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Summary
In order to achieve redundancy and improve the robustness of an autonomous driving sys-
tem, radar is a suitable choice for road user detection task in severe working conditions (e.g.
darkness, bad weather). However, the real-time multi-class radar based road user detection
algorithm is less explored compared with camera and LiDAR solutions. To fill this gap, the
current thesis proposes a pipeline for radar based road user detection task, which is able to
detect pedestrians, cyclists and cars by a single radar sweep. The pipeline effectively utilizes
the advantages of radar low-level data by using it as region descriptor and combining it with
radar high-level data for region proposal. A novel convolutional neural network structure
called LLTnet is designed, in combination with proper pre-processing and post-processing
stages. Ensemble learning is used to further improve the inter-class detection accuracy. The
LLTnet itself performs radar targets segmentation. If needed, its output can be fused into
object-level detection. To better train the network, a real-life dataset containing different
moving road users is created during the study by a moving test vehicle, which simulates the
real-life urban driving scenarios. After the network is trained, it is firstly evaluated by target-
level metrics, such as the classification accuracy and F1 score. Then object-level metrics
are used for object-level evaluation, such as the precision, recall and intersection over union
(IoU).

Comprehensive experiments are performed which not only evaluate the performance of
the proposed model but also test the importance of different stages and features, such as the
importance of the ensemble learning and the validity of adding low-level data. The proposed
pipeline improves the target-level F1 score from 0.59 of the baseline to 0.64 using LLTnet with-
out ensemble learning. By adding the ensemble learning stage, the target-level F1 score is
further improved from 0.64 to 0.70. The object-level recall of pedestrian class greatly improves
from 0.37 to 0.68. The validity of adding low-level data to the algorithm is verified by bypass-
ing the low-level data branch of the network. With only high-level branch, the target-level F1
score drops from 0.70 to 0.60. Furthermore, the trained model also shows good generalization
ability on unseen data.
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1
Introduction

1.1. Context
Over the past few years, self-driving has become a popular research topic in many domains,
from computer science, system control to law and philosophy, from universities to compa-
nies. Although it is not possible to calculate how much time and energy has been devoted to
this area, there is one thing for sure: more and more vehicles equipped with driver assistance
system are running on the road and this technology has been changing human’s life. In the
future, the ultimate goal of self-driving is to get human out of the loop in order to eliminate
accidents due to human error. However, this should be achieved without introducing other
safety issues. To ensure the car, no matter how autonomous it is, is driving safely, the per-
ception ability is one of the most important parts, because it is the input of the system. Unlike
driving on the highway, where most road users are different types of cars, driving in urban
area is much more difficult due to the existence of different road users and larger variance
of the environment. For example, the most commonly seen road users are pedestrians and
cyclists. They are more dynamic and moving with a less predictable behavior. Previously,
camera and LiDAR are the most commonly used sensors in this domain.

Camera uses 2D information including geometric and texture details. With the help of
stereo camera or RGBD camera, the depth of each pixel can also be measured. Since the
camera captures visible light just as how human eyes work, it is the most intensively ex-
plored topic and has reached significant accuracy in recent years. Extensive surveys on
vision based pedestrian detection can be found in [7] and [10]. However, vision based road
user detection has two main drawbacks. First of all, camera struggles in darkness and bad
weather conditions, e.g. fog, snow or rain. Secondly, the depth’s measurement is less accu-
rate beyond a certain distance. For example, the error of a stereo camera grows quadratically
with respect to the distance.

Unlike camera, LiDAR is able to generate a dense point-cloud which directly samples
the 3D space. Different methods are proposed for LiDAR object detection task, such as the
study in [75] and [64]. With a large amount of points to be processed per frame, LiDAR has
the scalability issue while running it in real-time self-driving platform. Furthermore, LiDAR
uses narrow light pulses for the measurement, which suffers from dusty and snowy weather
conditions. Last but not least, LiDAR is still too expensive to be deployed on production
vehicles at the moment. In many use cases its price is higher than the vehicle itself.

Compared with camera and LiDAR, radar uses radio wave to measure the range, azimuth
angle and speed of objects. It has some advantages over the other two sensors. Firstly, it
is more robust to weather and lighting conditions (e.g. rain, snow, darkness). Secondly,
radar can directly measure the speed distribution in space by Doppler effect. This speed
distribution provides information both for classifying a road user and predicting its path.
Last but not least, radar is cost-effective, which allows several radars to be mounted around
the car body. Although the performance of radar will deteriorate inside tunnels and the
resolution is not as high as the other two sensors, it is robust and reliable in most of the

3



1.2. Problem statement 4

cases.
In fact, being used by vehicle active safety system, radar has longer history than the other

two sensors. In 1997, the first commercialized adaptive cruise control (ACC) system with a
77 𝐺𝐻𝑧 automotive radar was introduced by Mercedes DISTRONIC system in its premium
model, S-Class [59].

1.2. Problem statement
Despite of all the advantages and its history, radar is less explored in the domain of road user
detection. There are four main reasons. First of all, the elevation angle of an automotive radar
is small, which makes it only capable to measure objects in a 2D horizontal plane. Secondly,
radar targets are much more sparse than camera pixels or LiDAR point cloud. When a road
user is small, such as a pedestrian, only a small number of targets or only one target can
be detected. Features extracted from sparse targets are less reliable due to the influence of
outliers. An additional reason lies in the fact that the radar spectrum is less interpretable
than the other two sensors, which increases the difficulty when tuning the machine learning
algorithms based on its output. Last but not least, although the measurement for range and
speed are accurate, the angular resolution of radar is low.

The data provided by a commercially available radar is a target list, see Figure 1.1a from
a top-down view, which is also called the high-level data. Each target has a 2D ground plane
position, a reflectivity and a radial speed relative to the ego-vehicle. The road user detection
algorithms using high-level data usually follow a clustering based pipeline [46, 57, 61, 71].
The bottleneck of this pipeline is the clustering stage and the sparsity of the radar targets.
When road users are close to each other, e.g. pedestrians in a group, they can be clustered
into a single road user. In addition, the statistics from a small amount of targets are sensitive
to outliers. Problems caused by the clustering stage can be addressed by end-to-end deep
learning methods, while it requires a denser point-cloud as input. Multiple radar frames are
aggregated to fulfill this requirement, which introduces a time delay for the prediction. In
some studies this time delay reaches up to 0.5 𝑠, which is not acceptable in driving scenario.

(a) (b)

Figure 1.1: (a) This figure shows the target list of a single radar frame from the top-down view. The vehicle is heading towards
the left. The blue points are radar targets. (b) The low level data is a 3D matrix with range, speed and angle bins as axes. The
entries are the magnitudes of radio wave responses.

Although the resolution of radar high-level data is gradually increasing with the devel-
opment of semiconductor industry and signal processing techniques, it is still important to
avoid information loss when using radar for road user detection. The information loss is
mainly caused by the thresholding that generates radar target list from low-level data. The
low-level data is a 3D matrix, which is also called the radar cube. The axes of the matrix
are range, azimuth angle and Doppler bins, see Figure 1.1b. The entries are the magni-
tudes of radio wave responses at that range-angle-Doppler bin. Due to less thresholding,
the low-level data provides the detailed speed distribution for each 2D location in ground
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plane. Based on the micro-Doppler signature caused by different road users, many studies
utilize this speed distribution for road user classification [4, 44, 45]. However, the position-
ing accuracy of low-level data is not as good as high-level data, since no sophisticated super
resolution algorithms are used. Furthermore, if we look at the ratio between non-zero values
and zeros-values inside the radar cube, the non-zero entries are still sparse.

In the current study a new pipeline is proposed that combines the good positioning accu-
racy of high-level data and detailed speed information of low-level data, see Figure 1.2. This
pipeline alleviate the problems of the clustering stage by not using it as an object proposal.
The region of interest is provided by the non-static high-level targets. The low-level data
cropped by the region proposal is used as the region descriptor. With the help of a suitable
convolutional neural network and ensemble learning policy, the information from one sin-
gle radar frame is enough. The hypothesis is that with a single radar frame, the proposed
pipeline will have better performance in terms of the localization accuracy and classification
accuracy of a road user detection task. A dataset will be created by an automated annotation
pipeline for training and evaluation.

Figure 1.2: The general pipeline of the proposed method. At the first step, the high-level data (i.e. target list) is used for region
proposal, where low-level data is cropped. Then the cropped low-level data is used as region descriptor. Each region descriptor
is classified by a neural network, thus a label is attached to each target. If needed, the targets can be further fused into road
users.

1.3. Thesis outline
In the following chapter, the related work on radar based road user detection is reviewed
as well as some general theories. Based on the related work, a new pipeline is proposed in
chapter 3. In chapter 4, comprehensive experiments are performed on a real-life dataset in
urban scenarios and the results of the proposed method are compared with three baselines
including state-of-the-art clustering based methods. This is followed by the conclusion part
of the thesis, which also provides some recommendations for the future work.



2
Related Work & Thesis Contributions

Vision based road user detection has been widely researched over the last decade and reached
significant accuracy under circumstances where camera can work properly , e.g. with good
lighting and weather conditions. Many hand-crafted feature based methods are used for road
user detection, such as the methods that use histogram of oriented gradients (HOG) [15] and
deformable part model (DPM) [20]. After the popularity of deep learning and the introduction
of large scale datasets [17, 35], the general purpose object detection algorithms are empow-
ered, such as Faster R-CNN [23], SSD [36] and YOLO [50]. If trained by a suitable dataset
containing enough road users, e.g. EuroCity Persons [9], these algorithms are accurate and
efficient for vision based road user detection task.

LiDAR is usually used in high-level driving automation functions due to its ability to gen-
erate a dense point-cloud of the 3D world without being influenced by lighting conditions.
The LiDAR road user detection algorithms can be found in [18, 75]. Despite of its reliability
and accuracy, LiDAR suffers from dusty and snowy weather conditions. Currently, LiDAR is
not accessible for production vehicles due to its high price.

Radar is less explored for road user detection task compared with camera and LiDAR.
However, due to its robustness under severe working conditions and cost-effectiveness, it is
a good sensor for many situations where other sensors are not functioning properly. In this
chapter, some general knowledge about radar and deep learning will be introduced, followed
by the features used by the radar based road user classification task. The existing radar
based road user detection and classification algorithms are following two main streams de-
pending on whether the input is high-level data or low-level data. Therefore, in section 2.2
and section 2.3, the methods regarding radar road user detection and classification are cat-
egorized into high-level data algorithms and low-level data algorithms. In the end, the main
contributions of the proposed method are introduced in order to fill the gaps found in the
related work.

2.1. Theories
2.1.1. FMCW radar
Radar is an acronym for ‘Radio Detection And Ranging’. It uses radio wave to measure the
range, azimuth angle or velocity of objects. This product was first developed for military
use and then became a widely used sensor in various applications such as aviation, remote
sensing, speed control and automotive industry. In general, radar uses radio wave and its
reflection to detect objects. The wave forms and different digital signal processing schemes
depend on the applications.

Among different types of radars, what is most widely used in automotive industry is called
FMCW radar, which stands for ‘Frequency-Modulated Continuous Wave’ radar. As the name
indicates, unlike pulse wave radar, the radio wave of an FMCW radar is continuous. The
frequency of the continuous wave is modulated over time. These two features enable FMCW
radar to measure the range and speed at the same time. If multiple antennas are used, the

6
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direction of the range-speed information can also be recovered. Therefore, the output of an
FMCW radar is range-speed-angle information. The workflow of FMCW radar is shown in
Figure 2.1.

Figure 2.1: The workflow of FMCW radar. The synthesizer generates modulated radio waves transmitted by the TX antenna,
which is called TX signal. After the wave is reflected by the objects and received by the RX antenna, the TX signal and RX signal
are mixed by the mixer to get the IF (Intermediate Frequency) signal. This signal is sampled by the A-D converter and given to
the digital signal processing pipeline.

The synthesizer generates continuous sinusoidal wave with modulated frequency. This
signal is transmitted by TX antenna, hence it is called TX signal. The modulation of frequency
is usually described by the frequency-time plot (𝐹−𝑡 plot). An 𝐹−𝑡 plot and its correspondent
amplitude-time plot (𝐴−𝑡 plot) of a typical saw-tooth modulation are shown in Figure 2.2. The
radio wave with its frequency increasing linearly from a minimum value to a maximum value
is called a chirp. In Figure 2.2, a chirp is characterized by a start frequency 𝐹, a bandwidth 𝐵
and a chirp time 𝑇. In a commercial 77 𝐺𝐻𝑧 automotive radar, hundreds of chirps will be
transmitted within a second [65].

Figure 2.2: ፅዅ፭ plot and ፀዅ፭ plot of radar TX signal. The frequency increases linearly with time. The time period within which a
frequency increases from the minimum value to the maximum value is called a chirp. A chirp is defined by a start frequency ፅᑔ,
a bandwidth ፁ and a chirp time ፓᑔ. Modulated frequency is able to measure the traveling time indirectly by frequency difference
rather than measuring tiny time difference itself. The latter is difficult.

After the chirps are transmitted by the TX antennas, they are reflected by objects and
received by RX antennas. The received signal is called the RX signal. The RX signal and TX
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signal are then mixed by a mixer. The resultant signal is called IF (Intermediate Frequency)
signal. The frequency and phase of the IF signal are the difference of frequency and phase
between TX and RX signal. The IF signal is shown in 2.3.

Figure 2.3: The IF signal calculated from one TX chirp and one RX chirp. The dark blue signal is the transmitted signal (TX
signal) and the cyan signal is the reflected signal (RX signal). The frequency difference between these two signals are plotted in
red (the plot on the bottom left), which is also the frequency of the IF signal. If the object is static or can be considered as static,
the frequency difference does not change. Therefore the IF signal is a sinusoidal signal with constant frequency (the signal on
the bottom right). In practice, this frequency is recovered by performing Fourier transform to the signal mixed by the mixer.

Then the continuous IF signal is sampled by analog-to-digital converter (A-D converter)
and served as the input for the digital signal processing (DSP) pipeline. To better understand
different levels of radar data, it is necessary to cover some basics about radar DSP. For more
details, please refer to [38, 43, 65, 69].

In the radar DSP pipeline, Fourier transform plays the main role, which converts signals
from time domain or space domain into frequency domain. Since the signal in a digital circuit
is not continuous, the discrete Fourier transform (DFT) is performed in practice. However, the
original DFT is not efficient due to its 𝑂(𝑛ኼ) computational complexity, where 𝑛 is the number
of input samples. This problem is addressed by the well-known fast Fourier transform (FFT)
proposed in 1965 [12], which greatly reduces the complexity to 𝑂(𝑛𝑙𝑜𝑔(𝑛)).

In the following subsections the signal processing steps to recover the range, velocity and
azimuth angle of objects will be explained.

Range measurement
FMCW radar measures the range of the object by the frequency difference between TX signal
and RX signal, i.e. the frequency of IF signal. A typical process is shown in Figure 2.3. For a
single object, the RX signal is a delayed version of TX signal. Therefore the frequency of the
resultant IF signal does not change within one chirp time, see the red signal in Figure 2.3.
The IF frequency is proportional to the range between the objects and radar. The relation is
given by Equation 2.1 (d: distance, S: slope of the chirp, c: speed of the light).

𝑓ፈፅ = Δ𝑓 = 𝑆 ×
2 × 𝑑
𝑐 (2.1)

When there are multiple objects, if their range are different, multiple reflected chirps
will be received with different time delays, as shown by the red signal and green signal in
Figure 2.4. The IF signal from these two signals will have multiple frequency components.
These frequency components can be recovered by FFT processing. In this way, the range of
multiple objects can be resolved. This process is called range FFT in this thesis.

Now that it is clear how is the range measured by chirps, it is necessary to explain the
factors that determine the range resolution and the maximum measurable range. In prin-
ciple, as long as there is a range difference between two objects, there will be a time delay
between transmitted and received chirps. However, in real cases, this delay has a lower limit
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Figure 2.4: The TX, RX and IF signal caused by multiple objects. The 1st row: The blue signal is the transmitted signal. The
red signal and green signal are from two different objects. The 2nd row: the green signal and red signal are IF signals caused
by two objects. The 3rd row: the IF signal will be recovered from the RX signal by Fourier transform.

which is ኻ
ፓᑔ [38]. 𝑇 is the chirp time in Figure 2.5. Any frequency difference smaller than the

limit cannot be resolved by range FFT. Using the frequency difference in Equation 2.1, the
resolution can be calculated by Equation 2.2. Any objects closer than this resolution cannot
be distinguished in range. For example, with a bandwidth of 200 𝑀𝐻𝑧, the range resolution
is 0.75 𝑚.

