
Genetic Algorithm-based Program Synthesizer
for the Construction of Machine Learning

Pipelines

Mathieu Butenaerts
Supervisor(s): Sebastijan Dumančić, Tilman Hinnerichs

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Mathieu Butenaerts
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Tilman Hinnerichs, David Tax



Abstract

Because of the growing pres-
ence of artificial intelligence,
developers are looking for more
efficient methods to construct
machine learning algorithms.
Program synthesizers allow us
to produce algorithms consist-
ing of scalers, feature selection
and classifiers. Each of these
pipelines is a potential solution
to the given machine learning
task. The goal of this syn-
thesizer was to find the best-
suited pipeline for the prob-
lem, with a genetic search al-
gorithm. The structure of the
pipelines makes it easy to im-
plement the cross-over and mu-
tation properties of a genetic
algorithm, as the pipelines
and different algorithms very
much resemble chromosomes
and genes. Experiments were
designed to measure the ac-
curacies and runtimes of the
synthesizer with the intent to
compare them to the results of
other synthesizers based on dif-
ferent search algorithms. The
comparisons made could prove
whether machine learning syn-
thesizers are a viable solution
to the mentioned development
problem.

1 Introduction

Machine learning is an ever-expanding field
in terms of accuracy and practicality in the
modern world. More and more applications
use machine learning in their features. Re-
searchers and developers produce more con-
voluted and compound algorithms to tackle
more complex problems [10]. Yet, the pro-
duction of these algorithms consists of many
time-consuming tasks, next to the implemen-
tation and the design of the algorithm it-
self. Tasks, like choosing the most effective
machine learning design, choosing accuracy

measurement methods, fine-tuning multiple
parameters, and randomly initializing vari-
ables require educated intuition, but they are
also very much trial-and-error-based. Facili-
tating these processes could be beneficial to
every developer in the field of machine learn-
ing. S. Gulwani, O. Polozov, and R. Singh
[7] have researched program synthesis and
used machine learning methods like enumer-
ative search, constraint solving, and stochas-
tic search to find the most suitable pipeline
for a given problem. A pipeline is a sequence
of concatenated algorithms, produced by a
program synthesizer, that serves as a solu-
tion to a given computational problem. The
research group tasked with this project, used
the notion of program synthesis, to construct
synthesizers that produce the most suitable
machine learning algorithms for the given
datasets. Each member of the team was
given a specific search method to investigate.
While S. Gulwani already discussed genetic
algorithms as a viable search algorithm in
program synthesis, the research in this pa-
per was focused on this method.

The goal of the research was to measure
the performance of the given search algo-
rithms in program synthesizers and why they
are suitable options in the field of machine
learning development. The performances of
the synthesizers were compared to each other
and analyzed why certain problems are bet-
ter solved by which synthesizer.

This paper mentions the methodology
used, a description of the experimental setup
along with the results and a mention of the
responsible research methods that have been
applied with the possible ethical implications
of our findings. The research paper concludes
with a discussion, final conclusions, and the
mention of future work on the subject, to
which this project has led too.

2 Methodology
The strategy used to tackle the research ques-
tions consists of multiple sections. The first
objective was to define the structure and lim-

1



itations of the pipelines. Context-free gram-
mars were the best approach since their way
of describing languages allowed us to define
the different algorithms in a pipeline and the
general structure of the sequences. With
the grammar, a search space was created
in which the respective search algorithms
searched for the best solution for the given
problem. The performance of the algorithms
has been evaluated with the same metrics
and the same datasets, in order to conduct
objective comparisons and analysis.

2.1 context-free grammar

The search space consisted of machine learn-
ing pipelines. A single machine learning
pipeline is a sequence of algorithms where
each output of an algorithm is the input
for the following algorithm. The machine
learning pipelines are combinations of pre-
processing and feature selection algorithms
followed by a classification algorithm. A sin-
gle pipeline contains all the functionalities
of a complete classification algorithm. The
structure and properties that a valid pipeline
must adhere to, was best described by a
context-free grammar. A context-free gram-
mar can produce sequences based on a set of
given rules, variables, and terminals. Start-
ing with a given start variable, the context-
free grammar transforms the variable to con-
catenations of terminals and variables, based
on the given rules. Once all the variables
have been replaced, a concatenation of ter-
minals remains, acting as an instance of the
language described by the grammar. [16]

The functionalities of grammars were
used to produce different combinations of
pipelines [3]. The grammar was allowed to
construct directed acyclical graphs of prepro-
cessing and feature selection algorithms, in
order to construct more complex pipelines for
the search space, while still ensuring a clas-
sification algorithm ends the sequence [8].

