1)
s (Ψ), with Ψ(ξ) :=

∏
x∈Zd

ψ(x)ξx ψ(x) :=
∑
r∈R

|〈r,∇ϕ(x)〉|2 p(r) (6.61)

then the statement follows from the convergence of Y
(n,1)
s (Ψ) and the extra factor

1
nd/2

.

Similarly, another replacement is necessary on the second term of the RHS of (6.58).

Lemma 6.12. For every t > 0 and every test function ϕ we have

lim
n→∞

En


∫ t

0

1

nd

∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r)
(
ηx(n2s)− ρ

) (
ηx+r(n

2s)− ρ
)
ds

2
 = 0.

(6.62)

Proof. The proof of this lemma is done in the same spirit than Proposition 6.5.

Proposition 6.13. For every t > 0 and every test function ϕ ∈ S(R) there exists C > 0

such that, for all n ∈ N,

lim
n→∞

En

[(∫ t

0

G
(n,k)
2 (Φ, η(n2s))ds

)2
]

= 0. (6.63)
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Proof. It follows from Lemma 6.11, Lemma 6.12 and the convergence, by inductive
hypothesis, of Y (n,k−1)(ϕ, η).

From Propositions 6.10 and 6.13 we can write

n2ΓY (n,k)(Φ, η) = (6.64)

= ρ(α+ σρ)
c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r) + G (n,k)(Φ, η)

where the term G (n,k)(Φ, η) is a vanishing error:

lim
n→∞

En

[(∫ t

0

G (n,k)(Φ, η(n2s))ds

)2
]

= 0.

Therefore we conclude that the proposed (remember that at this point we do not know if
the limiting object is indeed a martingale) predictable quadratic variation of our limiting
martingale is given by

c2σχρ(α+ σρ)t
(
X (k−1)
s (ϕ(k−1))

)2
∫
Rd
‖∇ϕ(x)‖2 dx. (6.65)

Arrived at this point we can conclude that if {M (n,k)
t (Φ) : t ∈ [0, T ]} has a limit as

n → ∞, and if the limit is a square-integrable martingale then its quadratic variation
is given by (6.65). In what follows we will show tightness and uniform integrability, i.e.
we will prove that {M (n,k)

t (Φ) : t ∈ [0, T ]} converges to {M (k)
t (Φ) : t ∈ [0, T ]} and that

{M (k)
t (Φ) : t ∈ [0, T ]} is indeed a martingale.

6.3 Tightness

In this section we prove tightness for the family of laws {Q(k)
n }n∈N, induced by

{X (n,k)(·, t)}t≥0 on D([0,∞), S′(Rk)). From the Dynkin formula we know that

M ′n(t, ϕ
(k)) = X

(n,k)
t (ϕ(k))− n2

∫ t

0

L X (n,k)
s (ϕ(k))ds (6.66)

and

N ′n(t, ϕ
(k)) = M ′n(t, ϕ

(k))2 − n2

∫ t

0

ΓX (n,k)
s (ϕ(k))ds (6.67)

are martingales. Theorem 2.3 in [8], which we include in Appendix 7.2, allows us to
reduce the proof the tightness of {Q(k)

n }n∈N to the verification of conditions (7.5)-(7.7).
We verify these conditions in Proposition 6.14, Proposition 6.15 and Proposition 6.16
below.

6.3.1 The γ1 term

The following Proposition shows that conditions (7.5) and (7.6) hold true.

Proposition 6.14. For any ϕ(k) ∈ S(Rkd) and t0 ≥ 0 we have:

sup
n∈N

sup
0≤t≤t0

En

[(
X

(n,k)
t (ϕ(k))

)2
]
<∞ (6.68)

and

sup
n∈N

sup
0≤t≤t0

En

[(
n2L X

(n,k)
t (ϕ(k))

)2
]
<∞. (6.69)
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Proof. We start with the proof (6.69) which is more involved. Thanks to stationarity, the
expectation does not depend on time, and then we can ignore the supremum over time
in (6.69). From (6.21) we already have an expression for the integrand of (6.69):

n2L X (n,k)(ϕ(k), η) = αk · χ2 ·X
(n,k)(ϕ(k−1) ⊗∆ϕ, η) +O(n−1) (6.70)

recall that here again we are using the fact that the field X (n,k) can be also thought as
acting on general (not necessarily symmetric) test functions. Because of stationarity it is
enough to estimate

Eνρ

[(
X (n,k)(ϕ(k−1) ⊗∆ϕ, η)

)2
]
. (6.71)

then the desired bound is obtained by applying Proposition 6.4. In the same spirit we
can use Proposition 6.4 to bound (6.68).