𝛿𝑑 > 𝑐
2𝐵 (2.2)

The maximum range that can be recovered mainly depends on the sampling rate of the
following A-D converter. If the sampling rate of A-D converter is 𝐹ፈፅ, the maximum range is
limited by the sampling rate according to Equation 2.3.

𝑑፦ፚ፱ =
𝐹ፈፅ × 𝑐
2𝑑 (2.3)

Speed measurement
One of the advantages of FMCW radar is the ability to measure the speed of objects. When
an object is moving, the frequency of the radio wave reflected from that object will be further
shifted due to the movement. The value of the shift is proportional to the value of the relative
speed. This phenomenon is called Doppler effect. Supposing the object is not moving faster
than the maximum measurable speed of a radar and its range is smaller than the maximum
range limit, the same RX signal caused by the object will appear at two consecutive chirp
times. Due to the frequency shift caused by Doppler effect, the IF frequency of two objects
are different. However, as shown in Figure 2.5, the frequency difference between the IF
signals in two consecutive chirps are too small to be observed. Unlike the frequency, the
phase of the IF signal is much more sensitive to such minor changes between consecutive
chirps. According to the calculation in [67], if the range changes 1 𝑚𝑚, for a 77 𝐺𝐻𝑧 radar,
the phase of the IF signal changes by 180∘ while the frequency only changes by 333 𝐻𝑧. If
two objects are at the same range but different velocities, their responses after range FFT
will be gated to the same range bin. To resolve different objects only by their speed, Doppler
FFT can be applied over a series of range FFT results from multiple consecutive chirps to get
their phase shift over time. After the Doppler FFT, the 𝑁-dimensional vector from range FFT
becomes an 𝑀×𝑁 array with 𝑁 range bins and 𝑀 Doppler bins. The image from the 2D-FFT is
called range-Doppler image. After getting the range-Doppler image, radar DSP work in short
time window is finished. The following steps are performed at a lower data rate [69].
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Figure 2.5: The TX signal, RX signal, IF signal in two consecutive chirps

Most automotive radar has multiple antennas. Each antenna has its own range-Doppler
image.

Angle estimation
Most objects can be separated after the range FFT and Doppler FFT applied to the IF signal
from multiple chirps. However, only knowing their range without accurate position is not
adequate for applications in driving scenario. Therefore, resolving them into different azimuth
angles is important. One of the most commonly used solutions is digital beam forming,
which performs a virtual rotation of the antenna by focusing on the signal from one direction
at a time like a physically rotating antenna [69]. Referring to the geometry in Figure 2.6a,
signals travel for different distances before they are received by different antennas. The
different distances cause a time difference, which introduces a phase shift between IF signals
of different antennas. If the distance 𝑑 between RX antennas is known, the relation between
azimuth angle 𝜃 of the object, the wavelength 𝜆 of the radio wave and the phase shift 𝜔 of the
IF signal are given by Equation 2.4 and Equation 2.5.

𝜔 = 2𝜋𝑑 sin(𝜃)
𝜆 (2.4)

𝜃 = arcsin
𝜔𝜆
2𝜋𝑑 = arcsin

𝜔
2𝜋𝑅 (2.5)

In practice, FFT is used to calculate the phase shift caused by different angles of arrival. As
stated in the previous subsection, each antenna calculates its own range-Doppler image. The
complex number pixels at the same position of the range-Doppler image represents signals
received by different receivers. To estimate the direction of arrival (DoA) by their different
phases, FFT is again used for frequency components analysis. Different antennas can be
seen as the sampling of the radio wave in space. As Figure 2.6b shows, before applying FFT,
the input values are padded by zeros to avoid ‘binning’ effects [69]. After padding, FFT is
performed separately to the sequences in a single range-Doppler bin.

As is shown in Figure 2.6a and Equation 2.5, the angular resolution is influenced by the
spacing 𝑑 between different antennas, or the ratio between the spacing and the wavelength
𝑅 = ᎘

፝ . Taking derivatives on both sides of Equation 2.5, the angular resolution 𝛿𝜃 is given
by Equation 2.6.

𝛿𝜃 = Δ𝜔 × 𝜆
2𝜋𝑑 cos𝜃 (2.6)



2.1. Theories 11

(a) (b)

Figure 2.6: (a) Radar uses multiple RX antennas to resolve objects in different angles. (b) The angle FFT applied to multiple
range-Doppler images.

Larger spacing will result into a higher angular resolution. However, larger spacing also
causes larger phase shift 𝜔 with a certain azimuth angle 𝜃. A generic function of radio wave
can be written as Equation 2.7.

𝐹(𝑥) = 𝐴 sin (2𝜋𝑓𝑡 + 𝜔) = 𝐴 sin (2𝜋𝑓𝑡 + 𝜔ᖣ + 𝜋) = 𝐴 sin (2𝜋𝑓𝑡 − (𝜋 − 𝜔ᖣ)), (2.7)

If the phase shift of the sinusoidal function exceeds [−𝜋, 𝜋], since it is a periodic function,
the phase shift becomes ambiguous. It is not known whether the phase shift is 𝜔 (in the
[0, 𝜋] phase) or 𝜔ᖣ (in the [𝜋, 2𝜋] phase). To avoid the ambiguity, in some automotive radars,
the phase shift is constrained by Equation 2.8, which decides the maximum possible value
of the spacing 𝑑፦ፚ፱ defined by Equation 2.9.

𝜔 = 2𝜋𝑑 sin(𝜃)
𝜆 (2.8)

𝑑፦ፚ፱ ⩽
𝜆

2 sin(𝜃) (2.9)

If the radar is required to cover the space from −90∘ to +90∘, 𝑑፦ፚ፱ should be less than or
equal to ᎘

ኼ . Despite of the ambiguity, sometimes the radar uses a larger spacing to increase
the angular resolution within the central FOV. If the spacing-wavelength ratio 𝑅 = 1.5 , given
by the constraint from Equation 2.8, the critical 𝜃 value that avoids the ambiguity should
be 𝜃 = arcsin (1/2𝑅) = 19.47∘. If the object is present at an angle larger than 19.47∘, due to
Equation 2.7, the reflection of the next angle beam larger than 19.47∘ will correspond to the
FFT result from the most negative beam in [−𝜋, 𝜋] phase shift.

Conventional beamforming is limited in angular resolution. In order to improve the reso-
lution, adaptive beamforming can be used for DoA. One of the most well-known algorithms
is MUltiple SIgnal Classification (MUSIC) [58]. MUSIC uses eigenvalue decomposition to cal-
culate the signal subspace and noise subspace. Using the fact that these two spaces are
orthogonal to each other, it is possible to search the signal subspace and pick the peaks
from the power that represents to what extent are they orthogonal to each other. MUSIC is
usually applied to FMCW radar with multiple antennas to increase the resolution. Details
can be found in [58].

Target list generation
The range, speed and azimuth angle responses after DSP pipeline are gated into a 3D matrix,
which is also called the low-level data or radar cube. The indices of the matrix are the range,
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azimuth angle and speed bins. The entries are radio wave responses (usually magnitude).
The low-level data is shown by Figure 1.1b in section 1.2.

From this 3Dmatrix, a target list can be created by thresholding. If an entry is higher than
the threshold, it is selected as a target. Its range, azimuth angle and speed are from its range-
azimuth-speed bin’s index. Its reflectivity is calculated by its magnitude. The list of targets
is called high-level data, see Figure 1.1a in section 1.2. The threshold used for generating
targets is an important parameter. If the threshold is too low, not only the reflections from
real objects but also entries from the background noise will be picked up, which are called
false alarms. The systems that have high false alarm rate will keep interrupting normal
driving behavior even if there is no obstacle or road users. On the contrary, if the threshold
is too high, useful reflections from real road users will be removed. In real life situation, an
adaptive threshold is calculated in order to fullfill a constant false alarm rate (CFAR).

Using CFAR as a criterion, different methods are used to calculate the adaptive threshold.
One way to calculate the threshold is called cell-averaging. A sliding window is applied to each
cell, which is called cell under test (CUT). The power level of cells that are not immediately
adjacent to the CUT are averaged. If the power of the CUT is higher than its adjacent cells
and higher than this averaged value, a target is declared at this cell. This method is called
cell-averaging CFAR (CA-CFAR) [52].

In practice, CFAR is not performed at the last stage where the entire radar cube is formed,
but usually at the stage where range-Dopper image is created. CFAR is only calculated in
this 2D image, and only the values filtered by CFAR are used as the input for the angle
FFT. After the angle FFT, only the highest peak is selected. After CFAR and angle FFT, some
sophisticated processing algorithms can be applied in order to get more accurate targets’
location.

2.1.2. Deep learning
Machine learning
The task that is performed by a typical machine learning algorithm is to approximate (‘learn’)
a function �⃗� = 𝑓(�⃗�), which maps the input �⃗� to the output �⃗�. The usual way to do this map-
ping is learning from examples. These examples are called training data. The performance of
the mapping is measured by a value called loss, which is calculated from training data. By
minimizing the loss iteratively, the mapping accuracy is gradually improved. Sometimes the
input are given to the model without processing, however, most of the cases the input are
processed in order to get some features, e.g. the histogram of oriented gradients (HOG) [15]
for vision based pedestrian detection. The output depends on the task. If the output is the
label of the input, this machine learning task is called classification. The loss will be a value
that measures the mis-classification error. If the output is continuous rather than discrete
labels, the task is called regression. The loss in this case is a value that measures how far it is
from the true output to the predicted output. In general, machine learning algorithms focus
on how to better formulate and optimize the mapping according to the task. Most mappings
are parameterized by a pre-defined function. Few of them are non-parametric. For classi-
fication, there are different classifiers, such as support-vector machine (SVM) [13], random
forest [29], k-nearest neighbor (kNN) [2]. For regression task, there are linear regression,
logistic regression [14], etc. These methods are usually designed by prior knowledge of the
task and making hypothesis to the data distribution. The features given to these methods
need to be engineered and selected.

Deep neural networks
Over the past few years, deep learning (DL) has achieved great success in many areas. From
simple optical character recognition (OCR) to the most cutting-edge natural language pro-
cessing (NLP) chatbot, deep learning has pushed artificial intelligence (AI) to a new era. Deep
learning is a branch from machine learning topics. It formulates the mapping by using a
group of layers to build up a network and learns low-level input features to build up high-
level abstraction through its hierarchical structure. The architecture of the network is flex-
ible, which makes it easy to adapt the capacity of the model according to the amount and
diversity of the training data. The features are learned by the network automatically, thus the
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feature extraction and feature selection steps can be skipped. The principle of the network
structure is inspired by biological system in animal brains. The number of layers can vary
from 3 (one input layer, one hidden layer and one output layer) to over 100 (ResNet-101 [23]).
That’s why it is called deep neural networks (DNN).

Similarly to other machine learning algorithms, a loss is defined according to the task.
The parameters (also called weights) in different layers are updated by back-propagation [55],
which calculates the gradient of the parameters with respect to the loss and performs gradient
descent [53] recursively. The only difference from an ordinary gradient descent algorithm is
that the weights in the intermediate layers can be reused when they are back-propagated
to the previous layer [21] . Depending on the direction of the connection between different
layers, there are mainly two types of deep neural networks. If the network does not have
feedback connection between layers, it is called feed-forward deep neural networks. If the
output of some layers are re-connected to the input of the previous layers, it is called recurrent
neural networks (RNN). RNN are out of the scope of the presented thesis.

The building blocks of a deep neural network are different layers. Some of them are generic
enough to be seen in many different tasks, such as fully-connected layers and convolutional
layers. Some of them are dedicated to some specific tasks such as RoIPool in Faster R-
CNN [51] and RoIAlign in Mask R-CNN networks [24] for image object detection. In the
following subsections fully-connected layers and convolutional layers will be introduced.

Fully-connected layers
Inmany cases, the data given to the deep neural network can be converted to one-dimensional
vectors called feature vector. Fully-connected layer formulates the mapping from the input
vector to the output vector by matrix multiplication followed by non-linearity. Given by Equa-
tion 2.10, if the input vector �⃗� has 𝑛 elements, and the output vector �⃗� has 𝑚 elements, the
matrix 𝐴 should have 𝑚 × 𝑛 elements. These elements are the weights of this layer. In this
case, every element of the input �⃗� has influence on every output in vector �⃗�. This is the rea-
son why it is called ‘fully-connected layer’. The non-linearity is a nonlinear function such as
sigmoid function or a rectified linear unit (ReLU). Adding non-linearity is necessary, other-
wise two matrices multiplied in series are equivalent to a single matrix multiplication, which
is unable to do non-linear mapping.

�⃗� = 𝑛𝑜𝑛-𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦(𝐴 × �⃗�) (2.10)

Convolutional layers
One of the most common and useful applications of machine learning algorithms is to per-
form image classification. If the resolution of the image is high, it is usually not easy or even
impossible to convert the input data to one dimensional vectors and apply fully-connected
layers to those vectors. In this case, convolutional neural networks (CNN) is usually used to
achieve a sparse connection between its input and output. By definition, the two dimensional
convolution applied to a two dimensional image is performed by a kernel with 𝑚×𝑛 weights.
The kernel slides over the image and calculates the output pixel value based on the weighted
average of the pixels covered by the kernel. The output pixel is only influenced by the pixels
inside the kernel, which makes the convolutional layers achieve a sparse mapping from the
input to the output. Therefore the number of parameters are less. Consequently, the overfit-
ting risk is lower and the generalization ability is better. Furthermore, In combination with
max-pooling process, CNN can also achieve local translational invariance. In Figure 2.7, the
structure of AlexNet [33] is shown, which is a well-known architecture in the history of CNN.

2.1.3. Features of radar based road user classification
Classification is an important aspect in a detection algorithm. When an algorithm is devel-
oped for classification, the features should be considered at first. To do road user detection
task, the radar ‘sees’ the world in a different way compared to camera, LiDAR or human eyes.
It does not have the actual shape of a road user in 3D space. What it has is the speed and
reflectivity distribution in horizontal plane. In high-level data and low-level data, the repre-
sentation of the features are different, but the principle behind the features are the same.
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Figure 2.7: The architecture of AlexNet [33], a well-known deep neural network for image classification.

Using them as input, the main features used by radar to discriminate road users are reflec-
tivity distribution, spatial distribution and speed distribution. These features are explained
in the following subsections.

Reflectivity
The reflectivity is usually represented by radar cross-section value (RCS) in high-level data
and magnitude of the radio wave responses in low-level data. It mainly depends on the
material of the object. Metal has a much higher reflectivity than the clothes or vegetation.
As a consequence, cars are more reflective than other road users. Cyclists are between cars
and pedestrians, due to the combination of human body and bike frame. Pedestrians are the
least reflective road users. Sometimes if the pedestrians are in a cluttered background, they
will be falsely removed by the intermediate processing stages, e.g. CFAR, which is explained
in subsection 2.1.1.

The range of the object also influences the received magnitude of low-level data. According
to [4], the received magnitude decreases with ኻ

፫Ꮆ , where 𝑟 is the range.

