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Abstract
Machine learning methods like outlier detection are becoming increasingly more popular as tools in
the fight against money laundering. In this thesis, we analyse the Isolation Forest outlier detection
algorithm in detail and introduce a new local explanation method for Isolation Forest, the MI-Local-
DIFFI (Multiple Indicator Local-DIFFI) method. The method uses the structure of the isolation trees
and the traversal of individual outliers down the trees to determine an importance weight for each of
the features. These weights are then combined into feature importance scores that are used to explain
why a specific outlier is identified as such. In anti-money laundering (AML), such explanations are
very valuable when determining whether an outlying customer is suspicious or not. MI-Local-DIFFI
is based on a global explanation method called DIFFI and while we were conducting our research,
another local version, Local-DIFFI, was also introduced. In the thesis, we use a synthetic data set to
compare the performance of four different explanation methods including our MI-Local-DIFFI, Local-
DIFFI and the state-of-the-art TreeSHAP method. Our MI-Local-DIFFI shows excellent results in
terms of performance and runtime. Furthermore, we use a data set from Triodos bank to apply the
explainable outlier detection methodology consisting of the combination of Isolation Forest and MI-
Local-DIFFI. This resulted in interesting findings like the revealing of data quality issues in the current
system and references to EDRs and SARs. However, after further inspection, no SARs were filed but
some customers were put to higher risk classes. This procedure will be performed on a monthly basis
with the goal of continuing to improve the AML processes of the bank.

iii





Contents

List of Figures vii

List of Tables ix

List of Notation and Abbreviations xi

Preface xiii

1 Introduction 1
1.1 Anti-Money Laundering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5
2.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Method of Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Outlier Detection in Anti-Money Laundering . . . . . . . . . . . . . . . . . . . . . 13

2.3 Explanation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methods 17
3.1 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Scoring Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Average Path Length of Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Complexity and Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.5 Add-Ons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.6 Ternary Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Explanation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 MI-Local-DIFFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 TreeSHAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Alter-One-Feature (AOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Summary and visualisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Experiments Using Synthetic Data 45
4.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Experiments with Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Subspace Specific Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Ternary Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Experiments with Explanation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Configuration of MI-Local-DIFFI . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Configuration of AOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Comparison of MI-Local-DIFFI and Local-DIFFI . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



vi Contents

5 Application on Real-World Data 69
5.1 Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Explanation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Outlier Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion 79
6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 83

A Code 89
A.1 MI-Local-DIFFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 TreeSHAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3 AOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 Working Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.4.1 Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.4.2 Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B TreeSHAP Method in Detail 95
B.1 Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 SHAP values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.3 TreeSHAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Figures

2.1 Example of a Gaussian mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Example of an autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 A 2-dimensional scatter plot for visualising outliers. . . . . . . . . . . . . . . . . . . . . 20
3.2 The isolation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Path of an inlier and outlier in an isolation tree. . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Subsampling reducing swamping and masking effects. . . . . . . . . . . . . . . . . . . . 24
3.5 Subsampling reducing isolation ability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Maximum x-axis split value becomes low. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Heat map of anomaly scores for different Isolation Forest versions. . . . . . . . . . . . . 26
3.8 Interior and boundary outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 A proper ternary tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 Average path length of leaf nodes comparison. . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 Split interval length indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.12 MI-DIFFI-Local example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13 MI-DIFFI-Local example, zoomed in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.14 TreeSHAP example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15 Scatter plot for summary example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.16 Explanation scores for the three methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Visualising the HiCS synthetic data in 2-dimensions. . . . . . . . . . . . . . . . . . . . . 47
4.2 AUC for Isolation Forest using the HiCS synthetic data sets. . . . . . . . . . . . . . . . 50
4.3 AUPRC for Isolation Forest using the HiCS synthetic data sets. . . . . . . . . . . . . . . 51
4.4 AUC and AUPRC for Isolation Forest with 100 trees using the HiCS synthetic data sets. 51
4.5 Scatter plot visulisation in 3-dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Performance of Isolation Forest and Ternary Isolation Forest. . . . . . . . . . . . . . . . 55
4.7 MI-Local-DIFFI indicator performance comparison. . . . . . . . . . . . . . . . . . . . . . 58
4.8 MI-Local-DIFFI indicator performance comparison, part 2. . . . . . . . . . . . . . . . . 58
4.9 AOF version performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Performance comparison of TreeSHAP, AOF and MI-Local-DIFFI. . . . . . . . . . . . . 60
4.11 Runtime comparison of TreeSHAP, AOF and MI-Local-DIFFI. . . . . . . . . . . . . . . 60
4.12 The synthetic data projected on the 𝐹1 - 𝐹2 plain. . . . . . . . . . . . . . . . . . . . . . 64
4.13 Comparing Local-DIFFI, MI-Local-DIFFI and TreeSHAP on synthetic data. . . . . . . 66
4.14 Comparing Local-DIFFI, MI-Local-DIFFI and TreeSHAP on glass data. . . . . . . . . . 67
4.15 Comparing Local-DIFFI, MI-Local-DIFFI and TreeSHAP in an online setting on HiCS

synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.16 Comparing Local-DIFFI, MI-Local-DIFFI and TreeSHAP in a non-online setting on HiCS

synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 The histogram of outlier scores for business and private customers. . . . . . . . . . . . . 77

A.1 Scatterplot of Gaussian data 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Scatterplot of Gaussian data 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii





List of Tables

2.1 Overview of outlier detection methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Use cases of machine learning in AML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Categorisation of papers into Machine Learning use cases. . . . . . . . . . . . . . . . . . 14

4.1 Number of outliers in the 21 different synthetic data sets. . . . . . . . . . . . . . . . . . 46
4.2 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Runtime analysis of Isolation Forest implementation. . . . . . . . . . . . . . . . . . . . . 56
4.4 The 𝛼1 scores of different explanation methods. . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 The 𝛼2 scores of different explanation methods. . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Computational complexity of the different explanation methods. . . . . . . . . . . . . . 61
4.7 Computational complexity comparison of explanation methods by each factor. . . . . . . 62
4.8 Runtime analysis of the explanation methods. . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Identifying important information by looking at known money laundering Modus Operandi
or Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Feature selection in real-world data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 The classification of outliers done by an AML domain expert. . . . . . . . . . . . . . . . 73
5.4 Explanation evaluation measures for the top 20 business outliers and the top 20 private

outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 The results of the outlier review done by an AML domain expert. . . . . . . . . . . . . . 77

ix





List of Notation and Abbreviations
Notation

𝑋 data set

𝑛 number of observations in a data set

𝑑 number of dimensions in a data set

𝑥 observation/instance in a data set

𝐹 feature in a data set

𝑡 a tree object

𝑇 number of trees

𝑣 a node in a tree

𝜓 subsampling size, sometimes equal to 𝑛
ℓ height limit of a tree

𝑒 number of edges from root node to leaf node

ℎ(𝑥) path length of instance 𝑥
𝑐(𝑛) average path length of isolation tree with 𝑛 leaves

𝑠(𝑥) outlier score of instance 𝑥
𝐸(𝑛) average external path length of an isolation tree 𝑡.
𝐸𝑡(𝑛) average external path length of a ternary isolation tree 𝑡.

Abbreviations

AML Anti-Money Laundering

FATF Financial Action Task Force

MI-Local-DIFFI Multiple Indicator Local-DIFFI

AOF Alter-One-Feature

AUC Area Under ROC Curve

AUPRC Area Under Precision-Recall Curve

FI Feature Importance

MO Modus Operandi

MTS Money Transferring Services

SAR Suspicious Activity Report

EDR Event Driven Review

xi





Preface
This report contains the results of my master thesis project, which I have been fortunate enough to
work on for the past 9 months. I found this research both challenging and interesting and I learned nu-
merous things on the way. I would like to express my sincerest gratitude to the people that have helped
me with my research project. Prof. Kees Oosterlee, my academic supervisor, Dr. Evert Haasdijk, my
supervisor at Deloitte and Dr. Andrea Fontanari at CWI Amsterdam, who all gave me very helpful
feedback and helped shape this project into its current state. I also want to thank Dr. Nestor Parolya
for being apart of my Thesis Committee and my co-workers at Deloitte and Triodos for providing me
with a great working environment while I was working on this thesis.

Writing a thesis in the midst of a global pandemic has been interesting, to say the least. While I regret
not having been able to meet my supervisors and co-workers more in person, I was fortunate enough to
finish my research in Iceland surrounded by my family. Very special thanks go to my parents who have
supported me in so many ways during the last 25 years. Their optimistic and joyful way of living has
taught me something that cannot be learned from textbooks. I also want to thank my dad for providing
me with office space to be able to concentrate on my thesis work. Thanks to my four wonderful younger
siblings, I am proud to belong to such a great group. And finally, thanks to my lovely partner and
best friend, Andri. From March until August we sat opposite each other working on our master thesis
projects, for better company I could not have asked.

Kristín Björg Bergþórsdóttir
Hafnarfjordur, Iceland

August 2020

xiii





1
Introduction

Technical solutions for anti-money laundering (AML) have become increasingly popular in the last
decade, especially with increased knowledge of the benefits of machine learning. Currently, most banks
make use of a rule-based system to monitor AML risk. The rules are created manually based on expert
opinion and historical cases of money laundering and thresholds are tuned by the use of historical data.
Such a system has proven to be quite effective but it suffers from a lot of false positive alerts as well as
inability to detect new risk.

To tackle the system’s inability to detect new risk, we look at outlier detection methods. Such methods
are less subject to specific rules and thresholds when it comes to finding suspicious customers. Specif-
ically, we look at Isolation Forest, which is an increasingly popular outlier detection method mainly
because of its performance, low computational complexity and non-parametric nature. We look into
Isolation Forest in depth and see whether there are improvements to be made for optimal performance.

The understanding of why a particular customer is classified as an outlier can be enhanced by using
explanation methods on top of the results from the outlier detection algorithm. We introduce a new
method, MI-Local-DIFFI, which is a local adaptation of the previously introduced DIFFI [11] method.
This method looks at the splitting structure of Isolation Forest and ranks the importance of the features
in the data set based on their contribution to the outlier score of a particular observation. We compare
the MI-Local-DIFFI to two other explanations methods, the TreeSHAP [45] and an intuitive method
that is based on the paper by Breiman [6], which we refer to as AOF. The TreeSHAP is originally
designed for tree-based supervised models but we test the performance on the outlier detection model
Isolation Forest. As far as we know, this has not been done before in the literature.

We also recognize that the outlier explanations can help us understand the outlying aspects of the
outliers which gives a better foundation for the improvement of the algorithm. It is much easier to
improve a model that can be explained and is understood [1]. This is evidential in our research, as the
explanations lead us to experimentation with a slightly altered version of Isolation Forest, the Ternary
Isolation Forest, which has higher performance measures than the original version.

We mainly work with two data sets. First of all, a synthetic data set with ground truth outlier and
outlying aspect information and second of all, a data set from Triodos Bank, an industry partner that
is seeking to strengthen their AML system. The synthetic data set is used for validation purposes while
the data set from Triodos is specifically engineered to represent certain money laundering risk factors
and used to explore the benefits of applying outlier detection to uncover money laundering.

While writing up and finalising this thesis project, we found a new contribution on arXiv.org (21/7/2020)
from the authors of the DIFFI explanations method [12]. A local variant of the DIFFI method is
introduced and referred to as Local-DIFFI. Since this new contribution was introduced near the deadline
of our thesis finalisation, we only briefly comment on their new methodology. Initially, we meant to call
our new method the DIFFI-local, but because it is too similar to Local-DIFFI, we decide to refer to our
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2 1. Introduction

method as Multiple Indicator Local-DIFFI (MI-Local-DIFFI) since it uses three indicators related to
the tree structure of Isolation Forest to measure the importance. Further description of these methods
is provided in section 3.2.1. The authors have provided the code for the Local-DIFFI method, so we can
compare our method to theirs as shown in section 4.4. According to our experiments, our MI-Local-
DIFFI method shows better performance than the Local-DIFFI method. Clearly, our MI-Local-DIFFI
is thus a novel contribution to the literature on explainable methods for Isolation Forest.

1.1. Anti-Money Laundering
Recently, there have been multiple incidents in the Dutch financial sector where the monitoring of
money laundering has been seriously lacking [65]. Insufficient monitoring of clients and their activity is
a huge issue in the financial sector and failure to comply with AML legislation may result in large fines.
In this chapter, we explain the concept of money laundering and the measures that have been taken to
combat such criminal activity, commonly referred to as anti-money laundering (AML) measures.

The Financial Action Task Force (FATF) describes itself as being the global money laundering and
terrorist financing watchdog. The FATF recommendations aim to prevent these illegal activities and
the FATF monitors countries to ensure their compliance with these recommendations [20]. The FATF
defines money laundering as the processing of criminal proceeds to disguise their illegal origin [21]. The
United Nations Office on Drugs and Crime (UNODC) conducted a study to investigate the extent of
this money laundering activity and estimated that 2.7% of global GDP or about $ 1.6 trillion was being
laundered through the financial system in 2009 [52].

There are a few stages of money laundering, from when illegal funds enter the financial system up until
the funds re-enter the legitimate economy [21].

1. Placement: The launderer enters the illegal profits into the financial system.

2. Layering: The launderer engages in movements of the funds to create a distance from their
source.

3. Integration: The launderer re-enters the legitimate economy with the laundered funds, often
investing in real estate, luxury assets or business ventures.

A lot can be done to fight money laundering. Most governments have established comprehensive AML
regimes, aiming to increase the awareness within the public and the private business sector and provid-
ing the regulatory tools necessary to combat the problem. The financial sector plays a vital role in the
fight against money laundering and must establish a financial transaction reporting system, customer
screening and monitoring [21]. One part of the AML process is the ongoing due diligence and business
relationship monitoring that requires financial institutions to monitor unusual and potentially suspi-
cious transactions where any actual suspicion should lead to an obligation to report.

The monitoring of clients is mostly done using a rule-based system where customer activity is compared
to fixed thresholds that determine whether the activity is unusual or not. These thresholds are deter-
mined by looking at historical activity and are often confined to certain peer groups of customers. The
rule-based systems are very interpretable and work well in catching the most common known money
laundering scenarios. There are however some disadvantages to such a system, like the possibility that
criminals test the rules and thresholds and learn how to circumvent them and that the rules only con-
sider a small subset of all the available data.

Triodos bank recognizes the importance of fighting money laundering and has therefore spent a lot
of effort on improving its AML system and practices. Exploring the benefits of machine learning in
AML is one part of these efforts and in this thesis, we explore whether outlier detection can be used
to identify suspicious customers not detected with the rule-based AML system. Furthermore, we want
to explore whether the use of explanation methods on top of outlier detection can help the analysts to
pinpoint the outlying aspects of an outlier and thus making it easier for them to decide whether or not
the outlier is suspicious or interesting and requires further investigation.
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We are not only interested in the customers that are suspected to participate in illicit activity, but also
the customers that in some way deviate from the rest. These customers could, for example, be using
the bank’s product in another way than what was initially intended. These customers could also be
leading to false positive alerts in the rule-based system, making them interesting to detect in case they
require further handling.

1.2. Research Questions
The main research question to be answered in this thesis is the following:

• RQ1. To what extent can explainable outlier detection increase the ability of AML systems to
detect suspicious customers?

To answer the research question, the following sub-questions are addressed:

• SQ1. Which outlier detection algorithm is best suited for our problem setting?

• SQ2. Which explanation method should be used to explain the results of the outlier detection
algorithm on an individual prediction level?

Although the main research question revolves around enhanced detection of suspicious customers, this
research puts a lot of effort into the methods used. A deep dive into the Isolation Forest algorithm is
performed and an analysis into the different ways of locally explaining the output of Isolation Forest.
This aspect of the thesis is not less important than the specific use case in outlier detection.

1.3. Contributions
The contributions of this thesis are listed below.

1. We introduce a new explanation method, MI-Local-DIFFI, that measures feature importance on
a local level in the Isolation Forest outlier detection algorithm. This method outperforms the very
recent Local-DIFFI method when measured on a few synthetic data sets.

2. The performance of three different local explanation methods of Isolation Forest is evaluated on
a synthetic data set that contains ground truth outlying feature information.

3. We introduce Isolation Forest with a ternary tree structure that shows better performance than
the standard binary tree structure version.

4. We evaluate the performance of the explainable outlier detection methods on a real-world data
set from the AML domain.

The first two points are direct contributions to research in explainable outlier detection, the third
point is a contribution towards improvements of the popular Isolation Forest algorithm and the fourth
point is a direct contribution towards advancements in detection of suspicious customers for financial
institutions such as banks that have an obligation to monitor money laundering risks.

1.4. Thesis Outline
In the first chapter, the concepts of money laundering are introduced along with the measures in AML
that have been taken by regulators and financial institutions. The research questions are put forward
and the contribution of this research is discussed.

In chapter 2, the field of outlier detection is introduced and the pre-existing literature of such methods
in an AML setting. Different classes of outlier detection methods are described and reviewed. Finally,
an overview and taxonomy of explanation methods in machine learning is put forward with a special
focus on outlier detection methods.

In chapter 3, the Isolation Forest outlier detection algorithm is explained in detail followed by an in-
troduction of the explanation methods that are compared and evaluated later on in the thesis. The
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MI-Local-DIFFI is our local adaptation of the method DIFFI [11] that looks at the splitting structure
of Isolation Forest to formulate explanations for individual outlier predictions. The MI-Local-DIFFI
method is compared to the TreeSHAP [45] and AOF explanation methods. The TreeSHAP has shown
good performance for tree-based supervised models but has not yet appeared in the literature for Iso-
lation Forest.

In chapter 4, the synthetic data sets are introduced. The synthetic data has outliers with ground-truth
explanations of outlying features which can be used to evaluate the performance of the three expla-
nation methods. We perform multiple experiments, both regarding the outlier detection process and
the explanation process. We test the performance of Isolation Forest and perform some analysis of the
subspace specific detection ability of Isolation Forest. We also identify a possibility of improvement
using a ternary version of Isolation Forest. Finally, we compare the recently introduced Local-DIFFI
method to our MI-Local-DIFFI.

In chapter 5, the methods described earlier are applied to the real-world data set from Triodos bank.
The real-world data does not contain prior information about the ground-truth outliers or outlying fea-
tures. With the help of a domain expert, we evaluate whether the outliers are truly interesting in terms
of AML. The truthfulness of the explanations is also evaluated with an intuitive method described in
the chapter.

In chapter 6, we present the conclusion of the thesis by answering our research questions and addressing
the possibilities for future work. We also explain the limitations of this research project.



2
Background and Related Work

We look into the literature of machine learning and outlier detection and specifically analyse the use of
these methods in anti-money laundering. There are a few different classes of outlier detection methods
that use various ways to measure the outlierness of objects. Since we can not measure the performance
of different algorithms on our unlabelled financial data set, we use a previous literature review into
outlier detection algorithms to select an appropriate algorithm for our problem and thus manage to
address the first research subquestion. The Isolation Forest algorithm performed very well compared to
other algorithms and is both efficient and scalable. We thus chose to use this algorithm for our AML
outlier detection project. Based on this choice, we also review the literature relating to explanations
methods in outlier detection.

2.1. Introduction to Machine Learning
In the well-known book Machine Learning by Tom Mitchell [50], a broad definition of learning is put
forward.

A computer program is said to learn from experience 𝐸 with respect to some class of tasks
𝑇 and performancemeasure 𝑃 , if its performance at tasks in 𝑇 , as measured by 𝑃 , improves
with experience 𝐸 [50, p. 2].

To define a specific machine learning problem we must specify these three items (𝐸, 𝑇 , 𝑃 ). In the
checkers learning problem, these three items could for example be

• 𝐸: playing practice games against itself,

• 𝑇 : playing checkers,

• 𝑃 : percent of games won against the opponent.

Machine learning is often classified based on the amount of supervision used during training [24] as
presented below.

Supervised Learning
In supervised learning problems, the training data that you feed to the algorithm includes the desired
outputs (labels). The goal is thus to minimise 𝑓(𝑥) − 𝑦 where 𝑓 is the predictor that is trained to
predict the correct output 𝑦 based on the input data 𝑥. Supervised learning can further be divided
into classification and regression. Classification models are used when the desired output is a class, like
predicting whether an email is spam (1) or not (0), while regression models are used to predict numeric
values, like the price of houses (given location, market conditions etc.). Examples of popular supervised
learning algorithms are linear/logistic regression, decision trees, random forests, neural networks and
support vector machines (SVM).

5
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Unsupervised Learning
In unsupervised learning, the training is done without information about desired outputs or target
values. There are a few types of tasks that can be solved with unsupervised learning, one of them being
outlier detection. We introduce a few different tasks:

• Clustering: The goal is to learn the structure of the data and create clusters of similar observa-
tions.

• Outlier detection: The goal is to find observations that differ from the rest of the data. In some
way the exact opposite of clustering.

• Dimensionality reduction: Learning the structure of the data to reduce the number of dimen-
sions while retaining as much information as possible.

Other Types of Learning
Furthermore, there exists a hybrid version that combines these two classes called semi-supervised learn-
ing where a small proportion of the input data has labelled outputs but the majority is unlabelled. Such
algorithms can work well on top of clustering for example where only one label per cluster is needed to
identify all the elements in a cluster. Reinforcement learning is the final category and of a completely
different nature than the others. The learning system is an agent that can observe the environment,
select and perform actions which result in rewards or penalties. The goal is to learn the optimal strategy
(policy) which the agent must do by trial and error. The policy defines which action an agent should
perform in a given situation [24].

2.2. Outlier Detection
The term outlier is quite intuitive and most of us might have some preconceived idea of outliers. Hawkins
refers to the intuitive definition of an outlier as ”an observation which deviates so much from other
observations as to arouse suspicions that it was generated by a different mechanism” [27, p. 1]. Outliers
have been a statistical topic for centuries but as the field of data science started to grow about two
decades ago, outliers have also become a hot topic within the data mining community. Zimek and Filz-
moser [70] studied the difference between outlier detection from a statistical reasoning viewpoint, on one
hand, and a data mining algorithmic viewpoint, on the other hand. The main focus of the data mining
community was finding scalable methods for outlier detection resulting in the loss of probabilistic inter-
pretation of outlier scores. Generally speaking, statistical methods are based on presumed distributions
of objects which can sometimes be a disadvantage when the underlying assumed distribution does not
fit correctly. The data-oriented research shifted the focus towards more algorithm-driven thinking with
efficiency and scalability at the core. The field of outlier detection is thus situated somewhere at the
boundary of data mining and statistics, where the best suitable method may be either of a statistical
or algorithmic-driven nature depending on the application.

Connection to Supervised Learning
As mentioned in section 2.1, outlier detection is normally considered to be an unsupervised learning
problem, where the outliers are not known beforehand. However, some data sets contain labelled out-
liers, which changes the problem to a two-class classification problem with imbalanced classes. In such
cases, the problem becomes a supervised learning problem. In this research, we focus on the unlabelled
problem, since that is the case in most real-world applications of outlier detection.

In outlier detection, we can distinguish between instance-based learning methods and explicit generaliza-
tion methods [2]. In instance-based learning, the model is not constructed beforehand, but rather, each
instance is given a score based on other related instances. A popular example is using the 𝑘 nearest
neighbour distance of a data point as the outlier score. On the other hand, explicit generalization
methods use a two-step approach where (1) a one-class model is created and (2) each point gets a score
based on this model.

Connection to Extreme Value Theory
Extreme value analysis of one-dimensional data can be a very basic form of outlier detection where
outliers are specifically assumed to be values that are either very low or very high. However, outliers
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are not necessarily defined as extremely low or high values within a set of observations but as Hawkins
described, they are observations that deviate in some way from the rest. For example, looking at the
following seven observations {1, 1, 2, 50, 98, 99, 99}, the value 50 would be considered an outlier but def-
initely not an extreme value since the mean of these observations is 50. There is thus a fundamental
difference between extreme value theory and outlier detection but there are also some connections be-
tween the two fields. The outlier modelling algorithms often deliver their prediction by the means of
an outlier score that represents the deviation of each observation from the rest. Extreme value theory
can then be used as the final step to deviate the outliers from the rest as the outlier scores are now
represented as univariate values where the values on the extremes correspond to outliers [2].

2.2.1. Methods
We have put forward an intuitive definition of an outlier, but how do we measure whether an observation
deviates from the rest? No single correct definition of an outlier exists. Rather, there are a few ways to
define outliers using different measures of outlierness like density, distance or isolation. We introduce
a few different classes of outlier detection methods that are either of statistical or algorithmic nature.
Some even combine aspects from both statistical and algorithmic theory. The methods are listed
in table 2.1 and we discuss the properties of each method below. The column IB/EG refers to the
categorisation of the method into instance-based (IB) and explicit generalisation (EG) methods while
the column ST/AD refers to the categorisation of statistical-based methods (ST) and algorithm-driven
(AD) methods.

Method Description Complexity Example IB/EG ST/AD

Density-based Deviation is measured by
looking at the number of ob-
servations in certain regions
of the data space.

𝑂(𝑁2) but can be
reduced in some
cases.

Local-Outlier-
Factor (LOF)

IB AD

Distance-based Deviation is measured by
some distance measure.

𝑂(𝑁2) but can be
reduced in some
cases.

𝑘-nearest neighbour IB AD

Clustering-based Clustering is performed first
and then the distance from
cluster centers is used as a
measure of deviation.

𝑂(𝑁) but depends
on the clustering al-
gorithm

K-means clustering
with Euclidean dis-
tance measure

IB AD

Model-based A model is created to repre-
sent normal observations and
outliers correspond to the
observations that do not fit
the model

Depends on the
method.

Gaussian Mixture
Model, autoen-
coders

EG ST,AD

Isolation-based The susceptibility of obser-
vations to be isolated from
other observations by means
of random splitting

𝑂(𝑁) Isolation Forest EG AD

Other Methods that do not fall
under any of the categories
listed above

Depends on the
method.

One-Class Support
Vector Machine,
Angle-based Outlier
Detection

- -

Table 2.1: Overview of outlier detection methods.

Below, we denote observations with 𝑥 and 𝑦, a data set with 𝑋 and the size of a data set with 𝑛
and 𝑑 where 𝑛 refers to the number of observations and 𝑑 to the number of dimensions. Furthermore,
observation 𝑖 in the data set 𝑋 is referred to as 𝑥𝑖 and its value in dimension 𝑗 is denoted as 𝑥𝑖𝑗.

Density-based Methods
Density-based outlier detection methods measure the deviations by looking at the number of observa-
tions in certain regions of the data space. The most commonly known density-based outlier detection
method is the Local-Outlier-Factor (LOF) method [7]. The LOF gives each observation 𝑥 in data set
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𝑋 a score based on its local density. Let 𝑑𝑖𝑠𝑡(𝑥, 𝑦) be some distance metrics between two observations
𝑥 and 𝑦. We define the distance to the 𝑘-nearest neighbor of 𝑥 in 𝑋, denoted 𝑑𝑘(𝑥) as the 𝑘-th smallest
𝑑𝑖𝑠𝑡(𝑥, 𝑦) when computed for all 𝑦 ∈ 𝑋. Let 𝑆𝑘(𝑥) be the set of observations that are within the
𝑘-nearest neighbor distance of 𝑥. Then the reachability distance of 𝑥 with respect to 𝑦 is defined as the
maximum of 𝑑𝑖𝑠𝑡(𝑥, 𝑦) and 𝑑𝑘(𝑦),

𝑟𝑘(𝑥, 𝑦) = max(𝑑𝑖𝑠𝑡(𝑥, 𝑦), 𝑑𝑘(𝑦)), (2.1)

so the reachability distance is smoothed out by using the 𝑘-nearest neighbor distance when 𝑥 and 𝑦 are
close to each other. The average reachability distance of observation 𝑥, ̄𝑟𝑘(𝑥), is then defined as

̄𝑟𝑘(𝑥) = 1
|𝑆𝑘(𝑥)| ∑

𝑦∈𝑆𝑘(𝑥)
𝑟𝑘(𝑥, 𝑦). (2.2)

The Local Outlier Factor is then equal to the average ratio of ̄𝑟𝑘(𝑥) to the corrresponding values of all
the points in 𝑆𝑘(𝑥),

𝐿𝑂𝐹𝑘(𝑥) = 1
|𝑆𝑘(𝑥)| ∑

𝑦∈𝑆𝑘(𝑥)

̄𝑟𝑘(𝑦)
̄𝑟𝑘(𝑥) . (2.3)

This technique follows the assumption that the density around a normal observation is similar to the
density around its neighbours but the density around an outlier is different from the density around
its neighbours [2]. The main drawback of this method is that for high-dimensional data sets, the time
complexity is of the order 𝑂(𝑛2) which can be limiting for data sets with many observations. For
lower-dimensional data sets, this time can, however, be reduced to 𝑂(𝑛) or 𝑂(𝑛 ⋅ log𝑛). Density-based
methods belong to the class of instance-based methods.

Distance-based Methods
Distance-based methods measure the outlierness of objects using some distance measure, as the name
suggests and belong to the class of instance-based methods. The 𝑘-nearest neighbor distance is a
popular metric. However, to define the 𝑘-nearest neighbor distance of a point, we first have to choose
some distance metric as a basis. Most commonly, the Euclidean distance is used. Suppose we have a
data set 𝑋 with values in ℝ𝑛×𝑑. The Euclidean distance between two observations of 𝑋, 𝑥𝑖 = (𝑥𝑖1, .., 𝑥𝑖𝑑)
and 𝑥𝑗 = (𝑥𝑗1, .., 𝑥𝑗𝑑), is defined as

𝑑(𝑥𝑖, 𝑥𝑗) =
√√√
⎷

𝑑
∑
𝑙=1

(𝑥𝑖𝑙 − 𝑥𝑗𝑙)2. (2.4)

The Euclidean distance is thus equivalent to the 𝐿2 norm, but any 𝐿𝑝 norm can also be used as the
basis distance. For each observation 𝑥 in 𝑋, the 𝑘-th lowest distance to the rest of the observations
is then used as a measure of outlierness, where larger scores indicate increased probability of being an
outlier. Let

𝑑(𝑥𝑖) = (𝑑(𝑥𝑖, 𝑥1), 𝑑(𝑥𝑖, 𝑥2), ..., 𝑑(𝑥𝑖, 𝑥𝑛)) (2.5)

and let 𝑑𝑠(𝑥𝑖) be the vector that contains the same elements of 𝑑(𝑥𝑖) except sorted in increasing order
such that 𝑑𝑠(𝑥𝑖)(𝑗) ≤ 𝑑𝑠(𝑥𝑖)(𝑙) for 𝑗 < 𝑙. Then the 𝑘-nearest neighbor distance of the observation 𝑥𝑖 is
defined as

𝑘NN-distance(𝑥𝑖) = 𝑑𝑠(𝑥𝑖)(𝑘) (2.6)

The most basic methods use this exact 𝑘-nearest neighbor distance for a predetermined 𝑘 as the outlier
score but since the best value of 𝑘 is often difficult to estimate in unsupervised problems, the average
𝑘-nearest neighbor distance for range of values 𝑘 ∈ 𝐾 is chosen as the outlier score. We define the
average 𝑘-nearest neighbor score as

average-𝑘NN-distance(𝑥𝑖) = 1
|𝐾| ∑

𝑘∈𝐾
𝑑𝑠(𝑥𝑖)(𝑘) (2.7)
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where the set of integers 𝐾 has to be determined beforehand.