The grammar is defined in the Julia pro-
gramming language with the Herb.jl frame-
work [13] and the Scikit-learn library. The

Pipeline object allowed us to concatenate the
transformers in a sequence while the Feature-
Union object unionized the features trans-
formed by the previous scalers and feature se-
lection algorithms. These two functionalities
acted as the joints in the directed acyclical
graphs, combining the different branches of
preparation algorithms towards a single clas-
sifier.

The preprocessing algorithms focused on
for this research project, were the standard
scaler, robust scaler, min-max scaler, max-
imum absolute scaler, Principal component
analysis, binarization, and polynomial fea-
tures as preprocessing procedures. The fea-
ture selection algorithms used were variance
threshold, K-best, percentile, family-wise,
and recursive feature elimination. As for
classification algorithms, decision trees, ran-
dom forest, gradient boosting, logistic re-
gression, and nearest neighbour were used.
These algorithms are the most often used in
machine learning and have been well docu-
mented and supported by Scikit-learn, mak-
ing them the best algorithms for the gram-
mar. A full description of the grammar is
given in the appendix (appendix figure 1).

2.2 Genetic Algorithms

The search algorithm analyzes the accuracy
of the given pipelines and produces the most
suitable solution for the given problem that
it could find, based on the features of a ge-
netic algorithm. A genetic algorithm is a
stochastic search algorithm where the search
approach is based on characteristics of bio-
logical evolution [11]. In the space of candi-
date solutions, the best-performing pipelines
that were found were used to create a new
search space with better candidate solutions.
The reproduction procedure is done by com-
bining the components of different selected
pipelines. To introduce some variation in the
search space, a mutation could take place,
with a certain probability, which could alter
a specific component in the candidate.

A general skeleton was implemented on

2



the Herb.jl repository constructed by Jaap
De Jonge. The skeleton had the general
structure of a genetic algorithm. The im-
plementation of the features that would con-
struct the initial population, select the best
candidates from the generation, produce the
next generation and perform the mutations
still had to be added.

2.2.1 Fitness Function

The assessment of the quality of the pipelines
was done by executing the sequence of ma-
chine learning algorithms using the Scikit-
learn functionalities. The percentage of
correct predictions on the total number of
predictions represented the accuracy of the
pipeline.

In the selection process, the rank selec-
tion strategy has been implemented with the
intent to choose a suitable subset of candi-
dates that would reproduce the next genera-
tion [6]. The current generation of candidate
solutions was ranked based on their perfor-
mance. Each specimen was given a chance
of being selected for reproduction relative to
their fitness. These chances were calculated
by dividing the respective accuracies by the
general sum of the accuracies for the gen-
eration. This method of selection allowed
less accurate candidates to pass for repro-
duction. The goal of this strategy was to
mimic the selection process as it occurs in
nature as accurately as possible. To make
sure one candidate is not selected twice, it is
removed from the population, once the can-
didate has been chosen. Afterward, the selec-
tion process was repeated with updated se-
lection chances. Only half of the population
was selected for reproduction.

Other selection strategies were considered
as well. Tournament selection considers a
randomly selected subspace of the popula-
tion and selects the best candidate in that
subspace. This method was mentioned in
the same paper as rank selection and was a
strategy that was considered for the selection
process in the genetic algorithm. Yet, the ad-

ditional value it brought to the entire search
algorithm was not worth the increased run-
time that this strategy would introduce.

2.2.2 Cross-Over Function

The cross-over function was used to construct
the new generation of pipelines. Two se-
quences of genes, in this case, sequences of
transformers, were split on the same spot af-
ter which the end of one sequence was con-
nected to the start of the other sequence [18].
This procedure created new pipelines, which
possibly contain the best features of both
parent pipelines.

Since the pipelines were designed as di-
rected acyclical graphs, the cross-over would
be more unorthodox. A branch from one
graph was randomly selected and exchanged
by a branch from the other, resulting in new
pipelines.

Figure 1: Example of cross-over operation

Since half of the previous population was
eliminated in the natural selection section,
each candidate would have to cross-over with
two candidates. The population set was ran-
domly ordered in a circular structure so each
individual was adjacent to two other speci-
mens. This individual would cross-over with
their neighbors. With this method, it is en-
sured that each candidate reproduced with
two unique other members of the population.

Randomly selecting branches from chro-
mosomes and performing a cross-over, could
result in pipelines that exceeded the maxi-
mum depth set in the initiation of the algo-
rithm. In order to avoid this issue, branches

3



of the same depth were selected for cross-
overs. This way both new sequences would
remain the same size. This restriction re-
duced diversity in the search space, but its
absence could cause the runtime of the algo-
rithm to increase drastically because of the
longer pipelines.