Spatial distribution
The spatial distribution of road users in 2D horizontal plane is usually used as a feature for
many algorithms [27, 42, 71]. Typically, cars have larger area in space while the area covered
by pedestrian or bike is smaller. Using high-level data, this distribution is usually measured
by the spread and/or standard deviation of range and azimuth angles. In low-level data,
the spatial distribution is measured by the distribution of magnitudes. This distribution
is influenced by the range and angle resolution of the radar. A typical range resolution is
around 0.5 𝑚 with 2∘ angular resolution at the central FOV. In other words, each 2D grid
cell is at the same scale of a road user. In addition, radar uses polar coordinate system to
discretize the space. With a constant angle resolution, the width of each grid cell gets larger
at a larger range, see Figure 2.8. As a consequence, if the road user is far away from the
radar, the non-zero entries in the low-level data will be less.

micro-Doppler signature
For radar road user classification, the speed distribution is usually used, which is also called
micro-Doppler signature, see Figure 2.9. These two names are used interchangeably in this
thesis. If a moving vehicle is detected by the radar, the speed distribution of the vehicle will
have few or only one peak, because it is a rigid body with a single speed. Unlike vehicles and
buildings, the human body is deformable. When a pedestrian is walking or a cyclist is riding
a bike, different parts are moving at different velocities. The arms and legs of a pedestrian
are moving at higher speed. The feet are on the ground with zero speed. The torso is at
main speed, which is usually at around 1 𝑚/𝑠. The wheels of the bike have different speed
components depending on the position. Consequently, a road user detected by the radar will
produce different Doppler speed responses in radar cube or different distribution of targets
at the same position with different speed. In addition, if the speed distribution is observed
over time, the speed of different road users will show different modulations. For example, the
speed of the arms of a pedestrian will be higher when they are reaching out and lower when
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Figure 2.8: The range-angle image of the radar low-level data. The range resolution and azimuth angle resolution does not
change with range. Therefore the grid cell gets larger when the range is larger.

they are withdrawn. The micro-Doppler signature caused by a pedestrian moving back and
forth is shown by Figure 2.10. The positive speed means the pedestrian is coming closer.
The wide band around the bulk translational speed can be observed. If the image is zoomed
in, the gait pattern of the pedestrian is also visible.

Figure 2.9: The speed distribution of a rigid body (e.g. vehicle) and a deformable body (e.g. pedestrian).

2.2. High-level data algorithms
Radar high-level data is a target list. Each target has a 2D position in the horizontal plane,
a Doppler speed relative to the ego-vehicle and an RCS value to measure the reflectivity. In
this chapter, these values are denoted by (𝑥, 𝑦, 𝑣፫ , 𝜎). The number of targets per radar frame
varies from 100 to 300, see Figure 2.11. These targets can be seen as a point-cloud, but
not as dense as LiDAR’s. This is the data one can get out-of-the-box from a commercially
available radar.

Many radar based road user detection algorithms using high-level data are following a
clustering based pipeline [45, 46, 62, 71]. The main stages of this pipeline are shown by
the flow chart in Figure 2.12. The details will be covered by the following subsections. The
pipeline starts with a clustering method, which clusters targets into object proposals. After
the clustering stage, a set of features are extracted from each cluster. These features are
usually calculated to measure the distribution of targets’ properties in each cluster, such
as the speed distribution, the reflectivity distribution and the spatial distribution. For each
cluster, these hand-crafted features form a feature vector. This feature vector will be classi-
fied by a classifier, such as random forest [29], support-vector machine (SVM) [13], multilayer
perceptron (MLP), etc.
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Figure 2.10: The micro-Doppler signature of a pedestrian moving back and forth. The positive value means the pedestrian is
coming closer. The wide band around the bulk translational speed can be observed. If the image is zoomed in, the gait pattern
of the pedestrian is also visible.

Figure 2.11: This figure shows the target list of a single radar frame from the top-down view. The vehicle is heading towards the
left. The blue points are radar targets.

Figure 2.12: Main stages in clustering based pipeline for radar high-level data. Firstly, the targets are clustered into different
object proposals. Afterwards, a set of features are extracted from each cluster. These features are given to a classifier. The
labels predicted by the classifier will be assigned to the targets inside each cluster.

With the development of high-level data algorithms and deep learning methods for LiDAR
point-cloud, some deep learning methods originally for LiDAR point-cloud are adapted for
radar target list. These methods will be elaborated in subsection 2.2.5.

Apart from the major steps in the pipeline, there are also some preprocessing steps applied
to radar high-level data, such as the ego-motion compensation and multi-frame aggregation.
These processing steps are covered by subsection 2.2.1.
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2.2.1. Pre-processing
Ego-motion compensation and filtering
Radar is only able to measure the relative speed of each target in radial direction. When the
vehicle is moving, targets from static objects such as buildings, trees and street lights will
also have a non-zero relative speed, and the measured speed of other moving objects such as
pedestrians, cyclists and cars will be shifted due to the ego-motion. The speed with respect
to the ground is more meaningful than the relative speed with respect to the radar, which is
fluctuating with the ego speed. Therefore, ego-motion compensation is necessary. A typical
ego-motion compensation method is proposed by [37].

Given the velocity of the ego-vehicle rotation center 𝑣፞፠፨፱ , 𝑣፞፠፨፲ , the yaw rate 𝜔፞፠፨ and the
mounting position of the sensor with respect to the rotation center 𝑠፱, 𝑠፲, and assuming that
the vehicle is not drifting (i.e. the lateral velocity 𝑣፞፠፨፲ is zero), the linear speed of the sensor
can be calculated by Equation 2.11.

(𝑣
፬፞፧
፱
𝑣፬፞፧፲

) = (𝑣፱ − 𝜔
፞፠፨𝑠፲

𝜔፞፠፨𝑠፲ ) (2.11)

After getting the absolute speed of the sensor, i.e. the ego-motion, an expected measured
speed 𝑣፫፬፭ፚ፭። at every target’s location is calculated by Equation 2.12. This is the speed
measured by the radar if the target at that position is from a static object. Recalling the
radar is only able to measure the radial speed, this expected speed depends on the azimuth
angle.

(𝑣፫፬፭ፚ፭።𝑣፭፬፭ፚ፭።
) = (cos (𝛼 + 𝛽) − sin (𝛼 + 𝛽)

sin (𝛼 + 𝛽) cos (𝛼 + 𝛽) )(
𝑣፬፞፧፱
𝑣፬፞፧፲

) (2.12)

The measured speed 𝑣፫ of the target is a superposition of the expected speed 𝑣፫፬፭ፚ፭። and
the speed of the target itself ̂𝑣፫ with respect to the ground. Therefore, ̂𝑣፫ can be calculated
by Equation 2.13. The relation between the expected speed 𝑣፫፬፭ፚ፭።, the speed with respect
to the ground ̂𝑣፫ and the measured speed 𝑣፫ are demonstrated in Figure 2.13.

̂𝑣፫ = 𝑣፫ − 𝑣፫፬፭ፚ፭። (2.13)

Figure 2.13: The ego-motion compensation geometry. The yellow vector is the ego-motion speed, which is the same with sensor
speed. The green vector is the radial component of the ego-motion speed, i.e. the expected speed ፯ᑣᑤᑥᑒᑥᑚᑔ, and the red vector
is the tangential component (not measureable by radar). The black vector is the measured speed ፯ᑣ. The compensated speed
̂፯ᑣ is the difference between the black vector and green vector.
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Micro-Doppler signatures are not observable if the object is not moving. Moreover, the
distribution of targets of static objects differs from targets of moving objects. Therefore,
after the ego-motion compensation, the targets from static objects are usually removed in
radar high-level data pre-processing stage and only dynamic ones are processed. The usual
solution is to set a threshold empirically for the compensated speed ̂𝑣፫, such as the threshold
in [60]. The other possible solution is to use the standard deviation of the compensated speed
to set the threshold, which is used by [37].

Aggregation of multiple radar frames
The maximum range measured by a radar is usually higher than 100 𝑚 and the field of
view (FOV) is usually larger than 45∘. However, in comparison with the big area covered by
FOV, there are only hundreds of targets detected per radar frame. The low density of the
targets causes two problems. First of all, most clustering methods are density based [19],
which assumes the density inside the cluster is higher than the density outside the cluster.
If the targets are so sparse that the distance between targets are at the same level of distance
between objects, this assumption does not hold. The extreme case is that when there is
only a single target from the object, the parameter setting usually used by the density based
clustering method will ignore that single target. Secondly, the statistical features to describe
the distribution of targets in each cluster will be less reliable, because statistics of small
amount of samples are sensitive to outliers. To address the sparsity problem, multiple radar
frames are usually aggregated to generate a more dense point-cloud [61, 62, 71].

The time window to aggregate the frames depends on the requirement of the algorithm. In
clustering based methods, such as [61] and [71], two radar frames are aggregated, causing
a 150 𝑚𝑠 time window. In contrast, the deep neural network in [62] needs more targets in
each frame for its multi-scale grouping (MSG) module. Therefore, in that study the data are
accumulated over 500 𝑚𝑠. The frames covered by the time window are transformed into the
vehicle coordinate system of the earliest measurement.

The models mentioned above do not use time sequence as a feature. In contrast, using
recurrent neural networks (RNN) considers the targets from different time steps explicitly.
In that case, more radar frames are used for a single prediction. For example, the LSTM
algorithm used in [71] takes a sequence of length 8 as its input.

The delay caused by the aggregation varies from 0.15 𝑠 to 0.8 𝑠. This is the main disad-
vantage of aggregation. In real time driving scenario, such delay is not acceptable.

2.2.2. Clustering method
The information from a single target is limited, therefore, in most radar based road user
detection and classification algorithms, the targets are firstly grouped into object proposals
by a clustering method.

One of the most commonly used clustering methods is called density-based spatial clus-
tering of applications with noise (DBSCAN) [19]. This algorithm assumes that the density
inside a cluster should be higher than the density of the background. After the feature space
is defined, the targets that have enough neighbouring targets are set as core targets. The
minimum number of targets around each core target 𝑁፦።፧ is the first hyper-parameter for
this clustering method. Another target is directly reachable from a core target if the distance
between them are less than the pre-set minimum distance 𝑒𝑝𝑠, which is the other important
hyper-parameter for DBSCAN. If one target is directly reachable from the other targets, but
it is not a core target, this target formulates the edge of a cluster. The main reason for using
DBSCAN is that this method does not require the number of clusters as input, which is diffi-
cult or even impossible to estimate beforehand in driving scenario. Considering the majority
of the clustering methods are different variants of DBSCAN, the current thesis only covers
related work that uses DBSCAN for clustering.

In [61], a comprehensive study on DBSCAN method for radar targets is performed. A high
resolution radar is used, similar to the one used in [60] by the same authors. Therefore the
number of targets detected by the radar will increase compared with targets from a typical
commercial radar, which benefits the clustering stage. The feature space for clustering is
formed by 2D position and speed. Targets from two time steps are aggregated and then
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clustered. The minimum number of targets in a cluster is set as 2 and the minimum distance
is 1 in the feature space. The clustering method in this paper is used by many studies such
as [45] and [39].

The similar DBSCAN method is used in [46] and [45] by a single radar frame. As is
mentioned in [46], if only one radar frame is used, there are many cases where the number
of targets of one cluster is equal to 2, which is the minimum targets to formulate a cluster.
In other words, many clusters have very few points in it.

In [71], a custommetric to measure the distance in space, time and velocity is used for DB-
SCAN. After the clustering stage, some targets are mis-clustered. To be specific, some objects
(road users) are falsely merged together into one cluster or some targets from background
are merged to road users. Some large objects are clustered into several different objects. To
compensate for these types of clustering errors, a manual correction is applied to the mis-
clustered data. After the correction, targets inside the corrected clusters are re-clustered to
form a set of new clusters for data augmentation. From the re-clustered clusters, an ad-
ditional set of clusters is created by randomly dropping 40% targets. Due to this manual
correction, the problems caused by the clustering error is avoided in their training and test-
ing stage. However, this manual correction makes the data not realistic enough for real-life
driving scenario, since no manual correction can be applied there.

In [70], the extended DBSCAN (EDBSCAN) with a new size metric is proposed, which is
able to deal with the significant density variation in the feature space. However, the clus-
tering method in this study only considers how to effectively cluster pedestrian out of the
background. The parameter setting also serves for this purpose. It does not consider how to
effectively cluster objects from different classes.

Unlike the manual fine-tuning of hyper-parameters mentioned above, in [63], to use DB-
SCAN more effectively for different road users, the parameters are learned by a manually
clustered training dataset to optimize the performance. On the other hand, manually anno-
tated dataset is limited in size and diversity. Therefore it limits the generalization ability of
those learned parameters.

The clustering methods mentioned above are effective in many cases and generates useful
object-level information. However, DBSCAN has its limitations under certain conditions.
First of all, the minimum number of targets per cluster is different for different road users. A
single pedestrian usually has one or two targets while a car usually has multiple targets. In
order to cover different classes, this parameter is set based on the smallest class, usually the
pedestrian class. Therefore, when multiple road users are moving in a group, e.g. pedestrian
group, they will be clustered into the same object. Secondly, the minimum distance to form
a cluster also depends on the class of the road user. A car usually has larger extension in
space than a pedestrian. If the distance is decided by the scale of the smallest road user, i.e.
the pedestrian, the targets from a car will possibly be separated into two clusters. Last but
not least, when the targets are sparse, the following feature extraction stage will suffer from
outliers.

2.2.3. Feature extraction
From the object list generated by different clustering methods, features are usually extracted
based on different speed, reflectivity and space distributions. Methods in [25, 26] use fea-
tures of the different profiles in range dimension and Doppler dimension and combine these
features with other features such as RCS and signal-to-noise ratio. Absolute velocity is also
considered with a low weight. The experiment is performed using a 24 𝐺𝐻𝑧 radar, of which
the resolution is lower than 77 𝐺𝐻𝑧 radar.

Following their work, the study in [46] uses 79 𝐺𝐻𝑧 radar with a higher resolution than a
typical commercial radar. Some features used by [25, 26] are also used by this study, such
as the extension, variance and deviation of the speed, etc. There are two significant changes.
Firstly, due to the sparsity of radar targets, a feature that measures how much is the object
different from a solid body is removed. Secondly, the extension in x- and y-direction within
the horizontal plane are summed up to create a new feature.

In [71], more features are extracted from each cluster. The features can be divided into
two parts. The first part is directly calculated from the targets’ high-level features. For
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example, the mean value, standard deviation and the spread of RCS value and ego-motion
compensated speed. 18 features are created in total. The second part is indirectly calculated
by RCS histogram and speed histogram. The number of bins for each histogram is fixed
as 𝑛።፧፬ = 8. In this case, the bare count of an individual bin significantly varies among
different clusters. Therefore, the histogram is normalized. The position and count of each
bin is encoded into a single value, resulting into 8 values per histogram. The 8 values from
each histogram are combined into 16 indirect features. In the end, 34 features from each
cluster are used for classification.

In [56], different features are compared and selected for high-level data. In this study, over
50 features are generated. The increase comes from introducing further statistics of the same
domains: speed, space and reflectivity distribution. Therefore, many of them are correlated
to each other. A feature selection algorithm called backward elimination is performed in order
to select a smaller subset. The elimination is done in a greedy fashion. Once a feature is
removed, this feature will not be considered anymore. On top of the general feature selection,
a classifier-dependant feature selection scheme is provided in [57] by the same authors.

2.2.4. Classification
Many studies choose random forest as the classifier, such as [46, 56, 71]. Random forest
is originally proposed in [29], which is a combination of multiple decision trees with boot-
strapping and feature bagging in order to improve generalization ability. Decision tree is a
tree-like structure, which is formed by different nodes and edges, see Figure 2.14. The nodes
that do not have any children node are called leaves. The node that does not have parent
node is called root. Starting from the root, one value from the feature vector is tested by
an if-then-else question, e.g. If feature 𝐹ኻ > 50 then 𝐹ኻ goes to 𝑁𝑜𝑑𝑒ኻ, else it goes to 𝑁𝑜𝑑𝑒ኼ.
After the testing, the samples are split to two children nodes. The testing stops until all the
training data are classified or the minimum number of samples in a node is reached. Then
the node becomes a leaf. The decision tree classifier has good capacity for different input
and output types, e.g. classification, regression. It is easy to understand and visualize. The
input to a decision tree does not need careful preprocessing, e.g. normalization. However,
decision tree has a big risk to overfit the training data. To solve this problem, random forest
is introduced. The main strategy used by random forest is ensemble learning via bootstrap-
ping. Bootstrapping is a procedure that randomly samples the training data repeatedly with
replacement into subsets. The subsets are used to train different decision trees. During
training, feature bagging is applied, which selects a random subset of features at each can-
didate split, i.e. node in the tree. At the prediction phase, the predictions of multiple decision
trees are either averaged by the number of trees or used for majority voting. Random forest
has three advantages. First of all, similarly with decision tree, it is not necessary to normalize
the data. Secondly, the training procedure of a random forest does not take a lot of time.
Last but not least, it is reliable for different distributions with good generalization ability. In
radar road user classification algorithms using high-level data, the random forest classifier
performs well. In [71], random forest achieves slightly worse accuracy with much less targets
than LSTM. In [46], the ensemble bagged trees achieves the highest accuracy.