6.3.2 The γ2 term

Similarly to the previous section, here we prove the following proposition in order to
verify the condition (7.6) for γ2.

Proposition 6.15. For any ϕ(k) ∈ S(Rkd) and t0 ≥ 0 we have:

sup
n∈N

sup
0≤t≤t0

En

[(
n2ΓX

(n,k)
t (ϕ(k))

)2
]
<∞. (6.72)

Proof. Thanks to stationarity we can neglect the supremum over time. Recall that in
(6.64) we have obtained an expression for the integrand on (6.72)

n2ΓX (n,k)(ϕ(k), η) =

ρ(α+ σρ)
k2c2σ
nd

(
Y (n,k−1)(Φ, η)

)2

·
∑
x∈Zd

∑
r∈R

|〈r,∇ϕ( xn )〉|2 p(r) +O(n−1)

taking the square of which we obtain

Eνρ

[
(n2ΓX (n,k)(ϕ(k), η))2

]
= ρ2(α+ σρ)2 k

4c4σ
n2d

·
∑

x,y∈Zd

∑
r1,r2∈R

|〈r1,∇ϕ( xn )〉|2 · |〈r2,∇ϕ( yn )〉|2 p(r1) · p(r2)

× Eνρ

[(
Y (n,k−1)(Φ, η)

)4
]
. (6.73)

Notice that the first factor on the RHS of (6.73) can be controlled by using the compact
support of ϕ and the factor 1

n2d . It is then sufficient to estimate

sup
n∈N

Eνρ

[(
Y (n,k−1)(Φ, η)

)4
]

(6.74)

then Proposition 6.4 finishes the proof.

6.3.3 Modulus of continuity

In this section we show that condition (2.5) of Theorem 2.3 in [8] is satisfied.

Proposition 6.16. For every ϕ(k) ∈ S(Rkd) there exists a sequence δ(t, ϕ, n) converging
to zero as n→ 0 such that:

lim
n→∞

Pn( sup
0≤t≤T

|X (n,k)
t (ϕ(k), η)−X

(n,k)
t− (ϕ(k), η)| ≥ δ(t, ϕ, n)) = 0. (6.75)
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Proof. We know that the jumps of the process {η(t) : t ≥ 0} are determined by exponen-
tial clocks. This implies that for any ε > 0 the probability of having more than one jump
in the interval (t, t+ ε] is of the order o(ε). Hence for C, a positive constant that depends
on the model parameters, we have

sup
0≤t≤T

|X (n,k)
t (ϕ(k))−X

(n,k)
t− (ϕ(k))| ≤ C

‖ϕ‖∞
nkd/2

(6.76)

with probability 1− o(ε).
Taking the sequence {δ(t, ϕ, n)}n≥1 given by

δ(t, ϕ, n) = C
‖ϕ‖∞ + 1

n1/2
(6.77)

finishes the proof.

Remark 6.17. Notice that Proposition 6.16 implies, in particular, that the law induced
by Y

(n,k)
t is concentrated on continuous paths.

6.4 Characterization of limit points

At this point we can only say that the sequence {M (n,k)
t (·) : t ∈ [0, T ]} converges

weakly to the process {M (k)
t (·) : t ∈ [0, T ]} satisfying expressions (5.5) and (5.6). Nev-

ertheless, we would like to support the claim, given in Theorem 5.2, that the limiting
process {M (k)

t (·) : t ∈ [0, T ]} is indeed a martingale with the proposed predictable
quadratic variation given by (6.65). At this aim we prove the following result.

Proposition 6.18. The sequence {M (n,k)
t (·) : t ∈ [0, T ]} is uniformly integrable.

Proof. By standard arguments it is enough to provide a uniform Lp(Pn) bound for
p > 1. Notice that, thanks to the martingale decomposition (5.7), and the same type
of arguments used in the proofs of Propositions 6.14 and 6.15, we can indeed find the
desired bounds for p = 2.

The same type of reasoning used in Proposition 6.18 gives us the following result.

Proposition 6.19. The sequence {N (n,k)
t (·) : t ∈ [0, T ]} is uniformly integrable.

Combining Propositions 6.18 and 6.19 we show that any limit point of the sequence
{M (n,k)

t (·) : t ∈ [0, T ]} satisfies the recursive martingale problem (5.5)-(5.6).