The biggest drawback of these methods is that the distance between all pairs of observations must
be computed, resulting in an 𝑂(𝑛2) computation time. This can be partly solved by using sampling
methods, reducing the computation time to 𝑂(𝑠 ⋅ 𝑛) for a sample of size 𝑠 such that 𝑠 ≪ 𝑛.

Clustering-based Methods
There is a somewhat complementary relationship between clustering and outliers, with the most sim-
plistic view being that there are two types of observations, outliers and clustered observations. In many
cases, the outliers are even a side-product of the clustering algorithm, often evaluated based on their
distance to the nearest cluster centre. An important advantage of clustering methods over distance-
based methods is increased time efficiency but they tend to work better for larger data sets where the
level of detail is not as important. Clustering methods also suffer from their variability because of the
randomness of the cluster generation process making it essential to compute an average outlier score
from multiple executions to ensure their robustness.

One method combines the K-means clustering and a distance function to compute outlier scores. Given
𝑛 observations (𝑥1, 𝑥2, ..., 𝑥𝑛) the K-means algorithm will divide the observations into 𝐾 different sets
𝑆 = {𝑆1, ..., 𝑆𝐾} such that the sum of squares within each set is minimised. Let 𝜇𝑗 be the mean of the
observations in set 𝑆𝑗 and 𝜎2

𝑗 be the variance. Formally, the goal is to find an optimal set allocation 𝑆
such that

argmin
𝑆

𝐾
∑
𝑖=1

∑
𝑥∈𝑆𝑖

‖𝑥 − 𝜇𝑖‖
2 = argmin

𝑆

𝐾
∑
𝑖=1

|𝑆𝑖|𝜎2
𝑖 . (2.8)

Once the sets or clusters have been optimally decided based on the criterion above, the distance to the
cluster centroid is calculated for each point and used as an outlier score. For an observation x𝑖 we thus
find out which cluster 𝑆𝑗 it belongs to and we get

𝐾-means Outlier Score = 𝑑(𝑥𝑖, 𝜇𝑗) (2.9)

where the distance metric 𝑑 is, for example, the Euclidean distance. Clustering-based methods are
instance-based methods but often less complex than the first two methods because for each observation
the only distance measure required is to the corresponding cluster center instead of to the entire data
set. The overall complexity depends on the clustering algorithm being used but the complexity should
not have to exceed 𝑂(𝑛).

Model-based Methods
The class of model-based outlier methods relies on creating a model to represent normal observations
and looks at outliers as the observations that do not fit the model [35]. We introduce a two of these
model-based methods, probabilistic methods and neural networks, which both belong to the class of
explicit generalization method.

(i) Probabilistic Methods: The probability density function of the data set 𝑋 is estimated by inference
of the model parameters 𝜆. The points that have the smallest likelihood 𝑃(𝜆|𝑥) are classified as
outliers. A key assumption for these types of models is the specific choice of the underlying data
distribution, which may not always be a trivial choice [2]. Examples of probabilistic methods in
outlier detection are Gaussian mixture models (GMM) and Dirichlet process mixture models.
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Figure 2.1: Gaussian mixture model for outlier detection, in this case there are three Gaussian blobs and the outliers are
located in low density areas.

We describe further how GMMs can be used for outlier detection [59]. The density of the GMM
is given by

𝑝(𝑥|𝜆) =
𝑀

∑
𝑗=1

𝑤𝑗 𝑔(𝑥|𝜇𝑗, Σ𝑗) (2.10)

where 𝑥 is a 𝑑-dimensional observation, 𝑤𝑗, 𝑗 = 1, ..., 𝑀 , are the mixture weights, and 𝑔(𝑥|𝜇𝑗, Σ𝑗),
𝑗 = 1, ..., 𝑀 are the Gaussian densities,

𝑔(x|𝜇𝑗, 𝛴𝑗) = 1
(2𝜋)𝑑/2|Σ𝑗|1/2

exp {−1
2(x − 𝜇𝑗)′ Σ−1

𝑗 (x − 𝜇𝑗)} (2.11)

where 𝜇𝑗 and Σ𝑗 are the mean and variance of the corresponding Gaussian density. The mix-
ture weights sum up to 1, ∑𝑀

𝑗=1 𝑤𝑖 = 1. We represent the three parameters of the GMM with
𝜆 = {(𝜇𝑗, Σ𝑗, 𝑤𝑗), 𝑗 = 1, ..., 𝑀}.

Given a data set 𝑋, the parameters of the GMM must be estimated which is most commonly
done with maximum likelihood estimation. Before estimating the parameters, we must determine
the number of gaussian densities 𝑀 that the GMM is comprised of. The estimation of 𝑀 can
however be difficult, especially for high-dimensional data that is hard to visualise. For a set 𝑋 of
𝑛 observations 𝑥1, ...𝑥𝑛, the GMM likelihood can be written as

𝑝(𝜆|𝑋) =
𝑛

∏
𝑖=1

𝑝(𝜆|x𝑖). (2.12)

This expression is a non-linear function of the parameters so the maximum likelihood estimated
parameters can not be obtained directly but are often calculated with the use of an expectation-
maximization (EM) algorithm as described in the paper [16]. The basic idea of the EM method
for maximum likelihood estimation is beginning with some 𝜆 and iteratively find a 𝜆′ such that
𝑝(𝜆′|𝑋) ≥ 𝑝(𝜆|𝑋). In each iteration, the parameters are estimated such that a monotonic increase
in the model’s likelihood is guaranteed.

Once the parameters have been estimated, �̂� = {( ̂𝜇𝑗, Σ̂𝑗, �̂�𝑗), 𝑗 = 1, ..., 𝑀}, the outlier scores are
computed using the likelihood function 𝑝(�̂�|𝑋). The outlier score of an observation x𝑖

GMM outlier score = 𝑝(�̂�|x𝑖) =
𝑀

∑
𝑗=1

�̂�𝑗 𝑔(xi| ̂𝜇𝑗, �̂�𝑗). (2.13)
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where a lower score means increased outlierness.

The main drawback of such methods is the assumption about the distribution of the underlying
data. For example, in a Gaussian mixture model (GMM), the underlying data is assumed to
follow a mixture of Gaussian distributions and the outliers are the points that do not fit that
distribution [2]. In figure 2.1, we see that the three outliers can be identified effectively using a
GMM with 𝑘 = 3 components. In higher dimensional spaces, the choice of 𝑘 is, however, less
obvious which can result in sub-optimal models.

(ii) Neural Networks: Autoencoders have been used recently for the detection of outliers. An autoen-
coder is a neural network that is typically layered and symmetric such that the number of input
nodes is equal to the number of output nodes. The nodes in the middle layer are fewer than in the
input layer and the goal of the autoencoder is to produce an output that reconstructs the input.
The reconstruction loss is then used to identify outliers since they are harder to reconstruct and
consequently get a higher reconstruction loss [13]. An example of an autoencoder is shown in
figure 2.2. Suppose we have an observation 𝑥 that is put through the autoencoder, resulting in an
output of 𝑥′. The corresponding outlier score of observation 𝑥 is then based on the reconstruction
loss, 𝐿(𝑥, 𝑥′).

Figure 2.2: An autoencoder with 3 hidden layers.

Given an observation 𝑥, we let 𝑓𝑒(𝑥, 𝜃𝑒) be the output of an encoder network with parameters 𝜃𝑒
and for some output 𝑦 of the encoder, we let 𝑓𝑑(𝑦, 𝜃𝑑) be the output of a decoder network with
parameters 𝜃𝑑. The output of the autoencoder can thus be computed as follows

𝑥′ = 𝑓𝑑(𝑓𝑒(𝑥, 𝜃𝑒), 𝜃𝑑). (2.14)

The parameters 𝜃 = (𝜃𝑒, 𝜃𝑑) are then determined such that the sum of the losses ∑𝑛
𝑖=1 𝐿(𝑥𝑖, 𝑥′

𝑖)
is minimised over the data set. A common loss function is for example the euclidean distance,
𝐿(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖2

2. The assumption is that normal observations can easily be reproduced using
the network so the reproduction loss 𝐿(𝑥, 𝑥′) is low whereas outliers are harder to reproduce with
the network which results in a higher loss 𝐿(𝑥, 𝑥′).

The paper [71] introduces an interesting combination of an autoencoder and a Gaussian mixture
model, where the authors first use an autoencoder network and then a GMM estimation network
on the reduced dimensional representation of the autoencoder. These two networks are then
optimised simultaneously. This method is called the DAGMM and has shown very good results
but as with normal GMM networks, it requires the predetermination of the number of Gaussian
models 𝑀 which is not always trivial for unsupervised problems.
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Isolation-based Methods
The last class of methods that we introduce are the so-called isolation-based methods with Isolation
Forest being the most well known of such methods. Instead of relying on common distance or den-
sity measure, the isolation-based methods can be implemented by any means of separation between
instances [41]. Isolation Forest constructs binary trees for separation purposes and uses the lengths
of the paths in the tree as outlierness indicators. Since computations of distances and densities are
not necessary in Isolation Forest, the time complexity is reduced substantially. Furthermore, Isolation
Forest is easily scalable for large and high-dimensional data sets. The Isolation Forest is an explicit
generalization method and we will discuss this method in detail later in the thesis.

Other Methods
Finally, we mention some well-known methods that are harder to categorise. First of all, the one-
class support vector machine (OCSVM) [62] separates the outliers by constructing a boundary between
normal and abnormal observations. Second of all, angle-based outlier detection measures outlierness
by looking at in which angle the other observations are located. The assumption is then made that the
outliers are located at the border of the data distribution meaning that the rest of the observations are
located in a similar angle [34].

2.2.2. Method of Choice
In outlier detection, the choice of method is of fundamental importance to the performance of the out-
lier detection algorithm but unfortunately, this choice is not always obvious due to the unsupervised
nature of the problem. In classification problems where labelled data is available, the problem of model
selection is less challenging as measures of performance can be used in the decision-making process.
The absence of labelled data makes the analysts understanding of relevant outliers a central aspect in
the choice of method [2].

We start by identifying a few important characteristics that the outlier detection algorithm should
preferably fulfil. Firstly, the performance and time complexity of the algorithm must be good and scale
well with the size and dimensionality of the data set (preferably handle data sets with >100.000 in-
stances and >30 dimensions). Secondly, because of the unsupervised nature of the data set, the number
of parameters that need to be calibrated or tuned should be as low as possible.

In a recent survey [17], the performance of several state-of-the-art outlier detection methods was com-
pared. We use the result of this comparison as a base for our selection of an outlier detection method.
The study benchmarked the average precision, robustness, computation time and memory usage of 14
different outlier detection algorithms on both synthetic and real-world data sets. The study concludes
that Isolation Forest is an excellent method to efficiently identify outliers while being both scalable
in terms of memory and computation time for large data sets. Moreover, the survey indicates that
Isolation Forest should be the method of choice when dealing with large data sets.

In the paper [41], the authors of Isolation Forest also assert that isolation based methods are more
appropriate for the outlier detection task than the basic density and distance measures since they can
detect both clustered and scattered anomalies instead of only the latter. The study [17] mentioned
above, does not include the recently popular neural network based methods; Auto-encoders or RBMs.
However, a recent paper [54] has extended the outlier benchmarking by comparing these two methods
to Isolation Forest, concluding that overall, Isolation Forest outperforms these neural network based
methods, especially when considering the short run time and easy-to-set hyperparameters. Based on
the observations above, we decide to use Isolation Forest as the outlier detection method of choice in
our research. Note that Isolation Forest is an algorithmic-driven outlier detection method and thus the
resulting outlier score suffers from the absence of probabilistic interpretation. However, the tree-based
properties of the method offer us the possibility of some interesting mathematical analysis as shown
later on in this thesis. We have thus answered our first research sub-question (SQ1) about which outlier
detection algorithm is best suited for our problem.
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2.2.3. Outlier Detection in Anti-Money Laundering
Research into AML is done both in industry and academia, sometimes with cooperation between the
two areas, as in our case, which means that a large part of the research is not publicly available. In this
project, we base our reasoning both on expert opinion from individuals that work in the AML industry
as well as the publicly available literature. The analytics software and solution company SAS is among
the biggest players in the technological field of AML. Their recent white paper [61] identifies the main
use cases of machine learning techniques in AML as listed in table 2.2.

Use case

Machine learning

1) as a supplement to transaction monitoring

2) for anomaly detection

3) for customer segmentation

4) for customer risk ranking

5) for social network analysis

6) for threshold setting and tuning

Table 2.2: The main use cases of machine learning in AML.

We are most interested in the outlier detection use case. We keep this categorization of use cases in
mind when we explore which machine learning methods and models are currently being used in the
AML literature that is publicly available.

Now specifically, we look for related work in outlier detection for AML purposes and at the same time,
we try to identify possibilities of improvements. In the past two decades, there has been a growing in-
terest in technological solutions in the fight against money laundering as shown in a recently published
systematic literature review [37]. The systematic literature review identifies relevant papers by search-
ing on four electronic databases, using search terms related to “money laundering” AND “technology”
AND “approach”. The 795 publications found are reduced even further by using a few inclusion and
exclusion criteria, that agree with our research. This results in a total of 71 studies which are rigorously
analysed and categorised based on the approach used, the application domain, the support mechanism,
evidence level and context. The term technological solution covers a broader area of research than
our machine learning aimed project. We thus use three of the categorization tables from the literature
review to get specifically the papers that match our area of interest.

After limiting the scope from the original literature review [37] we end up with a total of 25 relevant
papers. We categorise these papers based on their use case using the six categories from table 2.2. The
results are shown in table 2.3 below. Since we are most interested in use cases for outlier detection
as described earlier, we discuss the papers in this category in depth. Notice that there is considerable
overlap between the categories of outlier detection and customer segmentation indicating that the com-
bination of the two has been studied quite a bit. Note that such methods could also be classified as
clustering-based outlier detection.
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Category Use case Papers

1 Machine Learning as a supplement to
transaction monitoring

None

2 Machine Learning for outlier detection [25], [29], [64], [69], [58], [14], [9], [42],
[67], [43]

3 Machine Learning for customer
segmentation

[25], [69], [58], [14], [3], [10], [56]

4 Machine Learning for customer risk
ranking

[33], [32]

5 Machine Learning for social network
analysis

[29], [15], [18], [48], [66], [39], [63], [30],
[38], [68], [23], [56]

6 Machine Learning for threshold setting
and tuning

[3]

Table 2.3: The papers categorised based on their Machine Learning use case.

Papers [25], [14], [69], [58] use clustering-based outlier detection where the clusters are used to establish
normal behaviour and then an outlier index is computed to find anomalous behaviour. In particular,
paper [25] present a new clustering algorithm TEART and then measures the anomaly score based
on deviations from the established transaction behaviour of the cluster the customer belongs to. The
authors of [69] explore a new ”cross outlier detection” model based on distance definitions that are
incorporated with the financial transaction data features, paper [14] explores the use of Expectation
Maximization for clustering and genetic search for features selection, paper [58] uses Fuzzy c-means for
clustering and a Dynamic Bayesian Network for anomaly index calculation.

Some methods focus purely on anomaly detection. Paper [64] uses a one-class SVM outlier detection
algorithm, paper [29] uses a combination of a graph-based similarity matrix and a feature matrix to
detect anomalies, paper [9] uses three different types of anomaly detection algorithms (one of them
being Isolation Forest) to obtain a suspicious ranking, paper [42] aims to identify suspicious sequences
of transactions by studying their pattern and then predicting whether they are abnormal or not. Fur-
thermore, the authors of [67] use DBSCAN clustering to find low-density regions which are marked as
anomalous and the authors of [43] use Local Outlier Factor to detect and rank outliers.

Only one of these papers uses Isolation Forest to detect outliers, namely paper [9]. We also notice that
none of the methods above tries to use explanation methods to explain the outliers that are identified.
We see this as a point of improvement in the existing methods and start by introducing the literature
of explanation methods in machine learning.

2.3. Explanation Methods
The outlier detection algorithms can be used to identify outliers but most of them do not describe why
an observation was identified as an outlier. Since this information is highly relevant in many use cases,
including ours, we inspect methods that can identify the main reasons behind the outlier classification.
The area of Explainable or Interpretable Machine Learning has become increasingly popular in the last
few years since many of the use cases of machine learning require the user to be able to interpret the
results in some way.

In the book [51], the author presents a taxonomy of explanation methods by considering four main
classification criteria:

• Intrinsic or post hoc. Intrinsic explainability refers to the machine learning itself being easily
understood, like a decision tree or logistic regression, while post hoc explainability refers to the
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application of methods that analyse the model after training.

• Result of the explanation method. There are a lot of possible ways to present model expla-
nations. For example, it can be in the form of feature importance measures, feature summary
statistics or visualisations, internally learned weights or parameters or even an interpretable model
trained to approximate the results of a black-box model.

• Model-specific or model-agnostic. A model-agnostic explanation method can be used on any
machine learning model and is applied after training usually analysing feature input and output
relations. Model-specific methods only work on a limited model class and are designed based on
the internal mechanism of the specific model.

• Local or global. The explanation are global if they explain the entire model behaviour but local
if they explain individual predictions.

In the task of finding suspicious customers, both local and global explanations are useful. The global
explanation can help us evaluate in which specific subspaces the domain-specific anomalies are located
and identify the features that are important for this outlier detection problem in general. On the other
hand, the local explanation can provide alert experts with broader information about specific customers
that showed indication of anomalous behaviour and have to be inspected further. Explainability in gen-
eral is also important for the overall understanding of the model, both for the developer, users and
regulators. In this thesis, we focus on local explainability.

Isolation Forest, the outlier detection method of choice, is not intrinsically explainable, mainly due to
the number of trees it consists of, so post-hoc explanations are needed to explain the outliers. There
only exists one model specific method for Isolation Forest that was presented in a recent paper [11].
The method is called DIFFI (Depth-based Isolation Forest Feature Importance) and it measures feature
importance in Isolation Forest on a global level. The computational complexity of the DIFFI method
is quite high, 𝑂(number of trees ⋅ number of vertices ⋅ number of observations ⋅ max depth), especially
for a large data set. As mentioned in the introduction, the authors of DIFFI introduced a new con-
tribution [12] that also measures local importance and is referred to as the Local-DIFFI. This work
was introduced towards the end of the thesis project timeline and we had already developed our own
methodology for local explanations based on the original DIFFI method. We call our method Multiple
Indicator Local-DIFFI (MI-Local-DIFFI) since it uses three indicators related to the tree structure of
the Isolation Forest to measure the importance. Although the DIFFI method is the only explainability
method specifically designed for Isolation Forest, there are several model-agnostic methods available
and a few that work on the class of tree-based models.

We also look at model agnostic methods that could be used to explain our model. The SHAP method
[44] is a model agnostic explanation method that has shown promising results but its computational
complexity is the main concern. Fortunately, an alternative way of computing the SHAP values for
tree-based models is introduced in the paper [45] and referred to as the TreeSHAP. These methods are
based on the computation of Shapley values and solve an issue regarding the inconsistency of other
popular explanation methods such as LIME [60]. A method is said to be inconsistent if a feature’s im-
portance is lowered when the true impact of that feature increases. The monotonicity property of the
Shapley values ensures that the SHAP values fulfil the consistency property. The TreeSHAP method
also demonstrates better agreement with human intuition compared to other popular methods such as
LIME [60].

Originally, TreeSHAP was designed for supervised learning problems where labelled data is available.
We modify the approach so that it fits our outlier detection setting by considering the outlier score
from the outlier detection algorithm as the labels. This can be done even though the data is unlabelled
because the explanations are computed after the Isolation Forest outlier scores have been computed.
In Isolation Forest, high scores are interpreted as outliers so we want to identify the features that con-
tributed to higher than average score for the outlying observations. That can give us a good explanation
as to why a particular observation is identified as an outlier. The scores can also be used to give a
global explanation about the importance of different features in the data set.
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As a baseline to compare to MI-Local-DIFFI and TreeSHAP, we explore a very intuitive method of
measuring feature importance which we refer to as the Alter-One-Feature (AOF) method. These three
explanation methods, MI-Local-DIFFI, TreeSHAP and AOF will be described in more detail in section
3 and their performances will be compared in section 4.3.



3
Methods

In this section, we describe in detail the algorithms used in this thesis. First, we describe the Isolation
Forest outlier detection algorithm and then the three explanation methods, MI-Local-DIFFI, TreeSHAP
and AOF. There are a few variants of the Isolation Forest available such as the extended and the
contextual weighted versions and later on, we also introduce our own variant, Ternary Isolation Forest.
However, because of scalability and combination with explainability methods, we decide to use the
original Isolation Forest in our experiments later on, both on the synthetic and the real-world data set,
as the original version has been implemented very efficiently in the sklearn package, see runtime analysis
in section 4.2.3. The sklearn implementation is also necessary for the calculation of the TreeSHAP values
with the shap package. The complication of the TreeSHAP implementation is such that it did not fit
the scope of this thesis to reimplement the Isolation Forest variants (extended, contextual and ternary)
and then adjust the shap computations accordingly.

3.1. Isolation Forest
As mentioned earlier, the Isolation Forest algorithm showed very good performance in a quite recent
literature review [17]. Isolation Forest can also be scaled up to handle large, high-dimensional data sets.
In this section, we introduce the original Isolation Forest algorithm and discuss it in detail. We also
introduce a few variants of Isolation Forest.

Isolation Forest [40] is an outlier detection method that uses the outcome of multiple isolation trees to
compute an outlier score. An isolation tree is creating with random splits and can be thought of as
the unsupervised and randomised version of the decision tree algorithm. Isolation Forest is an explicit
generalization method and the training of the model and the scoring is done on the same data set, a
so-called non-online setting. This means that it is not necessary to split the data into training and
testing sets as done in supervised learning problems. The model can also be deployed in an online
setting as done in the Local-DIFFI paper [12], where the model is applied to unseen observations that
were not involved in the training phase. However, we focus on the non-online setting in this thesis.

We start by introducing a few basic definitions concerning trees, using notation from [19]. A tree is
an undirected graph in which any two nodes are connected by exactly one path. We say that a tree
is rooted when one node has been designated as the root. In a rooted tree, we say that the parent of
a node 𝑣 is the node that is connected to 𝑣 on the path to the root and that the child of a node 𝑣 is
a node of which 𝑣 is the parent. A node with no children is a leaf. A binary tree is a tree where each
node has at most two children, referred to as the left and the right child. A proper binary tree is a tree
in which every node has either 0 or 2 children. Using the definitions above we can define an isolation
tree.

Definition 3.1.1. An isolation tree 𝑡 is a proper binary tree where each non-leaf node contains a test
that consists of an attribute 𝐹𝑖 and a split value 𝑎 such that the test 𝐹𝑖 < 𝑎 determines the traversal of
an observation to either the left or the right child nodes.

17



18 3. Methods

Let 𝑋 be an 𝑛 × 𝑑 dimensional data set where the features 𝐹𝑗 represent the column vectors of the data
set for 𝑗 = 1, ..., 𝑑. An observation 𝑥𝑖 is the 𝑖-th row vector of the data set 𝑋. A sample from 𝑋𝑠 ⊂ 𝑋
of size 𝜓 ≤ 𝑛 is used to build an isolation tree. The sample 𝑋𝑠 is recursively split using tests of type
𝐹𝑗 < 𝑎, where the feature 𝐹𝑗 ∈ {𝐹1, ..., 𝐹𝑑} is selected with equal probability and the split value is
chosen uniformly in the range of that feature 𝐹𝑗. This splitting mechanism is continued until either (i)
the node has only one instance or (ii) all the data in the node have the same values. If the data set
𝑋 only contains distinct instances, each instance is isolated to a distinct leaf, creating an isolation tree
with a total of 2𝜓 − 1 nodes.

The isolation tree is used as a means to detect outliers. We define the path length of an observation as
follows.

Definition 3.1.2. The path length ℎ(𝑥) of an observation 𝑥 is measured as the number of edges on the
path of 𝑥 from the root to its leaf node.

The path lengths are used to identify the susceptibility to isolation of different observations such that
short path lengths mean high susceptibility to isolation and vice versa. Similarly to the relationship of
decision trees and random forests, an isolation forest is a set of multiple isolation trees. We now present
the Isolation Forest algorithm in detail and note that the algorithm can be divided into two phases,
training and scoring phase.

3.1.1. Training Phase
In the training phase, the set of isolation trees that form the isolation forest is created using a subset
of the data. This phase can be described by the two algorithms 1 and 2 below.

Algorithm 1 Create isolation forest
1: procedure 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑋, 𝑇 , 𝜓)
2: Input: 𝑋 - input data , 𝑇 - number of trees, 𝜓 - subsampling size
3: Initialize 𝐹𝑜𝑟𝑒𝑠𝑡
4: Set height limit ℓ = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(log2(𝜓))
5: for 𝑖 = 1 to 𝑇 do
6: 𝑋𝑠 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑋, 𝜓)
7: 𝐹𝑜𝑟𝑒𝑠𝑡 = 𝐹𝑜𝑟𝑒𝑠𝑡 ∪ 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑠, 0, ℓ)
8: end for
9: return 𝐹𝑜𝑟𝑒𝑠𝑡

10: end procedure
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Algorithm 2 Create isolation tree
1: procedure 𝑖𝑇 𝑟𝑒𝑒(𝑋, 𝑒, ℓ)
2: Input: 𝑋 - input data, 𝑒 - current tree height, ℓ - height limit
3: Initialize 𝑖𝑇 𝑟𝑒𝑒
4: if 𝑒 ≥ ℓ or |𝑋| ≤ 1 then
5: return 𝑒𝑥𝑁𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 = |𝑋|}
6: else
7: Let 𝐹 be a list of features in 𝑋
8: Randomly select a feature 𝐹𝑖 ∈ 𝐹
9: Select a split point 𝑎 uniformly over the max and min values of attribute 𝐹𝑖 in 𝑋.

10: 𝑋𝑙 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝐹𝑖 < 𝑎)
11: 𝑋𝑟 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝐹𝑖 ≥ 𝑎)
12: return 𝑖𝑛𝑁𝑜𝑑𝑒{𝐿𝑒𝑓𝑡 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑙, 𝑒 + 1, ℓ),

𝑅𝑖𝑔ℎ𝑡 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑟, 𝑒 + 1, ℓ),
𝑆𝑝𝑙𝑖𝑡𝐹𝑒𝑎𝑡 = 𝐹𝑖,
𝑆𝑝𝑙𝑖𝑡𝑉 𝑎𝑙𝑢𝑒 = 𝑎}

13: end if
14: end procedure

Subsampling
One way to improve the computational efficiency is to use a subsample of size 𝜓 to construct isolation
trees in a training phase. The training phase returns the tree structure and the split conditions at each
node, which are then used for out-of-sample scoring in the testing phase. This has been shown to result
in better computational efficiency and better diversity.

Early Termination
A further efficiency gain is to create a threshold on the tree’s height. Then, a node is labelled as
external (leaf), if it has reached a certain distance from the root node. To estimate the path length
of observations in such early terminated nodes, an additional length is assigned to them as they have
not been grown to full height. We say that an isolation tree is fully grown if it is built without early
termination. For a node that contains 𝑛 observations, an additional 𝑐(𝑛) is added to its path length
where 𝑐(𝑛) is the average depth of leaves in a fully grown isolation tree,

𝑐(𝑛) ≈
⎧{
⎨{⎩

0 if 𝑛 = 1,
1 if 𝑛 = 2,
2(ln(𝑛) + 0.5772 − 1) if 𝑛 > 2.

(3.1)

In the original paper, the expected path is 𝑐(𝑛) ≈ 2(ln(𝑛 − 1) + 0.5772) − 2(𝑛−1)
𝑛 but this computation

fails to take into consideration that isolation trees are proper binary trees where each non-leaf node has
two children nodes but never one. In the section 3.1.3, we explain how the equation is derived.

Ultimately we end up with 𝑇 randomly created proper binary trees where each node is either an ex-
ternal (leaf) node or an internal (non-leaf) node. The internal nodes contain information about the
corresponding tests, that is the feature and the value which were used to split the data set into the
left and right children of that internal node. The external nodes contain information about how many
observations ended up in that node. A node becomes external (a leaf) if the tree has reached its max-
imum height in case of early termination, the node contains a single observation or the node contains
multiple identical observations.

3.1.2. Scoring Phase
The outlier scoring of each observation is derived from its expected path length 𝔼[ℎ(𝑥)]. The path
length, ℎ(𝑥𝑖) of an observation 𝑥𝑖 in an isolation tree is the number of edges from the root node to the
termination node 𝑒𝑖. In the case of early termination, if the number of observations in the termination
node is 𝑛𝑡 > 1, then 𝑐(𝑛𝑡) is added to the path length. Here, 𝑐(𝑛𝑡) represents the average path length
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of an isolation tree that is built with 𝑛𝑡 observations as derived in section 3.1.3. The path length is
thus,

ℎ(𝑥𝑖) = {𝑒𝑖 + 𝑐(𝑛𝑡) if 𝑛𝑡 > 1,
𝑒𝑖 otherwise.

(3.2)

The final score of observation 𝑥𝑖 considering an ensemble of isolation trees is then given by

𝑠(𝑥𝑖) = 2− 𝔼[ℎ(𝑥𝑖)]
𝑐(𝑛) , (3.3)

where 𝑛 is the number of observations. Note that

lim
𝔼[ℎ(𝑥)]→𝑐(𝑛)

𝑠(𝑥) = 2− 𝑐(𝑛)
𝑐(𝑛) = 0.5, (3.4)

lim
𝔼[ℎ(𝑥)]→0

𝑠(𝑥) = 2−0 = 1, (3.5)

lim
𝔼[ℎ(𝑥)]→𝑛−1

𝑠(𝑥) = 2− 𝑛−1
𝑐(𝑛) = 2− 1

2 ⋅ 𝑛−1
ln(𝑛−1)+0.5772−1 → 0 as 𝑛 → ∞. (3.6)

This means that 𝑠 ∈ (0, 1] and we can interpret the score in terms of outlierness of observations.

If 𝑠(𝑥) is
⎧{
⎨{⎩

close to 1, then 𝑥 is definitely an outlier.
much smaller than 0.5, then 𝑥 is quite certainly a normal observation.
around 0.5 for all observations, then the data set does not really contain clear outliers.

In our applications of Isolation Forest, we have seen that there is no single correct outlier score threshold
that can be used to distinguish between outliers and normal data points. The distribution of the outlier
scores differs a lot between data sets.