Support-vector machine (SVM) [13] is used in [25, 46], which discriminates different
classes (usually two) by a decision boundary and optimizes the margin between this bound-
ary and training data. The original SVM is a linear classifier. Its decision boundary is a hy-
perplane. If kernel functions are used, the decision boundary can also be nonlinear, which
makes SVM more flexible. SVM classifiers with different kernel functions are used by [46]. In
their study, kernel functions with higher order (cubic and quadratic SVM) are more accurate
than the linear SVM. However, SVM with Gaussian kernel does not perform well, which in
theory has the infinite dimension map. This result implies one of the disadvantages of SVM
classifier. Choosing a suitable kernel function is not easy.

Multi-layer perceptron (MLP) is used in [46], which is a simple neural network with only
fully-connected layers. A MLP with one hidden layer achieves a good trade-off between effi-
ciency and accuracy.
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Figure 2.14: The structure of a decision tree.

2.2.5. End-to-end solution
Considering the similarity between radar target list and LiDAR point-cloud, the end-to-end
solutions originally for LiDAR point-cloud can be adapted for radar target list. Among them
PointNet [47] is the first architecture that uses point-cloud directly as input, instead of pro-
jecting points to images [73] or assigning them to voxels [75]. It uses convolutional neural
networks in combination with max-pooling to generate a feature vector directly from a point-
cloud. Due to max-pooling, the output is not influenced by the order of input points. On
top of PointNet, PointNet++ [49] is introduced. Different from PointNet which only extracts
features from the entire point-cloud, the points are first sampled into different groups with
different radius. This step is called multi-scale grouping (MSG). After each layer for MSG, a
feature vector for the group is generated by a small PointNet and this vector becomes a single
point for the next MSG layer.

In the study of [62], PointNet++ is used to segment radar point-cloud. The main archi-
tecture of PointNet++ is kept. Compared with the original PointNet++, there are two main
changes. The first change is the feature space used for neighborhood search. The original
PointNet++ uses the 3D position of each LiDAR point, while the PointNet++ for radar only
uses 2D ground plane position. The second change is the feature for radar targets segmen-
tation. The features are augmented by the RCS and velocity. This study achieves good target
segmentation results on a large dataset. However, in order to produce a dense point-cloud
suitable for PointNet++, the radar targets are accumulated over 500 𝑚𝑠. Targets within the
500 𝑚𝑠 time window are shifted back to the coordinate system of the first time step.

Inspired by Frustum PointNet [48], [16] extends PointNet++ by adding bounding box pro-
posal and regression for cars. The research uses a single sweep of two radars, which is
suitable for car detection, since they usually have several reflections. The authors claim that
the method can be extended to multi-class detection tasks. However, it is unknown if a single
frame of targets would be enough for smaller road users.

2.3. Low-level data algorithms
The low-level radar data is the data after the angle FFT but before target list generation. For
more details about radar DSP and target list generation, please refer to section 2.1.1. As
shown by Figure 2.15, the low-level radar data is a three dimensional matrix. A cell inside
the matrix corresponds to a certain range, Doppler speed and azimuth angle. Due to its
shape, the low-level radar data is also called the radar cube. The length of the cell is the
resolution of low-level radar data in each dimension. Each entry of this 3D matrix is the
radio wave response (usually magnitude) for the range, speed and azimuth angle indicated
by the cell indices.

In most cases, the positioning accuracy of low-level data is usually not as good as high-
level data, since sophisticated processing steps to calculate more accurate position and speed
of each target only take place after targets are generated from the radar cube. However, low-
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Figure 2.15: Radar low-level data has three dimensions, which are range, Doppler speed and azimuth angle. The entries are
magnitudes of radio wave at a certain position with a certain speed.

level radar data includes more information than target list due to less thresholding, which
contains characteristic features for road user detection, especially for vulnerable road users.
One of the most commonly used features is the micro-Doppler signature. For example, the
Figure 2.16a from [60] shows the range-Doppler image of a cyclist, where the wheels and
pedals are clearly visible. If the micro-Doppler signature is recorded over time, it will show a
modulation by the periodic movement of different parts of a road user, e.g. the different speed
of the limbs when a pedestrian is walking. Figure 2.18 shows the micro-Doppler signature
of a walking pedestrian.

(a) (b)

Figure 2.16: (a) The range-Doppler image of a cyclist in [60]. The Doppler signature caused by the wheels, pedals and feet are
clearly visible. (b) The range-Doppler image over successive measurement cycles of a radial moving pedestrian [60].

Compared with the target list, the low-level data is less explored. Most research usu-
ally focus on a subset of the three dimensions, depending on the experimental setup, their
hardware and the problem addressed. For example, if there is only one TX-RX antenna pair,
azimuth angle can not be recovered, thus only range-Doppler image is obtained.

Due to the structured format of low-level radar data, an upcoming trend is to apply image
processing algorithms. For example, convolutional neural network (CNN) for images are used
for range-Doppler image classification [44] and segmentation [74], as well as Doppler-time
image classification [3]. For static objects, it is also used for range-Angle image classifica-
tion [42]. Other than deep learning methods, SURF features [5] are used in [46] for feature
extraction. In the following content, different methods will be categorized based on the rep-
resentation of the low-level data.
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2.3.1. Range-Doppler image
The range-Doppler image is a 2D image with axes of range bins and speed bins. An example
is shown by Figure 2.16a. This image is generated by the radio wave responses from a single
RX antenna after applying range FFT and Doppler FFT. In other words, it is one step before
the entire 3D radar cube. Each pixel stands for the magnitude of radio wave responses at
that range and speed.

A study that focuses on range-Doppler image itself is performed by [60] using a high reso-
lution radar. The range-Doppler images from successive measurement cycles of pedestrians
and cyclists in different orientations are obtained and analyzed. In Figure 2.16b, a radial
moving pedestrian shows a characteristic wide band of speed responses, from zero speed to
three times of the pedestrian’s walking speed (2 𝑚/𝑠). For cyclists, the responses caused by
the rotation of wheels and pedals are clearly visible when the bike is moving in radial direc-
tion, see Figure 2.16a. Although the reflection is weaker and the distribution is narrower
when the road user is moving in lateral direction, due to the high resolution in range and
speed measurement, the small radial components caused by the extension of body parts in
different angle bins can still be recognized.

Single range-Doppler image can be used for image classification. Following the study in
[60], the same authors perform road user (pedestrian, cyclist, car) classification using single
range-Doppler image [44]. CNN with fully-connected layers allows only one moving object
to be classified per radar frame. Frames that contain multiple road users are removed. A
similar algorithm can be found in [1], but this study classifies human and robot rather than
road users. The other study for single frame range-Doppler image is done by [45], which
uses clustered high-level radar data to select region of interest (RoI) from the range-Doppler
image and generates SURF features [5] for classification. In conclusion, the single range-
Doppler image is used for road user classification because different road users have different
distributions in range and speed.

Other than image classification, range-Doppler image is also used for image segmentation.
In [74], the range-Doppler image is segmented by U-net [54] to estimate the 3D position of a
car in a static environment. The output of the segmentation network has the same resolution
with the input. Therefore, unlike image classification algorithms, by image segmentation
the number of objects in one range-Doppler image is not limited to one. To estimate the
position, direction of arrival (DoA) is needed. As described in subsection 2.1.1, DoA can
only be obtained by range-Doppler images of multiple receivers. Therefore, range-Doppler
image from different antennas are used together as multiple channels for the input. In this
study, the DoA that should have been done by FFT is learned by deep learning. However, the
original U-net structure does not have module for such a transformation, which means the
transformation should be learned implicitly. The only result of the experiment is the training
and validation loss. The prediction accuracy is not evaluated quantitatively. To the best of
our knowledge, this is the only image segmentation method applied to radar low-level data.

Instead of using range-Doppler image from a single time step, there are also studies us-
ing range-Doppler images from multiple time steps. The study in [31] performs road user
(pedestrian, cyclist, vehicle) classification by range-Doppler image sequence using a recur-
rent convolutional neural network with transposed convolutional layers called C-LSTM. 5
feature maps from 3 C-LSTM are concatenated for each prediction. Using more frames is
helpful to improve the classification result. However the time delay caused by multi-frame
classification method does not satisfy the real-time processing requirement.

2.3.2. Doppler-time image
Doppler-time image is widely used for radar object detection and classification [6, 66, 70,
72]. It is generated by accumulating micro-Doppler signature over time. The micro-Doppler
signature is generated at a certain range if the radar uses continuous radio wave, such as the
micro-Doppler signature in [3], which is shown by Figure 2.17. In this study, the range bins
are chosen by OS-CFAR [8] and tracked by Kalman filter [30]. In contrast, if a pulse wave
radar is used, the micro-Doppler signature can also be generated without knowing the range
of the object, such as the micro-Doppler signature in [32]. In that case, the micro-Doppler
signature is the radio wave responses of the entire FOV.
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Figure 2.17: The Doppler-time image of a single pedestrian walking (left) and a cyclist (right) [3].

The Doppler-time image contains more information due to larger time window, which ben-
efits pedestrian detection task. When a pedestrian is walking, the micro-Doppler signature
will show a gait pattern. For example. the micro-Doppler signature is wider when the legs
are opened and narrower when the legs are closed. The arms and torso also have similar ef-
fects. The detailed micro-Doppler signature of a walking pedestrian is shown by Figure 2.18
from the study of [6]. To classify a pedestrian by Doppler-time image, the time span of a
Doppler-time image is usually longer than 2 𝑠. It is a suitable solution for surveillance [68]
which does not require real-time processing. However, for driving scenarios, accumulating
signals over 2 𝑠 is too long for the vehicle or the driver to react to the situations.

Figure 2.18: The micro-Doppler effect caused by the torso, feet, legs and arms of the pedestrian from the study in [6]. The
different parts show different Doppler frequencies and amplitudes.

2.3.3. Range-angle image
Range-angle image contains only grid cells in 2D horizontal plane. An illustration of 2D grid
cells is shown by Figure 2.19. This image is a heatmap in 2D space. The values in each grid
cell is the reflectivity and/or Doppler speed.

In [42], CNN is applied to range-angle image’s RoI for static objects detection, such as
car, construction barrier, motorbike, etc. The range-angle image used in the study is shown
by Figure 2.20. At the first step, OS-CFAR [8] is applied to the range-Doppler spectrum in
order to find potential targets in range and speed dimension. After OS-CFAR, the azimuth
spectrum is calculated by angle FFT, resulting in a 3D range-speed-azimuth radar cube.
From the radar cube, peaks that are higher than its surroundings are detected. Around
each peak, an RoI is cropped. After RoI is created, only a single speed slice is chosen based
on the maximum intensity at its range and angle bin. The size of the RoI is 64 × 66 (range
bins × angle bins). Then this 2D slice is given to CNN for classification.

In [4], range-angle image is used to classify pedestrian out of static objects by a united
membership value. The membership value is calculated by the features from a intensity
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Figure 2.19: The range-angle image
of the radar low-level data. The range
resolution and azimuth angle resolu-
tion does not change. Therefore the
grid cell gets larger when the range is
larger.

Figure 2.20: The range-angle image used by [42]. Along speed axis of the
radar cube, only the slice with maximum intensity is selected as 2D range-
angle RoI.

image and a frequency image. Both of them are range-angle images but their pixel represents
different features. Intensity image has the intensity value (reflectivity) at each grid cell, while
frequency image has the Doppler frequency shift at each grid cell. The latter is proportional
to the measured radial speed. Compared with the study in [42] that only uses intensity, the
speed in this study will provide extra information. However, adding one speed per grid cell
only enables the calculation of the speed distribution in space. The speed distribution inside
one 2D grid cell is missing.

Range-angle image can be used to detect pedestrian out of background or detect differ-
ent static objects, because it has the spatial distribution information. However, the micro-
Doppler signature in speed dimension is missing, which is a descriptive feature for road user
detection. Furthermore, the grid cell of range-angle image is limited by the range and az-
imuth angle resolution. The size of a grid cell grows with range and is at the same scale of
a pedestrian (see Figure 2.19), which means the low-level data ‘samples’ the pedestrian in
space at a very low sampling rate. In contrast, the resolution in speed dimension is usually
better than the resolution in range and azimuth angle. A pedestrian covers more cells in
speed dimension compared with the number of cells covered in range or angle dimension.
Therefore, including micro-Doppler signature in speed dimension for road user detection is
beneficial than only using spatial distribution in range-Angle image.

2.4. Main contributions

Method Features from Number of frames Dataset Ego-vehicle

Schumann1 [71] high-level data 2 (150 ms) real-life moving

Prophet1 [46] high-level data 1 (50 ms) staged standing

Schumann2 [62] high-level data >1 (500 ms) staged moving

Prophet2 [45] range-Doppler image 1 real-life standing

Perez [44] range-Doppler image 1 staged standing

Patel [42] range-angle image 1 staged moving

Our method 3D radar cube 1 (75 ms) moving moving

Table 2.1: An overview of the most relevant methods. The methods are selected from the related work in the previous sections.
The data used for feature extraction is listed in column ‘Features from’. The number of frames for a single prediction is listed
in ‘Number of frames’ column. If the actual processing time is mentioned in the study, they are included in the brackets. The
‘Dataset’ means the recorded road users. The ‘Ego-vehicle’ means the state of the vehicle used for the recording.
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Some most relevant studies from the related work are shown by Table 2.1. Different
methods are compared in terms of the data used for feature extraction, the number of frames
used for one prediction, the road users in the dataset and the state of the test vehicles. In
comparison with other methods, our method uses each single target in high-level data as a
region proposal and cropped low-level data as region descriptor. In this way, only single radar
frame is used for each prediction, which guarantees the real-time performance. The problems
caused by the clustering stage before classification are alleviated. Amulti-stage convolutional
neural network is used, which is called LLTnet. The network structure is designed for radar
based road user detection, which considers the essence of each dimension. The training
data contains multiple road users per frame in real life urban scenario recorded by a moving
test vehicle. The output of LLTnet is target segmentation. After the segmentation, the label
of targets can be fused into an object list. The method is not only evaluated by target-level
classification accuracy but also by object-level classification and localization accuracy.



3
Methodology

The proposed pipeline is shown by Figure 3.1. At the first stage, the high-level data and low-
level data are preprocessed separately, e.g. ego-motion compensation, noise reduction, etc.
After the preprocessing steps, each target from high-level data is mapped to its correspondent
grid cell inside the radar cube. This step is called region proposal mapping. Around each
mapped target, a small radar cube is cropped. This cropped radar cube is given to a 3D CNN
module for multi-scale feature extraction in space and speed, which is followed by a 1D CNN
module for one dimensional feature extraction in Doppler speed. After the learnable features
are extracted, the feature vector is concatenated with the high-level features and given to the
fully-connected layers. In some other studies [62], the high-level features used are (𝑥, 𝑦, ̂𝑣፫ , 𝜎),
where 𝑥 and 𝑦 are coordinates in Cartesian coordinate system. ̂𝑣፫ is the compensated speed
and 𝜎 is the RCS value. However, if low-level data is used, the polar coordinate system is more
directly linked to the low-level indices, therefore using range and azimuth angle of the targets
as high-level position is more meaningful. The high-level features used by the current study
are ego-motion compensated speed ̂𝑣፫, the range 𝑟, the angle 𝜃 and the RCS 𝜎. By doing low-
level feature extraction and high-level feature concatenation, each target has its high-level
feature part and low-level feature part. This target is called low-level target, which is also
called LLT in the following content. The 3D CNN module, 1D CNN module, concatenation
and fully-connected network (FCN) compose the LLTnet, which is introduced in section 3.2.
LLTnet performs target segmentation. In order to get object-level information, after each
target is given a label, these targets can be fused into road users by a post-clustering stage.

Figure 3.1: The pipeline for the radar low-level data based road user detection algorithm. After the preprocessing steps, each
target is mapped to its correspondent grid cell inside the radar cube. A small radar cube around the target is cropped. This
cropped radar cube is given to a 3D CNN module for multi-scale feature extraction in space and speed, which is followed by a
1D CNN module for one dimensional feature extraction in speed. After feature extraction by CNN, the low-level feature vector is
concatenated with the high-level features and given to FCN for target-level classification, i.e. target segmentation. Afterwards,
the segmented targets are given to a post-clustering stage, which fuses the targets into different road users.

