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Abstract
Wind power has considerable potential to decarbonise electricity systems due to its low cost and
wide availability. However, its variability is one factor limiting uptake. We propose a simple
analytical framework to optimise the distribution of wind capacity across regions to achieve a
maximally firm or load-following profile. We develop a novel dataset of simulated hourly wind
capacity factors (CFs) with bias correction for 111 Chinese provinces, European countries and US
states spanning ten years (∼10 million observations). This flexible framework allows for
near-optimal analysis, integration of demand, and consideration of additional decision criteria
without additional modelling. We find that spatial integration of wind resources optimising the
distribution of capacities provides significant benefits in terms of higher CF or lower residual load
and lower variability at sub-, quasi- and inter-continental levels. We employ the concept of
firmness as achieving a reliable and certain generation profile and show that, in the best case, the
intercontinental interconnection between China, Europe and the US could restrict wind CFs to
within the range of 15%–40% for 99% of the time. Smaller configurations corresponding to
existing electricity markets also provide more certain and reliable generation profiles than isolated
individual regions.

1. Introduction

Wind power is one of themain instruments for decar-
bonising the energy sector. It is already one of the
lowest-cost sources of electricity (Jansen et al 2020,
IRENA 2022) with further predicted cost declines
(Way et al 2022). Wind is expected to be the main
source of electricity in 2050, accounting for 24% of
global generation, according to the Net Zero report
by the International Energy Agency (IEA 2021).
However, the variability of wind (and solar) output
means that clean firm technologies will be necessary
to achieve rapid and cost-effective decarbonisation
(Sepulveda et al 2018).

Wind variability poses challenges to its further
diffusion: grid constraints, institutional factors and
oversupply cause wind curtailment at moments of

peak generation (Bird et al 2016, Drew et al 2019,
Qi et al 2019, Xia et al 2020, López Prol and
Zilberman 2023), the persistence of local low-wind
events requires costly backup capacity or storage
(Denholm and Hand 2011, Zerrahn and Schill 2017),
and intermittency induces start-up costs to thermal
power plants (Schill et al 2017). This variability
imposes integration costs to the electricity system
(Ueckerdt et al 2013, Hirth et al 2015, Joos and Staffell
2018, Reichenberg et al 2018), and the impact of
high output lowering electricity prices, known as rev-
enue cannibalisation, threatens the financial viability
of variable renewables (Eising et al 2020, López Prol
et al 2020, Liebensteiner and Naumann 2022).

Some solutions are already arising to address these
problems. Storage and sector coupling could play a
major role in renewables integration (Zerrahn et al
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2018, Schmidt and Staffell 2023, López Prol and
Schill 2021). Reducing the wind power inertia
floor can reduce curtailment (Villamor et al 2020).
Combiningwind and solar provides complementarit-
ies (Schindler et al 2020, Solomon et al 2020, Costoya
et al 2023, López Prol et al 2024). Geographic diver-
sification (Mills and Wiser 2014) and internalising
the external costs (Brown and Reichenberg 2021) of
fossil fuels can mitigate and even reverse the canni-
balisation effect. Large-scale electricity grids may also
help integrating variable renewables (Grossmann et al
2015, Grams et al 2017, Aghahosseini et al 2019).

We propose the mean-variance framework, ori-
ginally designed to obtain optimal investment port-
folios in financial markets (Markowitz 1952), to
quantify how the integration of different markets,
optimising the distribution of wind capacity across
regions, can achieve a firm and even load-following
wind generation profile. Modern Portfolio Theory
has been applied to energy markets, first to optim-
ise fossil fuel procurement (Bar-Lev and Katz 1976)
and later for a wide range of problems regarding tech-
nology selection and capacity allocation (DeLlano-
Paz et al 2017). Particularly, this approach has been
used to optimise wind allocation at different scales in
Europe (Roques et al 2010) andChina (Hu et al 2019).

We propose wind spatial integration across
regions to achieve a ‘firm’ wind generation pattern
that optimises the trade-off between achieving the
maximum possible capacity factor (CF) with the low-
est possible variability. We define ‘firm wind’ as the
capacity of wind power to achieve a given level of
reliability, in the sense of ensuring a minimum gen-
eration level for most of the time (e.g. 95% of hours
with a CF above x), and certainty, understood as the
concentration of the hourly CF distribution around a
central reference value (e.g. mean CF ±5 percentage
points). We thus define ‘Firmness’ as a quantifiable
continuum rather than a discrete characteristic of
electricity generation technologies (Keane et al 2011).