As we have shown above, the observations in the data set are given an outlier score depending on
how far away they are from the root node in each isolation tree. This can be explained visually by
considering a 2-dimensional data set as shown in figure 3.1.

Figure 3.1: A 2-dimensional data set with 20 observations, 19 inliers (green) and one outlier (red).

For illustration purposes, we create an example of how an inlier and an outlier could be isolated in a
single isolation tree without using subsampling or early termination. The outlier is coloured in red and
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the inlier we want to isolate is coloured bright green. When the isolation tree has been built with the
random splitting as described above, we can analyse the path of (a) the inlier and (b) the outlier in the
corresponding tree.

(a) Isolating an inlier. (b) Isolating an outlier.

Figure 3.2: An example of how inliers and outliers are randomly isolated in an isolation tree. The isolation of the inlier requires
10 splits whereas the outlier is isolated with only 2 splits.

In an experiment, there were 10 random splittings performed in the path of the inlier before it was
isolated, but only 2 random splittings were needed before the outlier was isolated. In the isolation tree
that corresponds to this random splitting (see figure 3.3), the path length of the inlier is 10 while the
path length of the outlier is only 2. If we consider an isolation forest with only a single isolation tree,
the corresponding scores for the inlier and the outlier would be

𝑠(𝑥𝑖) = 𝑒−10/𝑐(20) = 0.002 and 𝑠(𝑜) = 𝑒−2/𝑐(20) = 0.3. (3.7)

(a) The path of the inlier. (b) The path of the outlier.

Figure 3.3: The path of the inlier and the outlier in a corresponding isolation tree.

3.1.3. Average Path Length of Leaves
As mentioned above, in case of early termination in which multiple observations end up in the same
leaf, the average path length must be estimated based on the number of observations in the leaf. This
is done by using similar analysis as performed on unsuccessful searches in binary search trees in the
book by B. R. Preiss [55].

We define the external path length of a tree 𝑡 to be the sum of the path lengths from the root to each
external node/leaf in the tree. Using the concept of external path lengths, we can compute the average
path length of leaf nodes by dividing the external path length with the number of leaves.
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Theorem 3.1.1. The average external path length of a fully grown isolation tree 𝑡 with 𝑛 input samples
is denoted by 𝐸(𝑛) and given by the following equation,

𝐸(𝑛) =
⎧{
⎨{⎩

0 if 𝑛 = 1,
2 if 𝑛 = 2,

𝑛
𝑛−1 𝐸(𝑛 − 1) + 2 if 𝑛 > 2.

(3.8)

Proof. First assume that 𝑛 = 1 and note that the fully grown isolation tree with one input sample is a
root node and the average external path length of a single node is zero, 𝐸(1) = 0.

Now, let 𝑡𝑛(𝑙) be an arbitrary isolation tree where the left subtree has 𝑙 leaf nodes for some 𝑙 ∈
{1, 2, ..., 𝑛 − 1}. Such an isolation tree consists of a root, a left subtree with 𝑙 leaves and a right subtree
with 𝑛 − 𝑙 leaves. The average external path length of such a tree can thus be computed as the sum of
the average external path lengths of the left and the right subtree, 𝐸(𝑙) and 𝐸(𝑛 − 𝑙) respectively, plus
𝑛 since the nodes in the two subtrees are one level lower in 𝑡𝑛(𝑙).

We must average the external path lengths of the trees 𝑡𝑛(𝑙) over all possible sizes, 𝑙 ∈ {1, 2, ..., 𝑛 − 1}
where we assume that the 𝑛 − 1 different left vs. right subtree allocations are selected with equal
probability. For 𝑛 > 1 we thus get,

𝐸(𝑛) = 1
𝑛 − 1

𝑛−1
∑
𝑙=1

(𝐸(𝑙) + 𝐸(𝑛 − 𝑙) + 𝑛) (3.9)

= 2
𝑛 − 1

𝑛−1
∑
𝑙=1

𝐸(𝑙) + 𝑛. (3.10)

Using this equation we can compute that 𝐸(2) = 2. Furthermore, we get for 𝑛 > 1 that

(𝑛 − 1)𝐸(𝑛) = 2
𝑛−1
∑
𝑙=1

𝐸(𝑙) + (𝑛 − 1) ⋅ 𝑛 (3.11)

and for 𝑛 > 2,

(𝑛 − 2)𝐸(𝑛 − 1) = 2
𝑛−2
∑
𝑙=1

𝐸(𝑙) + (𝑛 − 2) ⋅ (𝑛 − 1) (3.12)

Subtracting equation 3.12 from 3.11 gives us for 𝑛 > 2

(𝑛 − 1)𝐸(𝑛) − (𝑛 − 2)𝐸(𝑛 − 1) = 2𝐸(𝑛 − 1) + (𝑛 − 1) ⋅ 𝑛 − (𝑛 − 2) ⋅ (𝑛 − 1) (3.13)
= 2𝐸(𝑛 − 1) + 2𝑛 − 2 (3.14)

which can be written as

𝐸(𝑛) = 𝑛𝐸(𝑛 − 1) + 2𝑛 − 2
𝑛 − 1 (3.15)

= 𝑛
𝑛 − 1𝐸(𝑛 − 1) + 2 (3.16)

yielding the desired result.

We can further simplify the average internal path length formula to a non-recursional form. First divide
equation 3.16 by 𝑛, and get

𝐸(𝑛)
𝑛 = 𝐸(𝑛 − 1)

𝑛 − 1 + 2
𝑛 (3.17)
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which holds for any 𝑛 > 2. By substituting 𝑛 − 1 for 𝑛 in the preceding sequence we can obtain the
following sequence of equations

𝐸(𝑛)
𝑛 = 𝐸(𝑛 − 1)

𝑛 − 1 + 2
𝑛, for 𝑛 > 2 (3.18)

𝐸(𝑛 − 1)
𝑛 − 1 = 𝐸(𝑛 − 2)

𝑛 − 2 + 2
𝑛 − 1, for 𝑛 > 3 (3.19)

𝐸(𝑛 − 2)
𝑛 − 2 = 𝐸(𝑛 − 3)

𝑛 − 3 + 2
𝑛 − 2, for 𝑛 > 4 (3.20)

⋮ (3.21)
𝐸(𝑛 − 𝑘)

𝑛 − 𝑘 = 𝐸(𝑛 − 𝑘 − 1)
𝑛 − 𝑘 − 1 + 2

𝑛 − 𝑘 , for 𝑛 > 𝑘 + 2 (3.22)

⋮ (3.23)
𝐸(3)

3 = 𝐸(2)
2 + 2

3. (3.24)

We can substitute the first term on the right hand side with the right hand side in the equation below
until we have an equation containing only the base case,

𝐸(𝑛)
𝑛 = 𝐸(2)

2 +
𝑛

∑
𝑖=3

2
𝑖 (3.25)

= 2
2 + 2

𝑛
∑
𝑖=1

1
𝑖 − 3 (3.26)

= 1 + 2𝐻𝑛 − 3 (3.27)
= 2𝐻𝑛 − 2 (3.28)

(3.29)

where 𝐻𝑛 = ∑𝑛
𝑖=1

1
𝑖 represents the 𝑛-th harmonic number and it can be shown that 𝐻𝑛 ≈ ln(𝑛) + 𝛾,

where 𝛾 ≈ 0.5772 is called Euler’s constant. We thus have that the average path length of the leaves in
a fully grown isolation tree, created with 𝑛 observations is

𝑐(𝑛) = 𝐸(𝑛)
𝑛 ≈

⎧{
⎨{⎩

0 if 𝑛 = 1,
1 if 𝑛 = 2,
2(ln(𝑛) + 0.5772 − 1) if 𝑛 > 2.

(3.30)

Note that this formula is slightly different from the formula of binary search trees that is used in the
original Isolation Forest paper since they do not take into consideration that the isolation tree is a
proper binary tree, where each node has either 0 or 2 children nodes.

3.1.4. Complexity and Hyperparameters
The computation complexity of the Isolation Forest is 𝑂(𝑇 𝜓2) for the training phase and 𝑂(𝑇 𝜓𝑛) for
the scoring phase where 𝜓 is the subsampling size and 𝑇 is the number of trees in the forest. In total
the complexity is thus 𝑂(𝑇 𝜓(𝜓 + 𝑛)). Using the sklearn implementation of Isolation Forest one can see
that even though 𝜓 is very large, the runtime does not explode, indicating that the runtime complexity
is 𝑘 ⋅ (𝑇 𝜓(𝜓 + 𝑛)) where 𝑘 is a very low constant, see runtime analysis 4.2.3.

The two main configurable parameters of the Isolation Forest are 𝜓 and 𝑇 . The original paper [40]
suggests that an optimal configuration of these parameters is generally 𝜓 = 256 and 𝑇 = 100 when con-
sidering both performance and runtime. However, since the implementation of Isolation Forest in the
sklearn library [53] works very efficiently, the main focus should be on optimal performance instead of
runtime. This holds especially for non-online applications, where it does not matter that much whether
an algorithm takes 5 seconds or 25 seconds to run.
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The authors of the Isolation Forest [41] explain that using small subsamples (𝜓 = 256) to create the
isolation trees, builds better isolation models and reduces so-called swamping and masking problems.
Swamping refers to situations where normal instances are wrongly identified as outliers and occur when
normal instances become more scattered or their number increases. Masking refers to the situation
where too many outliers exist, causing them to conceal their presence. This occurs when outlier clus-
ters become increasingly denser and less rare.

To substantiate the claim that the subsampling reduces swamping and masking, an example is intro-
duced where two dense anomaly clusters are placed close to a large cluster of normal observations, see
figure 3.4. In this case, subsampling provides a data set with a clearer distinction between inliers and
outliers which can increase Isolation Forests ability to detect outliers.

(a) Original sample
(4096 instances)

(b) Sub-sample
(128 instances)

Figure 3.4: An example where subsampling can reduce the problems of swamping and masking.

However, we can also think of cases where subsampling reduces the ability of the Isolation Forest to
detect the outlier. Such a case may, for example, be encountered when the number of outliers is very
small compared to the size of the data set and the outlier values are at the boundaries of the feature
values. In this case, the subsample might not contain any of the outliers because of their scarcity and
which causes the isolation trees to be created using only a part of the feature value range. In some
cases, this might lead to the inability to isolate some very obvious outliers as shown in figure 3.5.

(a) Original sample
(4096 instances)

(b) Sub-sample
(128 instances)

Figure 3.5: An example where subsampling may lead to the inability of Isolation Forest to isolate obvious outliers.

When building an isolation tree using the subsample in figure 3.5 (b), the right-most split of the x-axis
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occurs such that the outliers belong to a set that also contains some inliers, see figure 3.6. The vertical
line represents the point that is furthest to the right after subsampling. When creating the isolation
forest, the split value for the x-axis will thus always be somewhere to the left of this line, meaning that
it is impossible to isolate the outliers completely as there will always be inliers involved as well (at least
the inliers that are to the right of the vertical line). Thus, the subsampling reduces the ability of the
Isolation Forest to identify the four obvious outliers.

Figure 3.6: The maximum split value for the x-axis does not successfully split the outilers .

Therefore, in cases where the data set is very large and the outliers are few and located towards
the boundaries of the feature value range, we suggest that the isolation trees are created without
subsampling, that is 𝜓 = 𝑛.

3.1.5. Add-Ons
Some add-ons of the original Isolation Forest have been suggested to increase the performance of the
method. We discuss two of them, the extended version and the contextual weighted version. Since the
Python implementation of these methods is not as computationally efficient as the sklearn Isolation
Forest implementation and they are also incompatible with the shap package that is used for creating
explanations, we choose the original Isolation Forest instead of the add-ons in our experiments later on.
In future work, we suggest the use of these extensions for possible performance improvements.

Extended Isolation Forest
Extended Isolation Forest (EIF) [26] addresses some issues in the branching process of the standard
Isolation Forest. The idea is to use hyperplanes with random slopes instead of axis parallel slopes
for splitting the data when creating the isolation trees. The main change can be summarized in the
𝑖𝑇 𝑟𝑒𝑒𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 algorithm below.
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Algorithm 3 Create extended isolation tree
1: procedure 𝑖𝑇 𝑟𝑒𝑒𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑(𝑋, 𝑒, ℓ)
2: Input: 𝑋 - input data, 𝑒 - current tree height, ℓ - height limit
3: Initialize 𝑖𝑇 𝑟𝑒𝑒
4: if 𝑒 ≥ ℓ or |𝑋| ≤ 1 then
5: return 𝑒𝑥𝑁𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 = |𝑋|}
6: else
7: Randomly select a normal vector �⃗� ∈ ℝ|𝑋| by drawing each coordinate of �⃗� from a standard

Normal distribution.
8: Randomly select an intercept point ⃗𝑎 ∈ ℝ|𝑋| in the range of 𝑋.
9: Set coordinates of �⃗� to zeros according to extension level.

10: 𝑋𝑙 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, (𝑋 − ⃗𝑎) ⋅ �⃗� ≤ 0)
11: 𝑋𝑟 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, (𝑋 − ⃗𝑎) ⋅ �⃗� > 0)
12: return 𝑖𝑛𝑁𝑜𝑑𝑒{𝐿𝑒𝑓𝑡 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑙, 𝑒 + 1, ℓ),

𝑅𝑖𝑔ℎ𝑡 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑟, 𝑒 + 1, ℓ),
𝑁𝑜𝑟𝑚𝑎𝑙 = �⃗�,
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = ⃗𝑎}

13: end if
14: end procedure

The same paper also introduced a slightly different approach called Rotated Isolation Forest where each
subsample of the data that is used to create each of the trees is rotated in the plane by a random angle
before the tree is built. This approach was however deemed less desirable by the authors mainly because
of additional memory requirements, scaling difficulties and the fact that the rotation only averages out
the rectangular bias problem instead of solving it.

The picture below gives a good summary of the rectangular bias problems of the standard Isolation
Forest and how the extended version addresses these issues. The underlying observations form two
Gaussian clusters in the upper left and lower right corner of the frame. The standard Isolation Forest
creates two artificial clusters of lower anomaly scores in the upper right and lower left corners because
of the axis parallel splitting mechanism while Extended Isolation Forest manages to circumvent this
issue by splitting the data space using hyperplanes that are non-parallel to the axes.

Figure 3.7: Heat map for the anomaly scores of the standard, rotated and extended version of Isolation Forest where the underlying
observations form two Gaussian clusters.

The authors compare the performance of the standard Isolation Forest and Extended Isolation Forest on
various real-world benchmark data sets and conclude that EIF performed consistently better in all cases
considered. The EIF algorithm is available in Python (package: EIF) but even though the extended
version is supposed to have the same computation complexity as the standard version, the runtime was
significantly greater compared to the sklearn implementation of Isolation Forest [53]. This is most likely
since the C++ integration of EIF is not working.

We also note that the Extended Isolation Forest algorithm does not select a single feature for splitting
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but rather uses a hyperplane. Therefore the splitting structure of the forest can not be used to determine
the feature importance measures as done in the MI-Local-DIFFI method (discussed in section 3.2.1).
Since the MI-Local-DIFFI feature importance measures can not be computed from Extended Isolation
Forest and the shap package can not calculate the TreeSHAP values using the EIF structure, we do not
use EIF in our experiments but note that further work can be done to allow the combination of shap
and EIF.

Contextual Weighted Isolation Forest
The contextual weighted version of Isolation Forest, introduced in paper [46] splits the features from the
data set 𝑋 into two groups, contextual and behavioural features, based on the properties of different
features. Examples of behavioural features in a financial data set would be the total amount of trans-
actions and the number of cash deposits while the contextual features would include for example risk
classification and customer type. The contextual features are thus static and describe the customers’
characteristics while the behavioural features may vary between different time points and describe the
financial behaviour of customers. Only the behavioural features are then used to build the isolation
trees and the leaves are considered to be certain subspaces of the feature space depending on the splits
that lead to the leaves. The observations that end up in the same leaf-subspace but differ from the
majority of observations in that leaf with regards to their contextual features, will be regarded more
outlying than the remaining observations in that leaf. That way, the contextual information of the data
is used to weigh the final outlier score.

In financial data, this version of Isolation Forest might be beneficial to locate outliers that are present
in some contextual subspaces of the data. For example when certain transaction behaviour might be
normal within one group of customers but abnormal within another group, using this group indica-
tion as a contextual feature might allow us to catch outliers that would not have been found with the
standard Isolation Forest. We suggest that a contextual weighted isolation forest might improve the
performance of the regular version but since the current implementation of that algorithm is not very
efficient and does not scale well, we do not use the contextual weighted version in our experiments.

3.1.6. Ternary Isolation Forest
We suggest an alternative version of Isolation Forest using ternary trees as building blocks instead of
the binary trees. In this section, we explain why the use of ternary trees could result in better detection
ability and then define Ternary Isolation Forest in detail. Later on, in section 4.2.2, we compare the
performance of Isolation Forest and Ternary Isolation Forest.

We say that an outlier is a boundary outlier if the value of the outlying feature is located in the extremes
of the corresponding feature distribution, for example in the 5% lower or upper quantiles. We call an
outlier an interior outlier if it is not a boundary outlier.

(a) Interior outlier. (b) Boundary outlier.

Figure 3.8: An interior and a boundary outlier.
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The Isolation Forest algorithm detects outliers by splitting the subspace randomly. In each node of a
tree, the data is split into two subsets and because of this, the boundary outliers have a higher proba-
bility to be isolated than the interior outliers. To visualize this, we look at figure 3.8, where we see that
the interior outlier needs at least two splits to be isolated while the boundary outlier can be isolated in
only a single split. Note that in some cases, especially where the features are many and the trees are
short, each feature occurs only once in each path from the root to leaf. In that case, the interior outlier
would be impossible to isolate. To correct this bias towards boundary outliers, we suggest that for each
randomly drawn feature, there will be two randomly chosen split values, such that the data is split into
three subsets instead of two. Then Isolation Forest will not consist of binary trees but ternary trees,
as shown in figure 3.9. By performing this double split, the isolation of interior outliers becomes more
probable than before.

Figure 3.9: A proper ternary tree.

Ternary Trees
We begin by giving a definition of a (proper) ternary tree.

Definition 3.1.3. A ternary tree 𝑡 is a tree where each vertex has at most three children, referred to as
the left, middle and right children. A semi-proper ternary tree is a tree in which every node has either
0, 2 or 3 children and in the case of 2 children, only the middle child is missing.

and then a ternary isolation tree is defined as follows,

Definition 3.1.4. A ternary isolation tree 𝑡 is a semi-proper ternary tree where each non-leaf vertex
contains a test that consists of an attribute 𝐹𝑖 and two split values 𝑎1, 𝑎2 such that the tests 𝐹𝑖 < 𝑎1,
𝑎1 ≤ 𝐹𝑖 < 𝑎2, 𝐹𝑖 ≥ 𝑎2 determine the traversal of an observation to either the left, middle or right child
vertices respectively.

The semi-proper property of the ternary isolation tree reflects the fact that there will always be obser-
vations in the left and right child nodes (minimum and maximum value) but there might not necessarily
be an observation that has a value between 𝑎1 and 𝑎2, resulting in an empty middle child. The Ternary
Isolation Forest algorithm can be described with the two algorithms 4 and 5 below and is a natural
extension of the regular Isolation Forest algorithm (with binary trees).
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Algorithm 4 Create Ternary Isolation Forest
1: procedure 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑋, 𝑇 , 𝜓)
2: Input: 𝑋 - input data , 𝑇 - number of trees, 𝜓 - subsampling size
3: Initialize 𝐹𝑜𝑟𝑒𝑠𝑡
4: Set height limit ℓ = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(log2(𝜓))
5: for 𝑖 = 1 to 𝑇 do
6: 𝑋𝑠 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑋, 𝜓)
7: 𝐹𝑜𝑟𝑒𝑠𝑡 = 𝐹𝑜𝑟𝑒𝑠𝑡 ∪ 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑠, 0, ℓ)
8: end for
9: return 𝐹𝑜𝑟𝑒𝑠𝑡

10: end procedure

Algorithm 5 Create Ternary Isolation Tree
1: procedure 𝑖𝑇 𝑟𝑒𝑒(𝑋, 𝑒, ℓ)
2: Input: 𝑋 - input data, 𝑒 - current tree height, ℓ - height limit
3: Initialize 𝑖𝑇 𝑟𝑒𝑒
4: if 𝑒 ≥ ℓ or |𝑋| ≤ 1 then
5: return 𝑒𝑥𝑁𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 = |𝑋|}
6: else
7: Let 𝐹 be a list of features in 𝑋
8: Randomly select an feature 𝐹𝑖 ∈ 𝐹
9: Select two split points 𝑎1, 𝑎2 uniformly over the max and min values of attribute 𝐹𝑖 in 𝑋.

10: 𝑋𝑙 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝐹𝑖 < 𝑎1)
11: 𝑋𝑚 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝑎1 ≤ 𝐹𝑖 < 𝑎2)
12: 𝑋𝑟 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝐹𝑖 ≥ 𝑎2)
13: return 𝑖𝑛𝑁𝑜𝑑𝑒{𝐿𝑒𝑓𝑡 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑙, 𝑒 + 1, ℓ),

𝑀𝑖𝑑𝑑𝑙𝑒 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑚, 𝑒 + 1, ℓ),
𝑅𝑖𝑔ℎ𝑡 = 𝑖𝑇 𝑟𝑒𝑒(𝑋𝑟, 𝑒 + 1, ℓ),
𝑆𝑝𝑙𝑖𝑡𝐹𝑒𝑎𝑡 = 𝐹𝑖,
𝑆𝑝𝑙𝑖𝑡𝑉 𝑎𝑙𝑢𝑒𝑠 = (𝑎1, 𝑎2)}

14: end if
15: end procedure

Average Path Length of Leaves
In the scoring phase of Ternary Isolation Forest, the average path length that is added to the score
of the observations in leaves that have not been fully grown has to take into account the structure of
ternary trees instead of binary trees. We thus estimate the average path length of a ternary tree and
put our results forward in the following theorem. The estimation follows a similar procedure as in the
case of binary trees.

As before, we define the external path length of a tree 𝑡 to be the sum of the path lengths from the root
to each external vertex/leaf in the tree.

Theorem 3.1.2. The average external path length of a fully grown ternary isolation tree 𝑡 with 𝑛 input
samples is denoted by 𝐸𝑡(𝑛) and given by the following equation,

𝐸𝑡(𝑛) = {0 if 𝑛 = 1,
4

𝑛(𝑛−1) ∑𝑛−1
𝑙=1 ∑𝑛−𝑙

𝑚=0 𝐸𝑡(𝑚) + 𝑛 if 𝑛 > 1. (3.31)

Proof. First assume that 𝑛 = 1 and note that the fully grown ternary isolation tree with one input
sample is a root vertice and the average external path length of a single vertex is zero, 𝐸𝑡(1) = 0.

Now, let 𝑡𝑛(𝑙, 𝑚) be an arbitrary ternary isolation tree where the left subtree has 𝑙 leaf vertices for some
𝑙 ∈ {1, 2, ..., 𝑛 − 1} and the middle subtree has 𝑚 leaf vertices for some 𝑚 ∈ {0, 1, ..., 𝑛 − 𝑙 − 1}. Such



30 3. Methods

a ternary isolation tree consists of a root, a left subtree with 𝑙 leaves, a middle subtree with 𝑚 leaves
and a right subtree with 𝑛 − 𝑙 − 𝑚 leaves. Note that by the definition of ternary isolation trees, the
left and right subtree must contain at least one leaf vertex while the middle can contain down to zero
leaves. The average external path length of such a tree can thus be computed as the sum of the average
external path lengths of the left, the middle and the right subtree, 𝐸𝑡(𝑙), 𝐸𝑡(𝑚) and 𝐸𝑡(𝑛 − 𝑙 − 𝑚),
respectively, plus 𝑛 since the three subtrees are missing the connection with the root node in 𝑡𝑛(𝑙, 𝑚).

We must average the external path lengths of the trees 𝑡𝑛(𝑙, 𝑚) over all possible sizes, 𝑙 ∈ {1, 2, ..., 𝑛−1}
and 𝑚 ∈ {0, 1, ..., 𝑛 − 𝑙 − 1}, where we assume that the

𝑛−1
∑
𝑙=1

𝑛−𝑙−1
∑
𝑚=0

1 =
𝑛−1
∑
𝑙=1

(𝑛 − 𝑙) = 𝑛(𝑛 − 1) −
𝑛−1
∑
𝑙=1

𝑙 = 𝑛(𝑛 − 1)/2

different left-middle-right subtree allocations are selected with equal probability. For 𝑛 > 1 we thus get,

𝐸𝑡(𝑛) = 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

𝑛−𝑙−1
∑
𝑚=0

(𝐸𝑡(𝑙) + 𝐸𝑡(𝑚) + 𝐸(𝑛 − 𝑙 − 𝑚) + 𝑛)

= 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

((𝑛 − 𝑙)𝐸𝑡(𝑙) +
𝑛−𝑙−1
∑
𝑚=0

(𝐸𝑡(𝑚) + 𝐸(𝑛 − 𝑙 − 𝑚))) + 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

𝑛−𝑙−1
∑
𝑚=0

𝑛

= 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

((𝑛 − 𝑙)𝐸𝑡(𝑙) +
𝑛−𝑙
∑
𝑚=0

(𝐸𝑡(𝑚) + 𝐸(𝑛 − 𝑙 − 𝑚)) − (𝐸𝑡(𝑛 − 𝑙) + 𝐸𝑡(0))) + 𝑛

= 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

((𝑛 − 𝑙)𝐸𝑡(𝑙) − 𝐸𝑡(𝑛 − 𝑙) +
𝑛−𝑙
∑
𝑚=0

(𝐸𝑡(𝑚) + 𝐸(𝑛 − 𝑙 − 𝑚))) + 𝑛

= 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

((𝑛 − 𝑙)𝐸𝑡(𝑙) − 𝐸𝑡(𝑙) + 2
𝑛−𝑙
∑
𝑚=0

𝐸𝑡(𝑚)) + 𝑛

= 2
𝑛(𝑛 − 1) (

𝑛−1
∑
𝑙=1

(𝑛 − 𝑙 − 1)𝐸𝑡(𝑙) + 2
𝑛−1
∑
𝑙=1

𝑛−𝑙
∑
𝑚=0

𝐸𝑡(𝑚)) + 𝑛

= 2
𝑛(𝑛 − 1) (

𝑛−1
∑
𝑙=1

(𝑛 − 𝑙 − 1)𝐸𝑡(𝑙) + 2
𝑛−1
∑
𝑙=1

𝑛−𝑙
∑
𝑖=1

𝐸𝑡(𝑙)) + 𝑛

= 2
𝑛(𝑛 − 1) (

𝑛−1
∑
𝑙=1

(𝑛 − 𝑙 − 1)𝐸𝑡(𝑙) + 2
𝑛−1
∑
𝑙=1

(𝑛 − 𝑙)𝐸𝑡(𝑙)) + 𝑛

= 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

((𝑛 − 𝑙 − 1)𝐸𝑡(𝑙) + 2(𝑛 − 𝑙)𝐸𝑡(𝑙)) + 𝑛

= 2
𝑛(𝑛 − 1)

𝑛−1
∑
𝑙=1

(3(𝑛 − 𝑙) − 1)𝐸𝑡(𝑙) + 𝑛.

We further simplify this equation such that it depends on only the three preceding path lengths instead
of all the preceding path lengths. Unfortunately, we were unable to find an equation for 𝐸𝑡(𝑛) that did
not include any preceding terms 𝐸𝑡(𝑛 − 𝑚) where 𝑚 > 0. However, it speeds up computation to use
only a proportion of the preceding terms. We use 𝐴(𝑛) to represent the size 𝐴(𝑛) = 𝑛(𝑛 − 1)𝐸𝑡(𝑛) −
(𝑛 − 1)(𝑛 − 2)𝐸𝑡(𝑛 − 1) and compute for 𝑛 > 2,
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𝐴(𝑛) = 𝑛(𝑛 − 1)𝐸𝑡(𝑛) − (𝑛 − 1)(𝑛 − 2)𝐸𝑡(𝑛 − 1)

= (2
𝑛−1
∑
𝑙=1

(3(𝑛 − 𝑙) − 1)𝐸𝑡(𝑙) + 𝑛2(𝑛 − 1))

− (2
𝑛−2
∑
𝑙=1

(3(𝑛 − 1 − 𝑙) − 1)𝐸𝑡(𝑙) + (𝑛 − 1)2(𝑛 − 2))

= 4𝐸𝑡(𝑛 − 1) + 2
𝑛−2
∑
𝑙=1

𝐸𝑡(𝑙) (3(𝑛 − 𝑙) − 1) − ((3(𝑛 − 1 − 𝑙) − 1))

+ 𝑛2(𝑛 − 1) − (𝑛 − 1)2(𝑛 − 2)

= 4𝐸𝑡(𝑛 − 1) + 6
𝑛−2
∑
𝑙=1

𝐸𝑡(𝑙) + (𝑛 − 1)(3𝑛 − 2)

= 4𝐸𝑡(𝑛 − 1) + 6
𝑛−2
∑
𝑙=1

𝐸𝑡(𝑙) + (𝑛 − 1)(3𝑛 − 2).

So for 𝑛 > 4 we get

𝐴(𝑛) − 𝐴(𝑛 − 2) = 𝑛(𝑛 − 1)𝐸𝑡(𝑛) − (𝑛 − 1)(𝑛 − 2)𝐸𝑡(𝑛 − 1)
− [(𝑛 − 2)(𝑛 − 3)𝐸𝑡(𝑛 − 2) − (𝑛 − 3)(𝑛 − 4)𝐸𝑡(𝑛 − 3)] ,

and

𝐴(𝑛) − 𝐴(𝑛 − 2) = 4𝐸𝑡(𝑛 − 1) + 6
𝑛−2
∑
𝑙=1

𝐸𝑡(𝑙) + (𝑛 − 1)(3𝑛 − 2)

− [2𝐸𝑡(𝑛 − 3) + 6
𝑛−4
∑
𝑙=1

𝐸𝑡(𝑙) + (𝑛 − 3)(3𝑛 − 8)]

= 4𝐸𝑡(𝑛 − 1) + 6𝐸𝑡(𝑛 − 2) + 6𝐸𝑡(𝑛 − 3)−
2𝐸𝑡(𝑛 − 3) + (𝑛 − 1)(3𝑛 − 2) − (𝑛 − 3)(3𝑛 − 8)

= 4𝐸𝑡(𝑛 − 1) + 6𝐸𝑡(𝑛 − 2) + 4𝐸𝑡(𝑛 − 3) + (𝑛 − 1)(3𝑛 − 2) − (𝑛 − 3)(3𝑛 − 8).