27
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3.1. Pre-processing
In this section, the steps for preprocessing are introduced, including ego-motion compen-
sation for high-level data, non-maximum suppression to create low-level data, the region
proposal mapping to relate them to each other, the noise reduction and normalization to
facilitate training procedure.

3.1.1. Ego-motion compensation

Figure 3.2: The speed components of each target and the corresponding camera image. The yellow vector is the expected
speed of each target assuming it is from static objects. The green and red vector are the expected radial and tangential speed
at each target position caused by the ego-motion. The white vectors are the relative radial speed between target and radar,
i.e. the measured speed. The compensated speed ̂፯ᑣ should be the difference between the green vector and the white vector.
There is a cyclist on the right side in front of the vehicle. The compensated speed ̂፯ᑣ of the cyclist is similar with the expected
radial speed at that position. In this case, the measured radial speed ፯ᑣ indicated by the white vector is small, which means the
relative speed of the cyclist is close to zero.

The compensation rule for the targets is derived similarly as the one in [37], which is
explained in subsection 2.2.1. If the yaw rate 𝜔፞፠፨, the longitudinal speed 𝑣፱ and lateral
speed 𝑣፲ at the rotation center of the ego-vehicle are known, the linear velocity of the sensor
can be calculated by Equation 3.1. The only difference between the equation in this section
and the equation in [37] is from the sign convention. The radar has a sign convention for its
targets velocity and the vehicle has a sign convention for its translational speed, rotational
speed, lateral position and longitudinal position. These sign conventions will influence the
plus and minus signs in Equation 3.1, Equation 3.2 and Equation 3.3.

(𝑣
፬፞፧
፱
𝑣፬፞፧፲

) = (𝑣፱ − 𝜔
፞፠፨𝑠፲

−𝜔፞፠፨𝑠፲ ) (3.1)

(𝑣፫፬፭ፚ፭።) = (cos (𝛼 + 𝛽) sin (𝛼 + 𝛽)) (𝑣
፬፞፧
፱
𝑣፬፞፧፲

) (3.2)

̂𝑣፫ = 𝑣፫ + 𝑣፫፬፭ፚ፭። (3.3)

In Figure 3.2, the compensation for each target is visualized by the image on the right from
a top-down view. The yellow vector is the speed of the sensor, which is equal to the expected
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speed assuming the target is from static objects. When the vehicle is not turning or drifting,
the tangential speed of the sensor is zero, therefore the yellow vector is pointing towards the
front. The green and red vector are the radial and tangential component of the sensor speed,
which are equal to the expected radial and tangential speed at each target’s position. The
expected radial speed components of the targets from static objects depend on their azimuth
angles. The white vectors are the relative radial speed between target and radar, i.e. the
measured speed by the radar. The compensated speed ̂𝑣፫ should be the difference between
the green vector and the white vector. For example, there is a cyclist on the right side in front
of the vehicle, where several targets are detected. The compensated speed ̂𝑣፫ of the cyclist
is similar with the expected radial speed at that position. In this case, the measured radial
speed 𝑣፫ indicated by the white vector is small, which means the relative speed of the cyclist
is close to zero.

Ego-motion compensation for low-level data is not as trivial as it is for high-level data.
Rather than adding or subtracting the expected radial speed for static objects 𝑣፫፬፭ፚ፭። at a
certain position, the compensation should be done by shifting entries in the radar cube. The
ego-motion compensation for low-level radar data is still an open question. Therefore, in the
proposed method, the ego-motion compensation problem of the low-level data is avoided by
using the measured speed 𝑣፫ to crop the low-level features. In other words, at the cropping
step, both low-level data and high-level data are without ego-motion compensation, which
means the shift caused by the ego-motion does not influence the cropping result.

3.1.2. Non-maximum suppression

Figure 3.3: The comparison between the cropping before NMS and after NMS. If non-zero entries in all directions are added by
different Doppler bins, they interfere with each other and produce very similar speed distributions.

In the low-level data, the FFT is applied separately for each dimension by following the
order of range-speed-angle. Details can be found in section 2.1.1. The angle FFT ends up
with non-zero values in all directions. These values are relative magnitudes within its own
range-Doppler bin to select the most possible angle of arrival. However, when there are
two objects at the same range but different angle and Doppler cells, they will interfere each
other in Doppler dimension, see Figure 3.3. The Vec1, Vec2 and Vec3 are the micro-Doppler
signature at each location. If some values are added by angle FFT in other Doppler bins, this
relative distribution will show up elsewhere. Therefore, in the proposed pipeline, only the
three largest values from angle FFT are remained for each range-Doppler cell. Other entries
at that range-Doppler bin are set as zeros. This process is called non-maximum suppression
(NMS). As shown by the second row of Figure 3.3, the noise in micro-Doppler signature at
each position is suppressed. The method is similar to what is done by [45]. Instead of
selecting only the maximum angle as they suggested, in the proposed method magnitudes
from multiple angle bins are remained.
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3.1.3. Region proposal mapping
After the preprocessing of high-level data and low-level data, the targets of the high-level data
are mapped to the low-level data. This process is called region proposal mapping. Firstly,
the range index 𝑅።፧፝ and speed index 𝑉።፧፝ of the low-level data counterpart are calculated
by Equation 3.4 and Equation 3.5. 𝛿𝑟 is the range resolution in low-level data and 𝛿𝑣 is
the speed resolution in low-level data. Here the speed of target is the measured speed 𝑣፫
rather than the compensated speed ̂𝑣፫ because radar cube is not compensated by ego-motion.
For azimuth index, the azimuth angle resolution is not constant, thereby a look-up table is
created according to Equation 3.6. If the azimuth angle 𝜃 is between 𝜃። and 𝜃።ዄኻ, the azimuth
angle index 𝐴።፧፝ is 𝑖. After the target is mapped to the grid cell at (𝑅።፧፝ , 𝑉።፧፝ , 𝐴።፧፝), an RoI
with a certain size can be cropped. If the number of bins cropped in each dimension are
defined as 𝑁፫ፚ፧፠፞, 𝑁ፃ፨፩፩፥፞፫ and 𝑁ፚ፧፠፥፞, the RoI around each target is cropped from 𝐶፬፭ፚ፫፭ to
𝐶፞፧፝ defined by Equation 3.7 and Equation 3.8. After mapping, each target has low-level
features. Therefore, in the proposed method, these targets are called low-level targets. LLT
is used for abbreviation.

𝑅።፧፝ = ⌊
𝑟
𝛿𝑟 ⌋ (3.4)

𝑉።፧፝ = ⌊
𝑣፫
𝛿𝑣 ⌋ (3.5)

𝜃። = arcsin( 𝑖 × 𝑁፩፡ፚ፬፞፬
2×𝑁፞ፚ፦፬ × ፝

᎘
), 𝑖 = −𝑁፞ፚ፦፬ , −𝑁፞ፚ፦፬ + 1, ...0, 1, 2...𝑁፞ፚ፦፬ (3.6)

𝐶፬፭ፚ፫፭ = (𝑅።፧፝ − 𝑁፫ፚ፧፠፞/2, 𝑉።፧፝ − 𝑁ፃ፨፩፩፥፞፫/2, 𝐴።፧፝ − 𝑁ፚ፧፠፥፞/2) (3.7)

𝐶፞፧፝ = (𝑅።፧፝ + 𝑁፫ፚ፧፠፞/2, 𝑉።፧፝ + 𝑁ፃ፨፩፩፥፞፫/2, 𝐴።፧፝ + 𝑁ፚ፧፠፥፞/2) (3.8)

The window size (𝑁፫ፚ፧፠፞, 𝑁ፃ፨፩፩፥፞፫ and 𝑁ፚ፧፠፥፞) is set during the experiment, see subsec-
tion 4.3.1. If the window size is 1 × 1, the low-level features are cropped by the first order
interpolation of the two nearest range bins. For example, If the target is in the upper half of
the range bin, the low-level features are calculated by the linear interpolation of the Doppler
responses in 𝑖th and 𝑖 + 1th range bins. If the window size is larger than 1 × 1, the low-level
features are cropped as they are. Using larger window size in range and angle dimensions
makes it possible to consider multiple scales for road users larger than one range-angle bin.

3.1.4. Noise reduction
When the vehicle starts moving, the noise will be higher than the noise in a static radar
due to the relative speed between ego-vehicle and static objects caused by ego-motion, see
Figure 3.4. To reduce the noise in the low-level data and reduce computational demand,
targets from static objects are removed by setting a threshold to the compensated speed ̂𝑣፫.
The threshold should be smaller than the main walking speed of a typical pedestrian (1 𝑚/𝑠).
In the current study, the threshold is set as 0.3 𝑚/𝑠. Once the static targets from the high-
level data are removed, their correspondent bins in low-level data are also set to zeros. The
indices of those bins are calculated by the equations used in subsection 3.1.3. The reason
for removing low-level corresponding part of high level static targets is explained as follows.

As shown by Figure 3.4, the central column of a range-Doppler image represents the
radio wave responses for 0 𝑚/𝑠. The thick line with a lot of non-zero entries are caused by
static objects. If the vehicle is not moving, they are overlapped, as shown by Figure 3.4 (a).
When the vehicle starts to move, the responses caused by the static objects will be shifted
due to ego-motion. In Figure 3.4 (b) it’s shifted to the right because the static objects are
approaching the vehicle. However, when the background becomes cluttered, the straight line
caused by static objects becomes a curve or multiple curves at near ranges (Figure 3.4 (c)).
These curves in this case are caused by a row of static objects distributed longitudinally, e.g.
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a row of street lights, a building, a line of parked bikes, etc. These objects have the same
relative speed, but they cover a wide band of azimuth angles. The geometry that shows the
formation of the curve is in Figure 3.5. When the car is moving in longitudinal direction,
the static objects will have the same relative longitudinal speed caused by the sensor (yellow
vectors). However, radar is only able to measure their radial component (green vectors). This
component is projected by the azimuth angle (blue lines in Figure 3.5). When the objects
get closer, the azimuth angle becomes larger, therefore the radial component of the radial
speed (green vector) gets smaller. After the difference between the radial speed (green vector)
and longitudinal speed (yellow line) is large enough to be seen on the range-Doppler image,
a curve diverges from the main thick line. As long as the longitudinal speed of the vehicle
does not change, the relative speed of static objects does not change, thereby this diverging
point only depends on the azimuth angle. At the same azimuth angle (𝜃 in Figure 3.5), when
there are multiple columns of static objects with different lateral positions (the column on
the left and the column on the right), their range will be different, which makes the curves
in low-level data start to diverge from different range bins.

Figure 3.4: The range-Doppler image for different ego-motion speed. the central column of a range-Doppler image indicates
ኺ፦/፬measured speed. The thick line are caused by the static objects. If the vehicle is not moving, these two lines are overlapped,
as shown by (a). When the vehicle starts to move, this thick line caused by static objects will be shifted according to the moving
speed, as shown by (b). When the background becomes cluttered, this thick straight line becomes a curve or multiple curves at
near ranges shown by (c).

Figure 3.5: The geometry of speed projection that creates the curve in range-Doppler image. When the ego-vehicle moves at
a certain speed, the radial relative speed of static objects change with their azimuth angle. When the angle exceeds a certain
value, the responses of these static objects diverge from the main responses distribution and generate a curve in range-Doppler
image.

This artifact introduces extra noise to the low-level data, because the speed distribution of
road users is represented by the non-zero values cropped from Doppler dimension. The inlier
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is shown in Figure 3.4 (c). If the Doppler responses outside the thick line are not caused by
the real moving objects (inliers) but by the static objects with larger azimuth angle, the latter
are outliers (also shown in Figure 3.4 (c)). Setting the low-level data corresponding to the
static targets as zero is a solution to alleviate this artifact.

3.1.5. Normalization
The high-level features and low-level features are normalized by subtracting mean and di-
viding standard deviation. The high-level part is normalized feature-wise. Given the input
data, four mean values and four standard deviations of four features are calculated sepa-
rately from (𝑟, 𝜃, ̂𝑣፫ , 𝜎). While in low-level part, the mean value and standard deviation are
calculated from responses of all the Doppler bins. Therefore only one mean value and one
standard deviation for low-level features are calculated from training data. During testing,
the mean and standard deviation calculated from training data are used.

3.2. LLTnet
In this section, the network structure of LLTnet is introduced as well as the loss function and
ensemble learning policy for the final prediction. The input of the LLTnet is the normalized
low-level features cropped by region proposals from high-level targets.

3.2.1. Network structure
LLTnet stands for ‘low-level target network’, which has a 3D convolutional network module,
a 1D convolutional network module and a fully-connected module. The structure of the
network is shown by Figure 3.6.

At the first stage, the low-level feature cropped from the radar cube by each target are
given to a 3D convolutional network. Each 3D kernel extracts radio wave responses around
each 3D cell that it applies to. By max-pooling layer with kernel size 1 in speed dimension,
the 3D input is only down-sampled in space (range and angle bins), without changing the
number of channels (speed bins). The main purpose of the 3D convolutional network is to
encode the micro-Doppler signature from an area into several speed vectors. Each element
in the new vector still represents the radio wave responses at a certain speed bin, but it
also encodes information from neighboring speed bins. In this way, the essence of the speed
dimension is preserved.

The encoded speed vectors are given to a 1D convolutional layers, which down-sample
the input vectors in speed dimension and give it more channels at the same time. At the last
1D convolutional layer, using 𝐶 as the number of channels and 𝐷 as the number of elements
remained from the previous layers, the output is 𝐶 vectors with 𝐷 elements. The 𝐷×𝐶 elements
are flattened into a single vector and concatenated with high-level features. Afterwards, this
new vector is given to fully-connected layers. By applying 1D convolution, the number of
parameters, i.e. the size of the model becomes less. Moreover, a 1D convolution can achieve
translational invariance in the speed dimension. After the fully-connected layers, each target
is given a label. In other words, the task performed by LLTnet is target segmentation.

3.2.2. Loss function
The loss function used by LLTnet is a multi-class cross-entropy loss given by Equation 3.9.
The �⃗� in the equation is a vector of softmax score for each class predicted by the model,
which is given by Equation 3.10. The loss for different classes are weighted because the
training data is unbalanced in number of targets of each class. The weights in Equation 3.9
are calculated by the reciprocal of the number of reflections of each class in the training set,
see Equation 3.11.

loss(�⃗�, 𝑐𝑙𝑎𝑠𝑠) = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑐𝑙𝑎𝑠𝑠] (−�⃗�[𝑐𝑙𝑎𝑠𝑠] + 𝑙𝑜𝑔(∑
፣
𝑒𝑥𝑝(�⃗�[𝑗]))) (3.9)
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Figure 3.6: The network structure of LLTnet. The 3D CNN down-samples the input in 2D space (i.e. range and angle bins)
and encodes the speed information into multiple channels. The 1D CNN is applied to the speed dimension to learn the speed
distribution with translational invariance. Finally the fully-connected layers remap the features into different classes through two
hidden layers.

Softmax(𝑥።) =
𝑒𝑥𝑝(𝑥።)
∑፣ 𝑒𝑥𝑝(𝑥፣)

(3.10)

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = ( 1
𝑁፥ፚ፬፬ኺ

, 1
𝑁፥ፚ፬፬ኻ

, ...) (3.11)

3.2.3. Ensemble learning

Figure 3.7: The diagram for the ensemble learning. The lines indicate one-vs-one (OVO) models and circles are used for one-
vs-all (OVA) models. OVA model classifies a single class against the others, e.g. pedestrian-vs-all, cyclist-vs-all. OVO model
distinguishes two classes from each other, e.g. pedestrian-vs-cyclist.