The reproduced pipelines could have an
invalid structure that does not adhere to the
defined grammar. A pipeline with too many
feature selection algorithms would throw ex-
ceptions once it is executed. This could com-
promise the new generation and cause com-
plications in future selection processes. Test-
ing the validity of the pipeline after repro-
duction would show if it was a suitable can-
didate. If it proves to be valid, the new chro-
mosomes were passed to the new generation.
In any other case, the original parent chro-
mosomes are reused in the next generation.

2.2.3 Mutation Function

The mutation function in a genetic algorithm
is in charge of introducing minor changes to
a selected candidate. The goal was to enforce
diversity in the population and to ensure that
the search space would not reach a dead end
where cross-overs do not result in new com-
binations anymore [2].

In the context of the project, the mu-
tation would change one algorithm in the
pipeline with another. It was important to
ensure that mutations change algorithms to
algorithms of the same kind. Allowing a
scaler to be changed to a classifier, would re-
sult in an invalid pipeline. In the implemen-
tation, a random algorithm in the pipeline
is selected after which its type is looked up
in the grammar. Afterward, a random algo-
rithm was selected from the grammar of the
same type that was different from the orig-
inally chosen algorithm that was to be re-
placed. After the algorithm in the pipeline
was replaced by the new one, the mutation
process was finished.

The mutations were executed on ran-
domly selected candidates based on the mu-

tation probability provided by the function
call.

2.3 Evaluating The Perfor-
mance

While analyzing the quality of the synthe-
sizer, it was important to consider both the
speed and accuracy of the best-produced
pipeline, as well as the speed of the syn-
thesizer itself. Since every member of the
project group had been working on a synthe-
sizer based on a different search algorithm,
comparing the performances of the different
strategies was fairly straightforward. From
different experiments with different machine
learning tasks, conclusions could be made
from the findings about which strategies were
better suited for which kind of problem. The
performance of the overall search algorithm
was related to the performance of a single
pipeline which was indicated by its fitness
value. The fitness value was the percentage
of correct predictions over the entire testing
data set. 70 percent of the data set was used
as training data, 15 percent as testing data
and 15 percent as validation data.

3 Experimental Setup and
Results

To ensure the results were as objective as
possible, the group agreed on certain param-
eters with the intention to run the respective
algorithms in a similar environment. Each al-
gorithm was run 10 times so unrepresentable
coincidental results were eliminated. The
number of times the fitness function was ex-
ecuted was also limited to 100. The depth
of the grammar was in general set to 4 and
the enumeration depth was 4. These param-
eters ensured stable conditions to run the al-
gorithm on a personal computer with still a
large search space. Other parameters more
relevant to the respective algorithms were se-
lected individually. The genetic algorithm
has a mutation probability parameter which

4



was set to 0,1, implying that there was a
chance of 10% that a mutation could occur
in a chromosome. Since the population size
was set to 10, there was a 65.13% that at least
one mutation took place in the current gen-
eration. These parameters introduced a sta-
ble level of diversity to the algorithm. The
dataset used in the development of the ge-
netic algorithm was the iris dataset [5]. The
small sample size allowed for quick evalua-
tions and quick debugging performances.

The research group agreed on three
datasets with which we would conduct
the experiments, provided by the openML
dataset database.

The seeds dataset [1] consists of 210 in-
stances with 8 unique features and 3 unique
classes. When running the genetic search
algorithm, an average runtime of 12,94 sec-
onds was measured. A notable observation
was the variance in time which was 244,53.
The quickest time was 0,97 seconds and the
longest was 53,08 seconds. The average ac-
curacy over the best pipelines found in each
experiment was 0,847, implying that 84,7%
of the instances in the test set were correctly
classified. The best pipeline performed with
an accuracy of 0,989.

The bwcd dataset [19] consists of 569
instances with 31 unique features and 2
unique classes. The genetic algorithm found
pipelines with an average accuracy of 0,912
in an average time of 113,37 seconds. Yet
again, the accuracy variance was very low
(0,0157) and the runtime variance was very
large (78114,791). The best pipeline for this
dataset had an accuracy of 0,977.

The har dataset [12] consists of 10299
instances with 562 unique features and 8
unique classes. The pipelines classified the
instances correctly with an average accuracy
of 0,760 and a variance of 0,162. The best
pipeline reached an accuracy of 0,988. The
average runtime was 948,110 seconds with a
variance of 1822586.