Because demand also varies over time, achiev-
ing a flat generation profile is not sufficient to integ-
rate high shares of variable renewables. For this
reason, we demonstrate how this approach can be
applied not only to CFs, but also to the difference
between demand and wind generation, i.e. residual
load. Reliability and certainty in this case can be ana-
logously understood as having theminimumpossible
residual load with the minimum possible variability.

Our contribution is threefold: (i) we provide a
new dataset including hourly CFs for 10 years (2010–
19) for Chinese provinces, European countries and
US states, totalling around 10 million observations;
(ii) we propose a methodological implementation of
demand within the mean-variance framework and a
conceptual definition of firmness and load-following
characteristics for variable renewables by combining

the concepts of generation reliability and certainty.
Using these new data, methods and definitions, (iii)
we present the empirical results of optimal wind capa-
cities across regions to obtain firm and load-following
wind profiles and the resulting generation profiles
and benefits of integration. Figure 1 summarises these
contributions and their implementation.

2. Research design

First, we derive a novel dataset of hourly CFs for wind
farms for China, Europe and the US covering a period
of ten years (2010–19).We combinewind speeds from
the ERA5 global reanalysis dataset (Hersbach et al
2020) with the VirtualWind Farmmodel (Staffell and
Green 2014), which is part of the Renewables.ninja
platform (Pfenninger and Staffell 2016). We gener-
ate profiles of power generation for all known wind
farms (both onshore and offshore) operating within
China, Europe and theUS as of January 2020.We then
aggregate these site-specific simulations to regional
aggregates (countries for Europe, provinces for China
and states for the US, hereafter referred simply as
regions), and then validate and bias-correct the simu-
lations using a bespoke database of reportedwindCFs
from government sources (Staffell and Pfenninger
2016), ensuring that the resulting CFs are representat-
ive of real-world productivity. The final dataset com-
prises ∼10 million observations (89 280 hourly CF
values for 111 regions, 32 in China, 29 in Europe and
51 in the US, see supplemental information for sum-
mary statistics).

Then, we use these data to optimise the CF-
variability and the residual load-variability trade-offs
at different integration levels: (i) subcontinental level
according to existing electricity markets and power
regions, (ii) quasi-continental level (China, Europe,
and the contiguous US (i.e. excluding Alaska and
Hawaii)), and (iii) intercontinental level linking these
three areas. We compare these results with individual
regions in autarky.

Wind CF is the ratio of actual to potential gen-
eration per unit of installed capacity, and variabil-
ity is measured as the standard deviation (SD) of
the hourly CF. We estimate the portfolio, i.e. the
share of wind installed capacity per region, that min-
imises CF variability for each attainable mean CF
for all considered spatial configurations. We show
that increasing the geographical scope of the optim-
ised systems improves their CF-variability trade-off.
The largest system, the intercontinental interconnec-
tion between China, Europe, and the US provides
the highest potential benefits, but smaller systems at
sub- and quasi-continental levels also provide con-
siderable potential benefits compared to individual
regions in autarky. In summary, spatial integration
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Figure 1. Summary of the research design including data generation, analytical and empirical contributions.

of regions with different generation patterns optim-
ising the distribution of wind capacities provide a
more reliable and certain aggregated generation pat-
tern that can reduce curtailment, storage and backup
capacity, enabling thus higher shares of wind power
with lower integration costs.

2.1. Data generation
2.1.1. Wind speeds and power outputs
Wind speeds at 10 and 100 m above ground were
extracted from the ERA5 reanalysis (Hersbach et al
2020). This was chosen overMERRA-2 as it is derived
from a more recent model that assimilates more
weather observations and delivers data with higher
spatial resolution (0.25× 0.25 degrees). Wind speeds
at each timestamp and grid point were transformed
into a log-law wind profile, which can infer wind
speed, w, at any given turbine hub height, h, via:

wh = A log

(
h

z

)
(1)

where A is the wind shear and z the surface rough-
ness, derived from regression of the ERA5 wind speed
data (Staffell and Green 2014). The resulting wind
speeds were then interpolated spatially from the regu-
lar ERA5 grid to the location of individual wind farms
using a non-smoothing spline.