In radar based road user detection task, the difference between different road users is
smaller than the difference between road users and background. For example, a laterally
moving cyclist with a small speed is similar to a pedestrian. In this case, the wide distribu-
tion in speed dimension of the cyclist is caused by different angles. Other than the inter-class
similarity, the weights calculated by the reciprocal does not fully compensate for the imbal-
ance of samples from different classes. Further fine-tuning of the weight can be used as
an extra compensation. However, once a weight is modified empirically, it influences the
other classes in different manners. Therefore, in order to improve the inter-class classifica-
tion performance, rather than tuning the weights manually, an ensemble learning by binary
classification is performed according to the scheme in [57]. Instead of a single multi-class
network, two sets of binary models are trained, namely one-vs-all (OVA) models and one-vs-
one (OVO) models. Their relations are shown by Figure 3.7. OVA model classifies a single
class against the others, e.g. pedestrian-vs-all, cyclist-vs-all. OVO model discriminates two
classes from each other, e.g. pedestrian-vs-cyclist. Each OVO model gives a score for the
class 𝑖 against class 𝑗 as 𝑝።፣, and the score for the class 𝑗 against class 𝑖 can be calculated by
1 − 𝑝።፣. Similarly, a OVA model gives a score 𝑝። for class 𝑖 against the rest classes.
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When a new input is given, the scores of it being class 𝑖 is calculated. The scores for
different classes are compared. The class that has the highest score is chosen as the predicted
class. This process is given in Equation 3.12

id(𝑥) = argmax
።∈ኻ,...,ፊ

ፊ

∑
፣ኻ,፣ጽ።

𝑝።፣(𝑥) ⋅ (𝑝።(𝑥) + 𝑝፣(𝑥)) (3.12)

3.3. Post-clustering
Compared with target segmentation, the object-level information can be beneficial for track-
ing and decision making. Therefore, after LLTnet performs target segmentation, the proposed
pipeline also provides a step to fuse targets into different road users. This is done by a post-
clustering step with DBSCAN. The feature space is still made by 2D ground plane position
and radial speed. Unlike the clustering step before classification used by the baselines, the
label of targets are considered during the parameter setting of DBSCAN. A pedestrian usually
has smaller scale and less targets, thus the 𝑁፦።፧ and 𝑒𝑝𝑠 are both smaller. On the contrary,
in most cases a car is larger and more targets will be detected. Bigger 𝑁፦።፧ and 𝑒𝑝𝑠 are used
for cars.



4
Experiments

4.1. Dataset
There is one publicly available dataset [11] containing radar recordings at the time of writing.
However, that dataset only contains high-level radar data. Considering the lack of suitable
dataset and limited diversity of the dataset used by previous studies on low-level radar data,
for the presented study, a new dataset is created. It is recorded by a moving ego-vehicle and
different moving road users in urban scenarios.

4.1.1. Data collection
The dataset is created by two test drives in urban environment. Each of them lasts for about
30 minutes. One of them is used for training. The other is split to two parts. One part is
for validation and the other is for testing. The radar used for recording is a 77 𝐺𝐻𝑧 automo-
tive radar mounted under the bumper at the front right of the test vehicle. The maximum
measureable range is 100 𝑚 with a field of view from −90∘ to 90∘. The range resolution of the
low-level data is 0.42 𝑚. The speed resolution of the low-level data varies from 0.11 𝑚/𝑠 to
0.13 𝑚/𝑠. The radar works at a frame rate of 13 𝐻𝑧. The angular resolution of the low-level
data of different angle bins are plotted in Figure 4.1. The resolution on the two edges is much
lower than it is at the center. A stereo camera is mounted on the windshield which works
at a frame rate of 10 𝐻𝑧 and a resolution of 1936 × 1216 px. The data from GPS, IMU and
odometry are also recorded for the estimation of the ego-motion.

Figure 4.1: The angular resolution of the radar low-level data of different angle bins

35
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4.1.2. Data annotation
Automated annotation pipeline
Since the high-level targets are the input for the region proposal mapping, the annotation
aims at giving each high-level target a label. It mainly focuses on three classes, namely
pedestrian, cyclist and car. Targets from other objects or road users are annotated as ‘others’.
The ground truth is provided by a real-time single-shot visual object detection algorithm
called SSD [36]. Two SSD models are running simultaneously. One is able to do general
object detection. For example, if there is a cyclist, the bike and person will be detected
separately. The other SSD is trained by EuroCity Persons (ECP) dataset [9] and is able to
discriminate between pedestrians and cyclists, but it does not detect cars. Therefore, during
the annotation phase, cars from the first SSD and vulnerable road users from the second
SSD are recorded. The output of SSD is 2D bounding boxes in the left image frame of the
stereo camera. Depth is estimated by projecting the bounding boxes into the stereo point-
cloud computed by the Semi-Global Matching algorithm (SGM) [28], and taking the median
distance of the points inside them. Therefore, each 3D bounding box has its distance from
the camera, but it does not has thickness in longitudinal direction.

The pipeline of using SSD bounding boxes for annotation is shown by Figure 4.2. Firstly,
since the radar high-level targets only have 2D ground plane position, the bounding boxes are
projected to the horizontal plane. Different colors are used for different classes (pedestrians
in green, cyclists in red and cars in blue). Since the bounding boxes in 3D space only have
a distance from the camera, the projected bounding boxes become single lines looked from
the top-down view. To annotate the targets, a line should be extended to a region. In the
annotation pipeline, this region is created by a 2D viewing frustum in the same 2D plane.
A viewing frustum in 3D space is shown by Figure 4.3, which models the field of view of
a camera. Since radar receives radio waves just as how camera receives visible light, the
frustum can also be used in radar domain, but it only has ground plane coordinates. The
extent of the frustum is dependant on the classes. The pedestrian has the smallest extent
and the car has the largest. It also depends on the distance, because for larger distance the
triangulation of the stereo camera images is less accurate, thus it needs a larger extent to
consider a larger uncertainty. 𝑦 is used to denote the distance between the projected frustum
bounding box and the extended upper or lower limit and 𝑥 is to denote the distance between
the bounding box and camera, see Figure 4.2. 𝑦ኻ is for the upper limit and 𝑦ኼ for the lower
limit. Their relation is given by Equation 4.1 and Equation 4.2. The parameters used in this
study are listed in Table 4.1.

𝑦ኻ = 𝑎ኻ × 𝑥 + 𝑏ኻ (4.1)

𝑦ኼ = 𝑎ኼ × 𝑥 + 𝑏ኼ (4.2)

Lower limit Upper limit

𝑎ኻ 𝑏ኻ 𝑎ኼ 𝑏ኼ
Pedestrian 0.08 1 0.05 0.5

Cyclist 0.1 2 0.06 1

Car 0.12 3 0.07 1.5

Table 4.1: The parameters for calculating the frustum bounding box by Equation 4.1 and Equation 4.2 in 2D horizontal plane of
radar targets

Using the 2D frustum, the targets inside each bounding box are labeled. However, there
will be some targets that belong to the same object but not covered by the frustum. This
happens in the case of cyclist, because the bounding box of the cyclist from SSD does not
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Figure 4.2: The annotation pipeline using SSD bounding boxes. The SSD bounding boxes are projected to the 2D horizontal
plane of radar targets. Different colors are used for different classes (pedestrians in green, cyclists in red and cars in blue). Then
a frustum bounding box is created around each projected SSD bounding box. The equation and parameters used for creating
the frustum bounding boxes are given by Equation 4.1, Equation 4.2 and Table 4.1. The targets inside each bounding box are
labeled accordingly.

Figure 4.3: The shape of a 3D viewing frustum

enclose the entire bike, as shown by Figure 4.4. Therefore, after being labeled by the frustum
bounding box, a label propagation in space is performed. Each labeled target becomes a
kernel. The kernel starts from itself and search for its surrounding targets. When some
targets are close enough, they will be given the same labels of the kernel. This process can
be done iteratively. The targets labeled at the previous iteration will become the kernels again
in the next iteration. Since the targets are sparse, after 2-3 iterations, most targets outside
bounding boxes are labeled correctly.

Manual correction
SSD has good accuracy for road user detection especially when using it in daylight. In com-
bination with the stereo camera, the vision based automated annotation pipeline work well
in most cases. However, it is not perfect. One of the main error sources of SSD detection is
the pedestrian-vs-cyclist misclassification. There are two reasons causing this error. In the
first case, when the cyclist is in the same orientation with the car i.e. the cyclist and the ego-
vehicle are both moving forward, the cyclists are sometimes classified as pedestrians. This
is because in such configuration the wheels of the bike are less visible from the back. In the
second scenario, when a pedestrian is walking in front of a parked bike, SSD will classify it as
cyclist. In addition to pedestrian-vs-cyclist misclassification, there are some pedestrians or
cyclists occluded by other objects, such as a pole. They are still visible for SSD and detected
correctly, but the triangulation to project the 2D bounding box into 3D is not accurate due
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Figure 4.4: The propagation of the labels in space. Sometimes the bike of the cyclist is not covered by the SSD bounding box
and the frustum bounding box. The label from the targets inside the bounding box is propagated to the targets that are close to
the bounding box.

to the occlusion. These detected road users should be removed. The three cases are shown
in Figure 4.5.

Figure 4.5: Misclassifications by SSD

To alleviate the problems caused by SSD, after the automated annotation pipeline, the
road users detected by SSD in each frame are cropped from the camera image and exported
to different folders with different file names according to their SSD labels, frame ID and
object ID. In this way, each class can be quickly checked for mistakenly annotated objects.
If such annotation is found, it is fixed manually. For example, if an object is in the folder
‘pedestrian’ but it is actually a cyclist, this annotation will be moved to the folder ‘cyclists’.
After this manual correction, the file names in different folders are processed automatically
by a program to change the annotation for the relevant frame.

Manual labeling tool development
In addition to the automated annotation pipeline and semi-automated correction for inter-
class misclassification, a tool to assist manual labeling is also developed in the current study.
This tool has a graphic user interface (GUI) with several functionalities. The interface is
shown by Figure 4.7. There are two separate windows in the interface. The window on
the left is used for displaying the targets from top-down view and creating a bounding box by
dragging and clicking the mouse. The SSD frustum bounding boxes are plotted as a guideline
for the user. The targets are projected to the camera image in the window on the right. After
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the targets are labeled, they will be given a color. Green is used for pedestrians. Red is for
cyclists and blue is for cars. The tool also allows users to jump to a specific frame and set a
threshold to the speed. Other functions are listed in appendix C.

4.1.3. Data format
The dataset contains two parts, the recordings and the annotations. The recordings such
as high-level data, low-level data and camera images are saved into separate folders with
time stamp as their file name. The annotations as well as ego-motion are saved as a list in
a json file. Each frame has the 2D annotations in pixel coordinates of the camera image,
the 3D annotations in vehicle coordinates, the camera image path, the radar targets path,
the labels of each annotation and the ego motion. A typical entry of the annotation list is
shown in appendix B. Different messages are synchronized to the time stamp of the high-level
data. For example, the camera image used for annotation is the closest camera frame from
the frame of the target list. To simulate real-life conditions, e.g. high-level data cannot be
mapped to low-level data from the future, the low-level data used by each frame is the latest
one.

The statistics of the training data are shown in Table 4.2. The histogram of the number of
targets per object is shown in Figure 4.6. It is shown by the distribution that the targets are
sparse, with few road users having more than 6 targets. There are many pedestrians only
having one target detected by radar. If the clustering based pipeline in the related work in
subsection 2.2.2 is applied to these targets, each cluster will have a small number of targets.
As a consequence, the features extracted from each cluster will be sensitive to outliers.

The distribution of the testing set is shown by Table 4.3.

Figure 4.6: The distribution of the reflections in the training set. It can be seen from the statistics, there are many pedestrians
that only have one target. Those pedestrians cannot be detected by clustering-based method because the minimum number of
targets per cluster cannot be lower than 2 if DBSCAN is used. From the overall statistical distribution, there are few road users
having more than 6 targets.

Classes Others Pedestrians Bikers Cars

Instances 31300 15290 9362

Targets  394606 63814 45804 30906

Targets per instance 2.04 3.00 3.30

Table 4.2: The distribution of the training set.
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Classes Others Pedestrians Bikers Cars

Targets 199609 21983 43459 44214

Table 4.3: The distribution of the testing set

Figure 4.7: The GUI tool for radar targets annotation tool. There are two separate windows in the interface. The window on the
left is used for showing the targets from top-down view and creating a bounding box by dragging the mouse. The SSD frustum
bounding boxes are plotted as a guideline for the user. The targets are projected to the camera image in the window on the
right. After the targets are labeled, they will be given a color. Green is for pedestrians. Red is for cyclists and blue is for cars.
The tool also allows users to jump to a specific frame and set a threshold to the speed. Other functions are listed in Table C.1 in
appendix C.

4.2. Baselines
To evaluate the proposedmethod, three methods are set as baselines. The Schumannmethod
is from the study in [71] and the Prophet method is from the study in [45]. These two methods
are the only published real-time, multi-object, multi-class detectors using high-level data at
the time of writing. The last baseline is to prove the validity of using the low-level data and
LLTnet. It only uses high-level features with the same fully-connected layers used by LLTnet.
During the experiment, these baselines are trained and tested by the dataset described in
section 4.1. In addition to the baselines, some variants are also tested, e.g. using high-level
features without speed.

4.2.1. Schumann method
The Schumann method is a typical clustering based pipeline. Its details are described in
[71] and section 2.2. In the original study, there are four radars mounted on the test vehicle
and targets from two radar frames are aggregated. In the current study, in order to compare
its performance with our method under the same conditions, one radar frame is used. In
the original study, the accurate parameter setting for DBSCAN and its metric are not given.
The DBSCAN set-up in [61] is taken as a reference. The minimum number of targets per
cluster 𝑁፦።፧ can not be 1, otherwise some features are not valid (e.g. the covariance of the
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2D coordinates). Considering the number of targets from a pedestrian in Figure 4.6, it is
better not to set a number higher than 2. Therefore, 2 is used in this study. Using the
parameter setting in [61], the minimum distance for a core point to look for its neighboring
points 𝑒𝑝𝑠 is set as 1. The other parameter setting is not from DBSCAN, but from the static
objects removal stage. In the original set-up, the static objects are not removed. However, the
clustering stage suffers from the different density in static targets and moving targets. The
classification of the clusters are also biased to the targets from class ‘others’ due to the ratio
between the static targets and moving targets. Due to these two reasons and in accordance
with the proposed method, a threshold is set to remove static targets. The threshold for the
speed of targets is set as 0.3 𝑚/𝑠 in consistency with the proposed method. An optimal search
is performed on the speed threshold and 𝑒𝑝𝑠. The 𝑒𝑝𝑠 is searched from 0.5 to 1.1 with a step
size of 0.1. The speed threshold is searched from 0.05 𝑚/𝑠 to 0.3 𝑚/𝑠 by a step size of 0.05 𝑚/𝑠.
The result of the optimal search is shown in Figure 4.8a. Based on the result, the selected
value is a reasonable set-up and a good trade-off between accuracy and efficiency. In the
original study, the clusters are manually corrected. In the presented baseline, no manually
correction is applied.

After the clustering stage, 34 features are generated, which are the same with features
in [71]. 18 features come directly from the statistics of the high-level features. The others
are from the histogram of the RCS and velocity. After feature extraction, in the original
study, two classifiers are compared. One is random forest and the other is LSTM recurrent
neural networks. For LSTM, 8 frames are used to form a sequence, which does not meet the
requirement for real-time processing. In the current study, only random forest is used. The
parameters for the random forest is listed in Table 4.4.

Number of trees Criterion Min_samples_split Min_samples_leaf

10 Gini impurity 2 1

Table 4.4: The parameter setting for the random forest classifier. Min_samples_split means the minimum number of samples
required to split an internal node. Min_samples_leaf means The minimum number of samples required to be at a leaf node.

(a) Schumann method (b) Prophet

Figure 4.8: The F1 score of the baselines with different parameter settings. The horizontal axis represents for the minimum
distance to form a cluster by DBSCAN, i.e. ፞፩፬. Different plots are from different speed threshold used for filtering the targets.
The red dot is the selected parameter setting.

4.2.2. Prophet method
Prophet method proposed by [46] is also a clustering based method using DBSCAN. Different
from the original study where the data is recorded by a static radar with one road user at a
time, the current study is done by a moving ego-vehicle and most frames have multiple road
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users. In the original study, the parameter setting for DBSCAN is following the study in [61].
The metrics is Euclidean distance in speed and space. The 𝑒𝑝𝑠 is set as 1. The 𝑁፦።፧ is set as
2. In the current study, similarly with Schumann method in subsection 4.2.1, the minimum
distance in the feature space to look for neighboring targets and the speed threshold to
remove static targets are optimized by a naive search. The result of the optimization is shown
in Figure4.8b. The optimized result is similar with the result by using 0.3 𝑚/𝑠 as threshold
and 1 as 𝑒𝑝𝑠. In order to make the set-up consistent to the proposed method and its original
study, 0.3 𝑚/𝑠 and 1 are used.