The other synthesizers that were ana-
lyzed during the research project were A*
search [9], Monte Carlo Tree search [4],

Metropolis-Hastings search [14] and Very
Large Neighbourhood search [17]. Addition-
ally, a breadth-first search algorithm was de-
signed as a baseline with which the other al-
gorithms could be compared. The algorithms
were run on the same datasets with similar
settings

The A* search algorithm was also run 10
times with a sample size of 300 and an enu-
meration depth of 5. The pipeline depth was
set to 4. The average accuracies for the seeds,
wdbc and har datasets were 0,919, 0,965 and
0,970 respectively. The variances were rather
low with 0,00178, 0,000541 and 0,000538.
The best pipelines for these datasets per-
formed at an accuracy of 0,969, 0,988 and
0.984. The runtimes were on average 19,762,
32,12 and 1.220,96 seconds with variances
156,569, 321,35 and 1951733,27.

The Monte Carlo tree search ran 10 ex-
periments as well with an enumeration depth
of 3, a pipeline depth of 4 and a sample size of
300 instances. The iteration parameter, spe-
cific to this algorithm, was set to 100. For
the seeds dataset, the synthesizer produced
pipelines with an average of 0,928 and a vari-
ance of 0,00110. The runtime was on average
10,87 seconds with a variance of 2,81. The
best pipeline, in this case, had an accuracy
of 0,969. The pipelines found for the wdbc
dataset could produce an accuracy of 0,970
on average with a variance of 0,000337. The
best pipeline performed with an accuracy of
1,0. The average runtime was 166,04 seconds
with a variance of 170910,42. Lastly, for the
har dataset the Monte Carlo tree search al-
gorithm found an average accuracy of 0,981
with a variance of 0,0000119. The runtime
was on average 168,67 seconds with a vari-
ance of 691,867. The best pipeline for the
har dataset performed with an accuracy of
0,988.

The Metropolis-Hastings search was per-
formed on 1000 instances with an enumera-
tion depth of 2 with a pipeline depth of 4.
For the seeds dataset, the average accuracy
found was 0,919. For the wdbc dataset, the
accuracy was 0,920 and for the har dataset

5



it was 0,970. The respective average run-
times for the datasets were 6,19, 11,90 and
686,70 seconds. Again, the variance in accu-
racy over the 10 runs was rather low. Vari-
ances of 0,00156, 0,0176 and 0,000446 were
found. In the case of runtime, larger fluctu-
ations were observed with variances of 9,48,
17,81 and 24073,62. The best pipelines for
these datasets ran with an accuracy of 0,967,
0,988 and 0,983.

The Very Large Neighborhood search ran
10 experiments as well, where the enumer-
ation depth was set to 4 and the pipeline
depth was 4. The sample space had a size
of 300 and an additional parameter, main-
taining the number of neighbours in every it-
eration was set to 25. The average accuracies
corresponding to the experiments performed
on the given datasets were 0,906, 0,949 and
0,979 with variances of 0,00239, 0,000427
and 0,0000298. The runtimes of these ex-
periments were on average 8,67, 34,88 and
343,83 seconds. The runtime variances were
84,59, 342,33 and 28986,44 respectively to
the datasets. The best pipelines produced
for each dataset during the experiments had
an accuracy of 1,0, 0,977 and 0,989.

For the baseline, a breadth-first search
algorithm was used that would evaluate
pipelines in order of increasing depth. 10
experiments were run on a sample size of
300 with an enumeration depth of 4 and a
pipeline depth of 4. The average pipeline ac-
curacies were 0,916, 0,949 and 0,982. The
same accuracies had variances of 0,00348,
0,000907 and 0,0000212. The runtimes of
these experiments were on average 12,58,
16,45 and 261,57 seconds with corresponding
variances 0,481, 0,035 and 11565,20.

The statistics of the experiments are de-
scribed in graphs in the appendix (appendix
figure 2-39).

4 Responsible Research
In order to ensure the quality of the per-
formed research, the origin of the used re-
sources has to be explained as well as how

the results from the mentioned experiments
could be reproduced in order to prove their
validity. Made conclusions should have merit
and a sufficient scientific foundation to prove
their validity.

4.1 Datasets
The resources that have been used should be
verified and validated. The datasets used in
the experiments and during the development
of the search algorithms have been provided
by OpenML. OpenML is a machine learn-
ing data set database that contained prob-
lems for many different languages like Julia,
Python and Java. OpenML provides docu-
mentation for each dataset, mentioning the
author, the study it was used for, and in
which year the study took place as well as
whether tr not they have been verified by
OpenML themselves.