Reanalysis has been shown to have bias in its wind
speeds, which is reasonably stationary over time but
heterogeneous across space (Decker et al 2012, Staffell
and Pfenninger 2016). This means that while the
pattern of wind farm production can be considered
accurate, the long-term average level of production
needs to be corrected according to the location. We
apply a linear correction factor to wind speeds such

that the resulting CFs match the observed long-run
average at country, province or state level (Staffell
andPfenninger 2016). The correction combined a lin-
ear offset and multiplicative scale factor to provide
an acceptable compromise between simplicity (thus
avoiding over-fitting) and representing the seasonal
and hourly variability across the regions studied.

Modified wind speed,w’, was calculated from raw
wind speed, w, and the bias—or systematic error—
in CFs, which is defined as the ratio of observed to
simulated capacity factors, CF:

w ′ =

(
0.6

CFobs
CFsim

+ 0.2

)
w+β. (2)

For each individual wind farm, the VWF model
uses a simple iterative process to seek a value for linear
offset term,β, so that the farm’s long run averageCF is
scaled by the desired bias correction factor, CFobs

CFsim
. The

ratio of multiplicative and additive components (0.6
and 0.2 in the above equation) are taken from previ-
ous work (Staffell and Pfenninger 2016).

Wind speeds were converted to power outputs
using empirical power curves that were collected for
140 models of wind turbine (Pfenninger and Staffell
2016). These curves were smoothed using a Gaussian
kernel to account for the distribution of wind speeds
experienced within any given hour, and between the
individual turbines of a specific farm (Staffell and
Pfenninger 2016).

2.1.2. Wind farm simulations
We modelled all wind farms that were known to be
operating in each region we consider as of January
2020. For this, we took the location (latitude and lon-
gitude), hub height (in metres), installed capacity (in
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MW) and the model of wind turbine for each farm
from The Wind Power database (Pierrot 2023). This
yielded 1180 wind farms in China, 1442 in the US and
19 979 in Europe.

Missing metadata for these farms were inferred
where possible. Latitude and longitude data were
missing for 5% of farms (14% in China, 2% in the
US, 5% in Europe). These were inferred by geoloca-
tion where the nearest county or city was known
using the Bing Maps Locations API5. Hub height
data were missing for 37% of wind farms (80% in
China, 26% in the US and 35% in Europe). These
were inferred by stochastically sampling other wind
farms with known heights that use the same turbine
model in the same country or neighbouring coun-
tries if none were available. Turbine model was not
known for 20% of wind farms (11% in China, 21% in
the US and 20% in Europe). These were inferred by
stochastically sampling other wind farms with sim-
ilar capacity, average estimated wind speed and con-
struction date in the same country or neighbouring
countries if none were available.

Despite simulating the output of over 20 000wind
farms, there were some regions in this study with
limited coverage; for example, no wind farms were
specified in the US states of Alabama, Louisiana or
Florida. We therefore randomly generated hypothet-
ical wind farms in any region which contained fewer
than 20 wind farms, and add these to the known
farms so that at least 20 sites were modelled within
each region. This number was chosen so that each
hypothetical turbines could not substantially influ-
ence results, as each would contribute at most 5%
to the region’s overall profile. These farms were ran-
domly placed within the region, with randomly selec-
ted turbinemodel andhubheight sampled fromother
farms within the country or neighbouring countries.
They were given a negligible capacity (a single tur-
bine, typically 1–6 MW) so their output would only
affect regions with little to no existing wind farms,
and thus add some geographical diversity to their
regional aggregate. This process was applied to 14
Chinese provinces (BJ, CQ, GX, GZ, HA, HE, HN,
HU, JX, QH, SA, SC, TJ, XZ) and 28 US states (AL,
AR, AZ, CT, DC, DE, FL, GA, HI, KY, LA, MD, MO,
MS, MT, NC, NH, NJ, NV, RI, SC, SD, TN, UT, VA,
VT,WI,WV)which each had fewer than 20 farms (see
supplementary tables 3 and 4 for full names of these
regions). Across these 14 Chinese provinces, hypo-
thetical turbines represented 19% of installed capa-
city (2.6% across the whole of China). Across these
28 US states, hypothetical turbines represented 23%
of installed capacity (1.9% across the whole of the
United States). These provinces and states contribute
little or nothing to the optimal portfolios found in this

5 https://docs.microsoft.com/en-us/bingmaps/rest-services/
locations/.

work (e.g. see figure 2 later), as they have lower CFs
with higher variability (hence few developers have
chosen to install wind farms there to date).