Comparing the equations above gives us for 𝑛 > 4

𝑛(𝑛 − 1)𝐸𝑡(𝑛) = 𝐸𝑡(𝑛 − 1) [(𝑛 − 1)(𝑛 − 2) + 4]
+ 𝐸𝑡(𝑛 − 2) [(𝑛 − 2)(𝑛 − 3) + 6]
+ 𝐸𝑡(𝑛 − 3) [−(𝑛 − 3)(𝑛 − 4) + 4]
+ [(𝑛 − 1)(3𝑛 − 2) − (𝑛 − 3)(3𝑛 − 8)] .

We can thus write

𝐸𝑡(𝑛) = 𝐶1(𝑛) ⋅ 𝐸𝑡(𝑛 − 1) + 𝐶2(𝑛) ⋅ 𝐸𝑡(𝑛 − 2) + 𝐶3(𝑛) ⋅ 𝐸𝑡(𝑛 − 3) + 𝐶4(𝑛), (3.32)

where the coefficients 𝐶𝑖(𝑛) for 𝑖 = 1, 2, 3, 4 are obtained with the equations below

𝐶1(𝑛) = (𝑛 − 1)(𝑛 − 2) + 4
𝑛(𝑛 − 1) , (3.33)

𝐶2(𝑛) = (𝑛 − 2)(𝑛 − 3) + 6
𝑛(𝑛 − 1) , (3.34)

𝐶3(𝑛) = −(𝑛 − 3)(𝑛 − 4) + 4
𝑛(𝑛 − 1) , (3.35)

𝐶4(𝑛) = (𝑛 − 1)(3𝑛 − 2) − (𝑛 − 3)(3𝑛 − 8)
𝑛(𝑛 − 1) . (3.36)
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Finally, using 𝐸𝑡(𝑛) we can calculate the average depths of the leaf vertices as

Average depth of leaves = 𝑐𝑡(𝑛) = 𝐸𝑡(𝑛)
𝑛 . (3.37)

The scoring phase of Ternary Isolation Forest is thus the same as in the binary version except we use
𝑐𝑡 to estimate the average leaf depth instead of 𝑐. In figure 3.10, we see how the average path length of
leaf nodes increases in the number of observations 𝑛.

Figure 3.10: The average path length of leaf nodes in the regular binary Isolation Forest and the ternary version for a different
number of input samples.

For 𝑛 ≈ 170 and less, the binary version of Isolation Forest has a larger average path length but for 𝑛
over 170, the ternary version surpasses the binary version with regards to average path length. This
can be explained with two reasons, (1) the binary version needs on average more nodes until the data
samples are isolated resulting longer trees but (2) the ternary version has more nodes on the maximum
depth level. For 𝑛 less than 170, the first reason outweighs the second reason, and vice versa for 𝑛
greater than 170.
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3.2. Explanation Methods
We introduce three different explanation methods that can be used to explain individual outliers pre-
dicted by Isolation Forest. The first method is our own adaptation of the DIFFI method [11] that
delivers feature importance explanations on a local level instead of globally. This method is referred to
as the MI-Local-DIFFI method. We also introduce the TreeSHAP method that is originally designed
for tree-based regression models but we use it for outlier explanations. Finally, we introduce a baseline
method, Alter-One-Feature (AOF), that identifies the feature importance of each feature by measuring
the change in outlier score when that same feature is altered.

The MI-Local-DIFFI calculates the explanations by looking at the splitting structure of the isolation
forest, analysing the splitting points on the outlier’s path while the other two methods, TreeSHAP and
AOF, analyse the change in outlier score when various features are removed, added or altered. The
TreeSHAP takes into account the relationship between different features while the AOF only considers
one feature at a time.

3.2.1. MI-Local-DIFFI
The DIFFI method [11] is a global feature importance method for the Isolation Forest method that looks
at the splitting structure of the isolation trees. We suggest an adaptation of this method that delivers
local explanations for individual outliers. The main assumption of this method is that the information
in the splitting points of an outlier path can be used to determine the importance of the different fea-
tures in the outlier identification process. As mentioned before, the authors of DIFFI released a local
adaptation of their method, Local-DIFFI, on the arXiv in late July 2020, near the deadline of this thesis
project [12] when we had already developed our multiple indicator version. Thus, we first describe our
Multiple Indicator Local-DIFFI (MI-Local-DIFFI) method and then compare it to Local-DIFFI from
[12].

In an isolation tree, each observation gets a specific path depending on the structure of the tree and
the values of the observation. To understand the reason why an instance is detected as an outlier, we
look at how an outlier traverses down each tree in the forest, observing:

(a) Path length indicator: the length of the outlier’s path in each tree,

(b) Split proportion indicator: looking at each split, we observe the proportion of observations
that follow the same path as the outlier vs. the observations that end up in the opposite node.
Depending on this proportion we allocate certain importance to the corresponding splitting fea-
ture.

(c) Split interval length indicator: the length of the subinterval containing the outlier 𝑜 after a
split is performed in proportion to the length of the interval before the split.

The DIFFI method for global explanations uses both a path length indicator and a split proportion
indicator but instead of looking at individual outlier paths, it looks at the path of inliers and outliers
separately. As the outliers traverse down each isolation tree, a quantity based on path length and the
split proportion of the set of outliers is added to the importance of the corresponding split feature. The
same is done for the inliers. The global importance score is then obtained by dividing the importance
weights of the outliers with the importance weights of the inliers. A more exact description of this
method can be found in the original paper [11].

The name of our method, Multiple Indicator Local-DIFFI (MI-Local-DIFFI) refers to the fact that the
multiple indicators above are used to calculate the explanations. To incorporate (a), we adjust the
feature importance score by observing the path length such that shorter paths get more weight. For the
second point (b), we observe which features are used for splitting and adjust the corresponding feature
importance weight with the proportion of observations that follow the same path as the outlier. The
fewer the observations following the outlier to the same child node, the higher the feature importance
score for that particular feature. Finally, for (c) we compare the length of the interval after the feature
split (the part that contains the outlier) to the length of the interval before the split. This is because
a small split proportion is expected if the split interval is also small. We thus increase the importance
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of features that have a small split proportion but a relatively large split interval.

We also considered incorporating the depth of each specific split into the feature importance score, but
as shown in the analysis chapter, this information did not improve the performance of the explanation
methods. In this case, the depth of a specific split refers to the path length of the corresponding splitting
node to the root. Although at first, it may seem to be informative to know whether a good split occurs
at a low or high depth, this is outweighed by the fact that the features are chosen randomly and may
even appear only once in each path. Adjusting the feature importance scores with the location of the
splits does thus not add value and may even wrongly reduce the importance of truly important features.

Below we discuss how each of the indicators is incorporated into the feature importance measures.

(a) Path length indicator.
Let 𝑃𝐿(𝑜, 𝑖) be the path length of outlier’s 𝑜 leaf node in isolation tree 𝑡𝑖. We create a standardized
measure of path lengths influence on the feature importance, by first defining the lower and upper
path lengths as

𝑃𝐿lower = 1
𝑃𝐿upper = ⌈2(log(𝜓) + 𝛾 − 1)⌉

where the lower estimate corresponds to the lowest possible path length of an outlier and we define
the upper estimate as the average path length of the leaves in an isolation tree, since outliers are
identified by having shorter than average path lengths. Then the path length weight is computed
as

𝑤𝑃𝐿(𝑜, 𝑖) = max {0.1, min [1, 1 − (1 − 𝑃𝐿(𝑜, 𝑖) − 𝑃𝐿lower
𝑃𝐿upper − 𝑃𝐿lower

)]} (3.38)

This path length weighing scheme thus reflects the fact that features that are occurring in a long
outlier path are less important than those that occur in shorter paths. Even though a feature
occurs in a longer path and provides a very good split we would still like to increase its impor-
tance. Therefore, the lowest possible weight is set at 0.1 instead of 0. Note that 𝑤𝑃𝐿(𝑜, 𝑖) ∈ [0.1, 1].

(b) Split proportion indicator.
Now let’s consider the split proportion weight. Let 𝑣𝑖𝑗 be a node in the isolation tree 𝑡𝑖 and let
𝐹𝑖𝑗 be the feature that is used to split the data in node 𝑣𝑖𝑗. Let 𝑞𝑖𝑗 be the number of observations
in node 𝑣𝑖𝑗 and let 𝑞𝑜

𝑖𝑗 be the number of observations in the child node of 𝑣𝑖𝑗 that contains the
outlier 𝑜. Let �⃗�𝑆𝑃 (𝑜, 𝑖) = (𝑤𝑆𝑃

1 (𝑜, 𝑖), ..., 𝑤𝑆𝑃
𝑃𝐿(𝑜, 𝑖)) where 𝑃𝐿 = 𝑃𝐿(𝑜, 𝑖) and

𝑤𝑆𝑃
𝑗 (𝑜, 𝑖) = {

0 if 𝑞𝑖𝑗 = 2
1 − 𝑞𝑜

𝑖𝑗−1
𝑞𝑖𝑗−2 otherwise (3.39)

By using this weighing scheme, features that were seriously involved in the isolation of the out-
lier, get a higher weight than those that did not have much impact in isolating the outlier. We
say that a feature split becomes better as the split proportion 𝑤𝑆𝑃 becomes higher. A good split
thus has a higher than average 𝑤𝑆𝑃 weight while a bad split has a lower than average 𝑤𝑆𝑃 weight.

If a feature occurs more than once in a path of an outlier, then only the best split (highest 𝑤𝑆𝑃 )
is used for feature importance calculations. This is because a very important feature can result
in a bad split because of the random choice of the splitting value. We are thus more interested in
increasing the importance of features that result in good splits rather than punishing the features
with negative weights when the split is not so good. We did some experiments where an average
of the split proportion was considered rather than the best one but that resulted in worse expla-
nations.
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(c) Split interval length indicator.
We also try to incorporate information about where the split value is chosen within the range of
the uniform distribution. We rely on the assumption that, naturally, a low split proportion occurs
if the split value is chosen near the minimum or maximum of the feature values since the number
of observations in an interval should decrease as the interval decreases. Additional importance
weight should be added if the split proportion is low and the split value is chosen such that it is
relatively far away from the endpoints of the values range. We visualize two scenarios in figure
3.11 below.

(a) Split value chosen close to an end point. (b) Split value chosen away from the end points.

Figure 3.11: Looking at the figure, the leftmost observation in plot (b) is more of an outlier than the leftmost observation
in plot (a). We use this property in our MI-Local-DIFFI method. If a single observation is isolated with a split very close
to the boundary (a), this feature shold get less importance weight than if a single observation is isolated with a split in
the middle of the feature values range (b).

In the figure above, the split proportion is the same (1 vs. 18) in both scenarios (a) and (b) but
we would like to give feature 𝐹1 more importance in scenario (b) than (a) because the 𝐹1 is more
important in terms outlierness of the leftmost node in scenario (b). This increased weight can be
incorporated by observing the length of the split intervals as described below.

First, we define a few notions related to split intervals in isolation trees. Each non-leaf node 𝑣 in
an isolation tree has a corresponding sample of observations 𝑋𝑠, a split feature 𝐹 and a split value
𝑠. We define the feature interval of a node to be the interval [𝑎, 𝑏] where a,b are the minimum and
maximum values of the split feature 𝐹 , looking at the sample of observations 𝑋𝑠 in that node 𝑣.
Furthermore, we define the outlier split interval of the node 𝑣 with respect to outlier 𝑜 to be the
interval [𝑎, 𝑠[ if the outlier 𝑜 traverses to the left child node but [𝑠, 𝑏] if the outlier 𝑜 traverses to
the right child node.

For a node 𝑣𝑖𝑗 that is in a path of an outlier 𝑜 in the tree 𝑡𝑖, we observe

𝑠𝑖(𝑜, 𝑣𝑖𝑗) = |outlier split interval of 𝑣𝑖𝑗 with respect to 𝑜|
|feature interval of 𝑣𝑖𝑗|

. (3.40)

For the node 𝑣𝑖𝑗 in the path of an outlier 𝑜 in tree 𝑡𝑖 we measure the split interval weight as
�⃗�𝑆𝐼(𝑜, 𝑖) = [𝑤𝑆𝐼

1 (𝑜, 𝑖), 𝑤𝑆𝐼
2 (𝑜, 𝑖), ..., 𝑤𝑆𝐼

𝑃𝐿(𝑜, 𝑖)] where 𝑃𝐿 = 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑜, 𝑖) and

𝑤𝑆𝐼
𝑗 (𝑜, 𝑖) = 1.5 − 1

𝑠𝑖(𝑜, 𝑣𝑖𝑗) + 1. (3.41)

Note that 𝑤𝑆𝐼
𝑗 (𝑜, 𝑖) ∈ [0.5, 1] and for an outlier split interval that is large (for example 0.9) the

weight 𝑤𝑆𝐼
𝑗 (𝑜, 𝑖) is also large (≈ 0.97) and for an outlier split interval that is small (for example

0.1), the weight 𝑤𝑆𝐼
𝑗 (𝑜, 𝑖), is also small (≈ 0.59). In the visual scenario in figure 3.11 we see that

the proportion is around 0.1 in scenario (a) but around 0.5 in scenario (b). The split interval
weight will thus give a weight of ≈ 0.59 to the feature in scenario (a) whilst the feature in scenario
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(b) will get a higher weight of ≈ 0.83.

Let 𝑃𝑎𝑡ℎ(𝑜, 𝑖) denote the path in tree 𝑡𝑖 that outlier 𝑜 traverses down. The MI-Local-DIFFI algorithm
can thus be presented as follows.

Algorithm 6 MI-Local-DIFFI
procedure MI-Local-DIFFI(𝑜, IF = {𝑡1, ..., 𝑡𝑇 }, 𝑃𝐿)

Let 𝐺1, ..., 𝐺𝑛𝐹
be the unique features used to create the isolation forest. We want

to compute the feature importance for each 𝐺𝑘, 𝑘 = 1, ..., 𝑛𝐹 .
Initialise feature importance vector 𝐹𝐼 = ⃗0 with length equal

to number of features 𝑛𝐹 .
Initialise feature occurence vector occurrence(𝐹) = ⃗0 with length

equal to number of features 𝑛𝐹 .
for isolation tree 𝑡𝑖 in IF do

Let ⃗𝐹𝑖 = [𝐹𝑖,1, ..., 𝐹𝑖,𝑚] be the features that are used to split in each node in 𝑃𝑎𝑡ℎ(𝑜, 𝑖).
Calculate 𝑤𝑃𝐿(𝑜, 𝑖) using equation 3.38.
Calculate �⃗�𝑆𝑃 (𝑜, 𝑖) using equation 3.39.
Calculate �⃗�𝑆𝐼(𝑜, 𝑖) using equation 3.41.
for 𝑘 in 1 to 𝑛𝐹 do

if Feature 𝐺𝑘 occurs in ⃗𝐹𝑖 then
Let 𝑗𝑘 be the location of the best split of feature 𝐺𝑘 in 𝑃𝑎𝑡ℎ(𝑜, 𝑖).
occurrence(𝑘) = occurrence(𝑘) + 1
𝜎(𝑘) = 𝑤𝑃𝐿(𝑜, 𝑖) ⋅ 𝑤𝑆𝑃

𝑗𝑘
(𝑜, 𝑖) ⋅ 𝑤𝑆𝐼

𝑗𝑘
(𝑜, 𝑖)

𝐹𝐼(𝑘) = 𝐹𝐼(𝑘) + 𝜎(𝑘)
end if

end for
end for
𝐹𝐼 = 𝐹𝐼/occurrence
return 𝐹𝐼

end procedure

Consider an outlier 𝑜 in the data set 𝑋 that was detected with the isolation forest IF = {𝑡1, ..., 𝑡𝑇 }
where 𝑡𝑖 are the isolation trees. As before, 𝑃𝑎𝑡ℎ(𝑜, 𝑖) and 𝑃𝐿(𝑜, 𝑖) represent the path of the outlier 𝑜 in
the isolation tree 𝑡𝑖 and its length, respectively. To calculate the MI-Local-DIFFI feature importance
score we look at each tree 𝑡𝑖 and zoom in on the path of the outlier, 𝑃𝑎𝑡ℎ(𝑜, 𝑖). In each node on the
path, we observe which features were used for splitting. We give each of these features a weight based
on the proportion of observations that go to the same children node as the outlier vs. the opposite
node calculated with equation 3.39. If the same feature occurs more than once in the same path, we
only consider the feature that has the highest 𝑤𝑆𝑃 ratio. Furthermore, the importance of the features
is weighted with the length of the outlier path in 𝑡𝑖 (eq. 3.38) and length the outlier split interval in
proportion to the feature interval (eq. 3.41).

In the end, the feature importance measures are weighted by how many times a feature has occurred
in a path of the outlier in all the trees. Note that 𝑤𝑃𝐿 ∈ [0.1, 1], 𝑤𝑆𝑃 ∈ [0, 1] and 𝑤𝑆𝐼 ∈ [0.5, 1] so
the feature importance scores are in the interval [0, 1] where a higher score represents more important
features according to the weighing scheme. The MI-Local-DIFFI algorithm thus returns a feature im-
portance measure for each outlier where the feature with the highest value can be interpreted as the
feature contributing most to the outlier being classified as such. The complexity of calculating the
feature importance for all the outliers is 𝑂(𝑇 ⋅ 𝑛𝑜 ⋅ average outlier leaf depth), since, for each outlier, we
measure the splits in all the nodes that are present in the path of the outlier, for each of the isolation
trees. By definition, the average outlier leaf depth is often shorter than in the case of inliers but we can
use the maximum height as a worst-case estimate, log2𝜓.
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Local-DIFFI
In this section, we discuss Local-DIFFI, which is very recent work from the authors of the DIFFI method
[12]. The paper is available on the arXiv and has been submitted to the IEEE for possible publication.
The authors also include a link to their github that contains all relevant code.

We start by describing Local-DIFFI. Let 𝑉𝑖 be the set of nodes in an isolation tree 𝑡𝑖 and 𝑃𝑎𝑡ℎ(𝑜, 𝑖)
the path in tree 𝑡𝑖 that the outlier 𝑜 traverses down. Let 𝐼𝑂 be 𝑑-dimensional vectors, where the 𝑗-th
component represents the feature importance of the 𝑗-th feature. First, the vector 𝐼𝑂 is initialised,
𝐼𝑂 = 0𝑑 and then 𝐼𝑂 is updated in an additive fashion. For each predicted outlier 𝑜, an iteration over
the internal nodes in the path 𝑃𝑎𝑡ℎ(𝑜, 𝑖) is performed and if the splitting feature associated with the
internal node is 𝐹𝑗, then the 𝑗-th component of 𝐼𝑂 is updated by adding the quantity

Δ = 1
𝑒𝑖𝑜

− 1
ℎmax

(3.42)

where 𝑒𝑖
𝑜 represents the number of edges on the path of outlier 𝑜 from the root node to the termination

node in isolation tree 𝑡𝑖 and ℎmax = ⌈log2(𝜓)⌉ is the maximum path length before early-termination.
This iteration is done for each isolation tree 𝑡𝑖 in the isolation forest. The Local-DIFFI scores are then
given by

𝐼𝑂
𝐶𝑂

(3.43)

where the features counters 𝐶𝑂 are 𝑑-dimensional vectors where the 𝑗-th component represents how
many times the 𝑗-th feature appeared while updating the 𝐼𝑂 vector.

The main technical differences between our MI-Local-DIFFI and this method is that the Local-DIFFI
only uses the path length as an importance indicator while we also incorporate the split proportion
and the split interval length to calculate the importance. The split proportion indicator requires that
the traversal of other observations is also taken into account, which is not done in Local-DIFFI. Fur-
thermore, they use 𝑒𝑡

𝑜 for their path length indication instead of the full path length adjusted with the
number of samples in leaf 𝑐(𝑛𝑡𝑖

).

We discuss a few more differences in the set up of the two explanation methods and compare them
further in section 4.4.

MI-Local-DIFFI Example
Suppose we have an isolation forest consisting of two isolation trees, 𝑡1 and 𝑡2. The isolation forest is
created using a 3-dimensional data set 𝑋. The observation 𝑜 ∈ 𝑋 gets the lowest outlier score and is
thus predicted as an outlier. We want to identify the reason why this observation 𝑜 was predicted as
an outlier. The two isolation trees and the path of the outlier 𝑜 are shown in figure 3.12.

(a) The first isolation tree, 𝑡1 and the path that the outlier 𝑜 traverses
down.

(b) The second isolation tree, 𝑡2 and the path that the outlier 𝑜 traverses
down.

Figure 3.12: The full isolation forest consisting of two isolation trees.
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To understand why 𝑜 was predicted as an outlier, we zoom in on the path of the outlier and identify
which features were used to split, the number of samples in each node and the length of the path. Below
we see that only feature 1 and 3 occurred in the path of outlier 𝑜 in tree 𝑡1 while all three features
occurred in tree 𝑡2.

(a) The first isolation tree, 𝑡1 and the path that the outlier 𝑜 traverses
down.

(b) The second isolation tree, 𝑡2 and the path that the outlier 𝑜 traverses
down.

Figure 3.13: The path of the outlier 𝑜 in the two isolation trees. The size 𝑠 represents the number of observations (sample size)
in each node.

In 𝑡1, feature 𝐹3 is used for the initial split where only 5 of the original 100 observations follow the
same path as 𝑜. In the second split on the outliers path, feature 𝐹1 is used for splitting and manages
to isolate the outlier with a 4-1 split. Based on these two splits, we observe that the path length of this
outlier is 2 and the split proportion is 5-95 for feature 𝐹3 and 1-4 for feature 𝐹1. The split interval
length proportions are 35% for feature 𝐹3 and 65% for feature 𝐹1 meaning that feature 𝐹1 will receive
a higher weight. Using this information, we can calculate the weights corresponding to tree 𝑡1, 𝑤𝑃𝐿,
𝑤𝑆𝑃 and 𝑤𝑆𝐼 according to equations 3.38, 3.39 and 3.41.

In 𝑡2 feature 𝐹2 is used for the initial split resulting in a 50-50 split of the original 100 observations.
Next, feature 𝐹1 splits the 50 data samples such that 15 follow the outliers path while 35 samples go to
the opposite children node. Finally, feature 𝐹3 manages to isolate the outlier with a 14-1 split. The split
interval length weights are also incorporated and in this case feature 𝐹3 gets the highest weight. Using
this information, we can calculate the weights corresponding to tree 𝑡2, 𝑤𝑃𝐿, 𝑤𝑆𝑃 and 𝑤𝑆𝐼 according
to equations 3.38, 3.39 and 3.41.

In both trees, feature 𝐹3 gets the highest importance since it gets the highest 𝑤𝑆𝑃 weight and is there-
fore considered as the biggest reason for 𝑜 being an outlier. Note also that in tree 𝑡2, the outlier split
interval is really large (70%) and still this split manages to isolate the outlier. Feature 𝐹1 also gets
some importance weights while feature 𝐹2 gets the lowest score since it is not on the path of the outlier
in tree 𝑡1 and only gives a 50-50 split in tree 𝑡2.

Standardization
The explanations are local and thus concern individual predictions. Looking at the feature importance
metrics for individual outliers, it is possible to standardize the importance scores such that the most
important feature receives a score of 1 and the least important a score of 0. Considering some outlier
𝑜, one can use the following min-max standardization equation,

standardized 𝐹𝐼(𝑜) = 𝐹𝐼(𝑜) − min 𝐹𝐼(𝑜)
max 𝐹𝐼(𝑜) − min 𝐹𝐼(𝑜) . (3.44)

Subsampling
There is a possibility to use only a subsample of the data set to calculate the split proportion indicator.
This is of course not as accurate but can decrease the runtime of the method, especially in the case of
larger data sets.
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3.2.2. TreeSHAP
The TreeSHAP method [45] is based on so-called Shapley values from coalitional game theory. The
game-theoretical notations can be extended to predictions of a machine learning model where the game
in this setting represents the prediction task for a single observation, the payoff is the difference between
the prediction of this observation and the average prediction of the whole data set and the players are
the features. In the SHAP (SHapley Additive exPlanations) [44] method, a conditional expectation
based estimation of the Shapley values is used to measure the contribution of each of the features to the
prediction by calculating the change in prediction when each feature enters different feature coalitions.
A coalition is just a subset of the set of players so a feature coalition is a subset of the set of features.

First, we explain how the SHAP values of an observation 𝑥 and prediction model 𝑓 is computed. Let
𝐹 be the set of features in data set 𝑋. Ultimately, the SHAP value of a feature 𝐹𝑗 is just the weighted
sum of the change in the prediction that occurs when the feature 𝐹𝑗 is added to all feature coalitions 𝑆
that do not contain 𝐹𝑗. The SHAP value ̄𝜙𝑗(𝑓𝑥) of a feature 𝐹𝑗 for an observation 𝑥 in the prediction
model 𝑓 is computed as

𝜙𝑗(𝑓, 𝑥) = ∑
𝑆⊂{𝐹1,...,𝐹𝑛}�{𝐹𝑗}

|𝑆|!(𝑛 − |𝑆| − 1)!
𝑛! (𝔼[𝑓(𝑥)|𝑥𝑆∪{𝐹𝑗}] − 𝔼[𝑓(𝑥)|𝑥𝑆]) (3.45)

where 𝔼[𝑓(𝑥)|𝑥𝑆] is the conditional expectation of the prediction 𝑓(𝑥) where only the features in 𝑆 are
used to calculate the prediction. According to the paper [44], they can be used to explain the prediction
𝑓(𝑥) in an additive way

𝑓(𝑥) = 𝔼[𝑓(𝑋)] + 𝜙1(𝑓, 𝑥) + ... + 𝜙𝑑(𝑓, 𝑥) (3.46)

where 𝑑 is the number of features.

For a tree-based model 𝑓 , the conditional expectation 𝔼[𝑓(𝑥)|𝑥𝑆] can be estimated by only taking into
account the splits that contain the features in 𝑆 and averaging out the splits that contain other features,
as shown in the example below. This is explained in algorithm 10. The estimation can be performed
in 𝑂(𝑇 𝐿) time where 𝑇 is the number of trees in the model and 𝐿 is the maximum number of leaves
in any tree [45]. Thus, the total computational complexity is 𝑂(𝑇 𝐿2𝑛). In algorithm 10, the tree is
notated by the 𝑣 - the nodes and their corresponding prediction values in case of leaf nodes, 𝑙 - the left
children of 𝑣, 𝑟 - the right children of 𝑣, 𝑎 - the split values of 𝑣, 𝑞 - the number of observations in 𝑣
and 𝐹 - the features used for splitting in each node of 𝑣.

Algorithm 7 Estimating 𝔼[𝑓(𝑥)|𝑥𝑆]
procedure ExpectedValue(𝑥, 𝑆, tree = {𝑣, 𝑙, 𝑟, 𝑎, 𝑞, 𝐹})

procedure G(𝑗,𝑤)
if 𝑣𝑗 ≠ internal then

return 𝑤 ⋅ 𝑣𝑗
else

if 𝑑𝑗 ∈ 𝑆 then
return 𝐺(𝑙𝑗, 𝑤) if 𝑥𝐹𝑗

≤ 𝑎𝑗 else 𝐺(𝑟𝑗, 𝑤)
else

return 𝐺(𝑙𝑗, 𝑤𝑞𝑙𝑗
/𝑞𝑗) + 𝐺(𝑟𝑗, 𝑤𝑞𝑟𝑗

/𝑞𝑗)
end if

end if
end procedure
return 𝐺(1, 1)

end procedure

Suppose we have a data set 𝑋 with three features 𝐹 = {𝐹1, 𝐹2, 𝐹3} and we want to calculate the
influence of the three features on the prediction 𝑓 of the observation 𝑥 using Shapley values. We
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consider a single tree model 𝑓 shown in figure 3.14 and note that 𝑓(𝑥) = 10. Note that this example
is not for outlier detection or isolation forest particularly, but any tree-based model. In the case of
isolation forest, the prediction values would represent the path length from root to leaf.

Figure 3.14: The tree-based model 𝑓 with information about the features used for splitting, the splitting proportion in each node
and the prediction value of the leaves.

Let 𝜇𝑓,𝑥(𝑆) represent the conditional expectation 𝔼[𝑓(𝑥)|𝑥𝑆], that is 𝜇𝑓,𝑥(𝑆) = 𝔼[𝑓(𝑥)|𝑥𝑆]. In order
to calculate the SHAP value of features 𝜙𝑗(𝑓𝑥) for 𝑗 ∈ {1, 2, 3}, we need to estimate 𝜇𝑓,𝑥(𝑆) for all
coalitions 𝑆 of the features in 𝐹 using algorithm 10,

𝜇𝑓,𝑥(∅) = 0.25 ⋅ 2 + 0.75 ⋅ (0.67 ⋅ (0.5 ⋅ 12 + 0.5 ⋅ 10) + 0.33 ⋅ 5)) = 7.25,
𝜇𝑓,𝑥({𝐹1}) = 0.67 ⋅ (0.5 ⋅ 12 + 0.5 ⋅ 10) + 0.33 ⋅ 5 = 9.0,
𝜇𝑓,𝑥({𝐹2}) = 0.25 ⋅ 2 + 0.75 ⋅ (0.5 ⋅ 12 + 0.5 ⋅ 10) = 8.75,
𝜇𝑓,𝑥({𝐹3}) = 0.25 ⋅ 2 + 0.75 ⋅ (0.67 ⋅ 10 + 0.33 ⋅ 5) = 6.75,

𝜇𝑓,𝑥({𝐹1, 𝐹2}) = 0.5 ⋅ 12 + 0.5 ⋅ 10 = 11,
𝜇𝑓,𝑥({𝐹1, 𝐹3}) = 0.67 ⋅ 10 + 0.33 ⋅ 5 = 8.333,
𝜇𝑓,𝑥({𝐹2, 𝐹3}) = 0.25 ⋅ 2 + 0.75 ⋅ 10 = 8,

𝜇𝑓,𝑥({𝐹1, 𝐹2, 𝐹3}) = 10.
Using the estimations above we can compute the SHAP values for each feature in 𝐹 as follows,

𝜙1(𝑓𝑥) = 1
3(𝑓𝑥({𝐹1}) − 𝑓𝑥(∅)) + 1

6(𝑓𝑥({𝐹1, 𝐹2}) − 𝑓𝑥({𝐹2})) + 1
6(𝑓𝑥({𝐹1, 𝐹3}) − 𝑓𝑥({𝐹3}))

+ 1
3(𝑓𝑥({𝐹1, 𝐹2, 𝐹3}) − 𝑓𝑥({𝐹2, 𝐹3}))

≈ 1.89,

𝜙2(𝑓𝑥) = 1
3(𝑓𝑥({𝐹2}) − 𝑓𝑥(∅)) + 1

6(𝑓𝑥({𝐹1, 𝐹2}) − 𝑓𝑥({𝐹1})) + 1
6(𝑓𝑥({𝐹3, 𝐹2}) − 𝑓𝑥({𝐹3}))

+ 1
3(𝑓𝑥({𝐹1, 𝐹2, 𝐹3}) − 𝑓𝑥({𝐹1, 𝐹3}))

≈ 1.60,

𝜙3(𝑓𝑥) = 1
3(𝑓𝑥({𝐹3}) − 𝑓𝑥(∅)) + 1

6(𝑓𝑥({𝐹1, 𝐹3}) − 𝑓𝑥({𝐹1})) + 1
6(𝑓𝑥({𝐹2, 𝐹3}) − 𝑓𝑥({𝐹2}))

+ 1
3(𝑓𝑥({𝐹1, 𝐹2, 𝐹3}) − 𝑓𝑥({𝐹1, 𝐹2}))

≈ −0.74.
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The average prediction is 𝔼[𝑓(𝑋)] = 𝑓𝑥(∅) = 7.25 so the SHAP explanation of the prediction value 10
is

𝑓(𝑥) = 𝔼[𝑓(𝑋)] + 𝜙1(𝑓𝑥) + 𝜙2(𝑓𝑥) + 𝜙3(𝑓𝑥)
10 = 7.25 + 1.89 + 1.60 + (−0.74).