After the clustering stage, 11 out of 13 features proposed in the original study are used for
classification. The velocity resolution is removed, because the feature in the original study
is used for denoting which of their two radars are used. In the current study, this feature
is useless since only one radar is used. The other removed feature is the existence of a
static target. The static targets are removed by setting speed threshold, this flag is always 0.
Removing it does not influence the final result.

Many classifiers are used by the original study, which are mainly from three classes. Some
of them are from trees based methods, such as decision trees and ensemble bagged trees.
Some of them are from support-vector machine and its variants. The last method is a multi-
layer perceptron with one hidden layer. The classifier used in the current study is random
forest. There are two reasons. The first reason is to make it consistent with the Schumann
method. The second reason is the ensemble bagged tree method yields the best result in the
original study. The parameter setting of the random forest classifier is the same with the one
used in subsection 4.2.1.

4.2.3. High-level multi-layer perceptron
To compare the performance improvement made by adding low-level features, a multi-layer
preceptron (MLP) for high-level data is trained and tested. The network structure of the
MLP is the same as the fully-connected layers used by LLTnet. The input high-level data is
normalized in the same way as mentioned in the subsection 3.1.5. By using the MLP directly
for classification, the modules for low-level features in LLTnet are bypassed.

4.3. Training
4.3.1. Training set-up
The training pipeline, testing pipeline and the structure of the LLTnet are implemented by
PyTorch framework [41]. Two test drives are recorded for the study. The first recording is
used for training. From the second recording, 20% frames are randomly chosen for valida-
tion. The rest of the frames from the second recording are used for testing. Note that the
cross-validation is not applicable in this case, because the frame rate of sensors are much
higher than the frequency of road users’ movement. Therefore the consecutive frames in the
recording are highly correlated to each other. In other words, each road user moves very
small distance with very small speed change between two consecutive frames. Therefore, If
some frames for validation or for testing are sampled from the first recording for a cross-
validation, the data used for testing and validation will be almost the same with the training
set, which causes a high risk of overfitting.

The hyper-parameters for training and testing is listed in Table 4.5. The validation loss
is used for early stopping. After each epoch, the loss on the validation set is evaluated and
a checkpoint is only updated if the validation loss is smaller than the previous smallest
validation loss.

To further test the importance of different factors, not only the baselines and the proposed
LLTnet with ensemble learning but also many of their variants are trained and evaluated.
The different set-ups are listed in Table 4.6. The baselines mentioned in section 4.2 are
Schumann, Prophet and LLTnet-FCN. The proposed method is LLTnet-ensemble.

The features used by different methods are listed in column ‘Features’. The high-level fea-
tures means (𝑟, 𝜃, ̂𝑣፫ , 𝜎) from the radar target list, except for Schumann method and Prophet
method, which use the extracted high-level features from each cluster. The classifier for
target segmentation used by each method is listed in the column ‘Classifier’. The column
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Starting learning rate 0.001

𝑁፞፩፨፡ 10

Batch size 1024

Optimizer Adam

𝑁ፃ፨፩፩፥፞፫ 32

𝑁ፚ፧፠፥፞ 5

𝑁፫ፚ፧፠፞ 5

Table 4.5: The hyper-parameters for training

‘Ensemble’ means whether the ensemble learning policy for multi-class classification is used.
The column ‘speed’ means whether the compensated speed ̂𝑣፫ is included in the high-level
data. The column ‘Window’ is only applicable to methods that use LLT, which is the size for
cropping low-level features.

Method Features Classifier Ensemble Speed Window

Schumann High-level Random Forest No Yes None

Prophet High-level Random Forest No Yes None

HL-RF High-level Random Forest No Yes None

LLT-RF1 Low-level Random Forest No Yes 1x1

LLT-RF5 Low-level Random Forest No Yes 5x5

LLTnet-FCN-multiclass High-level FCN of LLTnet No Yes None

LLTnet-FCN-multiclass* High-level FCN of LLTnet No No None

LLTnet-FCN-ensemble High-level FCN of LLTnet Yes Yes None

LLTnet-FCN-ensemble* High-level FCN of LLTnet Yes No None

LLTnet-multiclass Low-level LLTnet No Yes 5x5

LLTnet-multiclass* Low-level LLTnet No No 5x5

LLTnet-ensemble Low-level LLTnet Yes Yes 5x5

LLTnet-ensemble* Low-level LLTnet Yes No 5x5

Table 4.6: The detailed information of each model in the experiments. The features used by different methods are listed in
column ‘Features’. The high-level features means (፫, ᎕, ̂፯ᑣ , ) from the radar target list, except for Schumann method and
Prophet method, which use the extracted high-level features from each cluster. The classifier for target segmentation used by
each method is listed in the column ‘Classifier’. The column ‘Ensemble’ means whether the ensemble learning policy for multi-
class classification is used. The column ‘speed’ means whether the compensated speed ̂፯ᑣ is included in high-level data. The
column ‘Window’ is only applicable to methods that use LLT, which is the size for cropping low-level features.

4.3.2. Data augmentation
The radar signals from different road users are not influenced by mirroring the objects to
the other side. Therefore, the training data are mirrored by adding a minus sign before its
azimuth angle (i.e. from (𝑟, 𝜃, ̂𝑣፫ , 𝜎) to (𝑟, −𝜃, ̂𝑣፫ , 𝜎)) . A Gaussian random noise with zero
mean and 0.05 standard deviation is added to the normalized range and normalized speed of
high-level features.
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Pedestrian Cyclist Car

𝑁፦።፧ 1 2 3

𝑒𝑝𝑠 1 2 5

Table 4.7: The class-wise parameter setting for DBSCAN method in post-clustering stage. ፍᑞᑚᑟ is the minimum number of
targets to form a cluster. ፞፩፬ is the minimum distance for a core point to look for its neighboring points in DBSCAN.

4.4. Post-clustering set-up
The post-clustering stage uses DBSCAN clustering method. The minimum number of tar-
gets 𝑁፦።፧ around each core point, the minimum distance within which a point searches its
neighbors 𝑒𝑝𝑠 for each class are listed in Table 4.7.

4.5. Results
In this section, the methods are evaluated quantitatively and qualitatively. For quantitative
evaluation, firstly the loss and processing time are measured. Then the target segmentation
results and road user detection results are measured separately. The metrics used for target
segmentation evaluation are F1 score and confusion matrix. The metrics used for road user
detection evaluation are the precision, recall, F1 score and intersection over union (IoU). They
are calculated on object-level which considers the localization accuracy and the classification
accuracy. For qualitative evaluation, a real-time program for demonstration is implemented,
which are shown by figures in the thesis.

4.5.1. Quantitative evaluation
Loss trajectory
The validation loss trajectory of each model in LLTnet-ensemble are shown in Figure 4.9.

Figure 4.9: The validation loss trajectory of the models used for the ensemble learning. After each epoch, the loss on the
validation set is evaluated and a checkpoint is only updated if the validation loss is smaller than the previous smallest validation
loss.

The processing time
The processing time with different speed threshold for the targets are shown by Table 4.8.

Target-level result
Precision and recall are two metrics that are usually used for the evaluation of a classifier
or target segmentation model. Precision means how many samples are predicted correctly
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Speed threshold (𝑚/𝑠) Pre-processing (𝑠) Inference (𝑠) Total (𝑠) Frame rate

0 0.08 0.10 0.18 5.49

0.1 0.06 0.05 0.11 8.93

0.2 0.06 0.04 0.10 9.80

0.3 0.06 0.04 0.10 9.80

Table 4.8: The processing time of each stage in the proposed pipeline. The first columns represents the different speed thresholds
for the targets. The last column is the frame rate of the pipeline. The columns in between are the preprocessing time, the inference
time and the total time for a single prediction.

among all the positive predictions, which is calculated by Equation 4.3. Recall means how
many samples are correctly predicted from all the positive ground truth, calculated by Equa-
tion 4.4. Here TP means ‘True Positives’. FP means ‘False Positives’. FN means ’False Neg-
atives’. These two metrics measure the accuracy in two different aspects. In other words,
neither a good precision nor a good recall is adequate for a good classification. For example, if
all the samples in the presented study are predicted as ‘others’, the recall of ‘others’ class will
be 1. However, the precision will decrease at the same time. Therefore, to consider both pre-
cision and recall, the harmonic average of precision and recall is used in the current study,
which is also called F1 score. The calculation of F1 score is defined by Equation 4.5. In a
multi-class classification task, the macro-average F1 score is the unweighted mean of the F1
score calculated for each single class. In the presented study, the class-wise F1 score and
macro-average F1 score of the baselines, the proposed LLTnet-ensemble and their variants
are listed in Table 4.9.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TP
TP+ FP

(4.3)

𝑅𝑒𝑐𝑎𝑙𝑙 = TP
TP+ FN

(4.4)

𝐹ኻ =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (4.5)

Method Pedestrian Cyclist Car Others Macro-Average

Schumann 0.60 0.59 0.28 0.89 0.59
Prophet 0.48 0.43 0.16 0.88 0.49
HL-RF 0.49 0.51 0.26 0.89 0.53

LLT-RF1 0.53 0.52 0.26 0.89 0.55
LLT-RF5 0.49 0.35 0.16 0.87 0.47

LLTnet-FCN-multiclass 0.54 0.63 0.29 0.83 0.57
LLTnet-FCN-multiclass* 0.79 0.34 0.33 0.23 0.42
LLTnet-FCN-ensemble 0.55 0.64 0.35 0.89 0.61
LLTnet-FCN-ensemble* 0.35 0.33 0.16 0.87 0.43

LLTnet-multiclass 0.67 0.64 0.41 0.85 0.64
LLTnet-multiclass* 0.63 0.62 0.33 0.82 0.60
LLTnet-ensemble 0.72 0.67 0.49 0.91 0.70
LLTnet-ensemble* 0.66 0.63 0.37 0.89 0.64

Table 4.9: The F1 score of the baselines, the proposed LLTnet-ensemble and their variants. The set-up of each method are
listed in Table 4.6.
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(a) The confusion matrix of LLTnet-ensemble model (b) The confusion matrix of Schumann method

Figure 4.10: The confusion matrix of the proposed method and Schumann method. The first value in the bracket are the
value normalized by the summation of numbers in each row. The second value in the bracket are the normalized value by the
summation of numbers in each column. Therefore, on the diagonal line, ‘R’ means recall and ‘P’ means precision.

The confusion matrix is also a widely used measurement for radar target segmentation
task. The confusion matrix of LLTnet-ensemble method is shown in Figure 4.10a in compar-
ison with Schumann method in Figure 4.10b. In the confusion matrix used by the current
study, each row of the matrix represents the true label of each target while each column
represents the predicted labels. These entries are the number of targets. The values on the
diagonal are true positive predictions. By using confusion matrix, the specific misclassifica-
tion error between two classes is revealed. For example, the value 1232 in the second row of
Figure 4.10a means there are 1232 targets from pedestrians predicted as bikers. The value
in the first bracket is normalized per each row and the value in the second bracket is normal-
ized per each column. In diagonal entries, ‘R’ stands for recall and ‘P’ stands for precision.
The confusion matrices of the other methods are listed in Appendix A.

Object-level result
A road user detection algorithm has two aspects; the localization and the classification. In the
proposed radar based road user detection algorithm, the metrics used by visual object detec-
tion algorithms that consider localization accuracy and classification accuracy are adapted
for radar targets prediction.

The output of the post-clustering stage are a set of targets with class label and object ID,
see the ‘prediction’ in Figure 4.11. Each predicted object is compared with the ground truth
object. The intersection of two objects are the common targets of the predicted object and
the ground truth object. The union are all the targets covered by the ground truth and the
predicted object. The intersection over union (IoU) is calculated to evaluate the localization
accuracy. If the IoU is equal to or higher than 0.5, it is counted as a true positive prediction.
The precision and recall are hence calculated by Equation 4.6 and Equation 4.7. If the
precision and recall are known, the F1 score can be calculated in the same way of target-
level F1 score. The overall localization accuracy is evaluated by the mean IoU of each class.
The results are shown by Table 4.10.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (4.6)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ (4.7)
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Figure 4.11: The calculation of a true positive prediction based on the intersection over union (IoU). The intersection is calculated
by the common targets of the predicted object and the ground truth object. The union is calculated by all the targets covered by
ground truth and the prediction. If IoU is larger than 0.5, it is counted as a true positive prediction.

Method Ped. Biker Car

Schumann 0.67 0.68 0.36

Prophet 0.52 0.62 0.32

LLTnet-ensemble 0.51 0.66 0.53

(a) Precision

Method Ped. Biker Car

Schumann 0.37 0.42 0.15

Prophet 0.30 0.27 0.06

LLTnet-ensemble 0.68 0.51 0.42

(b) Recall

Method Ped. Biker Car

Schumann 0.48 0.52 0.21

Prophet 0.38 0.38 0.10

LLTnet-ensemble 0.58 0.58 0.47

(c) F1 score

Method Ped. Biker Car

Schumann 0.42 0.42 0.16

Prophet 0.31 0.27 0.09

LLTnet-ensemble 0.54 0.50 0.38

(d) Mean intersection over union (mIoU)

Table 4.10: The object-level results on road user detection.

4.5.2. Qualitative evaluation
The proposed pipeline is implemented by a node in Robot Operating System (ROS) for quali-
tative evaluation. Under an environment that simulates the in-vehicle experiment, this ROS
node subscribes to the radar high-level data, low-level data and the ego-motion of the vehi-
cle. Then it uses the trained LLTnet-ensemble model to make prediction. At the same time,
a point-cloud is created by the stereo camera to visualize the scene in front of the vehicle.
The results of the target segmentation step are projected to 3D space for visualization. The
height of targets is the height of the mounting point of radar. Different colors are used to
show targets predicted as different road users, see Figure 4.12. After target segmentation
stage, the road users by post-clustering are visualized by thin cubes using the same color
map, see Figure 4.13. The position of the cube is the mean value of 𝑥 and 𝑦 coordinates of
targets from each road user. In addition, this ROS node also supports micro-Doppler signa-
ture visualization. The micro-Doppler signature at the position of each target is visualized by
drawing several 3D cubes stacked perpendicularly to the horizontal plane, see Figure 4.14.
Each 3D cube represents the Doppler responses at that position at a certain speed bin. The
block at the height of radar represents the speed bin corresponding to the measured speed
𝑣፫ of that target. Other than the ROS node for on-board processing, the targets are also
projected to the 2D camera image with different colors for offline qualitative evaluation, see
Figure 4.15.
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Figure 4.12: The targets that are predicted as road users are projected to 3D space. Green is used for pedestrian. Red is used
for cyclist and blue is used for cars.

Figure 4.13: The road user detection visualized by cubes in different colors. Green denotes the pedestrian. Red is used for
cyclist. Blue is for cars.

Figure 4.14: The Doppler signature visualization of different road users. Each 3D cube represents the Doppler responses at that
position at a certain speed bin. The block on the ground plane represents the speed bin corresponding to the measured speed
of that target.

Figure 4.15: Targets predicted as road users are projected to 2D image. Green is used for pedestrian. Red is used for cyclist
and blue is used for cars.
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4.6. Discussion
In this section, the results presented in section 4.5 are discussed from different aspects.

4.6.1. Clustering based methods
In general, clustering based pipeline obtains satisfactory result if the clustering step groups
targets properly. Schumann method re-implemented in the current study obtained an F1
score of 0.59. As a reference, in the study [62] by the same authors of [71], the DBSCAN+LSTM
method achieves an F1 score of 0.597.

For Prophet method, although it uses the same parameter setting, the performance is
worse than Schumann method. The only difference between them is the different features
of each cluster. Features used by Prophet are only calculated directly from the statistical
distribution. In contrast, features used by Schumann method are also calculated from the
normalized histograms of speed and RCS values. It is shown by the result that only using
statistical features is not reliable in a fast changing environment, e.g. environment with
moving vehicle and moving road users.