The resulting wind farm simulations were aggreg-
ated to give the time series of total power output at
national level in Europe, state level in the US and
provincial level in China. The GADM dataset level 0
and level 1 were used to define the shapefile for each
region. One exception to this was that the Chinese
province ofNeiMongol (InnerMongolia) was further
separated into an eastern andwestern region due to its
importance for wind power production and physical
size (spanning almost 30 degrees of longitude). This
split was defined by banner/county-level administrat-
ive divisions, with those to the west of Abag and Plain
Blue defined as West Nei Mongol, and those east of
(and including) them as East Nei Mongol.

2.1.3. Validation and bias correction
We update previous bias correction factors for
European countries (Staffell and Pfenninger 2016)
and replicate their calculations for Chinese provinces
and US states. Bias correction factors for all regions
are given in the supplementary information. For
Europe, hourly metered wind farm output was col-
lected from the ENTSO-E Transparency Platform6

and national transmission system operators (TSOs)
in 12 countries, plus annual-averageCFs derived from
IRENA7 for the remaining countries.

The only public data found for China were annual
average CFs for each province, published by the
National Energy Administration from 2013 to 20198.
Wind farm curtailment due to grid constraints is an
important consideration, as this amounted to 17% of
all wind power production across China in 2016, fall-
ing to 4% in 20199. This was removed from the data
to give gross CFs (i.e. what could have been attained
given the prevailing meteorological conditions).

Monthly-average CFs were derived for US states
from the Electric Power Monthly dataset published
by the Energy Information Administration10. This
covered 36 states which had at least 10 MW of wind
capacity installed and at least three years of reported
data.

2.2. Portfolio optimisation
2.2.1. Modern portfolio theory
We apply Modern Portfolio Theory to assess the
trade-off between CF and variability (measured as
SD) for wind generation. We use the hourly wind
CF data for each region during 10 years presented

6 https://transparency.entsoe.eu/.
7 https://www.irena.org/Data.
8 www.nea.gov.cn/2020-02/28/c_138827910.htm.
9 www.nea.gov.cn/2020-02/28/c_138827910.htm.
10 www.eia.gov/electricity/data/state/.
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above. The problem consists in minimising the port-
folio SD

(
σp

)
for the attainable range of average capa-

city according to equation (1):

min(σp) =min

√∑
i

w2
i σ

2
i +

∑
i

∑
j ̸=i

wiwjρijσiσj


(3)

where the first addend is the sum of variances (σ2
i )

times the squared shares of wind installed capacity
in each country (w2

i ) and the second addend is the
covariance of hourly CF between regions and their
correlation ρij. This minimisation is subject to a non-
negativity constraint (i.e. all shares must be posit-
ive or zero: wi ∈ R⩾ 0), and a ‘full investment’ con-
straint (i.e. the sum of shares must equal one,

∑
wi =

1). This process is iterated for all attainable levels
of the CF, such that each iteration includes the con-
straint that the portfolio CF must be equal to a value

exogenously set (
∑wi CFi

wi
= CF). The result of this

optimisation exercise is a set of efficient portfolios
that have the minimum possible variability for each
attainable mean CF. Each portfolio is the relative dis-
tribution of wind installed capacities across regions,
as shown in the maps in figures 2 and 3. Finally, we
obtain the optimal portfolio for each configuration
as the one that maximises the mean CF per unit of
variability, which is the inverse of the coefficient of
variation: CV−1 = CF/SD.

2.2.2. Levelised cost of electricity (LCOE)
The LCOE in figure 2 panels A1–A3 is calculated with
the simplified formula:

LCOE=
IC ·CRF+O&M

CF · 8760
(4)

CRF=
i(1+ i)n

(1+ i)n − 1
(5)

where CRF is the capital recovery factor, which
depends on the interest rate i (assumed 5%) and
the lifetime of the system n (assumed 25 years).
We assume a discount rate of i = 5%, taken from
the weighted average cost of capital in 2020 for the
OECD and China (IRENA 2022). The installation
cost (IC) is assumed to be $1325/kW corresponding
to the global weighted average as reported by the latest
IRENA cost report (IRENA 2022). IRENA reports
operation and maintenance costs ranging between
33–50 $/kW annually, so we assume an intermediate
value of $40/kWper year. The CF corresponds to each
regional value in figure 2. These cost assumptions are
used for illustrative purposes and are equal across all
regions, so they do not affect the distribution of capa-
city across regions.More granular cost data (e.g. from
Hatton et al 2024) could be used instead to reflect
regional differences.