The SHAP values show that feature 1 is the most important for predicting the score of 10 for observation
x and feature 3 is least important. Looking at the sign of the SHAP values we also see that because of
its values in feature 1 and 2, 𝑥 gets an increased prediction score while its value in feature 3 decreases
the score. All this goes in hand with the intuition of the importance of the three features looking at
the tree model 𝑓 .

The computational complexity and runtime of algorithm 10 has fortunately been reduced for tree-based
models. The paper [45] introduces a method to calculate the values 𝔼[𝑓(𝑥)|𝑥𝑆] in 𝑂(𝑇 𝐿𝐷2) time, where
𝐷 is the maximum depth of the trees. This method reduces the computation time from being exponen-
tial in the number of features to being quadratic in the tree’s depth. For the case of multiple features,
this is a major improvement. This algorithm is shown in [45] and implemented in the python library
shap as TreeExplainer.

The SHAP additive feature attribution method satisfies three important properties mentioned in the
original paper, one being the Consistency property which states that if a model changes such that some
features contribution increases or stays the same regardless of the other features, then that feature’s
impact should not decrease. The authors of [44] also did some experiments to evaluate the consistency
of the explanation with human intuition compared to author explanations methods such as LIME [60].
The experiments showed a much stronger agreement between human explanations and SHAP than with
the other methods. For a more extensive description of how the SHAP values are derived, we refer to
Appendix B.

Explaining Isolation Forest
The SHAP values are, as previously stated, additive feature attributions meaning that for an observation
𝑥𝑖, the average path length ℎ, is a sum of the attribution of different features. Note that the additive
property of the SHAP values is less important in case of outlier explanations since we are mainly
interested in the features that contribute to a higher outlier score. This is different from supervised
regression problems where features that influence the prediction score either by decreasing or increasing
it are both interesting to the user. For a data set with 𝑑 features, the SHAP values 𝜙1, ..., 𝜙𝑑 are such
that

ℎ(𝑥𝑖) = 𝔼(ℎ(𝑋)) + 𝜙1(𝑥𝑖) + ... + 𝜙𝑑(𝑥𝑖). (3.47)

Note that the prediction model is the average path length instead of the outlier score after normalisa-
tion. It would perhaps be more applicable to use the outlier score instead of the average path length but
to match the sklearn implementation of Isolation Forest and the implementation of the TreeExplainer
from the shap package, we use the average path length ℎ(𝑥).

Suppose 𝑥𝑗 is identified as an outlier by the Isolation Forest algorithm, meaning that ℎ(𝑥𝑗) is low com-
pared to 𝔼(ℎ(𝑋)), then the feature ℓ such that ℓ = argmin𝑙𝜙𝑙(𝑥𝑗) is the feature that contributed most
to 𝑥𝑗 being an outlier. Furthermore, the second-lowest shap value of 𝑥𝑗 is the runner up in contributing
to the outlier classification of 𝑥𝑗 and so on. The feature with the highest shap value 𝜅 = argmax𝑙𝜙𝑙(𝑥𝑗)
can be interpreted as the feature that pulls the average path length up, reducing the anomaly score
and making the instance more normal. The SHAP values with an absolute value close to 0 contribute
the least to the outlier score.

In classification problems, the features with the highest absolute SHAP values are the most important
ones. However, in outlier detection, we want to know which features are causing the score to be abnor-
mally low compared to the majority of the data. Therefore, we are interested in the features that have
the lowest SHAP values. We thus use the SHAP values of each feature as a ranking of their importance
where the lowest value corresponds to the most important feature and the highest to the least important
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feature. In fact, the features that correspond to the higher SHAP values can be interpreted as ”the
most normal” features for that outlier.

3.2.3. Alter-One-Feature (AOF)
Breiman [6] introduced a method of feature importance by measuring the change in classification error
when individual columns are permuted. We want to use a similar approach but on a local level and using
the change in outlier score since we do not have classification error information in unsupervised learning.

For each outlier, we calculate the change in outlier score when a column 𝑗 is permuted or replaced
with the columns’ mean, median or with zeros. The same Isolation Forest structure is used for a new
prediction based on the altered data set. Note that each column represents a specific feature in the data
set. If an outlier gets a significantly lower score when a certain column is altered, then the feature that
corresponds to that column is considered important for the outlierness of the observation. We consider
this method as a good baseline method but note that the runtime can become very high as the number
of features increases.

Algorithm 8 Alter-One-Feature
procedure AOF(X)

Train an isolation forest, IF, on data set 𝑋.
𝑠𝑐𝑜𝑟𝑒𝑠 = IF scores of data set 𝑋.
Initialise feature importance matrix 𝐹𝐼 of same size as 𝑋
for 𝑗 in features do

𝑋𝑗 = copy(𝑋)
𝑋𝑗

∶,𝑗 = Alter column 𝑗 fx. permute, use mean(𝑋𝑗
∶,𝑗), median(𝑋𝑗

∶,𝑗) or zeros
𝑠𝑐𝑜𝑟𝑒𝑠𝑗 = IF scores of the altered data set 𝑋𝑗.
𝐹𝐼∶,𝑗 = 𝑠𝑐𝑜𝑟𝑒𝑠 − 𝑠𝑐𝑜𝑟𝑒𝑠𝑗

end for
return 𝐹𝐼

end procedure

The resulting scores can be interpreted in a similar fashion as the shap values but are not additive. Thus,
a positive feature importance value indicates that the corresponding feature increased the outlierness
of that observation. The main disadvantage with this approach is that it only considers changes in
the score when a single feature is removed from the data set so it does not incorporate interactions of
different features. The complexity of calculating the feature importance using AOF is 𝑂(𝑑 ⋅ 𝑛𝑇 𝜓) since
for each altered feature, the outlier scores must be re-evaluated on the isolation forest with the altered
data set. Due to the very efficient implementation of the Isolation Forest scoring phase in sklearn, the
AOF method has a reasonable runtime for data sets with a limited amount of features and the runtime
is independent of the number of outliers.

3.2.4. Summary and visualisation
To understand the fundamental difference of these three methods we give a short summary of all three
methods.

• MI-Local-DIFFI: The Multiple Indicator Local-DIFFI (MI-Local-DIFFI) is our own local vari-
ant of the DIFFI method. The feature importance for an individual outlier 𝑜 is calculated by
following the outliers traversal down each of the isolation trees in the isolation forest. For each
node, the split feature of the node is given an increased importance weight based on three indi-
cators; the path length of the outlier in that tree, the split proportion corresponding to this node
and the split interval length that is calculated by observing the location of the split value on the
feature interval.

• TreeSHAP: The TreeSHAP uses Shapley values to allocate a fair importance to each feature
in the data set. The explanations are of additive nature and for outlier detection, the smallest
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values are interpreted as the most important outlying aspects and the largest values indicate the
most normal features.

• AOF: The AOF method calculates the importance of different features by observing the change
in outlier score when a single column in altered or permuted. One variant of the AOF is the
median replacement method. Isolation Forest is first trained on the original data set and the
outlier scores are calculated. To calculate the importance of feature 𝑗, we replace column 𝑗 with
its median value and calculate again the outlier score using this altered data set. The change in
outlier score is then used as an indication of the feature importance of feature 𝑗.

We conclude this chapter by providing an example of an outlier dataset where we use the explanations to
interpret the outliers. We create a data set with three dimensions (three features) and 200 observations.
The normal observations are three-dimensional vectors where each value is randomly chosen on the
interval [0,1]. We select 10 observations to be outliers by adding the constant 𝑘 = 3 to their value of
feature 1 so that feature 1 should be the most important feature when it comes to the outlierness of
these observations. The data set is shown in figure 3.15 and the outliers are coloured red.

Figure 3.15: A scatter plot of 200 observations of which 10 are clear outlier because of their values in feature 1. The outliers are
shown in red.

We observe the average explanation score of each feature considering the ten artificially created outliers.
The scores for the three different methods are shown in the bar plot below 3.16. For the MI-Local-
DIFFI and AOF, higher values represent more important features but for the TreeSHAP, lower values
represent more important features. To simplify the comparison we change the sign of the SHAP values
such that higher values also mean more important features.
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Figure 3.16: Average explanations score of each feature considering all 10 outliers. We show the results of the three different
explanation methods and see that all three methods manage to identify feature 1 as the most important.

All three method agree that the first feature is indeed the most important outlying aspect but the values
of the scores are different. Since features 2 and 3 are both chosen at random from the interval [0,1] we
would expect that they get similar importance scores as is the case for MI-Local-DIFFI and AOF while
the TreeSHAP allocates considerably more importance to feature 2 than 3. We also see that AOF and
TreeSHAP distinguish more clearly between the importance of feature 1 and the other two features.
We analyse the performance of these different methods in detail in chapter 4.1.1.



4
Experiments Using Synthetic Data

We use two types of data sets in our research, synthetic data sets and a real-world data set from Triodos
bank. In this chapter, we will focus on the synthetic data sets. These data sets contain non-trivial
outliers and information about the ground truth outlying aspects (features) for each outlier. We can
thus evaluate the performance of the three different explanation methods by comparing their features
importance scores with the ground truth.

The processing of data for outlier detection is slightly different than for other machine learning appli-
cations like classification or clustering. We make use of guidelines from the Outlier Analysis book by
Aggarwal [2] and we list a few of these guidelines here. Normalization of the columns is not important
for the Isolation Forest algorithm although the Extended version requires normalizations. Note that
noise filtering methods are not applicable in outlier detection since they could also remove interesting
outliers. Therefore, all noise removal must be done by-hand using domain knowledge. Feature selection
should also be done implicitly with domain knowledge because normal feature selection methods require
the determination of aggregate trends which are hard to determine in a relevant way for outlier analysis.
Domain knowledge can be further leveraged in some outlier algorithms by increasing the weight of spe-
cific features that are known to be more important than others. Labelled data and human-in-the-loop
processes can be of great help if it is available and should be incorporated if possible. Finally, one
should consider using an ensemble of the same algorithm or various methods to reduce risk and create
more consistent results.

4.1. Synthetic Data
Paper [31] introduces HiCS, an outlier detection method that works well in identifying outliers that
are hidden in lower-dimensional subspace projections of the data. To validate their HiCS detection
algorithm, the authors produce synthetic data sets that contain non-trivial outliers and a ground-truth
knowledge of the features that induce the outlierness. The data set can thus be used to verify the
performance of the explanation methods as done by the authors of [47]. A 2-5 dimensional subspace
is randomly selected out of the full data space in which high-density clusters are generated. In each
subspace, up to 5 objects are modified to deviate from all the clusters in the selected subspace in such a
way that the object will not be visible as an outlier in any lower-dimensional subspaces. This is done to
ensure that there are no trivial outliers. The synthetic data sets are in total 21, with three sets for each
of the seven features sizes, 10, 20, 30, 40, 50, 75 and 100. The data sets all contain 1000 observations
but the numbers of outliers differ between them. The different number of outliers in each of the data
sets are presented in table 4.1 below.

45
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Number of features

10 20 30 40 50 75 100

Set 1 19 25 44 53 68 110 136

Set 2 19 29 36 50 67 111 123

Set 3 15 35 44 57 68 111 143

Table 4.1: Number of outliers in the 21 different synthetic data sets.

For a better understanding of the synthetic data set, we take a closer look at data set nr. 1. This data
set contains 1000 observations, 10 features and 19 outliers. The outliers can be divided into five groups
based on the feature subspaces where they clearly deviate from the rest of the observations.

• Group 1: The outliers in group 1 are clear outliers in the feature subspace spanned by features
{8, 9}. In total there are 5 outliers in group 1.

• Group 2: The outliers in group 2 are clear outliers in the feature subspace spanned by features
{0, 1}. In total there are 4 outliers in group 2.

• Group 3: The outliers in group 3 are clear outliers in the feature subspace spanned by features
{6, 7}. In total there are 4 outliers in group 3.

• Group 4: The outliers in group 4 are clear outliers in the feature subspace spanned by features
{2, 3, 4, 5}. In total there are 5 outliers in group 4.

• Group 5: The outlier in group 5 is clear outliers in the feature subspace spanned by features
{0, 1} and {6, 7}. In total there is 1 outlier in group 5.

Let us look at a scatter plot of data set nr. 1 and mark the outliers from Group 2, 3, and 5 with purple,
red and yellow colours respectively. We mark the outliers from Group 1 and 4 with green and inliers
with blue. We make six 2-dimensional plots with different axes such that each 2-dimensional projections
of the feature {0, 1, 6, 7} is depicted. We see in figure 4.1 that the outliers from group 2, 3 and 5 are
not clear outliers in any two-dimensional subspace of features {0, 1, 6, 7} except {0, 1} and {6, 7} (the
top-left and the bottom-right plots).
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Figure 4.1: We look at two-dimensional projections of the first HiCS synthetic data set. We look at all pairs of features from the
subset {0, 1, 6, 7} a total of 6 pairs and thus 6 plots. We see that the outliers from groups 2, 3 and 5 (purple, red and yellow)
are not clear outliers in any two-dimensional projection of the features {0, 1, 6, 7} except {0, 1} (purple and yellow) and {6, 7}
(red and yellow) as seen on the top-left and the bottom-right plots.

4.1.1. Evaluation Metrics
We use two performance metrics, the AUC and AUPRC to evaluate the performance of the explanations
and also to evaluate the ability of the Isolation Forest algorithm to identify outliers. By definition, these
measures can only be used when the ground-truth/actual information is available. Therefore, we can
only use them on the synthetic data set.

To define these two metrics we start by introducing the confusion matrix that compares the actual class
of an observation with its predicted class. Suppose we have an algorithm that predicts whether a feature
is important (𝑦 = 1) or unimportant (𝑦 = 0). The algorithm predicts correctly if either, it predicts
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important when the feature is actually important (true positive) and it predicts unimportant when
the feature is actually unimportant (true negative). There are also two types of incorrect predictions,
namely the algorithm predicts important but the feature is actually unimportant (false positive) and
conversely, the algorithm predicts unimportant but the feature is actually important (false negative).
These different combinations of actual importance and predicted importance can be observed by looking
at table 4.2.

Table 4.2: The confusion matrix comparing the predicted and the actual importance.

Using the confusion matrix in table 4.2 above, we can then define a few important metrics, called the
accuracy, precision, recall and false positive rate as follows.

accuracy = true positives + true negatives
number of observations = TP + TN

TP+TN+FP+FN

precision = true positives
predicted positives = TP

TP + FP

recall = true positives
actual positives = TP

TP + FN

false positive rate = false positives
actual negatives = FP

FP + TN

The accuracy measures the proportion of correctly predicted observations out of the total number of
observations. The precision represents the percentage of the predicted positives that were actually
positives while the recall represents the percentage of actually positive observations that were correctly
predicted as such. Finally, the false positive rate gives us the percentage of the actually negative ob-
servations that were falsely identified as positives.

Using the foundation above, we can define and explain the AUC and AUPRC measures. The AUC
measure the Area Under the ROC Curve. The ROC curve can be obtained by plotting the recall
against the false positive rate and is an indicator of the classification ability of a binary classifier as the
threshold that divides the two classes is altered. The area under this curve can be computed with the
following formula [8],

AUC =
∑𝑡0∈𝒟0 ∑𝑡1∈𝒟1 1{𝑓(𝑡0) < 𝑓(𝑡1)}

|𝒟0| ⋅ |𝒟1| ,

where 𝑓 is the classifier being evaluated and 𝒟0, 𝒟1 are the sets of negative (unimportant) and positive
(important) observations, respectively. The AUC is thus equal to the probability that a classifier will
rank a positive instance higher than a negative instance when both are chosen at random. If the AUC
is equal to 1 that means that there exists a threshold value such that the negative and positive classes
can be perfectly separated.

Similarly, the AUPRC measures the Area Under the PR Curve. The precision-recall (PR) curve can
be obtained by plotting the precision against the recall for different decision thresholds. Let 𝑝(𝑟) be the
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precision as a function of the recall, 𝑟, looking at the PR curve. Then

AUPRC = ∫
1

0
𝑝(𝑟)𝑑𝑟,

which can be approximated by the average precision score

AUPRC ≈ ∑𝑛
𝑘=1 𝑃(𝑘) ⋅ 𝑐(𝑘)

|𝒟1|

where 𝑛 is the number of observations (𝑛 = |𝒟0| + |𝒟1|), 𝑘 is the rank in the score of observations,
𝑃(𝑘) is the precision at cut-off 𝑘 and 𝑐(𝑘) is the actual class of the item at rank 𝑘.

Since PR curves do not depend on true negatives (TNs) they are particularly useful for data sets
with many true negatives where a high AUC score can be a false indicator of good performance. In
explanation evaluation, this holds since the class of true important features (positive) is often rarer
than the class of unimportant ones (negative). In outlier detection, this is also the case since the class
of outliers (positive) is rare compared to the class of inliers (negative). We thus always look at both
the AUC and the AUPRC measures.

Explanations
For each outlier in the synthetic HiCS data, there is a binary indicator vector, 𝜏 ∈ {0, 1}𝑑, that indicates
which features represent the ground truth outlying features. For example, if an outlier 𝑜 is outlying
in the feature subspace spanned by features {0, 1}, then 𝜏(𝑜) = (1, 1, 0, 0, ..., 0). We evaluate our ex-
planation methods by comparing the resulting feature importance ranking 𝐹𝐼 , with this ground-truth
binary indicator vector 𝜏 . Note however that the explanations indicate the importance of the features
based on the predictions of the model while the ground truth explanations relate to the structure of
the data itself. These two viewpoints, model vs. data, can be different, especially for inaccurate models.

If the true outlying features get the highest feature importance scores, the AUC and AUPRC are 1. We
thus compute AUC(𝜏(𝑜), 𝐹𝐼(𝑜))) and AUPRC(𝜏(𝑜), 𝐹𝐼(𝑜))) for each outlier 𝑜 in the data set 𝑋 and to
measure the performance across all the outliers in the data set we take the mean,

AUC𝐹𝐼 = 1
𝑛𝑜

𝑛𝑜

∑
𝑜=1

AUC(𝜏(𝑜), 𝐹𝐼(𝑜)) (4.1)

AUPRC𝐹𝐼 = 1
𝑛𝑜

𝑛𝑜

∑
𝑜=1

AUPRC(𝜏(𝑜), 𝐹𝐼(𝑜)) (4.2)

where 𝑛𝑜 is the number of outliers being evaluated and 𝐹𝐼(𝑜) are the feature importance explanation
scores for outlier 𝑜 based on some explanation method.

Outliers
Although we explained the AUC and AUPRC metrics above by using the classes of important versus
unimportant features, these measures can also be used for the evaluation of the performance of an
outlier detection algorithm instead of the explanations. In that case, we have the two classes; outliers
(1) and inliers (0), and the results of the model is given with the outlier scores. A perfect AUC and
AUPRC score of 1 is reached if there exists a threshold value such that the outliers scores can perfectly
separate the outliers from the inliers.
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4.2. Experiments with Isolation Forest
We first test the performance of Isolation Forest on the synthetic data set, using the ground truth
information about which observations are outliers and which are not. We notice that the performance
of Isolation Forest decreases swiftly as the number of features increases and we thus analyse Isolation
Forests ability to find subspace specific outliers within a data set. We also test the Ternary Isolation
Forest algorithm that was presented earlier which shows better performance results than Isolation For-
est on the synthetic data sets.

We report the performance of Isolation Forest on the synthetic data sets in terms of AUC and AUPRC.
Since Isolation Forest has a stochastic aspect to it (each isolation tree is randomly built), we calculate the
average performance of 10 different randomly generated forests. Note that all our experiments are done
with an average over multiple isolation forests and the plots have a black error line which represents +/-
one standard deviation of the results over multiple runs. We use Isolation Forest without subsampling
and use various numbers of trees, 𝑇 ∈ {1, 5, 10, 20, 50, 100, 200, 500}. Since the outliers in the synthetic
data set do not reside in big clusters, subsampling should not increase the performance of the algorithm
by reducing masking or swamping effects. In figures 4.2 and 4.3, we see that the highest performance
in terms of AUC and AUPRC of Isolation Forest is obtained with 500 trees but a similar performance
and faster computation can also be obtained using only 100 trees.

Figure 4.2: The AUC for the 21 data sets with various number of trees in Isolation Forest. The AUC is averaged over 10 runs of
Isolation Forest and the standard deviation is shown with the black error line on top of each bar. We see that the AUC increases
as the number of trees increases but we believe that satisfactory performance is reached for 100 trees which is also the setting
suggested in the original paper. We also see that the AUC decreases in general as the number of features in the data set is higher.
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Figure 4.3: The AUPRC for the 21 data sets with various number of trees in Isolation Forest. The AUPRC is averaged over 10
runs of Isolation Forest and the standard deviation is shown with the black error line on top of each bar. The AUPRC is low for
most data sets but increases slightly as the number of trees increase.

Now we focus on the values of the AUC and the AUPRC and use only the results with 100 trees.
Using 100 trees gives us good performance results and reduces the run time compared to 200 or 500
trees. These measures show that the best performance in terms of accuracy (AUC) is for the data sets
with only 10 features and the AUC is decreasing in the number of features. An AUC of 0.5 equals no
discriminating ability at all, while usually an AUC of 0.7-0.8 is considered acceptable discrimination
[28]. Based on this, Isolation Forest does not manage to distinguish outliers from the inliers sufficiently
for all data sets. The AUPRC measures are not great for any of the 21 data sets. We see a trend that
the AUC decreases as the number of features increases. That can also be expected since the outliers
become harder to identify when the number of subspaces to investigate increases.

Figure 4.4: The AUC and AUPRC for the 21 data sets with 100 trees. The results are averaged over 10 runs of Isolation Forest
and the standard deviation is also depicted.

We see that Isolation Forest is surely not the optimal algorithm for outlier detection in these synthetic
outlier data sets. However, these are the only multi-dimensional data sets that we found containing
non-trivial outliers with ground-truth outlying feature information. Since the performance of Isolation
Forest is not acceptable for the sets with more than 20 features, we choose to evaluate our methods on
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only the data sets that receive an AUC score of 0.75 or higher, in total 5 data sets as shown in figure
4.4. Three of these data sets contain 10 features (sets 1,2 and 3) and two contain 20 features (sets 5
and 6). Note that these synthetic data sets were specifically generated for the HiCS outlier detection
algorithm where the outliers are placed in certain non-trivial subspaces such that the subspace contrast
where they are located is high. The results of the HiCS algorithms are very good, maybe because
the algorithm specifically searches for these high contrast subspaces. Unfortunately, there is still no
convenient implementation in Python or R of the outlier detection component of HiCS so we could not
make a direct numerical comparison of the AUC of HiCS vs. Isolation Forest. There are however some
graphs in the original paper, indicating that the HiCS manages to have an AUC above 0.75 for each of
the different feature sized data sets.

We again point out that the explanations measure the importance of the features to the model while
the ground truth outlying aspects relate to the distribution of the data itself. So an outlier 𝑥𝑜 may
have certain ground truth outlying aspects when looking at the data distribution but Isolation Forest
manages to detect this as an outlier based on other features. In that case, the explanations do not match
but it does not mean that the explanations were wrong as they could be pointing at those outlying
aspects found by Isolation Forest.

In terms of explainability, we are more interested in knowing how the model works than in trying to
extract the ground-truth information. Of course, it is best when the two coincide. Therefore we use
the data sets that Isolation Forest performed well on to have at least some indication of whether the
explanations are pointing at the most interesting features.

Before we use these five synthetic data sets to evaluate the performance of the explanations, we wish to
understand why the performance of Isolation Forest decreased so rapidly with increasing feature size of
the data sets. In the HiCS paper, the performance indeed decreases as the number of features increases
but not as rapidly as in Isolation Forest case. We believe that the answer to this question is found by
looking at the ability of Isolation Forest to identify outliers that reside only in specific subspaces.

4.2.1. Subspace Specific Outliers
The synthetic data sets are created such that they contain ground truth outliers that have certain
ground truth outlying features. These outliers can only be found when looking at these specific fea-
tures. To detect such outliers using Isolation Forest, these specific outlying features must be present in
the outlier’s path in some isolation tree. Then the score corresponding to that path will most likely be
lower than the score corresponding to the other paths. However, when the data set is high dimensional
and the maximum depth of the trees is limited, the probability of specific features to occur all at once
in an outlier path becomes increasingly smaller. Thus, the ability of Isolation Forest to detect such
subspace specific outliers decreases with an increasing number of features (dimensionality).

To formalize this, let us look at a data set with 𝑑 features and consider an outlier path of length 𝑠. The
features that occur in each split in the path are chosen at random. To simulate the features that occur
in a path, we suppose we sample from a set 𝑋 = {1, 2, ..., 𝑑} with replacement and let 𝐴𝑖 be the event
that 𝑖 is included in our sample. An outlier path of length 𝑠 corresponds to a sample 𝑆 of size 𝑠 and the
probability that none of the values in the sample are 𝑖 equals ( 𝑑−1

𝑑 )𝑠.The probability that some feature
𝑖 is not in the outlier path of length 𝑠 when sampling from 𝑑 features is then given by

ℙ(𝐴𝑐
𝑖 ) = (𝑑 − 1

𝑑 )
𝑠

,

and thus

ℙ(𝐴𝑖) = 1 − ℙ(𝐴𝑐
𝑖 ) = 1 − (𝑑 − 1

𝑑 )
𝑠

.

We can also compute the probability that neither 𝑖 nor 𝑗 is included in our sample, i.e.,

ℙ (𝐴𝑐
𝑖 ∩ 𝐴𝑐

𝑗) = (𝑑 − 2
𝑑 )

𝑠
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and for general 𝐴𝑖𝑗
, with 𝑗 = 1, ..., 𝑙,

ℙ (
𝑙

⋂
𝑗=1

𝐴𝑐
𝑖𝑗

) = (𝑑 − 𝑙
𝑑 )

𝑠
(4.3)

Suppose we have an outlier that can only be located in a specific 𝑙 dimensional subspace of the data
spanned by features 𝑖1, ..., 𝑖𝑙. In the case of our data set this could for example be an outlier located in an
𝑙 = 3 dimensional subspace spanned by features 𝑖1 = 6, 𝑖2 = 8, 𝑖3 = 9. We want to find the probability
that all of these features are included in a single path, that is we want to compute ℙ(⋂𝑙

𝑗=1 𝐴𝑖𝑗
).

Theorem 4.2.1. Let 𝑋 be a data set with 𝑑 features. The probability that 𝑙 specific features
𝑖1, ..., 𝑖𝑙 ∈ {1, ..., 𝑑} (𝑖𝑗 ≠ 𝑖𝑝 for 𝑗 ≠ 𝑝) all occur in a path of length 𝑠, ℙ(⋂𝑙

𝑗=1 𝐴𝑖𝑗
), is given

by

1 +
𝑙

∑
𝑘=1

((−1)𝑘(𝑙
𝑘) (𝑑 − 𝑘

𝑑 )
𝑠
) . (4.4)

Proof. Using the inclusion-exclusion criteria we get that

ℙ (
𝑙

⋃
𝑗=1

𝐴𝑖𝑗
) =

𝑙
∑
𝑘=1

⎛⎜⎜
⎝

(−1)𝑘−1 ∑
𝐼⊆{1,…,𝑙}

|𝐼|=𝑘

ℙ (⋂
𝑗∈𝐼

𝐴𝑖𝑗
)⎞⎟⎟

⎠
.

Using De Morgan’s law and the complement law from set theory, along with equation 4.3
we get

ℙ (
𝑙

⋂
𝑗=1

𝐴𝑖𝑗
) = 1 − ℙ ((

𝑙
⋂
𝑗=1

𝐴𝑖𝑗
)

𝑐

)

= 1 − ℙ (
𝑙

⋃
𝑗=1

𝐴𝑐
𝑖𝑗

)

= 1 −
𝑙

∑
𝑘=1

⎛⎜⎜
⎝

(−1)𝑘−1 ∑
𝐼⊆{1,…,𝑙}

|𝐼|=𝑘

ℙ (⋂
𝑗∈𝐼

𝐴𝑐
𝑖𝑗

)⎞⎟⎟
⎠

= 1 −
𝑙

∑
𝑘=1

⎛⎜⎜
⎝

(−1)𝑘−1 ∑
𝐼⊆{1,…,𝑙}

|𝐼|=𝑘

(𝑑 − 𝑘
𝑑 )

𝑠⎞⎟⎟
⎠

= 1 −
𝑙

∑
𝑘=1

((−1)𝑘−1(𝑙
𝑘) (𝑑 − 𝑘

𝑑 )
𝑠
)

= 1 +
𝑙

∑
𝑘=1

((−1)𝑘(𝑙
𝑘) (𝑑 − 𝑘

𝑑 )
𝑠
) (4.5)

Results
Consider a data set with 𝑛 = 1000 observations that contains an outlier hidden in a subspace spanned
by 3 different features. We calculate the probability that the path of an outlier contains all three of
these features for two such data sets with 10 and 100 features respectively. We consider a path of length
⌈log2(1000)⌉ = 10. According to our formula, the probability of these three features occurring in the
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same path of length 10 is

1 +
3

∑
𝑘=1

((−1)𝑘(3
𝑘) (10 − 𝑘

10 )
10

) = 0.2478,

1 +
3

∑
𝑘=1

((−1)𝑘(3
𝑘) (100 − 𝑘

100 )
10

) = 0.0006.

which means that such a subspace will be located in a path with ≈ 25% probability for the data set
with 10 features but only with 0.06% probability for the data set with 100 features.

This explains why the performance of Isolation Forest is much lower for the data set with 100 features
than 10 features. The subspaces that would allow us to isolate the outliers become harder to capture
using the random tree path method of Isolation Forest. Not only is it unlikely that they occur in a path
but if they occur, the split value is also chosen randomly and may not always result in an isolating split.