6.5 Uniqueness

It remains to show uniqueness of the solution of the martingale problem (5.5)-(5.6).
First notice that by the Duhamel formula, from (5.5), we can deduce

X
(k)
t (ϕ(k)) = X

(k)
0 (S

(k)
t ϕ(k)) +

∫ t

0

dM (k)
s (S

(k)
t−sϕ

(k)) (6.78)

where S(k)
t is the semigroup associated to the kd-dimensional Laplacian (or to the kd-

dimensional Brownian motion).

Remark 6.20. Notice that there is not ambiguity in using (5.5)-(5.6) with test functions
of the form S

(k)
t ϕ(k). From the fact that the d-dimensional Brownian semigroup leaves

invariant the space S(Rd), we can deduce that the kd-dimensional Brownian semigroup
keeps both the symmetry and the Schwartz space nature of the test function ϕ(k). More
precisely:

S
(k)
t ϕ(k) = (S

(1)
t ϕ)(k) (6.79)

where S(1)
t denotes the semigroup of a d-dimensional Brwonian motion.
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Remark 6.21. In the RHS of equation (6.78), the integral term∫ t

0

dM (k)
s (S

(k)
t−sϕ

(k)) (6.80)

should be interpreted as a martingale with quadratic variation∫ t

0

∫
Rd

∥∥∥∇S(1)
t−sϕ(x)

∥∥∥2

X (k−1)
s (S

(k−1)
t−s ϕ(k−1)) ds. (6.81)

Given the distribution of X
(k)

0 and the well-definedness of M (k)
t , the RHS of (6.78)

uniquely determines the finite-dimensional distributions of X
(k)
t . Then, by the continuity

of X
(k)
t , we conclude the uniqueness of limiting point. We refer to [11] for more details

on how to proceed for the case k = 2.

7 Appendix

7.1 Carré-du-champ

Proposition 7.1. Consider an interacting particles system with generator

Lf(η) =
∑
η′

c(η, η′) (f(η′)− f(η)) (7.1)

the following is an alternative formulation for its carré-du-champ

Γ(f)(η) =
∑
η′

c(η, η′) (f(η′)− f(η))
2
. (7.2)

Proof. By definition we have

Γ(f)(η) =
∑
η′

c(η, η′)
(
f(η′)2 − f(η)2

)
− 2f(η)

∑
η′

c(η, η′) (f(η′)− f(η))

=
∑
η′

c(η, η′)
(
f(η′)2 − f(η)2

)
−

∑
η′

c(η, η′)
(
2f(η)f(η′)− 2f(η)2

)
=

∑
η′

c(η, η′)
(
f(η′)2 − f(η)2 − 2f(η)f(η′) + 2f(η)2

)
=

∑
η′

c(η, η′)
(
f(η′)2 − 2f(η)f(η′) + f(η)2

)
=

∑
η′

c(η, η′) (f(η′)− f(η))
2

that concludes the proof.

7.2 Tightness criterium

In this section we state a well known criterium for tightness extracted from [8]:

Theorem 7.2. Let (Ω,F ) be a measurable space with right-continuous filtrations {Fn
t }t≥0

and probability measures Pn(·), n ∈ N. Let {Y n
t }t≥0 be an Fn

t -adapted process with
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paths in D([0,∞), S′(Rk)) and let us also suppose that there exists, for each ϕ ∈ S(Rk),
Fn
t -predictable processes γn1 (·, ϕ), γn2 (·, ϕ) such that:

Mn
t (ϕ) := Y n

t (ϕ)−
∫ t

0

γn1 (s, ϕ)ds (7.3)

and

Mn
t (ϕ)2 −

∫ t

0

γn2 (s, ϕ)ds (7.4)

are martingales. Assume further that it holds:

CI: for t0 ≥ 0 and ϕ ∈ S(Rk):

sup
n∈N

sup
0≤t≤t0

En(Y n
t (ϕ)2) <∞ (7.5)

and for i ∈ {1, 2}:
sup
n∈N

sup
0≤t≤t0

En(γni (t, ϕ)2) <∞; (7.6)

CII: for every ϕ ∈ S(Rk) there exists a sequence δ(t, ϕ, n) converging to zero as n→ 0

such that:
lim
n→∞

Pn( sup
0≤s≤t

|Y n
s (ϕ)− Y n

s−(ϕ)| ≥ δ(t, ϕ, n)) = 0 (7.7)

then the family of laws {Qn}n∈N, induced by {Y n
t }t≥0 on D([0,∞), S′(Rk)) under Pn, is

a tight family and any weak limit point is supported by C([0,∞), S′(Rk)).
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