3. Benefits of integration

Figure 2 shows the potential benefits of spatial integ-
ration in optimising the trade-off between high CF
and low variability at different integration levels. Grey
dots indicate the mean CF and SD for each region
in autarky at hourly level across the 10 years (2010–
2019). The resulting CF determines the LCOE for
a given IC. The right vertical axes of figure 2, pan-
els A1–A3 show the range of LCOE assuming 2021
global weighted average onshore wind costs (IRENA
2022) and using the simplified LCOE calculation
(see methods). supplementary figure 1 presents addi-
tional summary statistics including coefficients of
variation (CV= SD/CF) per region, showing that
smaller regions usually present lower CF and higher
CV because larger regions already benefit from some
of the effects of spatial integration described below.

We define the subcontinental spatial configura-
tions according to the existing electricity markets and
power regions in China, Europe and the US (see the
maps in figure 2 and the complete list in section 4
of the supplementary information). We then optim-
ise the portfolio of wind installed capacity for each
configuration thatminimises variability (SD) for each
attainable level of CF. Figure 2 panels A1–A3 show
the benefits of integration and coordination of each
configuration at the sub- and quasi-continental levels
with respect to regions in autarky. The efficient fron-
tiers (coloured lines) represent the set of portfolios
that minimise variability for each attainable mean
CF. The highlighted coloured point on each frontier
represents the portfolio that optimises this trade-off
in terms of achieving the maximum possible mean
CF per unit of variability, i.e. the reciprocal of the
coefficient of variation (CV−1 = CF/SD). Whereas
this portfolio is the technical optimum, this approach
provides decision-makers room to move along the
frontier to keep efficient configurations depending on
their preferences regarding the levels of CF (determ-
ining LCOE) and variability (determining integra-
tion costs), as well as other potential complement-
ary capacity allocation criteria. This framework also
provides the feasible space below the efficient fron-
tier to assess second-best options along the lines of the
near-optimal energy modelling reasoning (Neumann
and Brown 2021).

The lower-left corner of the frontier is the port-
folio with the lowest possible variability (see sup-
plementary figure 3). As we move up and right-
wards along the frontier, we prioritise higher CF over
lower variability up to the maximum possible CF at
the top right of the frontier. The decision of where
to move along the curve will ultimately depend on
the balance between the cost of variability and the
value of generation. This is a fertile avenue of further
research to expand this approach depending on dif-
ferent cost/value assumptions or additional capacity
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Figure 2. Spatial integration and deployment coordination improve the capacity factor-variability trade-off with respect to any
single region in autarky. Panels A1–A3: grey points indicate the mean capacity factor and variability (measured as the standard
deviation of the hourly capacity factor, in percentage) for each Chinese province, European country and US state in autarky. Lines
represent the efficient frontiers, where each point along the frontier is a portfolio of shares of installed wind capacity per region
with the minimum possible variability for each mean capacity factor. The highlighted points along the frontiers indicate the
optimal portfolio (defined as the maximum mean capacity factor per unit of variability). The assumptions for the calculation of
the levelised cost of electricity (LCOE in USD/MWh, right axis) are $1325/KW installation cost, $40/KW yearly operation and
maintenance cost, 25 years lifetime and 5% interest rate. Note that the panels have different axes scales and the relation between
CF (left axis) and LCOE (right axis) is nonlinear. Panels B1–B3 give the optimal portfolio for each sub-continental configuration,
and panels C1–C3 give the optimal quasi-continental configurations. In panels B1–B3, each power region is represented by a
different colour and surrounded by a thick border, and the colour intensity of each region (province, country or state) represents
the share of wind installed capacity relative to the larger power region to which it belongs. See supplementary figure 3 for the
minimum variability portfolios the list of regions in section 4 of the supplementary information.

allocation criteria and constraints. For now, we focus
on the technical optimum (i.e. the maximum attain-
able mean CF per unit of variability), as it provides
the foundations to achieve a firm wind generation
pattern that provides high levels of reliability and
certainty.

Whereas we focus here on the technical optimum
(point along the frontier), any portfolio of shares
along the efficient frontier can be obtained from the
code and data made available by the authors (see data
availability section Prol et al 2023). Supplementary
figure 3 shows the installed capacities for the min-
imum variability portfolio (bottom-left corner of the
efficient frontier). In this case, capacities are loc-
ated in the regions with opposite generation patterns
to achieve the flattest possible aggregate generation
profile.