4.2.2. Ternary Isolation Forest
Ternary Isolation Forest is defined in section 3.1.6 and below we show that this method outperforms
regular Isolation Forest when using the synthetic data sets. Note, however, that in our real-world ap-
plication and experiments with explanation methods, we stick to the regular Isolation Forest because
Ternary Isolation Forest has yet to be implemented efficiently in python.

Using MI-Local-DIFFI we can see how Isolation Forest detects boundary outliers rather than interior
outliers. Take a ground truth outlier in the data set with 100 features that has three ground truth
outlying aspects. In figure 4.5 we, first of all, see the outlier in its true outlying subspace and then the
subspace spanned by the top 3 features from MI-Local-DIFFI. The outlier is more clearly an outlier in
the true outlying subspace when considering the number of surrounding observations but it seems like
Isolation Forest gives higher importance to features where the outlier is located at the extremes. This
supports the fact that a ternary tree should be better in outlier detection because it does not give as
much weight to the extremes.

Figure 4.5: Scatter plot of one of the synthetic data sets with 100 features. The outlier is shown in its true outlying subspace and
then the subspace identified by MI-Local-DIFFI. One can see the outlier is more clearly an outlier in the true outlying subspace
when considering the number of surrounding observations but it seems like Isolation Forest gives higher importance to features
where the outlier is located at the extremes. This support the fact that a ternary tree should be better in outlier detection
because it does not give as much weight to the extremes.

Results
We compare the performance of regular Isolation Forest and the ternary version on the synthetic data
sets. We know that some of the outliers in the synthetic data sets are interior outliers that are only
distinguishable from the rest in certain subspaces of the feature space. Therefore, we expect that the
ternary version of Isolation Forest can better detect the non-trivial outliers in the synthetic data set
which indeed turns out to be the case, both in terms of AUC and AUPRC as shown in figure 4.6. Note
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that the performance metrics are an average over 10 runs and we also take the average results for data
sets with the same number of features.

Figure 4.6: The AUC and AUPRC for Isolation Forest and Ternary Isolation Forest. We take the average results for data sets
with the same number of features and we also average over 10 runs of the two algorithms. We see that Ternary Isolation Forest
performs consistently better than Isolation Forest.

The explanations have successfully helped in understanding the shortcomings of the binary Isolation
Forest algorithm which indicates that the explanations do not only give us an understanding of the
outlying features of individual outliers but can also be used to improve the method being used, which
in this case is the Isolation Forest algorithm. This is a very strong indication of the usefulness of
explanations in outlier detection and other machine learning applications.

4.2.3. Runtime Analysis
The runtime (execution time) of Isolation Forest differs greatly between the different implementation of
the algorithm. Below we show the difference in runtime for the sklearn implementation of Isolation For-
est and a more basic implementation of Isolation Forest that does not use C++ for faster computations
and does not include any specific runtime optimisations. This more basic version has better alteration
possibilities than the sklearn version which we, for example, use to implement Ternary Isolation Forest.
We measure the runtime of these three implementations; sklearn Isolation Forest, basic Isolation Forest
and basic Ternary Isolation Forest, on 9 different randomly created data sets of different sizes. We
try a combination of three different number of features, {10, 50, 100}, with three different number of
observations, {1000, 10000, 100000}.

We tried these data set sizes because they reflect approximately the scope of outlier detection data
sets available on ODDS [57]. We run these experiments both for the settings that are suggested in the
original paper 𝑇 = 100 and 𝜓 = 256 and also with the settings that we use in this thesis 𝑇 = 100 and
𝑝𝑠𝑖 = 𝑛 where 𝑛 is the number of observations. We show the results in table 4.3 below.

We first observe that the sklearn version runs much quicker than the basic implementation of Isolation
Forest indicating that the quality of the implementation matters a lot when it comes to efficiency.
Although the computational complexity of Isolation Forest does not depend on the number of features,
we see that the runtime is very much influenced by this factor. We also observe that the runtime seems
to depend much more on the number of features than the number of observations. The runtime of
Ternary Isolation Forest is also greater than of Isolation Forest with the basic implementation. Despite
having the same maximum height, the ternary tree has more nodes than the binary tree meaning that
the training process takes more time.
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Runtime of Isolation Forest in seconds 𝜓 = 256 𝜓 = 𝑛

Number of
features Implementation

Number of observations Number of observations

1000 10000 100000 1000 10000 100000

10
sklearn version 0.31 0.34 0.36 0.31 0.47 0.46

basic version 2.14 2.29 1.9 3.13 7.67 7.02

ternary, basic version 4.01 3.19 2.79 6.57 7.51 6.49

50
sklearn version 1 1.67 2.71 1.26 2.5 3.56

basic version 19.13 15.7 14.74 33.74 37.96 41.17

ternary, basic version 18.88 18.93 17.64 72.09 79.68 79.59

100
sklearn version 7.03 20.7 38.41 13.94 28.32 44.57

basic version 155.73 154.13 142.74 372.1 429.85 455.31

ternary, basic version 184.19 168.87 193.65 799.37 825.17 865.59

Table 4.3: The runtime in seconds of different implementations of Isolation Forest with subsampling sizes 𝜓 = 256 and 𝜓 = 𝑛
in the two seperate columns. We measure the runtime for data sets of different sizes, where the number of features are in
{10, 50, 100} and the number of observations in {1000, 10000, 100000}.

An article on runtime evaluations [36] points out the challenge of correctly evaluating the efficiency and
scalability of an algorithm because the runtime evaluation can be very dependent on the implementation
of the algorithm. Our analysis shows exactly this as the runtime of the basic implementation can be up
to 30 times slower than the sklearn version for equally large data sets. We summarize the main findings
from our runtime experiment.

• The runtime of Isolation Forest is very dependent on the way it is implemented. The sklearn
version is much faster than the basic implementation.

• The runtime of Isolation Forest increases more in the number of features than the number of
observations.

• Ternary Isolation Forest has about twice the runtime of Isolation Forest considering the basic
implementation.

• Increasing the subsampling size has less influence on the runtime of the sklearn version than on
the basic versions.
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4.3. Experiments with Explanation Methods
Next, we use the synthetic data set to evaluate the performance of the explanations. In this case, the
ground truth outlying feature information is used instead of the ground truth outlier information. This
experiment addresses our second research sub-question about which explanation method to use for local
outlier explanations.

We first test a few variations of the MI-Local-DIFFI and the AOF methods and then compare the
performance of the three explanations methods, MI-Local-DIFFI, TreeSHAP and the AOF. Note that
all the methods deliver the explanations in terms of a feature importance score, where the feature
with the highest score can be interpreted as the feature that contributes the most to the corresponding
observation being considered an outlier.

4.3.1. Configuration of MI-Local-DIFFI
The new method that we propose, the MI-Local-DIFFI, was developed with influence from the DIFFI
method [11]. We used the synthetic data set to validate the performance of the MI-Local-DIFFI
and compared the performance of different weighing schemes. The method is described in detail in
the Methods chapter. We start by using the synthetic data set to measure the performance of the
explanations when incorporating different information on the tree structure. We consider four different
sources of information; path length, split proportion, split depth and split interval. The exact weighting
scheme is described in the methods section 3.2.1.

• Path Length. Shorter paths correspond to more successful isolation of outliers. This means
that we are more likely to find important features in those paths than in the longer ones. We
incorporate this into the feature importance calculations by weighing up features that occur in
shorter paths.

• Split Proportion. We also measure the so-called split proportion of each feature in an outlier
path, namely the proportion of the data that follows the direction of the outlier in a corresponding
feature split. A high split proportion means better isolation power so we expect that features with
a high split proportion are more important. We thus give more weight to the features that result
in a higher split proportion.

• Split Depth. We also check whether the depth of the split in the tree can give us information
about the importance of features. It turns out that merely the depth is not a good indicator of
how important the feature is. The reason for this is that the split features are chosen randomly
and even though a good split located at the beginning of the outlier path could mean that the
feature is specifically more important it may also be that the split features that are closest to the
leaves are the ones that manage to isolate the outliers. Because of this, we check whether the
combination of split proportion and depth provides a better feature importance indicator than if
we look at the indicators individually.

• Split Interval. Finally, we measure the proportion of the length of the outlier split interval
compared to the full feature interval length of each node.

Comparison
For each of the different versions of the method, we use the weighing scheme that gives us the best
results on the synthetic data set. Individually, it turns out that merely the split proportion is a good
indicator of the feature importance. We test whether combinations of two or more indicators increase
the performance of MI-Local-DIFFI. We begin by testing these four indicators below.

1. split proportion (sp)

2. split proportion and path length (sp, pl)

3. split proportion and split depth (sp, sd)

4. split proportion, path length and split depth (sp, pl, sd)
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In figure 4.7 below, we see that the path length indicator definitely increases the performance of the
explanations. However, the split depth indicator does not seem to make much of a difference in terms
of performance. The reason for this could be that the location of specific features is based on a random
choice so even though a good split at the beginning of a path would represent significant importance
of the corresponding features, a good split at the end of the path can also represent the importance of
that features. We thus ignore the split depth indicator.

Figure 4.7: The performance of MI-Local-DIFFI measured with AUC𝐹𝐼 and AUPRC𝐹𝐼 for synthetic data sets 1, 2, 3, 5 and 6.
This figure shows four different indicators out of which the yellow bar (sp, pl) shows the best results.

Finally, we add the split interval indicator to the split proportion and path length, thus comparing

5. split proportion and path length (sp, pl)

6. split proportion, path length and split interval (sp, pl, si)

and observe the performance of the explanations, see figure 4.8.

Figure 4.8: The performance of MI-Local-DIFFI measured with AUC𝐹𝐼 and AUPRC𝐹𝐼 for synthetic data sets 1, 2, 3, 5 and 6
comparing two different combination of indicators. The addition of the split interval indicator shows better results. We thus use
the three indicators; split proportion, path length and split interval, as the indicators of MI-Local-DIFFI.

The combination of split proportion, path length and split interval gives the best explanations when
evaluating the AUC𝐹𝐼 and AUPRC𝐹𝐼 measures on the five well-performing synthetic data sets. We
thus compare the MI-Local-DIFFI that incorporates these three indicators as described in algorithm 6
with the other two methods.
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4.3.2. Configuration of AOF
Next, we test the different versions of the Alter-One-Feature (AOF) method. The different versions are
the following;

• Version 1: Permute column 𝑗.

• Version 2: Replace column 𝑗 with its mean.

• Version 3: Replace column 𝑗 with its median.

• Version 4: Replace column 𝑗 with zeros.

The AUC𝐹𝐼 and AUPRC𝐹𝐼 measures for the performance of the feature importance explanations are
shown in figure 4.9. We see that the replacement methods (V2-V4) perform similarly well in terms of
the AUC𝐹𝐼 measure and the zero replacement method (V4) performs best in terms of AUPRC𝐹𝐼 . We
thus choose to use Version 4, zero-replacement, as the AOF-method to compare with MI-Local-DIFFI
and TreeSHAP.

Figure 4.9: The AUC𝐹𝐼 and AUPRC𝐹𝐼 for the different version of AOF explanation methods. Overall, the V4: Zero-replace
indicator gives the best results with the V3: Median-replace following closely behind, giving even better AUC𝐹𝐼 resuls for data
sets 3, 5 and 6.

However, we remark that the zero-replacement is not likely to be the best version for all data sets.
We recommend that the median replace (Version 3) is used if the explanation performance can not be
measured because it is most likely to remove the outlying value of the corresponding feature. In the
synthetic data set, values around zero are frequent and thus zero becomes a good choice for removal of
outlying feature values.

4.3.3. Results
Finally, we compare the three explanation methods, TreeSHAP, MI-Local-DIFFI (sp, pl, si) and AOF
(V4: zero-replacement). We continue to use the AUPRC𝐹𝐼 and AUC𝐹𝐼 measures but also compare the
runtime of the three different methods and two 𝛼 measures that are explained below.
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Figure 4.10: The AUC𝐹𝐼 and AUPRC𝐹𝐼 for the three different explanation methods; TreeSHAP, AOF and MI-Local-DIFFI.
Results are averaged over 10 different Isolation Forests. AOF performs better for data sets nr. 1 and 2 whilst MI-Local-DIFFI
performs better for data sets nr. 3, 5 and 6.

Figure 4.11: The overall runtime (s) for the three different explanation methods. AOF is the fastest but all methods are quite fast
for these five synthetic data sets. The runtime however depends on the size of the data set and the setting of the hyperparameters
of Isolation Forest so this runtime comparison only holds for the specific data sets and Isolation Forest setting being used in this
experiment.

Figure 4.10 shows that the AUC𝐹𝐼 measure is similar for the three methods, although the MI-Local-
DIFFI performs best on average over the five different data sets. Looking at the AUPRC𝐹𝐼 measure, the
MI-Local-DIFFI and AOF outperform the TreeSHAP, with MI-Local-DIFFI again receiving the highest
average score over the five data sets. In terms of runtime, Figure 4.11 shows that TreeSHAP is signifi-
cantly slower than the other methods but more detailed runtime analysis of the method is provided in
table 4.8. We conclude that the performance is very good for all methods but the MI-Local-DIFFI and
AOF outperform the TreeSHAP especially if we look at the AUPRC𝐹𝐼 . It is interesting that the AOF
method, that only observes the changes as one feature at a time is altered, has a very high performance
measure on these data sets.

We continue to estimate the ability of these methods to distinguish between the true outlying features
and the rest. In addition to the AUC and AUPRC, we want to look explicitly at the explanations scores
of the true outlying features vs. the regular features. Ideally, the explanation scores are on average
higher for the outlying features than the rest. Before we can make this comparison we standardize the
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explanation scores for each outlier. Then the first measure we are interested in is defined as

𝛼1 = |average standardized explanations score of true outlying features|
|average standardized explanations score of regular features| .

We want this measure to be as high as possible as a higher ratio indicates more separability between
the explanation score of true outlying features and the rest. Furthermore, we measure the difference
between the lowest score of a true outlying feature and the highest score of a regular feature, i.e.,

𝛼2 = Lowest explanation score of a true outlying feature − Highest explanation score of a regular feature,

where a higher 𝛼2 means increased separation ability of the explanation methods. A negative score
indicates a failure of the method to give true outlying features higher scores than regular features.

We compare these scores across the different data sets for the three methods. Results are shown in
Tables 4.4 and 4.5 below, where we see that the AOF method has the best score in terms of 𝛼1 and
MI-Local-DIFFI has the best score in terms of 𝛼2 on average.

𝛼1
Data set nr.

1 2 3 5 6

Method
TreeSHAP 3.96 4.71 4.6 2.71 2.96

AOF 6.45 7.32 4.86 2.32 2.74

MI-Local-DIFFI 3.4 3.58 3.51 2.23 2.51

Table 4.4: The 𝛼1 scores of different methods over the five synthetic data sets. In this case, higher scores represent increased
seperation ability between truly outlying and non-outlying featres. Out of the three methods, AOF has the highest scores for
data sets nr. 1, 2 and 3 while TreeSHAP has the highest scores for data sets nr. 5 and 6.

𝛼2
Data set nr.

1 2 3 5 6

Method
TreeSHAP -0.05 0 -0.08 -0.45 -0.36

AOF 0.21 0.25 0.1 -0.31 -0.2

MI-Local-DIFFI 0.19 0.23 0.11 -0.22 -0.12

Table 4.5: The 𝛼2 scores of different methods over the five synthetic data sets. In this case, higher scores represent increased
seperation ability between truly outlying and non-outlying featres. Out of the three methods, AOF has the highest scores for
data sets nr. 1 and 2 while MI-Local-DIFFI has the highest scores for data sets nr. 3, 5 and 6.

In most practical outlier detection models, the information about outliers and their explanations is
however not available beforehand. We must thus decide which explanation method to use without
having the ground truth explanations at hand. Since the methods above appear to give quite good
results, we look at how they differ in terms of computational complexity, see table 4.6 for general data
sets.

Complexity

TreeSHAP 𝑂(𝑛𝑜𝑇 𝐿ℎ2)
AOF 𝑂(𝑛𝑑𝑇 𝜓)

MI-Local-DIFFI 𝑂(𝑇 𝑛𝑜log2𝜓)

Table 4.6: Computational complexity of the different explanation methods.
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Here, 𝑇 represents the number of isolation trees in an isolation forest, 𝑑 represents the number of fea-
tures (dimensions) in the data set, 𝑛 represents the number of observations in the data set, 𝑛𝑜 represents
the number of outliers to be explained, 𝜓 is the size of the subsample that is used to build the isolation
forest, 𝐿 represents the number of leaves in the isolation tree and ℎ represents the height/depth of the
isolation trees. We would like to write 𝐿 and ℎ in the order of the subsampling size 𝜓 since these sizes
depend on the isolation tree built with 𝜓 observations. Note that the average height of an isolation tree
is 𝑂(log 𝜓) as computed earlier. In case of a fully grown isolation tree, the number of leaves equals the
number of observations 𝜓. In case of early termination, the height of the isolation trees can at most
reach log2𝜓. A worst-case estimate of the maximum number of leaves in the tree is then 2ℎ = 𝜓. This
means that the complexity of the TreeSHAP becomes order 𝑂(𝑇 ⋅ 𝑛𝑜𝜓log2𝜓), worst case.

In table 4.7, the complexity of the three methods can be shown by looking at only five different factors.
However, note that the complexity of TreeSHAP is formulated using a worst-case estimate of the max-
imum number of leaves. We also notice that higher subsampling size increases the complexity of all the
methods, though especially the TreeSHAP.

Influencial factors

Subsampling
size

No. of
observations

No. of
features

No. of
outliers

No. of
Isolation

Trees
TreeSHAP 𝜓log2𝜓 𝑛𝑜 𝑇

AOF 𝜓 𝑛 𝑑 𝑇
MI-Local-DIFFI log2𝜓 𝑛𝑜 𝑇

Table 4.7: Comparing the factors that affect the complexity of the three different methods. TreeSHAP depends most heavily on
the subsampling size compared to the other two methods. AOF also depends more on the size of the data set while the other
two rather depend on the number of outliers.

Computational complexity can give us an idea of the structure of the algorithms but in applications,
the runtime is much more useful as a measure of efficiency and scalability. We thus perform runtime
analysis of the three different explanation methods on 9 randomly generated data sets of different sizes,
where the number of features is in {10, 50, 100} and the number of observations in {1000, 10000, 100000}.
The measures are based on the time it takes to explain a single outlier but we take an average over
ten outliers being evaluated at a time. This is because for some of the methods there is a base-runtime
that averages out when more than one outlier is evaluated at a time. Furthermore, the runtimes are
averaged over 10 evaluation experiments, except in the cases where it takes more than 5 seconds to
explain an individual outlier. Then we use only a single runtime evaluation experiment and skip the
decimals to avoid the impression that the numbers are more accurate than they actually are. We also
measure the runtime for two subsampling size settings, 𝜓 = 256 and 𝜓 = 𝑛. The results are shown in
table 4.8 below.
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Runtime in seconds 𝜓 = 256 𝜓 = 𝑛

Number of
features Method

Number of observations Number of observations

1000 10000 100000 1000 10000 100000

10
TreeSHAP 0.05 0.07 0.07 0.13 1.23 8

AOF 0.08 0.36 4.55 0.07 0.55 8

MI-Local-DIFFI 0.05 0.06 0.32 0.05 0.08 0.58

50
TreeSHAP 0.05 0.07 0.07 0.12 1.22 8

AOF 0.47 3.74 36 0.44 4.55 62

MI-Local-DIFFI 0.05 0.08 0.49 0.05 0.1 0.76

100
TreeSHAP 0.06 0.07 0.08 0.11 1.07 7

AOF 1.24 11 110 1.07 14 160

MI-Local-DIFFI 0.04 0.11 0.71 0.05 0.12 1.07

Table 4.8: The runtime in seconds of different explanation methods Isolation Forest with subsampling size equal to 256 and 𝑛 in
two separate columns. We measure the runtime for data sets of different sizes, where the number of features is in {10, 50, 100}
and the number of observations in {1000, 10000, 100000}. The runtime corresponds to the time it takes to explain a single
outlier but we take an average over ten outliers being evaluated at a time and then average over 10 runs of this process. However,
in cases where the runtime is over 5 seconds we do not perform multiple runs.

The AOF method is by far the slowest one and it is only comparable to the other two methods in
the case of the smallest data set of size 1000 × 10. Note, however, that these measures are based on
explaining 10 outliers at a time but the AOF method has the same runtime independent on the number
of outliers being evaluated which should be taken into consideration when choosing a suitable method.
The TreeSHAP and MI-Local-DIFFI are much faster and from the table 4.8, we see that for the smaller
subsampling size of 𝜓 = 256, the TreeSHAP is on average faster while for a larger subsample size,
𝜓 = 𝑛, MI-Local-DIFFI is faster.

We conclude this chapter by addressing the second research sub-question (SQ2) about which explana-
tion method should be used to explain the results of the outlier detection algorithm on a local level.
All the three explanation methods that we tested can be applied for outlierness explanations, although
MI-Local-DIFFI and AOF seem to agree more with the ground-truth outlying aspects of the synthetic
data sets than TreeSHAP. However, be aware that it does not necessarily mean that those are the
best method for all data sets. Finally, with regards to runtime, TreeSHAP and MI-Local-DIFFI are
generally faster than AOF as shown in table 4.8. MI-Local-DIFFI is thus the method that shows very
good performance both in terms of runtime and performance, although the best runtime performance
is very dependent on the size of the data set, number of outliers and hyperparameter setting of the
Isolation Forest.

To test completely the performance of the explanations, we will need more diverse data sets that contain
ground truth outlying aspects information. However, we did not find such data sets publicly available.
Notice also, that our explanation methods measure the most important outlying features according to
the Isolation Forest algorithm which may sometimes disagree with the ground truth information.

4.4. Comparison of MI-Local-DIFFI and Local-DIFFI
In general, there are a few more differences to our MI-Local-DIFFI and Local-DIFFI than the technical
differences that were discussed is section 3.2.1. First of all, we use the same data set to train and score
our outliers, as is the case for most unsupervised outlier detection cases [2], while the authors of DIFFI
split the data into training and testing sets. In their experiment with the glass data (described below),
they first train Isolation Forest on the non-outlying observations and then create the scores for the
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labelled outliers using the Isolation Forest. Such an experimental setup simulates a real scenario where
”given a trained instance of the Isolation Forest, the user is interested in deploying the model in an
online setting to get the prediction and the corresponding local feature importance score...” [12, p.6].
However, we point out that in most real-world cases we can not exclude the outliers from the training
set since the outliers are unknown, so the experiments may not always accurately represent a real-world
application.

In case of an online setting, we suggest that the Isolation Forest is trained on a random sample of
the full data set that contains both inliers and outliers, as the authors of Local-DIFFI also do in their
experiments with synthetic data. This trained Isolation Forest can then be used to score the individual
observations in an online fashion. For the Local-DIFFI, only the data of that individual observation
is needed for computations but for the MI-Local-DIFFI, the training data has to be merged with the
individual observation data in order to calculate the explanations. Despite this, the runtime of the in-
dividual MI-Local-DIFFI explanations remains low and can be used in an online fashion. Furthermore,
we suggest that if an Isolation Forest model is used in an online setting, then the model should be
trained regularly, for example, once per hour or once per day depending on the application, in order to
incorporate new observations in the training set. In the case of a non-online outlier detection setting,
we suggest that the data is not split into training and testing sets but the model is both trained and
scored on the full data set.

Using the online setting suggestions described above, we perform the same experiments as done in the
Local-DIFFI paper [12]. The two data sets that are used for these experiments are described in detail
in the paper. We discuss them briefly below.

1. Local-DIFFI synthetic data set: A data set that consists of observations 𝑥𝑖 where each observation
is represented by 6-dimensional vector

𝑥𝑖 = [𝜌cos(𝜃), 𝜌sin(𝜃), 𝑛1, 𝑛2, 𝑛3, 𝑛4]
where 𝑛𝑖 are white noise samples and 𝜌 and 𝜃 are random variables drawn from

𝜃 ∼ 𝒰(0, 2𝜋), 𝜌 ∼ 𝒰(0, 3)
in case of a normal observation (inlier) while 𝜌 and 𝜃 are drawn from

𝜃 ∼ 𝒰(0, 2𝜋), 𝜌 ∼ 𝒰(4, 30)
in case of an outlier.
For the experiment, the training set consists of 1000 of these 6-dimensional observations where
10% are outliers. The Isolation Forest is trained with 𝑇 = 100 and 𝜓 = 256. For the testing
phase, 300 outliers are generated where 100 are on the 𝑥-axis (blue points), 100 are on the 𝑦-axis
(orange points) and 100 are on the bisector line 𝑦 = 𝑥 (green points) as shown in figure 4.12. Prior
knowledge for this explainable outlier detection task is that feature 𝐹1 is only relevant for outliers
on the 𝑥-axis, feature 𝐹2 is only relevant for outliers on the 𝑦-axis and both 𝐹1 and 𝐹2 are relevant
for outliers on the bisector. All other features are white noise samples and thus irrelevant.

Figure 4.12: The synthetic training data (left) and artificially created outliers (right) projected on the 𝐹1 - 𝐹2 plain.
The thick blob in the middle (left plot) represent the normal data points and the scattered points around represent the
outliers.
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2. Glass Identification ICU dataset: This data set consists of 213 glass samples with 9 features
which indicate the refractive index (RI), and the concentration of different chemical elements.
The original data set had seven classes of glass, but for outlier detection, the first four classes
are grouped together (window glass) to form the normal observations and then there are three
outlier classes; containers glass (class 5), tableware glass (class 6) and headlamps glass (class 7).
The performance of the explanations method is then assessed on outliers from class 7, where
the following prior knowledge on headglass is used; the concentration of Aluminum and Barium
should be important features when distinguishing between headlamps glass and window glass.
In the paper by M. Carletti et al. [12], the authors train the Isolation Forest on only the inliers.
We suggest that the Isolation Forest should be trained on both outliers and inliers but we exclude
half of the class 7 outliers which can then be used for testing. The Isolation Forest was trained
with 𝑇 = 100 and 𝜓 = 64. We evaluate the explanations on 15 outliers, which were not included
in the training set.

Finally, we evaluate the results of Local-DIFFI on our HiCS synthetic data set.

4.4.1. Results
The authors of Local-DIFFI compare their results to the TreeSHAP method as we have also done in
this thesis. However, we have a different opinion regarding the usage and interpretation. First of all,
they use the absolute value of the SHAP values as the explanation scores and interpret the features that
correspond to the highest absolute values as most important. We argue that the absolute value should
not be used but instead interpret the lowest values (negative) as the most important outlying features
whilst the highest values (positive) represent the most ”normal” (non-outlying) features. Second of all,
we disagree with how the runtime (execution time) of the SHAP values is measured. The shap explainer
(see shap python package) only has to be fitted one time, after which it can be used to evaluate the
SHAP values on multiple observations. In the Local-DIFFI paper, the runtime is measured such that
the explainer is fitted and evaluated for each observation. In an online setting, the explainer can already
be fitted before the model is deployed, resulting in very fast runtime.

Now we look at the results of the Local-DIFFI synthetic data set experiments, see figure 4.13. We
observe the feature rankings for the predicted outliers from the test set and compare the rankings of
the Local-DIFFI, the MI-Local-DIFFI and SHAP (TreeSHAP). All the methods manage to identify the
top outlying features but the MI-Local-DIFFI outperforms the Local-DIFFI and SHAP in two ways.
First of all, the MI-Local-DIFFI manages to identify that for the 𝐹1-outliers, the feature 𝐹2 is the least
important feature and the white noise features are then positioned in 2nd to 5th place. We believe that
it is indeed true to say that feature 𝐹2 is the least important since the 𝐹1-outliers have 𝐹2 values that
are very common among the normal data points. The white noise features are more arbitrarily situated
and thus their ranking varies between the 2nd and 5th place. The converse holds for the 𝐹2-outliers.
Second of all, for the 𝐹1-and-𝐹2-outliers on the bisection 𝑦 = 𝑥, the most important and second most
important feature rank is more equally split between 𝐹1 and 𝐹2 in the case of MI-Local-DIFFI than the
other two methods were 𝐹1 is more frequently labelled as the most important feature than 𝐹2. We thus
conclude that MI-Local-DIFFI has the most favourable results out of the three explanation methods
when evaluated on this specific data set.
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Figure 4.13: The feature rankings for the Local-DIFFI synthetic data set based on the scores of Local-DIFFI, MI-Local-DIFFI
and TreeSHAP. The first row represents 𝐹1 outliers, the second row represents 𝐹2 outliers and the last row represents outliers on
the bisector of 𝐹1 and 𝐹2. We see that all three methods manage to identify 𝐹1, 𝐹2 and 𝐹1, 𝐹2 as the most important features
in the case of data sets with 𝐹1-outliers, 𝐹2-outliers and 𝐹1, 𝐹2-outliers, respectively. However, MI-Local-DIFFI also manages
to identify 𝐹2 as least outlying in case of the 𝐹1-outliers data and conversely identify 𝐹1 as least outlying for the 𝐹 − 2-outliers
data. MI-Local-DIFFI also rightfully recognizes 𝐹1 and 𝐹2 as almost equally important in the data with 𝐹1, 𝐹2-outliers while
the other two methods allocate considerably more importance towards feature 𝐹1 than 𝐹2.

Next, we evaluate the results on the Glass data set, see figure 4.14. Both our MI-Local-DIFFI and
Local-DIFFI correctly rank Barium (Ba) and Aluminum (Al) as the most important chemical elements
when distinguishing window glass from headlamp glass. Using our interpretation of SHAP values in
outlier detection, we also see that the SHAP method gives better results compared to the Local-DIFFI
paper. The SHAP recognizes Barium and Aluminum as the most important elements but still gives
considerable importance to Magnesium (Mg). We thus conclude that all three methods manage to
recognize the most important features Ba and Al, although the segmentation could be clearer, as some
outliers still rank Ba and Al among the least important features. Our MI-Local-DIFFI has the most
concentration of grey (Ba) and red (Al) out of the three methods when only looking at the 1st and 2nd
most important features (first two bars).
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Figure 4.14: The feature rankings for the Glass data set based on the scores of Local-DIFFI, MI-Local-DIFFI and SHAP. The
most important features are correctly identified as Barium (Ba, grey) and Aluminum (Al, red) for all three methods. However,
looking at the first and second most important features, MI-Local-DIFFI allocates most importance to Ba and Al out of the three
methods.

Finally, we compare the three methods using the HiCS synthetic data set and our performance measures
described in section 4.1.1. We perform the experiments both in an online fashion as done in the Local-
DIFFI method, and a non-online fashion as we do throughout this thesis. The results are averaged over
10 runs where the structure of the isolation trees change between runs.

Figure 4.15: The performance measure and average runtime for the three different explanation methods when computed in an
online fashion. The numbers are averaged over 10 runs of Isolation Forest. MI-Local-DIFFI consistently outperforms the other
methods in terms of 𝐴𝑈𝐶𝐹𝐼 and 𝐴𝑈𝑃𝑅𝐶𝐹𝐼 .