To isolate the influence of the clustering stage, a confusion matrix only for the clustering
stage is shown by Figure 4.16. The targets that belong to actual road users are annotated
as ‘should be clustered’ and targets that are given a cluster label by DBSCAN are predicted
as ‘clustered’. Only about 70% targets are correctly clustered. There are more than 18000
targets belonging to the actual road users are not clustered. Since the minimum number of
targets to form a cluster is set as 2 in this case, the misclusteredd targets are mainly from
the road users that only have one single target detected by radar.

Figure 4.16: The confusion matrix of the clustering stage. This matrix only calculates the clustering accuracy by DBSCAN.

4.6.2. Improvement brought by low-level data and LLTnet
If other conditions in Table 4.6 are kept as the same (classifiers, whether to add ensemble
learning, whether to use speed, the window size) but only the features are different, the
importance of adding low-level data can be verified by the result in Table 4.9. For example,
LLTnet-FCN-ensemble uses the same fully-connected layers of LLTnet-ensemble model and
the same policy for ensemble learning. However, the former has a macro-average F1 score of
0.60 while the LLTnet-ensemble has 0.70. The other example is LLT-RF1 and HL-RF. Even
only using the random forest classifier, adding low-level data still improves the performance.
If the ensemble learning method is not used, the improvement from LLTnet-FCN-multiclass
(0.567) to LLTnet-multiclass (0.640) also proves the benefit brought by adding low-level data
and LLTnet.



4.6. Discussion 50

4.6.3. Improvement brought by ensemble learning
In this task, the positive samples and negative samples are highly imbalanced. In addi-
tion, the difference between different road users is less obvious than the difference between
road users and background. Therefore, using binary models on every possible combina-
tion of two classes with an effective voting policy can improve the inter-class classification
performance. This is proved by the results in Table 4.9. For example, in Table 4.9 the
method LLTnet-multiclass uses the same network structure and the same input as LLTnet-
ensemble. However, by only adding ensemble learning stage, the macro-average F1 score
improves from 0.64 to 0.70. The ensemble learning experiments on high-level data makes
the argument stronger, because adding ensemble stage to a fully-connected network also
improves the macro-average F1 score from 0.57 of LLTnet-FCN-multiclass to 0.60 of LLTnet-
FCN-ensemble.

4.6.4. Importance of the high-level speed
Speed is an important feature in both high-level data and low-level data. If only high-level
data is used, after the high-level speed (the speed of the target with respect to the ground) is
removed, the performance greatly drops. The decreased performance shows the important
role played by the high-level speed in high-level data based method. To test the importance
of the high-level speed in the proposed pipeline, the LLTnet is also trained by setting high-
level speed as zeros (LLTnet-multiclass* and LLTnet-ensemble*). In other words, the network
does not ‘see’ the high-level speed. Without the help of high-level speed, the performance also
drops, which is expected. However, the performance is still better than the state-of-the-art
clustering based method. This experiment proves LLTnet is not trapped by a local minimum,
i.e. using high-level speed as the only criterion.

4.6.5. Generalization ability of the method
During the experiment, after the model is trained and tested by the automatically annotated
dataset, it gives higher false positives from background than expected. To look into the prob-
lems, the frames which have false positive predictions are visualized by high-level data scatter
plot and camera image. After the visualization, it turns out that many false positive predic-
tions are from some actual road users not annotated by the automated annotation pipeline.
In other words, the false positives are not really false positives, but are from the misclas-
sification of SSD node. This phenomenon means the LLTnet-ensemble is not only superior
than the high-level data methods, but also has good generalization ability. Furthermore, it
also proves radar can be a supplementary sensor for other vision based sensors. It is able
to learn useful information against reasonable noise. Due to this reason, the testing set is
re-annotated manually. For better evaluation, the results shown in Table 4.9 are evaluated
by this manually corrected testing set. About 6000 frames are manually corrected. Only by
repairing the testing set and the model is trained by the training set without correction, the
macro-average F1 score is greatly improved by 0.04.

4.6.6. The result of the post-clustering
The post-clustering results are evaluated on the dataset without manual correction men-
tioned in subsection 4.6.5, since that correction is only performed on target level. Therefore,
the measured object-level precision is lower than the actual precision. With the imperfect
ground truth in testing set, the object-level results of the proposed pipeline are still better
than the baseline by a large margin.

4.6.7. Error analysis
The error analysis is mainly done on target segmentation results. There are two reasons. The
first reason is that the target segmentation is the direct output of the LLTnet-ensemble, which
is the main contribution of the proposed method. The second reason is that the result of
target segmentation is evaluated by amanually annotated testing set, which is more accurate.

From the confusion matrix of LLTnet-ensemble in Figure 4.10a, it is observed that the
target-level misclassification are mainly from three sources: car-vs-biker area, false positive
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region (the first row) and false negative region (the first column).

car-vs-biker misclassification
The car-vs-biker misclassification is mainly caused by two reasons. The first reason is that
there are many bikers moving together in groups, see Figure 4.17. Those bikers are moving
at similar speed and having strong reflection due to grouping. Radar only looks at the speed
distribution and reflection for classification. Therefore, both high-level and low-level data of
these biker groups are similar to the data from cars.

The second reason is from the distribution of targets inside a car. In an urban scenario,
there are many cars slowly crossing the road in front of the ego-vehicle. A single radar is
only able to measure the radial speed. Even if the speed of the entire car body is similar,
their radial components measured by different angle bins are different. Furthermore, when
the car is turning, the car body not only has bulk translational speed, but also has rotational
speed. The radius in this case is the distance from the measured point to the rotation center.
Therefore, the speed distribution around a car also becomes wide, similarly to bikers. Those
cars are sometimes predicted as bikers, see Figure 4.18.

False positives from the background
False positives in this context means the targets that are not from any road user but are
predicted as road users, i.e. the first row of the confusion matrix. First of all, the testing set
is still not perfect. The manual correction for the testing set mentioned in subsection 4.6.5
is only done for vulnerable road users. Therefore, the false positive for cars also include cars
that are not detected by SSD. This is verified by exporting the false positive frames shown
by Figure 4.19. The subplot on the right is the predicted labels from the top-down view.
The subplot on the left is the ground truth projected to 2D camera image. Yellow means the
targets from the bus are annotated as ‘others’. These targets are predicted as cars by the
LLTnet-ensemble correctly, but they are mistakenly counted as false positives.

Secondly, there are some false positives caused by the ghost targets. For example, when
the ego-vehicle is close to a building or a parked vehicle, there will be targets ‘inside’ the
vehicle or the building caused by the reflection of the ego-vehicle itself. This is shown by
Figure 4.20. In this case, the parked vehicle in front of the ego-vehicle is like a ‘mirror’ in the
world seen by radar, which causes the problems similar to the problems caused by a mirror
to vision based road user detection algorithms.

The third reason for the false positive prediction is the noise from static objects. When
the vehicle is moving, the measured speed is compensated by the ego-motion. The ego-
motion is measured by odometry, which is not perfect. Using a small threshold for speed
filtering (0.3 𝑚/𝑠) will keep some targets of objects that are not actually moving but having a
measured speed due to imperfect ego-motion estimation. The example of this error is shown
in Figure 4.21.

False negative detection
The false negatives are the targets that should be predicted as road users but predicted as
targets from ’others’. There are mainly two reasons.

First of all, in the training data, there are many road users not annotated correctly by
SSD due to the lighting conditions, field of view of the camera, capacity of the SSD model,
etc. Therefore, the training data that are annotated as ‘others’ also have some targets from
actual road user which will mislead the model.

Secondly, although the weights for the loss function and ensemble learning scheme are
used to address the problem caused by imbalanced dataset, due to the fact that the number
of targets from ‘others’ is 10 times more than targets from road users, the model is still
biased by the targets from ‘others’. Further fine-tuning of the weights will help improve the
performance, but leaving the weights defined only by the number of training data is a more
robust solution, otherwise every time a new model is trained with different ratio of targets
from different classes, the weights should be tuned again.
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The error caused by the post-clustering stage
The object-level road user detection error not only comes from the target segmentation step
but also comes from the post-clustering stage. The post-clustering stage uses different hyper-
parameter settings for different road users. However, it lacks the ability to consider the
instance-level relation between different road users. See Figure 4.22, if there are some targets
at a car predicted as bikers, those targets will also be fused into a biker if they met the
requirement to form a cluster at the post-clustering stage. It does not filter the results based
on relative position of their targets, e.g. there can not be a biker ‘inside’ a car.

Secondly, the recall of the cyclist is decreased compared to its target segmentation result.
The decrease is mainly because of the minimum number to form a cyclist cluster is set
as 2. Although cyclists have larger scale than the pedestrian, there are still some cyclists
only having a single target detected by radar. Those targets are ignored with this set-up.
However, according to the number of cyclists having one target in Figure 4.6, the hypothesis
for minimum target equal to 2 is reasonable for a good trade-off between precision and recall.

The other reason that influences the F1 score is the IoU threshold to assign a true positive
detection. The 50% IoU is a reasonable threshold in visual object detection algorithm, while
it remains a question whether this value also holds in radar road user detection task. For
example, if there is a pedestrian with three targets detected by radar while only one target is
predicted as a pedestrian, whether this prediction can be counted as a true positive? If so,
the recall will further increase.



4.6. Discussion 53

Figure 4.17: The cyclists in group with similar speed are predicted as cars. Green dot means car. Red dot means cyclist.

Figure 4.18: The cars that are moving slowly in lateral direction are predicted as bikers. Red dot means bikers and blue dot
means car.

Figure 4.19: The subplot on the right is the predicted targets from top-down view. Blue means they are predicted as cars. The
annotation is projected in the camera image on the left. Yellow means targets are annotated as ‘others’. In the confusion matrix,
these targets are counted as false positives. However, it turns out that the ground truth used for evaluation is imperfect and the
prediction made by LLTnet-ensemble is correct.
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Figure 4.20: The ghost targets caused by the reflection of the ego-vehicle when there is a parked vehicle in front of it. Red dot
means biker and blue dot means car.

Figure 4.21: The false positive pedestrian caused by the background noise. Green dot means pedestrian. Red dot means biker
and blue dot means car.

Figure 4.22: The error caused by the post-clustering stage. If some targets ‘inside’ a car are predicted as bikers, they will possibly
also fused into a biker.



5
Conclusion

5.1. Conclusion
In this thesis, a new pipeline is proposed to perform low-level radar data based road user
detection by effectively combining high-level radar data and low-level radar data. Road user
detection task has two aspects: the localization and classification. High-level data is used
as region proposal, which has better accuracy for localization and less computational de-
mand. Low-level data is used as additional features for accurate classification of road users
from these proposals. By not only using targets for object-level information and using sin-
gle target as input, the clustering stage before classification is removed and features are
more descriptive. A novel convolutional neural network structure for target segmentation is
designed by considering the essence of low-level data. After target segmentation, the tar-
gets can be further fused into road users by post-clustering stage. Only using single frame
and single radar, the proposed method outperforms the 3 baselines including the state-of-
the-art high-level data based algorithm. Post-clustering stage is able to convert the target
segmentation result into different road users. The object-level result is also superior than
the baselines. The target segmentation result reaches an F1 score of 0.70 and object-level
road user detection has achieved a 0.68 recall on pedestrian class. For this task, a dataset of
radar low-level data is created by real-life test drive and automated annotation pipeline. The
model is not only tested on the dataset offline but also deployed to a ROS node to perform
real-time detection for demonstration.

5.2. Recommendation
5.2.1. Improve synchronization
Three input messages should be further synchronized, which are camera image, radar high-
level data and radar low-level data. In the experiment, the radar high-level data is used as the
reference for other messages. The target list is always using the latest radar cube to generate
its low-level counterpart. The closest camera frame is used because the camera image is only
useful for annotation purpose. The camera images and radar low-level data come at a frame
rate of 10 𝐻𝑧, while the radar high-level data has a frame rate of 13 𝐻𝑧. These messages are
recorded in their own time line, therefore there will be a time offset between messages of a
single annotated frame. This offset in time will result in an offset in space when both the
environment and ego-vehicle is moving. For example, in Figure 5.1 the radar targets from a
laterally moving cyclist mismatch its closest camera frame.

The synchronization between radar high-level data and low-level data is also important.
The high-level data can only be mapped to the latest low-level data. The time difference be-
tween these two messages will cause an offset in space between targets and its corresponding
low-level data. In other words, most targets are usually closer to the ego-vehicle than the
radar cube because it comes later. One way to address this problem is to add some compen-
sation for ego-motion by the time difference.
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Figure 5.1: The offset between camera image and radar targets. The red targets are from the cyclist moving in lateral direction.
The frame rate of camera image is only ኻኺ ፇ፳, less than the frame rate of radar high-level data, which is ኻኽ ፇ፳. When the biker
is moving quickly, there will be a mismatch between camera image and targets.

5.2.2. Improve radar resolution
The range resolution of the radar low-level data in this study is around 0.5 𝑚 and the speed
resolution is around 0.12 𝑚/𝑠. The range resolution is important for the low-level radar data
based road user classification. In Figure 5.2 is the comparison of the range-Doppler image
cropped around a biker from the radar used in this study and the high resolution radar used
in [60]. The image on the left is the biker in this study. Responses from multiple range bins
are recovered, but the micro-Doppler signatures for different parts are not clearly visible. In
contrast, the micro-Doppler signatures from the pedals and wheels of the cyclist are clearly
visible in the image on the right. Therefore, it is expected that using a radar with higher
resolution will improve the performance of the proposed method. The proposed method is
applicable to different resolutions. If the resolution is higher, more bins can be cropped to
form the LLT.

Figure 5.2: The comparison of the cyclist in the low-level data (range-Doppler image) of the radar used in this study and the
radar used by [60].
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5.2.3. Use more sophisticated scheme to do the post-processing
In the proposed pipeline, the object-level result is obtained by post-clustering stage. The
consistency of the labels of targets are not considered when the post-clustering is done sepa-
rately for each class. Majority voting can be applied to consider consistency. Moreover, there
are some more sophisticated algorithms that can also be used in this stage. For example, the
target segmentation result is a suitable input for extended object tracking [22], which tracks
targets over multiple time steps and also fuses targets into objects. Targets with labels can
also be a good input for particle filter. In [40], the particle filter is applied to radar targets for
tracking. The other possible solution is to use an additional module in the end of the LLTnet
to learn object-level information, such as using a graph convolutional networks, similarly
with the one used in [34].



A
Confusion matrices

This is the appendix for the confusion matrices of each method that is tested.

(a) (b)

(c)

Figure A.1: The confusion matrix of different tests listed in Table 4.6. (a) Prophet (b) HL-RF (c) LLT-RF1 (d) LLT-RF5

58



59

(a) (b)

(c) (d)

Figure A.2: The confusion matrix of different tests listed in Table 4.6. (a) LLTnet-FCN-multiclass (b) LLTnet-FCN-multiclass* (c)
LLTnet-FCN-ensemble (d) LLTnet-FCN-ensemble*
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(a) (b)

(c)

Figure A.3: The confusion matrix of different tests listed in Table 4.6. (a) LLTnet-multiclass (b) LLTnet-multiclass* (c) LLTnet-
ensemble*



B
Data format

Figure B.1: An example of the annotation. The annotations are saved as a list of frames in a json file. Each frame has a
dictionary of the speed resolution of the radar cube, the 2D and 3D annotations for cars and VRUs, the camera image path, the
radar targets path, the labels of each annotation and the ego motion.
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C
Table for manual annotation tool

Buttons/Text Boxes Functionalities

Save To save the annotaitons of the frames that are finished to a
json file. This file can be used as annotations for the process-
ing pipeline or as checkerpoints to continue working next time.

Car/Biker/Pedestrian To choose a class for the currently selected targets.

Jump to frame To jump to a specific frame.

Speed limit To set a speed limit for the compensated speed of the targets.

Toggle speed To project the compensated speed of the targets to the cam-
era as their height.

Toggle RCS To plot the targets in different colors depending on their RCS
value.

Toggle cluster To plot the targets in different colors depending on their DB-
SCAN result.

Toggle targets To choose whether to plot the targets on the image.

Previous/Next choose the previous (Space) or next frame (Left).

Remove Remove the last annotation of the current frame (Esc).

Table C.1: The functionalities of each button and text box
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