The efficient frontiers in panels A1–A3 of
figure 2 show that even small configurations at sub-
continental level provide significant benefits in terms

of higher CFs and lower variability compared to indi-
vidual regions in autarky. These configurations are
relatively easier to implement in reality because these
power regions already have some level of integra-
tion. Continental-scale integration and coordination
is always better than smaller sub-continental config-
urations. The case of Mibel (the Iberian Electricity
Market) exemplifies the basic functioning of this
framework. Since it comprises only two countries
(Portugal and Spain), the frontier is roughly a line
between both countries (representing all possible
capacity allocation options between both countries),
and the benefits from integration and coordination
are limited because both countries have similar gen-
eration patterns. As the configurations become larger
and more diverse in terms of generation patterns,
the efficient frontiers shift left and upwards, indic-
ating lower variability and higher CF, respectively,
and thus higher potential gains. The maps in figure 2
show the optimal shares of wind installed capacity

6
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Figure 3. Residual load efficient frontiers (as % of peak load) for (1) China, (2) Europe and the (3) US. Grey dots represent
regions in autarky. Lines show the efficient frontier of portfolios with the minimum possible variability for each level of residual
load. The highlighted point on the frontiers shows the portfolio with the lowest product of residual load and variability. See
supplementary figure 11 for the analogous figure for the minimum variability portfolios.

for the sub-continental (panels B1–B3) and quasi-
continental (panels C1–C3) configurations.

Supplementary figure 2 presents the same ana-
lysis for a hypothetical intercontinental configuration
between China, Europe and the US. Recent studies
show the feasibility of intercontinental interconnec-
tions with ultra-high-voltage transmission lines (Guo
et al 2022) and multiple projects are currently being
planned (e.g. Xlinks between Morocco and the UK
or the Australia-Asia Power Link), although other
studies question their profitability (Reichenberg et al
2022).

4. Load-following wind

We have so far focused on the supply side by studying
the trade-off between CF and production variability.
Minimising residual load and its variability, however,
would in principle be preferable than justmaximising
CF for each level of variability. By integrating demand
in our analysis, we can obtain ‘load-following’ wind
power by minimising residual load, rather than just
‘firm wind’ by maximising CF.

The ‘load-following’ empirical results are not
likely to hold in the future as demand patterns are

expected to change dramatically due to electrifica-
tion, sector coupling and demand flexibility (Hostick
et al 2014). For this reason, we illustrate here the
approach with current available demand data for
2019 (Crozier and Baker 2022), but further research
should derive long-term empirical results with future
demand patterns.

Demand data for the US are not available at
the state level, but only for 13 regions (California,
Carolinas, Central, Florida, Mid-Atlantic, Midwest,
New England, New York, Northwest, Southeast,
Southwest, Tennessee and Texas). We aggregate them
at the power region level such that WECC comprises
California, Northwest and Southwest, SERC includes
Carolinas, Florida, Southeast and Tennessee), RF
corresponds to Mid-Atlantic, NPCC is formed by
New England and New York and ERCOT is Texas.
Finally, because the Midwest region belongs to
multiple different power regions, we assigned the
population-weighted shares of demand to each power
region, such that (i) Louisiana, Arkansas, Missouri
and Illinois, accounting for 45.9% of the total
Midwest region, are assigned to SERC, (ii) Indiana
and Michigan, accounting for 28.9% of the total,
are assigned to RF, and (iii) Iowa, Wisconsin and
Minessota, accounting for 25.2% of the total, are
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assigned to MRO. For this reason, autarky results for
US states are omitted from this analysis.

We first express demand normalised against peak
demand (Dt/max(Dt)) for each region to have com-
parable results across regions with very different con-
sumption levels. Then we calculate hourly resid-
ual load (RLt) as the difference between demand
(expressed as a share of peak load) and the CF (CFt).
This is equivalent to assuming that we install the same
wind capacity as peak load. Thus, positive RL val-
ues mean residual loads that should be met by other
means, and negative ones mean that wind generation
is higher than load:

RLt =
Dt

max(Dt)
−CFt. (6)

We replicate this process for all configurations,
such that we first aggregate demandwithin the system
and then calculate the peak and residual loads. The
problem is then analogous as with the CF: we want to
find the efficient frontier of portfolios that provide the
minimum possible portfolio variability for each level
of attainable residual load (see methods section).