Looking at figures 4.15 and 4.16, we see that our MI-Local-DIFFI has the highest performance out
of the three methods, both in terms of 𝐴𝑈𝐶𝐹𝐼 and 𝐴𝑈𝑃𝑅𝐶𝐹𝐼 in the online and non-online setting.
Looking at runtime in the online-setting, Local-DIFFI performs most favourably but note that our
MI-Local-DIFFI has only a slightly higher runtime. All methods can compute the explanations under
one-fourth of a second which should be adequate in most online deployments. We also compare runtime
in the non-online setting and see that the total runtime of the MI-Local-DIFFI method is the lowest
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since it can be optimized when multiple in-sample outliers are being explained at a time. However, we
also believe that the runtime of Local-DIFFI can be optimized further in the non-online setting.

Figure 4.16: The performance measure and total runtime for the three different explanation methods when computed in a non-
online fashion. The numbers are averaged over 10 runs of Isolation Forest. MI-Local-DIFFI consistently outperforms the other
methods in terms of 𝐴𝑈𝐶𝐹𝐼 and 𝐴𝑈𝑃𝑅𝐶𝐹𝐼 .

To conclude this chapter we point out that our method MI-Local-DIFFI showed better performance
than Local-DIFFI and TreeSHAP in all three experiments. The runtime of MI-Local-DIFFI is slightly
higher in the online setting than Local-DIFFI but lower in the non-online setting. However, these
runtime measurements only correspond to the data sets in question. We did not find it fair to make a
more thorough runtime analysis since the Local-DIFFI method has yet to optimised according to the
authors. We have also pointed out a more optimal way to use the TreeSHAP for outlier detection and
made some suggestions regarding the splitting of outlier detection data into training and testing sets.
However, we do recognise that the Local-DIFFI paper is yet to be published and is subject to change.



5
Application on Real-World Data

We use the methodology presented and tested in the preceding chapters to discover suspicious behaviour
in a real-world data set from our industry partner, Triodos Bank. In this chapter, we describe how the
data is selected, how the methods are evaluated and the ethical concerns are addressed. We present the
results both qualitatively and quantitatively .

The real-world data is quite large so selecting an efficient algorithm is important. Since the sklearn
version of Isolation Forest is implemented incredibly efficiently, where the same optimized tree structure
used in their Random Forest implementation is leveraged, we decide to use the binary Isolation Forest
for our problem. The ternary version did show better performance on the synthetic data set but is
yet to be implemented efficiently. The sklearn version of Isolation Forest also gives faster explanation
results due to the efficient structure of the trees. We use the MI-Local-DIFFI to explain the results of
the Isolation Forest since it gave the best performance results on the synthetic data sets and it also has
a faster runtime when 𝜓 = 𝑛, which is the setting that we will use for this data set. Furthermore, we
use an AOF-based method to give an intuitive evaluation of the MI-Local-DIFFI results which will be
described later on.

5.1. Real-World Data
As mentioned, the goal is to identify abnormal customer activity that might be indicative of money
laundering or other interesting behaviour that can help the bank to identify potential risks or improve
their rule-based system. We decide to extract a tabular data set for our research where the rows
correspond to different customers and the columns contain information that can be used to distinguish
between money launderers and regular customers. This data set does not contain any ground truth
information but rather we would like to use our locally explainable outlier detection methodology to
identify interesting customers that may be suspected of money laundering.

5.1.1. Feature Selection
When selecting relevant features for our data set, we must use domain-specific knowledge about money
laundering. Therefore, we start by looking at known scenarios and modus operandi (MO) in money
laundering that are identified with the help of industry experts both from Deloitte and Triodos Bank.
Using these MOs, we identify meaningful information that can be extracted from the bank’s data collec-
tion. This information can either be of characteristic nature like the business vs. private classification,
which industry the customer belongs to in case of a business customer, the general behaviour of a cus-
tomer, etc. The information can also be related directly to the transactional behaviour of a customer
like the amount of cash transactions or the frequency of international transactions. These two classes of
information differ mainly in regards to their dependence on time, where the characteristic information
is mostly static and does not have to be measured over specific time periods while the transaction
information changes from month to month and a specific time window should be determined before
measuring.
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Modus Operandi/Scenarios
Information to extract

Characteristic Transactions

High Risk Areas

Certain countries pose a higher
money laundering risk than
others. Such countries can for
example be found on lists from
the FATF.

• Amount of transactions
from and to high risk ar-
eas

• Frequency of transactions
from and to high risk
areas

Cash/MTS Usage

Money launderers seeking to
hide the origin of their funds us-
ing cash or Money Transfering
Services (MTS) deposits/with-
drawals.

• Type of customer

• Links to High Risk Areas

• Activity Status

• Amount of cash or MTS
transactions

• Frequency of cash or
MTS transactions

Cryptocurrency Usage

Money launderers seeking to
hide the origin of their funds us-
ing cryptocurrencies.

• Type of customer.

• Links to High Risk Areas

• Activity Status

• Amount of transactions
related to cryptocurren-
cies

• Frequency of transactions
related to cryptocurren-
cies

Money mule

Personal customers that enable
third parties to gain direct or
indirect access to their acc-
count.

• Type of customer

• Years as a customer

• Amount of cash transac-
tions

• Frequency of cash trans-
actions

Smurfing

Structuring of funds such that
they do not go above reporting
thresholds.

• Frequency of cash trans-
actions just below regula-
tory reporting thresholds

Expected Behavior

Money launderers can possibly
be detected by their modes of
transactions if they are different
from the majority of customers.

• Type of customer

• PEP indication

• Industry type

• Activity status

• Proportion of cash, in-
ternational, MTS and
cryptocurrenc-related
transactions out of the
total transactions

Change in Behavior

A sudden peak in transaction
activity may be suspicious in
terms of money laundering

• Various transaction activ-
ity in the last month com-
pared to average in the
last year

Table 5.1: Identifying important information by looking at known money laundering Modus Operandi or Scenarios.
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In table 5.1 above, we list these scenarios and the corresponding relevant information we would want
to extract from the bank’s data collection to our own data set. Using this information we can create a
data set for our outlier detection project. The transaction information is collected both on a monthly
and a yearly basis so that the data set can be continuously updated by constantly looking at the most
recent time period. In this case, a month is considered to be 28 days rather than a calendar month
to adjust for the imbalance that comes from having months of different lengths. Note that for some
scenarios there is no specific characteristic information to be taken into account. In those cases, the
table cell is left blank. Below is a full list of the features that are used in the experiment.

Contextual features Values

• Links to High Risk areas

• Links to terrorism financing risk related ar-
eas

• Type of Customer (Business or Private)

• PEP (politically exposed person)

• NPO (non-profit organization)

• Binary indication (0/1)

Behavioral features Measurement Type

Basic transactions statistics:

• All transactions

• All CASH transactions

• All MTS transactions

• All CRYPTOCURRENCY transactions

• All INTERNATIONAL transactions

• All FISCAL PARADISE RELATED trans-
actions

• All HIGH RISK COUNTRY RELATED
transactions

Measure for each category of transaction:

• Sum of amounts on a monthly basis

• Sum of amounts on a yearly basis

• Count number of transactions on a monthly
basis

• Count number of transactions on a yearly
basis

• Percentage of each category monthly
amount out of the total monthly amount.

More transactions statistics:

• Count different recipients

• Count different payers

• Count different INTERNATIONAL recipi-
ents

• Count different INTERNATIONAL payers

• Count different payers of large amounts

• Count CASH transactions with round
amounts

• Count number of large amount transactions

Measure for each category of transaction:

• Counting performed on a monthly basis

Table 5.2: Features that are included in the data set.
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The features are 45 in total, 5 contextual and 40 behavioural. We do the analysis separately for business
and private customers since the two groups exhibit fundamentally different financial behaviour. For
our experiment, we use the last 28 days of 2019 for the ’monthly’ computed information and the last
28 ⋅ 13 = 364 days of 2019 for the ’yearly’ computed information. We disregard customers that had less
than 1000 euros in total yearly transactions during that period. After this filtering, we end up with
two 45-dimensional data sets of length appr. 25,000 and 100,000 for business and private customers,
respectively.

In the case of supervised learning, where the goal is to predict the correct outcome based on the input
data, we can analyse the dependence of different features to the outcome feature. However, in outlier
detection, such analysis is not possible due to the absence of outcome features. We thus rely solely on
domain expertise.

5.1.2. Evaluation Metrics
In the real-world data set, we do not have a predetermined set of outliers to measure the detection
performance of Isolation Forest. On the contrary, we look at the top outliers as predicted by Isolation
Forest. Furthermore, we do not have any ground truth information about the most important outlying
features so the performance of the explanations can not be confirmed in the same way as with the
synthetic data set.

However, we use an intuitive way to verify the most important features indicated by the explanations
by computing the change in outlier score when the most important features are one-by-one being al-
tered to the corresponding median feature value. The methodology resembles the AOF method but
is used for validation in this case. We choose the median replacement version (V3) instead of zero or
the mean because for a random data set, the median will most likely not be an outlying number. If
the explanations are correctly identifying the most outlying aspects we expect that the outlier score
will decrease. We are focusing on creating human-friendly explanations and one of the observations
of Millers [49] extensive research on Explainable AI was the biased selectiveness of humans when it
comes to explanations. Furthermore, as pointed out by Molnar [51], we are used to selecting only one
explanation as THE primary cause. His advice is to give only 1-3 reasons, even though we know that
there is often more to be looked at. We take the upper bound of that interval and evaluate the top
three reasons with the method described above.

Suppose we have an outlier 𝑜 and the corresponding outlier explanation in the form of a feature im-
portance vector, 𝐹𝐼(𝑜). We extract the features 𝐹𝑖1

, 𝐹𝑖2
and 𝐹𝑖3

that have the highest, second highest
and third highest importance scores, respectively, and calculate the change in outlier score for outlier
𝑜 when the corresponding feature columns are altered to their median value.

Algorithm 9 Evaluate with an AOF-based method
procedure Evaluate(𝑜 - outlier , 𝑖1, 𝑖2, 𝑖3 - three most important features, 𝑋 - data set, 𝐼𝐹 - a
trained Isolation Forest)

𝑠0(𝑜) = 𝐼𝐹 score of outlier 𝑜 using data set 𝑋.
for 𝑗 from 1 to 3 do

𝑌 = copy(𝑋)
𝑌∶,𝑖𝑗

= median(𝑌∶,𝑖𝑗
) ▷ Alter column 𝑖𝑗 to its median value.

𝑠𝑗(𝑜)= 𝐼𝐹 score of outlier 𝑜 using the altered data set 𝑌
end for
𝑌 = copy(𝑋)
𝑌∶,𝑖1

= median(𝑌∶,𝑖1
) ▷ Alter column 𝑖1 to its median value.

𝑌∶,𝑖2
= median(𝑌∶,𝑖2

) ▷ Alter column 𝑖2 to its median value.
𝑠1,2(𝑜)= 𝐼𝐹 score of outlier 𝑜 using the altered data set 𝑌
𝑌∶,𝑖3

= median(𝑌∶,𝑖3
) ▷ Alter column 𝑖3 to its median value.

𝑠1,2,3(𝑜)= 𝐼𝐹 score of outlier 𝑜 using the altered data set 𝑌
return 𝑠0(𝑜), 𝑠1(𝑜), 𝑠2(𝑜), 𝑠3(𝑜), 𝑠1,2(𝑜), 𝑠1,2,3(𝑜)

end procedure
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We use the algorithm above to compute the scores 𝑠0(𝑜), 𝑠1(𝑜), 𝑠2(𝑜), 𝑠3(𝑜), 𝑠1,2(𝑜), 𝑠1,2,3(𝑜), where 𝑠0(𝑜)
is the original outlier score of 𝑜, 𝑠𝑖(𝑜) is the outlier score of 𝑜 when the 𝑖-th most important feature
has taken the median column value for 𝑖 = 1, 2, 3, 𝑠1,2(𝑜) is the outlier score of 𝑜 when the most and
second most important feature have both been altered to their corresponding column median value and
similarly, 𝑠1,2,3(𝑜) is the outlier score when the most, second-most and third-most important features
have all been altered to their corresponding column median value. To assess the individual importance
of the three most important features we calculate the following sizes,

𝛽𝑗(𝑜) = 𝑠𝑗(𝑜) − 𝑠0(𝑜)
𝑠0(𝑜) ,

for 𝑗 = 1, 2, 3. To assess the combined importance when the two and three most important features are
jointly altered to their median, we calculate

𝜂12(𝑜) = 𝑠12(𝑜) − 𝑠0(𝑜)
𝑠0(𝑜) ,

𝜂123(𝑜) = 𝑠123(𝑜) − 𝑠0(𝑜)
𝑠0(𝑜) .

We show the results of the explanation evaluation for the top 20 outliers in both the private and busi-
ness customers data sets. We expect that the 𝜂 and 𝛽 measures should be negative if the explanations
correctly manage to identify the truly outlying features. Note that these measures do not fully validate
the truthfulness of the explanations but are decent indicators in the absence of ground truth. To be
fully sure that these are the most important features, we would have to have some ”true” outlying
aspects information that is unfortunately not available in most use cases.

The customers that are classified as outliers are evaluated with help of a human domain-expert that
classifies their relevance into one of the four categories that are shown in table 5.3.

Category Description

I. Not interesting The outliers that do not appear to be specifically
of interest to us.

II. Transaction behavior is interesting The outliers that were not suspicious in terms of
money laundering but have in some way helped
us improve the current system, for example by
exhibiting behaviour that we did not anticipate
or exposed any data quality issues that could
lead to improvements of the current system.

III. Referred for possible EDR The outliers that showed behavior that was not
suspicious per se but indicate that the customer
should perhaps belong to a higher risk class are
put in a so-called event driven review (EDR)
where the current risk class is altered if needed.

IV. Referred for possible SAR The outliers that exhibited suspicious behaviour
are put through a more extensive investigation
that ultimately may lead to a suspicious activity
report (SAR) filing if the customer is truly
suspicious.

Table 5.3: The classification of outliers done by an AML domain expert.



74 5. Application on Real-World Data

Furthermore, we give a qualitative evaluation of the outlying customers.

5.1.3. Ethical Considerations
Before using machine learning algorithms, a thorough investigation into the ethical aspects of the system
is always required. Triodos, being a sustainable bank, looks at these considerations with great care.
The Dutch Central Bank (DNB) introduced a guideline for the use of AI in finance [4], mentioning six
principles that should stand as a framework to assist financial firms in assessing how responsible their
application of AI is. Note that DNB mentions Machine Learning and particularly unsupervised learning
as one area of AI research so the following principles surrounding the use of AI in finance clearly apply
to our outlier detection application. The six principles (SAFEST) are

• Soundness: The AI system should be reliable and accurate.

• Accountability: The firm has operationalised accountability for the AI system.

• Fairness: The AI system should not inadvertently disadvantage certain groups of customers

• Ethics: The AI system should be aligned with the firm’s ethical standard.

• Skills: The understanding of the strengths and limitations of the organisations AI systems must
be present in the firm.

• Transparency: The firm should be able to explain how they use AI in their business processes
and how the AI systems function.

Before we address these principles we would like to point out that the results from the outlier detection
algorithm are never solely used to report suspicious customers. Each outlier is first reviewed by human
analysts that evaluate the customer before any action is made. Organizational aspects like ensuring the
skills of the professionals, creating an accountability framework and reviewing the alignment with the
firm’s ethical standards have to be taken care of before the algorithm is put to use.

We look at the principles that relate directly to the design of the algorithms. First of all, the outlier
detection algorithm must be accurate. Since we do not know beforehand which instances are outliers,
regular classification accuracy measures can not be used. However, we can ensure that the outliers that
are detected are indeed abnormal by using the explanation methods mentioned above. If we see that
the outliers are indeed outlying when looking at certain features indicated by the explanation methods,
we know that the algorithm indeed points to instances that are abnormal compared to the majority of
the observations.

Fairness is ensured by avoiding to use sensitive features as input to the outlier detection algorithm.
The transparency of the algorithm is greatly enhanced by the explanation methods although it must
be ensured that the performance of the explanations is also up to standards. The explanations allow
the users to understand the results of the AI system making it easier for them to amend and adapt it.

We conclude that for an outlier detection algorithm to be used in AML, it must be carefully integrated
into the organizational framework considering all the ethical aspects involved. High performing expla-
nation methods make the algorithm more transparent and their soundness becomes easier to measure,
especially in the case of unsupervised algorithms.

5.2. Results
We now use the Isolation Forest algorithm to detect the outliers in the real-world industry data set
from Triodos bank. There are five features of binary type and the rest are numerical features. The
binary features are treated as numerical features since the implementation in sklearn does not offer
other options.

Using our hyperparameter research, we decide to use the full sample in the training phase 𝜓 = 𝑛 since
the number of outliers is very small compared to the size of the data set and the outlier values are
suspected to be at the boundaries of the feature values in some cases. For example, the amount of
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transactions involving cryptocurrency is 0 for the vast majority of customers so if we build isolation
trees using only 256 samples, the probability that all the samples have cryptocurrency amount = 0 is
quite high, making the isolation process less effective. Same goes for other more rare modes of transac-
tions like those involving MTS or Cash.

We use 100 trees to limit the runtime and run the algorithm separately for business and private cus-
tomers. We run Isolation Forest 20 times for both business and private customers. We select a threshold
to cut off the outliers from the inliers based on the outlier scores. We use histograms to decide a good
cut off threshold but the exact cut off is not important since we only have the capacity to review around
30-50 outliers.

Our goal is to catch the money launderers but we would also like to obtain valuable information that
could help us improve the rule-based system. For example, an indication of business usage on personal
accounts is a valuable discovery as such misclassification can reduce the monitoring ability of the rule-
based system. The outliers are reviewed by a human domain expert that categorizes the outliers into
the four categories introduced in table 5.3.

Before we review the outliers from Isolation Forest, we perform two filtering steps. First, we ignore all
the outliers that represented customers who had already received an alert from the rule-based system
during a similar time period. We do this because we want to identify customers that were not previously
detected by the rule-based system and had thus been reviewed before.

Second of all, we filter out the outliers where their corresponding top three explanations refer to amounts
that are lower than 1000 euros. For example, an outlier might be an outlier because of 300 euros use of
cryptocurrency-related transaction but such a small amount is not subject to further inspection. This
is an example of how the explanations can be used for further improvements of results. After these two
filtering steps have been applied, the outliers are delivered to a domain expert for review.

5.2.1. Explanation Evaluation
Now, we evaluate the MI-Local-DIFFI explanations using the method described in section 5.1.2 where
we defined five measures, 𝛽1(𝑜), 𝛽2(𝑜), 𝛽3(𝑜), 𝜂1,2(𝑜) and 𝜂1,2,3(𝑜). We report these measures on the
top 20 business and the top 20 private outliers as shown in table 5.4.

We start by looking at the 𝛽 measures which only take into account the change for one feature at
a time. Note that most of the measures are negative meaning that the outlier score decrease as the
three most important features according to the MI-Local-DIFFI are replaced by their median value
individually. For the outliers that have a positive 𝛽, we inspect the corresponding 𝜂 measures to see
whether the combination of features explains the positive 𝛽 value. For example, the 8th business outlier
has a positive 𝛽2 score but since the 𝜂1,2 is lower than the 𝛽1 we can conclude that indeed, combined
with the most important feature, the second most important feature induces an even higher outlier
score. Such analysis can be made for most positive 𝛽 scores. However, in some cases, the explanations
seem to be incorrect like the third private outlier. When the most important feature is altered to the
median, the outlier score increases and combined with the second and third most important feature, it
still increases. Individually, the second and third most important feature have a decreasing impact of
the outlier score. It thus seems like the second and third most important features are more important
than the alleged most important feature.
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Measures for business outliers
𝛽1(𝑜) 𝛽2(𝑜) 𝛽3(𝑜) 𝜂1,2(𝑜) 𝜂1,2,3(𝑜)

1 -1.5% -0.9% -2.3% -2.7% -4.8%

2 -0.3% -3.6% -4.4% -8.0% -12.3%

3 -8.3% -8.3% -8.0% -21.9% -32.6%

4 -0.1% -0.3% -1.4% -3.2% -3.5%

5 -1.0% -9.9% -4.1% -11.7% -17.6%

6 -4.7% -0.3% -0.8% -6.7% -10.1%

7 -2.0% -0.4% -1.2% -1.9% -4.5%

8 -2.1% 0.5% 2.9% -2.3% -2.5%

9 -6.6% -2.6% 1.4% -6.2% -6.9%

10 -3.4% 1.2% -3.1% -2.1% -4.4%

11 -4.4% -7.7% -3.2% -9.4% -12.9%

12 0.6% -2.2% 3.6% -2.9% -2.1%

13 -12.1% -11.0% -10.2% -22.2% -37.7%

14 -9.9% -6.9% -3.1% -14.3% -20.5%

15 -8.7% -10.3% 3.7% -22.4% -23.4%

16 -8.8% 0.5% -0.3% -12.7% -16.7%

17 0.0% -7.0% 1.5% -5.0% -8.8%

18 -2.4% -14.4% -5.6% -19.9% -27.7%

19 -5.0% -6.1% -3.3% -8.5% -14.3%

20 -9.8% -0.9% -3.7% -15.0% -18.9%

Measures for private outliers
𝛽1(𝑜) 𝛽2(𝑜) 𝛽3(𝑜) 𝜂1,2(𝑜) 𝜂1,2,3(𝑜)

1 -6.6% -11.1% -16.5% -5.7% 0.0%

2 -3.2% -10.7% -17.5% -5.4% -3.0%

3 0.8% -3.9% -10.2% 0.3% 0.0%
4 -4.4% -8.2% -9.4% -0.9% -3.3%

5 -7.6% -17.2% -24.1% -8.9% -2.3%

6 -12.5% -12.0% -15.8% -6.0% -6.4%

7 -11.9% -13.6% -17.4% -6.2% -3.5%

8 -7.6% -13.2% -16.1% -0.6% 0.4%
9 -5.8% -10.4% -11.8% -4.2% 2.1%
10 0.0% -3.9% -7.1% 2.3% -2.6%

11 -4.3% -6.0% -14.7% -4.7% -6.6%

12 -7.1% -17.7% -16.9% -9.9% -1.4%

13 -4.9% -9.8% -22.4% -4.1% -9.1%

14 -10.3% -24.3% -21.9% -10.2% -3.8%

15 -2.7% -9.7% -10.5% -2.2% -1.4%

16 -4.9% -16.9% -19.3% -7.9% -5.9%

17 -8.9% -13.7% -27.7% -6.9% -10.7%

18 -13.3% -15.0% -12.3% -0.6% -6.9%

19 -4.2% -6.7% -6.5% -1.6% 1.5%
20 -7.5% -8.9% -17.2% -4.3% -1.8%

Table 5.4: Explanation evaluation measures for the top 20 business outliers and the top 20 private outliers.

In most cases, the MI-Local-DIFFI explanations are pointing towards features that induce an increased
outlier score of the outliers and thus can be regarded as the so-called outlying aspects. The AOF method
does not always agree with the order of importance as identified by the MI-Local-DIFFI method. For
example in the case of the first business outlier, where the AOF would identify the MI-Local-DIFFIs
third most important feature as more important that the MI-Local-DIFFIs most important feature.
However, it is difficult to assess which method is correct and in general, we can not verify the effective-
ness of the explanations completely in the absence of ground truth knowledge.

The human domain expert that reviewed the outliers found the explanations very helpful and they
seemed to indeed point at outlying features. The explanations helped expedite the process of ignoring
non-interesting outliers when the explanations pointed to something abnormal but not interesting. They
also made it easier to review the outliers that seemed interesting at first, as the reviewer knew where
to start looking. Using the explanations we could also manually filter out some low amount outliers,
reducing the amount of work for a human expert. We conclude that the outlier explanations are a very
important part of the outlier detection task in the context of finding abnormal behaviour that will be
reviewed further by human experts.

5.2.2. Outlier Evaluation
We look at the histograms of the outliers scores for both business and private customers, see figure 5.1.
The threshold is chosen such that there are about 300-500 outliers identified and that the resulting
outliers clearly have a higher outlier score than the large majority of the data set. We do not use a
specific thresholding method since there is limited capacity to review outliers. If the capacity would
be unlimited, we would select the outliers whose scores are in some upper quantile 𝑞. There are also
some thresholding methods available in the literature, for example [5], but this particular method did
not work well in our case, either resulting in no outliers at all or far too many outliers.
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Figure 5.1: The histogram of outlier scores for business and private customers.

For the business customers, an outlier score threshold of 0.4 was determined by looking at the histogram
of the outlier scores which resulted in a total of 396 outliers of which 248 had already received an alert
from the rule-based system. We review a few of the top outliers from the remaining 396 − 248 = 148
customers that had not received an alert.

For the private customers, an outlier score threshold of 0.45 was determined by looking at the his-
togram of the outlier scores. This resulted in 326 outliers of which 115 had already received an alert.
This overlap between the rule-based system and the outlier detection system shows that there is a set
of customers that both systems flag but also some customers that are only flagged in one of the systems.

Once the already alerted customers had been removed from the list of outliers we created the MI-Local-
DIFFI explanations and performed the second filtering step based on the explanations. After these two
filtering steps had been performed, a total of 41 outliers were reviewed in detail by an AML domain
expert. There were 15 outliers from the set of private customers, 13 from the set of business customers
and another 13 from the set of business customers after a few features had been removed from the data
set. The features that were removed were the PEP and NPO indicators since these features are already
imbalanced, meaning that there are very few positive PEP and NPO customers, making them more
prone to be identified as outliers for merely the sake of being PEPs or NPOs. The results are shown in
table 5.5.

Data set

Private Business Business, no PEP+NPO

I. Not interesting 3 8 7

II. Transaction behavior is interesting 3 3 2

III. Referred for possible EDR 7 2 2

IV. Referred for possible SAR 2 0 2

Total number of outliers reviewed 15 13 13

Table 5.5: The results of the outlier review done by an AML domain expert.

The results of the review indicate that outlier detection is indeed a useful tool in AML since more than
50% of the outliers were in categories II., III. or IV. We were able to detect customers that were using
private accounts for business purposes, we identified possible improvements related to data quality, a
few outliers were also moved to a higher risk class and some were sent on for further possible SAR inves-
tigations. The possible SAR cases were false positives but one resulted in an increased risk classification.

Although this project has not resulted in any SAR filings yet, we have shown that reviewing the outliers
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can help us improve the AML system in the above-mentioned way. Note that compared to the number
of alerts that are raised with the rule-based system, there are few SARs reported monthly (high false-
positive ratio). Thus, even though the 41 outliers that were reviewed in this data set did not result in
any SAR filings, we will need more monthly data sets to test the effectiveness of the system to identify
SAR cases. Since this first review already leads us to some interesting cases, the plan is to do a similar
experiment on a monthly basis and continue to identify interesting customers that can help us improve
the current system.



6
Conclusion

In this thesis, we set out to answer the main research question (RQ1) regarding the extent in which
explainable outlier detection can increase the ability of AML systems to detect suspicious customers.
In order to find a suitable explainable outlier detection method, we set out to answer two sub-questions
(SQ1 and SQ2) which we will also address in this conclusion section. We also discuss the possibili-
ties for future work in the field of local explanations for outlier detection and the limitations of our work.

6.1. Research Questions
We start by answering the two sub-questions and then answer our main research question.

SQ1: Which outlier detection algorithm is best suited for our problem setting?

We analysed the literature of outlier detection methods and concluded that the Isolation Forest was the
most suitable method especially when taking into consideration scalability and effectiveness. We give
a detailed description of the Isolation Forest algorithm in section 3.1 and in section 4.2 we carry out
some experiments with Isolation Forest. We show that the ability of Isolation Forest to detect subspace
specific outliers reduces significantly as the number of features increases. We also suggest an alteration
of Isolation Forest which uses ternary trees instead of binary, giving better performance results on the
synthetic HiCS data set without increasing the complexity.

SQ2. Which explanation method should be used to explain the results of the outlier detection algorithm
on an individual prediction level?

At the beginning of our research project, we did not find any methods in the current literature that
delivered local explanations for the Isolation Forest specifically. We thus decided to compare three
different kinds of local explanation methods that could be applied to predictions from Isolation Forest.
These methods are MI-Local-DIFFI, TreeSHAP and AOF, each described in detail in section 3.2. As
mentioned, Local-DIFFI was introduced by the authors of DIFFI towards the end of this thesis project
but fortunately, the authors provided their code on github, so we could also compare this method to
our MI-Local-DIFFI.

The MI-Local-DIFFI is our own local variant of the previous DIFFI method and we dived deep into
the Isolation Forest algorithm to formulate this method. The TreeSHAP had previously been used in
supervised classification problems but we did not find anything in the literature where the SHAP values
were used for outlier explanations as we tested in this thesis. Furthermore, the AOF method has not
been used in this format before but is very intuitive and similar methods are presented in the literature
for supervised problems.

To answer the second research subquestion, we did some experiments to compare the performance of
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different explanation methods. All the methods seemed to work well in identifying the most important
outlying features of individual outliers but MI-Local-DIFFI and AOF showed more favourable perfor-
mance than the TreeSHAP. These methods take into account different aspects of the Isolation Forest
algorithm to reach their explanation scores so their runtime depends on different elements. This should
be taken into account when choosing a suitable method for a specific problem. Finally, we showed that
the MI-Local-DIFFI performed more favourably than the Local-DIFFI [12] so we can conclude that
MI-Local-DIFFI is a novel contribution to the literature on explainability methods for Isolation Forest.

RQ1. To what extent can explainable outlier detection increase the ability of AML systems to detect
suspicious customers?

Once we had established an explainable outlier detection methodology by combining Isolation Forest
and MI-Local-DIFFI, we could apply this methodology to the real-world data set from Triodos bank
that we specifically engineered for AML purposes. The explanations turned out to be very important
when assessing the level of interest of different outliers. A domain expert reviewed a total of 41 outliers
of which 8 had interesting transaction behaviour that could possibly help us improve the rule-based
system, 11 were referred to possible Event-Driven-Review and 4 were referred to possible SAR filings.
After further investigation, none of the outliers resulted in SAR filings but a few interesting observa-
tions came to light. Moving forward, there will be a monthly run of the explainable outlier detection
experiment with the goal of finding more interesting observations that can help improve the current
system.

We conclude that although there were no SARs filed, explainable outlier detection can increase the
ability of AML systems to detect suspicious indicators within the group of customers as our methodol-
ogy detected some customers that had not received an alert from the rule-based system but were put
to higher risk classes as a result of our outlier detection. While reviewing the outliers, we also saw
some interesting behavioural patterns and possible points of improvements of rules in the rule-based
system. There were also a number of outliers referred for possible EDR or SAR which indicates that
the detected outliers indeed show signs of suspicious activity although after further inspection none
resulted in a SAR filing.

6.2. Limitations and Future Work
In this project, we have addressed our research questions and made some interesting findings. We would
like to discuss the potential for further work in the field of locally explainable outlier detection and at
the same time we point out some limitations to our work.

First, Isolation Forest only performed well on a few of the synthetic data sets that were used to evaluate
the explanation methods. The existence of a data set with ground truth outlying feature information
on which Isolation Forest has good performance (AUC > 0.75 and AUPRC > 0.5) would help in evalu-
ating the explanation methods even better. Such a data set could be created using real data combined
with an expert opinion about the true outlying features for each outlier. We believe that our proposed
methodology of locally explainable outlier detection can be used in more domains than AML, for ex-
ample in fault detection, medical research or network intrusion. In those cases, it might be possible to
create an evaluation data set as described before.

In this work, we have focused on the performance of the outlier detection and explanation scores
without using cut-off thresholds to distinguish between inliers/outliers and important/unimportant ex-
planations, respectively. Further analysis is needed to explore which method is best suited when such
a cut-off threshold is desirable.

We also mention that an efficient implementation of Ternary Isolation Forest is very important for the
scalability of that method and its future use in problems involving large data sets. Since the method
showed better performance than the binary version of Isolation Forest, we believe that the implemen-
tation of Ternary Isolation Forest in sklearn would be very interesting.
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Finally, we want to point out that we mainly worked with numerical and binary-categorical features.
Further extensions of the methods must be made so that Isolation Forest and the explanation methods
also work for any kind of tabular data, such as non-binary categorical data.
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A
Code

In this section, the code that is needed for the explanation methods is provided along with a working
example for better understanding of how they are applied. The following python packages are required
for the code to work.� �

1 import numpy as np
2 import pandas as pd
3 from sklearn .ensemble import IsolationForest
4 import shap
5 import matplotlib .pyplot as plt
6 import time
7 from sklearn .metrics import auc , average_precision_score , roc_curve� �

A.1. MI-Local-DIFFI
The code for the MI-Local-DIFFI explanations. The inputs required are (a) the tree estimators of
the Isolation Forest (type: sklearn ExtraTreeRegressors), (b) the outliers that are supposed to be
explained, (c) the original data set 𝑋 and include_si is set to True to use the split interval weight version
of MI-Local-DIFFI, but False otherwise. The output is then the feature importance explanations and
the runtime of the algorithm.� �

1 def MI_Local_DIFFI(estimators , outliers , data , standardize = False , subsampling =False) :
2
3 time_start = time .time ( ) # start timer
4 X = data .values
5 min_pl = 1 # minimum path length
6 max_pl = np .ceil(2 ∗ (np .log(len(X) ) +0.5772 - 1) )
7 path_length = np .zeros ( (len(outliers) , len(estimators) ) )
8 feature_importance = np .zeros ( (len(outliers) , X .shape [ 1 ] ) )
9 feature_occurrence = np .zeros ( (len(outliers) , X .shape [ 1 ] ) )

10
11 if(subsampling) :
12 sub_size = min (1000 , len(X) - len(outliers) )
13 inl = np .array(list(set(list(range(len(X) ) ) ) .difference(set(outliers) ) ) )
14 s = np .random .choice(inl , sub_size)
15 Xs = np .concatenate ( (X [outliers , : ] , X [s , : ] ) , axis = 0)
16 else :
17 inl = np .array(list(set(list(range(len(X) ) ) ) .difference(set(outliers) ) ) )
18 Xs = np .concatenate ( (X [outliers , : ] , X [inl , : ] ) , axis = 0)
19
20 min_X = X .min(axis = 0) # the minimum feature values of each feature in the data set
21 max_X = X .max(axis = 0) # the maximum feature values of each feature in the data set
22
23 for i , tree in enumerate(estimators) : # For each iTree in the Isolation Forest:
24 n_samples_in_node = tree .decision_path(Xs) .sum( axis = 0) .A1 # Number of samples in each node
25 for j , o in enumerate(outliers) : # For each outlier:
26 node_path = tree .decision_path(Xs [j , : ] . reshape (1 , - 1) ) .indices # Find the path of outlier o,

in tree t_i
27 path_length [j ,i ] = len(node_path) + average_path_length( n_samples_in_node [node_path [ - 1 ] ] .

reshape (1 , - 1) ) #calculate the path length
28 feature_path = tree .tree_ .feature [node_path ] [ : - 1 ] # find the features in the outlier path
29 threshold_path = tree .tree_ .threshold [node_path ] [ : - 1 ] # find the splitting values in the

outlier path
30
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31 w_sp = 1 - np .nan_to_num ( (n_samples_in_node [node_path ] [ 1 : ] - 1 ) / np .maximum ( 1 , (
n_samples_in_node [node_path ] [ : - 1 ] - 2) ) )

32 w_pl = np .maximum ( 0 . 1 ,np .minimum (1 , 1 - (path_length [j ,i ] - min_pl) /(max_pl - min_pl) ) )
33
34 w_si = np .zeros(len(feature_path) )
35 min_feature_value = min_X .copy ( )
36 max_feature_value = max_X .copy ( )
37 for i_fp , fp in enumerate(feature_path) :
38 interval_length = max_feature_value [fp ] - min_feature_value [fp ]
39 if Xs [j ,fp ] <= threshold_path [i_fp ] : # outliers in left subinterval
40 si = (threshold_path [i_fp ] - min_feature_value [fp ] ) /interval_length
41 w_si [i_fp ] = (3 - 2/(si + 1) ) /2
42 max_feature_value [fp ] = threshold_path [i_fp ]
43 else : # outliers in right subinterval
44 si = (max_feature_value [fp ] - threshold_path [i_fp ] ) /interval_length
45 w_si [i_fp ] = (3 - 2/(si + 1) ) /2
46 min_feature_value [fp ] = threshold_path [i_fp ]
47
48
49 # Add an importance weight for each feature that occurs in the outliers path
50 for p in np .unique(feature_path) :
51 feature_occurrence [j ,p ] += 1
52 pi = np .where(feature_path == p) [ 0 ]
53 if(len(pi) > 1) :
54 pi_m = np .argmax(w_sp [pi ] )
55 feature_importance [j , p ] += float(w_pl ∗ w_sp [pi ] [ pi_m ] ∗ w_si [pi ] [ pi_m ] )
56 else :
57 feature_importance [j , p ] += float(w_pl ∗ np .max(w_sp [pi ] ) ∗ w_si [pi ] )
58
59 feature_importance = np .nan_to_num(np .divide(feature_importance , feature_occurrence) ) # divide by

occurrence
60 if(standardize) :
61 n_o = len(outliers)
62 feature_importance = np .divide ( (feature_importance - np .amin(feature_importance , axis = 1) .reshape

(n_o , 1) ) ,
63 (np .amax(feature_importance , axis = 1) -
64 np .amin(feature_importance , axis = 1) ) .reshape(n_o , 1) ) #

standardize for each outlier
65 runtime = time .time ( ) - time_start
66 return feature_importance , runtime
67
68
69 def average_path_length(n_samples_leaf) :
70 if(n_samples_leaf > 2) :
71 average_path_length = 2.0 ∗ (np .log(n_samples_leaf) + np .euler_gamma - 1)
72 elif n_samples_leaf == 2 :
73 average_path_length = 1
74 else :
75 average_path_length = 0
76 return average_path_length� �

A.2. TreeSHAP
The code for the TreeSHAP explanations. The inputs are (a) the fitted Isolation Forest classifier of
sklearn type, (b) the outliers that are supposed to be explained and (c) the original data set 𝑋. The
output is the feature importance explanations and the runtime of the algorithm.� �

1 def TreeSHAP(classifier , outliers , data , standardize = False) :
2 start = time .time ( )
3 explainer = shap .TreeExplainer(classifier)
4 shap_values = explainer .shap_values(data .iloc [outliers , : ] )
5 runtime = time .time ( ) - start
6 # normalize for each outlier:
7 if(standardize) :
8 n_o = len(outliers)
9 shap_values = np .divide ( ( -shap_values - np .amin( -shap_values , axis = 1) .reshape(n_o , 1) ) ,

10 (np .amax( -shap_values , axis = 1) -
11 np .amin( -shap_values , axis = 1) ) .reshape(n_o , 1) )
12 return shap_values , runtime� �

A.3. AOF
The code for the AOF with median replacement explanations. The inputs are (a) the fitted Isolation
Forest classifier of sklearn type, (b) the outliers that are supposed to be explained and (c) the original
data set 𝑋. The output is the feature importance explanations and the runtime of the algorithm.� �

1 def AOF_median(classifier , outliers , data , scores , standardize = False) :



A.4. Working Examples 91

2 X = data .values
3 start = time .time ( )
4 scores_m_i = np .zeros(X .shape)
5 n_o = len(outliers)
6 for i in range(X .shape [ 1 ] ) :
7 X_m_i = X .copy ( )
8 X_m_i [ : , i ] = np .median(X_m_i [ : , i ] ) ∗ np .ones(X .shape [ 0 ] )
9 scores_m_i [ : , i ] = 0 .5 - classifier .decision_function(X_m_i)

10 scores_diff_m = -np .subtract(scores_m_i [outliers , : ] , scores [outliers ] . reshape(n_o , 1) )
11 if(standardize) :
12 scores_diff_m = np .divide ( (scores_diff_m -
13 np .amin(scores_diff_m , axis = 1) .reshape(n_o , 1) ) ,
14 (np .amax(scores_diff_m , axis = 1) -
15 np .amin(scores_diff_m , axis = 1) ) .reshape(n_o , 1) )
16 runtime = time .time ( ) - start
17 return scores_diff_m , runtime� �

A.4. Working Examples
To understand how the explanation methods are used, we provide a working example using a randomly
generated gaussian data set 𝑋 with outliers.

A.4.1. Example 1
We create ten outliers by changing the third feature to a random number on the interval [2, 3] plus
the maximum value of feature 3. The randomly generated data set with outliers is 3-dimensioal and
is shown in Figure A.1. The code is shown below and it turns out that the standardized explanation
scores all give the highest importance to feature 3.

Figure A.1: Scatter plot of the randomly generated Gaussian data set. The outliers are colored red.

� �
1 # Create a synthetic dataset with outliers where the outlying feature is feature 3
2 rnd = np .random .RandomState (30)
3 n = 1000
4 mu , sigma = 0 , 0 .1
5 x1 = rnd .normal(mu , sigma , n)
6 x2 = rnd .normal(mu , sigma , n)
7 x3 = rnd .normal(mu , sigma , n)
8 outliers = rnd .randint (0 ,n , 1 0 )
9 inliers = np .array(list(set(list(range (0 ,n) ) ) .difference(set(outliers) ) ) )

10 x3 [outliers ] = np .max(x3) + 2 + rnd .random (10)
11 X = pd .DataFrame(np .transpose ( [x1 , x2 , x3 ] ) )
12 y_true = np .zeros(n)
13 y_true [outliers ] = np .ones(len(outliers) )
14
15 # Plot the synthetic dataset, outliers are colored red
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16 fig = plt .figure(figsize =[10 ,7 ] )
17
18 ax = fig .add_subplot (111 , projection='3d')
19 ax .scatter(X .iloc [inliers , 0 ] , X .iloc [inliers , 1 ] , X .iloc [inliers , 2 ] , color = (0 , 166/255 , 214/255) , )
20 ax .scatter(X .iloc [outliers , 0 ] , X .iloc [outliers , 1 ] , X .iloc [outliers , 2 ] , color = 'red')
21 ax .set_xlabel('Feature 1')
22 ax .set_ylabel('Feature 2')
23 ax .set_zlabel('Feature 3')
24
25
26 # Run the Isolation Forest on the synthetic data set
27 clf = IsolationForest(random_state = 20)
28 clf .fit(X)
29 scores = 0.5 - clf .decision_function(X) # to get the scores on a [0,1] interval
30 IF_estimators = clf .estimators_ # extract the tree estimators from the isolation forest
31
32 # Evaluate the performance of the Isolation Forest (AUC, AUPRC)
33 fpr , tpr , thresholds = roc_curve(y_true , scores , pos_label=1)
34 auc_ = auc(fpr , tpr)
35 print(auc_)
36 auprc_ = average_precision_score(y_true , scores)
37 print(auprc_)
38
39
40 # DIFFIlocal
41 explanation_DIFFI_local , runtime_DIFFI_local = MI_Local_DIFFI(IF_estimators , outliers , X)
42 # TreeSHAP
43 explanation_TreeSHAP , runtime_TreeSHAP = TreeSHAP(clf , outliers , X)
44 # AOFmedian replacement
45 explanation_AOF_median , runtime_AOF_median = AOF_median(clf , outliers , X , scores)� �

A.4.2. Example 2
We create ten outliers by changing (a) the third feature to a random number on the interval [2, 3]
plus the maximum value of feature 3 and (b) the first feature to a random number on [−3, −2] plus
the minimum value of feature 1. The randomly generated data set with outliers is 3-dimensioal and
is shown in Figure A.2. The code is shown below and it turns out that the standardized explanation
scores all give the highest importance to feature 1 and 3.

Figure A.2: Scatter plot of the randomly generated Gaussian data set. The outliers are colored red.

� �
1 # Create a synthetic dataset with outliers where the outlying feature is feature 1 and 3
2
3 rnd = np .random .RandomState (30)
4 n = 1000
5 mu , sigma = 0 , 0 .1
6 x1 = rnd .normal(mu , sigma , n)
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7 x2 = rnd .normal(mu , sigma , n)
8 x3 = rnd .normal(mu , sigma , n)
9 outliers = rnd .randint (0 ,n , 1 0 )

10 inliers = np .array(list(set(list(range (0 ,n) ) ) .difference(set(outliers) ) ) )
11 x1 [outliers ] = np .min(x1) - 2 - rnd .random (10)
12 x3 [outliers ] = np .max(x3) + 2 + rnd .random (10)
13 X = pd .DataFrame(np .transpose ( [x1 , x2 , x3 ] ) )
14 y_true = np .zeros(n)
15 y_true [outliers ] = np .ones(len(outliers) )
16
17 # Plot the synthetic dataset, outliers are colored red
18 fig = plt .figure(figsize =[10 ,7 ] )
19
20 ax = fig .add_subplot (111 , projection='3d')
21 ax .scatter(X .iloc [inliers , 0 ] , X .iloc [inliers , 1 ] , X .iloc [inliers , 2 ] , color = (0 , 166/255 , 214/255) , )
22 ax .scatter(X .iloc [outliers , 0 ] , X .iloc [outliers , 1 ] , X .iloc [outliers , 2 ] , color = 'red')
23 ax .set_xlabel('Feature 1')
24 ax .set_ylabel('Feature 2')
25 ax .set_zlabel('Feature 3')
26
27
28 # Run the Isolation Forest on the synthetic data set
29 clf = IsolationForest(random_state = 20)
30 clf .fit(X)
31 scores = 0.5 - clf .decision_function(X) # to get the scores on a [0,1] interval
32 IF_estimators = clf .estimators_ # extract the tree estimators from the isolation forest
33
34 # Evaluate the performance of the Isolation Forest (AUC, AUPRC)
35 fpr , tpr , thresholds = roc_curve(y_true , scores , pos_label=1)
36 auc_ = auc(fpr , tpr)
37 print(auc_)
38 auprc_ = average_precision_score(y_true , scores)
39 print(auprc_)
40
41 # DIFFIlocal
42 explanation_DIFFI_local , runtime_DIFFI_local = MI_Local_DIFFI(IF_estimators , outliers , X)
43 # TreeSHAP
44 explanation_TreeSHAP , runtime_TreeSHAP = TreeSHAP(clf , outliers , X)
45 # AOFmedian replacement
46 explanation_AOF_median , runtime_AOF_median = AOF_median(clf , outliers , X , scores)� �





B
TreeSHAP Method in Detail

The TreeSHAP method and SHAP values are based on so-called Shapley values from coalitional game
thoery. In this appendix we introduce the theory behind the TreeSHAP method. We first introduce
the basic concepts of Shapley values and the four axioms that the Shapley values satisfy. We then show
how these four axioms can be reduced to only two axioms in the case of prediction models 𝑓 . Then we
introduce the SHAP values which are defined by the relationship of the 𝑓(𝑥, 𝑆) = 𝔼[𝑓(𝑥)|𝑥𝑆]. We then
explain how the Shapley axioms translate to three desirable properties of local explanation methods.
Finally, we explain how the TreeSHAP algorithm can be used to calculate the SHAP values in the case
𝑓 is a tree-based model in a very efficient way.

B.1. Shapley Values
To define Shapley values, we first introduce the notion of games in coalitional form. The following
definitions are taken from [22].

Definition B.1.1. Let 𝑑 ≥ 2 denote the number of players in the game and 𝐷 denote the set of players,
𝐷 = {1, 2, ..., 𝑛}. A coalition, 𝑆, is defined to be a subset of 𝐷, 𝑆 ⊂ 𝐷, and the set of all coalitions is
denoted by 2𝐷.

Definition B.1.2. The coalitional form of an 𝑑-person game is given by the pair (𝑁, 𝑣), where 𝐷 =
{1, 2, ..., 𝑑} is the set of players and 𝑣 is a real-valued function, called the characteristic function of the
game, defined on the set, 2𝐷, of all coalitions, and satisfying

(i) 𝑣(∅) = 0, and

(ii) if 𝑆 and 𝑇 are disjoint coalitions, then 𝑣(𝑆) + 𝑣(𝑇 ) ≤ 𝑣(𝑆 ∪ 𝑇 ).
Then we define the value function of the characteristic function.

Definition B.1.3. A value function, 𝜙, is a function that assigns to each possible characteristic function
of an 𝑑-person game, an 𝑑-tuple, 𝜙(𝑣) = (𝜙1(𝑣), 𝜙2(𝑣), ...𝜙𝑑(𝑣)) where 𝜙𝑗(𝑣) ∈ ℝ for each 𝑣 and 𝑗 ∈
{1, 2, ..., 𝑑}.

Intuitively, 𝜙𝑗(𝑣) should represent the value or worth of player 𝑗 in the game with characteristic function
𝑣. The worth of a player should fulfil certain notions of fairness. These fairness notions are represented
by four axioms called the Shapley Axioms and it can be shown that there is exactly one value function
that satisfies these four axioms, namely the Shapley values. We present these four axioms in the game
setting of model predictions for a prediction model 𝑓 and an individual observation 𝑥 drawn from 𝑑
dimensional data set 𝑋 with 𝑛 observations. The Shapley values 𝜙𝑗 corresponding to the model 𝑓
and observation 𝑥 thus represent the credit that is assigned to each of the features 𝑗 ∈ {1, ..., 𝑑} when
considering the prediction outcome 𝑓(𝑥). We let 𝑓(𝑥, 𝑆) represent the prediction outcome of model 𝑓
for observation 𝑥 when only considering the features in the subset 𝑆. The exact way in how such a
prediction is obtained will be described later. The axioms are the following,
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Axiom 1 (Shapley Axioms).

I Efficiency

𝑓(𝑥) =
𝑑

∑
𝑗=1

𝜙𝑗

Interpretation: The total credit of each feature should add up to the prediction outcome.

II Symmetry If 𝑗 and 𝑘 are such that 𝑓(𝑥, 𝑆 ∪ {𝑗}) = 𝑓(𝑥, 𝑆 ∪ {𝑘}) for every coalition 𝑆 not
containing 𝑗 and 𝑘, then 𝜙𝑗 = 𝜙𝑘.
Interpretation: The Shapley values of two features 𝑗 and 𝑘 should be the same if their contribution
to all coalitions 𝑆 � {𝑗, 𝑘} is the same.

III Dummy Axiom If 𝑗 is such that 𝑓(𝑥, 𝑆) = 𝑓(𝑥, 𝑆 ∪ {𝑗}) for every coalition 𝑆 not containing 𝑗,
then 𝜙𝑗 = 0.
Interpretation: If feature 𝑗 neither increases nor decreases the prediction value of any coalition
that it joins, then it should have a value of 0.

IV Additivity For any two models 𝑓 and 𝑓 ′, it should hold that 𝜙(𝑓(𝑥)+𝑓 ′(𝑥)) = 𝜙(𝑓(𝑥)))+𝜙(𝑓 ′(𝑥)).
Interpretation: The effect a feature has on the sum of two models should be equal to sum of the
effects that the features has on the two models individually.

It can be shown that there exists a unique function 𝜙 that satisfies the Shapley Axioms and there is a
closed form formula that can be used to calculate the Shapley value of a coalition game. For the proof
of the following two theorems, we point to chapter IV.3 in Ferguson’s book [22].

Theorem B.1.1. There exists a unique function 𝜙 satisfying the Shapley Axioms.

Theorem B.1.2. The Shapley value is given by 𝜙 = (𝜙1, 𝜙2, ...𝜙𝑑), where for 𝑗 = 1, 2, ..., 𝑑,

𝜙𝑗 = ∑
𝑆⊂𝐷,𝑗∈𝑆

(|𝑆| − 1)!(𝑑 − |𝑆|)!
𝑑! [𝑓(𝑥, 𝑆) − 𝑓(𝑥, 𝑆 � {𝑗})]. (B.1)

Using the supplementary material of the SHAP paper from Lundberg [44], we further show that these
four axioms can be simplified to only two axioms. In 1985, Young proved that the additivity and dummy
axioms can be eliminated using a monotonicity axiom.

Monotonicity For any two prediction models 𝑓 and 𝑓 ′, if for all feature subsets 𝑆 that do not contain
𝑗 it holds that

𝑓(𝑥, 𝑆 ∪ {𝑗}) − 𝑓(𝑥, 𝑆) ≥ 𝑓 ′(𝑥, 𝑆 ∪ {𝑗}) − 𝑓 ′(𝑥, 𝑆),

then 𝜙𝑗(𝑓(𝑥)) ≥ 𝜙𝑗(𝑓 ′(𝑥)).
Interpretation: If the difference between the prediction outcome on coalition 𝑆 ∪ {𝑗} and 𝑆 is always
greater for some model 𝑓 than some model 𝑓 ′, then the Shapley value of model 𝑓 corresponding to feature
𝑗 should also be greater than that of 𝑓 ′.

Now, we show that the symmetry axiom is implied by the monotonicity axiom. Assume that 𝑓 ′ is the
same as 𝑓 except the inputs 𝑗 and 𝑘 are swapped. This means that for all 𝑆 that do not contain 𝑗 or 𝑘
it holds that

𝑓 ′(𝑥, 𝑆 ∪ {𝑗}) = 𝑓(𝑥, 𝑆 ∪ {𝑘}) and 𝑓 ′(𝑥, 𝑆) = 𝑓(𝑥, 𝑆). (B.2)

Furthermore, for a subset 𝑆 that does not contain 𝑘, the following is guaranteed to hold

𝑓 ′(𝑥, 𝑆 � {𝑘} ∪ {𝑗, 𝑘}) = 𝑓 ′(𝑥, 𝑆 � {𝑘} ∪ {𝑘, 𝑗}).
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Let us state the monotonicity axiom again, for all 𝑆 that do not contain 𝑗,

𝑓(𝑥, 𝑆 ∪ {𝑗}) − 𝑓(𝑥, 𝑆) ≥ 𝑓 ′(𝑥, 𝑆 ∪ {𝑗}) − 𝑓 ′(𝑥, 𝑆) ⇒ 𝜙𝑗(𝑓(𝑥)) ≥ 𝜙𝑗(𝑓 ′(𝑥)). (B.3)

Using this axiom, equation B.2 and ignoring the terms that contain 𝑘 we get,

for all 𝑆 that do not contain 𝑗, 𝑘: 𝑓(𝑥, 𝑆 ∪ {𝑗}) ≥ 𝑓(𝑥, 𝑆 ∪ {𝑘}) ⇒ 𝜙𝑗(𝑓(𝑥)) ≥ 𝜙𝑗(𝑓 ′(𝑥)), (B.4)

Repeating this but swapping 𝑗 and 𝑘 in equations B.3 and B.4, we get

for all 𝑆 that do not contain 𝑗, 𝑘: 𝑓(𝑥, 𝑆 ∪ {𝑘}) ≥ 𝑓(𝑥, 𝑆 ∪ {𝑗}) ⇒ 𝜙𝑘(𝑓(𝑥)) ≥ 𝜙𝑘(𝑓 ′(𝑥)), (B.5)

Finally, by combining equations B.4 and B.5 and observing that by definition of 𝑓 ′, 𝜙𝑗(𝑓, 𝑥) = 𝜙𝑘(𝑓 ′, 𝑥)
and 𝜙𝑘(𝑓, 𝑥) = 𝜙𝑗(𝑓 ′, 𝑥), we get the symmetry axiom,

for all 𝑆 that do not contain 𝑗, 𝑘: 𝑓(𝑥, 𝑆 ∪ {𝑗}) = 𝑓(𝑥, 𝑆 ∪ {𝑘}) ⇒ 𝜙𝑗(𝑓(𝑥)) = 𝜙𝑘(𝑓(𝑥)). (B.6)

So we have now shown that we only need the efficiency and monotonicity axioms to uniquely constrain
ourselves to using the Shapley values.

B.2. SHAP values
The SHAP values are defined as the Shapley values of the conditional expectation of the original pre-
diction model 𝑓 , that is 𝑓(𝑥, 𝑆) = 𝔼[𝑓(𝑥)|𝑥𝑆]. To show the properties of the SHAP values, we begin by
introducing the class of additive feature attribution methods which are methods that explain the model
outcome as sum of real values that correspond to the different input features.

Definition B.2.1. Additive feature attribution methods have an explanation model that is a linear
function of binary variables,

𝑔(𝑧′) = 𝜙0 +
𝑑

∑
𝑗=1

𝜙𝑗𝑧′
𝑗, (B.7)

where 𝑧′ ∈ {0, 1}𝑑 are the simplified features, 𝑑 is the number of simplified input features and 𝜙𝑗 ∈ ℝ.

Here, the 𝑧′
𝑗 variables represent a feature being observed (𝑧′

𝑗 = 1) or unknown (𝑧′
𝑗 = 0) and the values

𝜙𝑗 are the feature attributions. We now introduce three properties that are desirable for an explanation
model and show that the attribution values 𝜙𝑗 that satisfies these three properties are the Shapley
values.
Property 1 (Local accuracy)

𝑓(𝑥) = 𝜙0(𝑓) +
𝑑

∑
𝑗=1

𝜙𝑗(𝑓, 𝑥) (B.8)

Interpretation: The sum of the feature attributions 𝜙𝑗(𝑓, 𝑥) should match the original model output 𝑓(𝑥)
where 𝜙0(𝑓) = 𝔼[𝑓(𝑋)]

Property 2 (Consistency) For any two models 𝑓 and 𝑓 ′, if

𝑓 ′
𝑥(𝑆) − 𝑓 ′

𝑥(𝑆 � 𝑗) ≥ 𝑓𝑥(𝑆) − 𝑓𝑥(𝑆 � 𝑗) (B.9)

for all subsets of features 𝑆 ⊂ 𝐷, then 𝜙𝑗(𝑓 ′, 𝑥) ≥ 𝜙𝑗(𝑓, 𝑥).
Interpretation: If a model changes so that some simplified input’s contribution either increases or stays
the same regardless of the other inputs, then that input’s impact should not decrease.

Property 3 (Missingness) If

𝑓𝑥(𝑆 ∪ 𝑖) = 𝑓𝑥(𝑆) (B.10)
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for all subsets of features 𝑆 ⊂ 𝐷, then 𝜙𝑖(𝑓, 𝑥) = 0.
Interpretation: Features that have no effect on the prediction output 𝑓(𝑥) should have no assigned impact.

We showed in the previous section that the Shapley values are the only values that satisfy Property
1 and Property 3 where in this case Property 1 corresponds to the Efficiency Axiom and Property 3
corresponds to the Monotonicity Axiom. Furthermore, Property 2 is required to adapt the Shapley
proof to the class of additive feature attribution methods. In order to evaluate the effect of missing
features on the prediction model 𝑓 , we must define some mapping. In the case of SHAP values, the
mapping is defined as 𝑓(𝑥, 𝑆) = 𝔼[𝑓(𝑥)|𝑥𝑆]. Thus the SHAP values can be computed as

̄𝜙𝑗(𝑓, 𝑥) = ∑
𝑆⊂𝐷,𝑗∈𝑆

|𝑆|!(𝑑 − |𝑆| − 1)!
𝑑! (𝔼[𝑓(𝑥)|𝑥𝑆] − 𝔼[𝑓(𝑥)|𝑥𝑆�{𝑗}]) (B.11)

and they fulfill the three properties of local accuracy, consistency and missingness due to their direct
connection with the Shapley axioms.

B.3. TreeSHAP
In order to calculate the SHAP feature importance values, 𝔼[𝑓(𝑥)|𝑥𝑆] must be estimated for each subset
𝑆 of 𝑁 = {1, 2, ..., 𝑛}, a total of 2𝑛 possibilities. For a tree-based model 𝑓 , the conditional expectation
𝔼[𝑓(𝑥)|𝑥𝑆] can be estimated in 𝑂(𝑇 𝐿) time using algorithm 10, where 𝑇 is the number of trees in the
model and 𝐿 is the maximum number of leaves in any tree [45]. Thus, the total computational com-
plexity is 𝑂(𝑇 𝐿2𝑛). In algorithm 10, the tree is notated by the 𝑣 - the nodes and their corresponding
prediction values, 𝑙 - the left children of 𝑣, 𝑟 - the right children of 𝑣, 𝑎 - the split values of 𝑣, 𝑞 - the
number of data points in 𝑣 and 𝐹 - the features used for splitting in each node of 𝑣.

Algorithm 10 Estimating 𝔼[𝑓(𝑥)|𝑥𝑆]
procedure ExpectedValue(𝑥, 𝑆, tree = {𝑣, 𝑙, 𝑟, 𝑎, 𝑞, 𝐹})

procedure G(𝑗,𝑤)
if 𝑣𝑗 ≠ internal then

return 𝑤 ⋅ 𝑣𝑗
else

if 𝑑𝑗 ∈ 𝑆 then
return 𝐺(𝑙𝑗, 𝑤) if 𝑥𝐹𝑗

≤ 𝑎𝑗 else 𝐺(𝑟𝑗, 𝑤)
else

return 𝐺(𝑙𝑗, 𝑤𝑞𝑙𝑗
/𝑞𝑗) + 𝐺(𝑟𝑗, 𝑤𝑞𝑟𝑗

/𝑞𝑗)
end if

end if
end procedure
return 𝐺(1, 1)

end procedure

However, [45] introduces a method to calculate the values 𝔼[𝑓(𝑥)|𝑥𝑆] in 𝑂(𝑇 𝐿𝐷2) time, where 𝐷 is the
maximum depth of the trees. This method reduces the computation time from being exponential in
the number of features to being second order in the trees depth. For the case of multiple feature, this
is a major improvement. This algorithm is shown in [45] and implemented in the python library shap
as TreeExplainer.
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