Figure 3 is the load-following analogous to the
firm wind results presented in figure 2. Figure 3 thus
shows the average residual demand for each region
of each continent and its SD in autarky. The negat-
ive value for Estonia means that if Estonia installed as
much wind capacity as its peak load, it would have an
average of 20% excess generation. Positive values rep-
resent the remaining residual load, that could be met
by othermeans or by installingmore capacity than the
peak load. The efficient frontiers are now downward-
sloping because we minimise residual load in the ver-
tical axis instead of maximising CF. Integration bene-
fits are harder to see because they are confounded
by different demand patterns across countries. For
example, if one single country has a positive correl-
ation between generation and demand, its residual
load in autarky may look better than when integ-
ratedwith other countries with a negative generation-
demand correlation despite the fact that integration
provides net benefits overall. This is the reason why
larger spatial configuration efficient frontiers are not
necessarily lower (i.e. better) than smaller ones in
figure 3.

Whereas the optimal capacities shown in figures 2
and 3 optimise the trade-off betweenCF/residual load
and variability, respectively, they do not represent the
actual optimal capacities, as this simple model misses
the interactions with other generation and storage
technologies and the different costs across regions.
Constraints on minimum and maximum capacities
could be exogenously imposed to obtain more real-
istic results.

The firm wind results are more empirically rel-
evant because demand patterns will change in the
future and provide a cleaner conceptualisation of

gains because different demand-generation correla-
tions across countries confound the final results for
the case of residual load. For these reasons, we focus
the remainder of this paper on the operationalisation
of the concept of ‘firmness’, but the analogous ana-
lysis for load-following wind is provided in the sup-
plementary information.

5. Firm wind

We define the ‘firmness’ of wind power as the capa-
city to provide the highest possible level of reliabil-
ity and certainty. To assess the implications of our
results we further operationalise these definitions by
specifying reliability as the capacity to provide a min-
imum CF for 95% of the time, and certainty as the
probability of CFs within the range of the mean CF
±5 percentage points. These values are arbitrarily
chosen to resemble the conventional 5% significance
levels commonly used in statistics, but any other value
could be used, see supplementary figure 4 for the
same illustration with the levels of 1%/±1p.p. and
10%/±10p.p.. Figure 4(A) shows the level of firmness
for each region in autarky (grey) and configuration
according to these definitions. Individual regions in
autarky provide low reliability and certainty (lower-
left corner), but as regions integrate optimising the
distribution of wind capacities, reliability and cer-
tainty increase (upper-right corner) until achieving
95% of hours with a CF above 19% and 70% of
hours with a CF within the range 21%–31% (26%
mean ± 5p.p.) in the intercontinental configuration.
The quasi-continental configurations obtain levels of
reliability between 13%–16% with higher than 40%
certainty, and all subcontinental configurations per-
form better than any region in autarky.

Another way to operationalise these definitions is
by looking at the CF cumulative distribution func-
tions (figure 4(B)). The CF cumulative distribution
functions show how optimised portfolios improve
certainty and reliability, achieving thus firmer gen-
eration profiles. The slope of the cumulative dis-
tribution function shows how concentrated hourly
CFs of the optimal portfolios are around the cent-
ral values, showing therefore how certain its gen-
eration pattern is. Likewise, reliability is the capa-
city to provide a minimum level of generation all
or most of the time. Cumulative distribution func-
tions that start flat at 0 and are more displaced
to the right are more reliable because the probab-
ility of low CFs is lower. For instance, Nebraska’s
CF interquartile range is 23%–67%. While its mean
CF is high (45%), its generation pattern is uncer-
tain due to a large interquartile spread (43 percent-
age points (p.p.)), and unreliable because the CF is
lower than 10% almost 9% of the time. In the other
extreme, Switzerland has a certain but unreliable gen-
eration pattern. Wind spatial integration and deploy-
ment coordination across the contiguous US would
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Figure 4. Firm wind. (A) Wind reliability, measured as the minimum capacity factor (CF) achieved 95% of the time (i.e. the 5th
percentile of the CF), and certainty, measured as probability of CF within the mean±5 percentage points. See supplementary
figure 5 for the same figure at other levels of reliability and certainty, and supplementary figure 9 for the analogous analysis of
residual load. (B) Capacity factor cumulative probability for each quasi-continental and the intercontinental configurations and
selected regions.

improve both certainty (interquartile range spread
declines to 12p.p. [24%–36%CF]) and reliability (CF
lower than 10%only 0.4% of the time), at the cost of a
lower mean CF (30%). An intercontinental configur-
ation improves reliability and certainty even further,
achieving aCFbetween 15%–40% for 99%of the time
(interquartile range spread of only 7p.p. (23%–30%
CF) and a minimum CF of 9%). Thus, even regions
with high mean CFs can benefit from spatial integ-
ration (see supplementary table 1 for the summary
statistics of the optimised generation profiles for all
configurations).

Finally, figure 5 compares the resulting aggreg-
ate generation profiles (10 year average and SD) of
the optimised portfolios (left column) with selec-
ted regions in autarky (right column). The first row
shows the optimal intercontinental wind generation
profile compared to Switzerland, the region with the
lowest variability of the dataset. The optimal inter-
continental profile provides both a higher mean CF
and lower variability than even the region with low-
est variability. The other rows compare the optimal
quasi-continental portfolios with the region with the
highest CF of each configuration. The optimal quasi-
continental profiles will have, by definition, a lower
mean CF than the region with the highest CF of each
configuration, but in return have amuch ‘firmer’ gen-
eration profile that resembles a baseload technology.

6. Conclusions

We show that the spatial integration of wind resources
can bring substantial benefits in optimising the trade-
off between high CFs (or low residual load) and
low variability. This can help mitigate integration
costs and the cannibalisation effect, and reduce the
need for backup capacity and curtailment. Wind

power can provide a considerable level of ‘firmness’,
defined as combination of reliability (a minimum
level of generationmost of the time) and certainty (CF
distribution concentrated around a central value).
When including demand in the analysis, we show that
spatial integration can minimise residual load and its
variability providing a wind generation profiles that
approaches the demand pattern.

The main advantage of this approach is its sim-
plicity and flexibility. Simplicity because it only
requires data on hourly CF (and demand for the
load-following approach) and a basic optimisation
method. With the proposed definitions of reliabil-
ity and certainty, this approach allows us to com-
pare the ‘firmness’ of different portfolios (shares of
installed capacities across countries) and the poten-
tial gains from system integration and deployment
coordination. Flexibility because it allows the com-
parison between many different portfolios, optimal
(maximum CF per unit of variability), efficient
(along the frontier) or any other near-optimal (below
(above for the load-following approach) the frontier)
alternatives.

The simplicity of this approach is also its main
limitation. Because it only considers wind, it ignores
the interactionswith other generation or storage tech-
nologies. The results represent the technical optima,
but because we ignore cost differences across coun-
tries, it does not necessarily coincide with the eco-
nomic optima. Future extensions could integrate
capacity and integration costs for the firm wind
approach, and backup cost for the load-following
approach. Likewise, transmission cost could be con-
sidered to complete the cost-benefit analysis.

Themean-variance framework has several limita-
tions, such as (i) the instability of the portfolio shares,
(ii) the problem of using past data to make long-term
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Figure 5. Capacity factor profiles of the optimised intercontinental and quasi-continental configurations (left column) compared
to the region with lowest standard deviation of the dataset (Switzerland), and with the regions with the highest capacity factor
within each quasi-continental configuration. The solid line is the 10 year average and the shaded area is the standard deviation.
See supplementary figure 10 for the analogous analysis of residual load.

future decisions, and (iii) giving equal considera-
tion to upside and downside variability. Potential
improvements for further research include (i) assess-
ing no-regret second-best shares (i.e. allocations that
may not be optimal but are robust to different types
of uncertainty), (ii) integrating projections of tech-
nology evolution and potential changes in weather
and demand patterns, and (iii) applying measures of
downside risk instead of variability as proposed by
post-modern portfolio theory.

Practically achieving the proposed levels of inter-
national interconnection and coordinated deploy-
ment, however, depends on both institutional factors
and the costs of spatial integration (mainly intercon-
nections), compared to alternative flexibility options,
such as storage, demandmanagement or zero-carbon
dispatchable technologies. Spatial integration has co-
benefits related to the integration of other vari-
able renewable energy technologies (mainly solar),
the balance of different consumption patterns and

grid resilience more generally, but also risks associ-
ated with energy interdependence between countries.
Further research should take all these aspects into
account to assess the economic and political feasib-
ility of international interconnections. Plans in this
direction are already being discussed in China (Fairly
2019), Europe (European Commission 2017) and the
US (Bloom et al 2020).
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