4.2 Reproducibility
The files with the code that produced the
mentioned results were stored on a GitHub
repository which has been referenced in the
bibliography [15]. Clear documentation of
the methods and structure has been pro-
vided in the files. Since the random gener-
ator has been provided with a constant seed,
the results of all the search algorithms could
be reproduced with the mentioned parame-
ters, with the exception of the runtime result,
which could have slight variations depending
on the machine on which the algorithms were
run.

4.3 Credibility
Every conclusion that has been made is sup-
ported by the mentioned results and statis-
tics. It is important to consider that three
arbitrary datasets have been used in the ex-
periments. While their origin and their prac-
ticality concerning the project had been re-
searched, they were used in the experiments
without any prior preprocessing that might
skew the results. The results and therefore

6



conclusions are unique to the datasets and no
guarantees about the performance on other
datasets can be made.

5 Discussion
The results have been recorded and presented
in previous sections and the appendix. The
first observation made was the low variances
in the accuracies over the repeated experi-
ments. The low variance implies that all the
results are close together meaning the search
algorithms repeatedly performed at a stable
rate. The variance in runtime is rather large.
Some of these variances can be explained by
unregular spikes of runtime where the search
algorithm took a long time of finding an op-
timal solution. Examples of this were the
A* search algorithm on the har dataset (ap-
pendix figure 8), the Genetic algorithm on
the wdbc dataset (appendix figure 18), the
Genetic algorithm on the har dataset (ap-
pendix figure 20) and the Monte Carlo Tree
search on the WDBC dataset (appendix fig-
ure 24). Other high variances were caused
by irregular runtimes where the algorithm
would run both fast and slow on the same ex-
periment. This anomaly could be explained
by particular combinations of machine learn-
ing algorithms in the pipelines that would
take longer than others to be processed by
the Scikit-learn framework.

Another particular occurrence in the find-
ings is a 100% accuracy on the wdbc dataset
by the Monte Carlo Tree Search. With a
sample size of 300 instances and a 15% of
testing data, the algorithm classified 45 of
the 45 instances correctly. However unlikely,
it would not be impossible to find a perfect
accuracy.

Other irregularities were an accuracy of
0 on the HAR dataset by the Genetic algo-
rithm search for two experiments and an ac-
curacy of 0.547 for the Metropolis-Hastings
search on the WDBC dataset. What makes
these occurrences irregular is that they vary
much from the mean of all the experiments
done by the search algorithms on the particu-

lar datasets. This could be caused by unfore-
seen fallacies in the synthesizers that might
have caused the constructed pipelines to be
less accurate than desired.

The lowest accuracy found over all the
experiments which was within a reasonable
range of the mean of the related experiments,
was by the very large neighborhood search
with an accuracy of 0,84375 on the seeds
dataset, most likely caused by the small sam-
ple spaces that the seeds dataset provides.

The best pipelines found for the men-
tioned datasets are a robust scaler followed
by a logistic regression classifier for the wbcd
dataset with accuracy 1,0 by the Monte Carlo
Tree search and a pipeline consisting of a
standard scaler followed by a gradient Boost-
ing classifier for the har dataset with accu-
racy 0,99 by the breadth-first algorithm. For
the seeds dataset, there was a four-way tie
between the A* search, breadth-first search,
genetic algorithm search, Monte Carlo Tree
search and the Metropolis-Hastings search,
all with an accuracy of 0,9688. The found
pipelines were a pipeline with a standard
scaler, a principal component analysis and a
max absolute scaler with a logistic regression
classifier, a pipeline with a standard scaler
and a max absolute scaler with a logistic
regression classifier, a pipeline with two ro-
bust scalers with a gradient boosting clas-
sifier and a pipeline with a random forest
classifier, respectively to the mentioned syn-
thesizers. The search algorithm that found
their pipeline the fastest was the Metropolis-
Hastings with 6,44 seconds. The short run-
time corresponds to the short pipeline that
was produced by the synthesizer since the
algorithm would have noticed the high accu-
racy and would have stopped the search early
since no improvements would have been reg-
istered.

6 Conclusion
The goal of this research was to exam-
ine whether synthesizers used for construct-
ing pipelines of machine learning algorithms

7



were the solution to the time-consuming
tasks that come with developing classifiers
for given datasets. To prove this, ex-
periments were designed where synthesizers
based on different search algorithms tried to
find the best pipeline for three given classi-
fication problems. The accuracies and run-
times were compared to each other and a
baseline synthesizer consisting of a breadth-
first algorithm. The results of the ex-
periments concerning the accuracies were
promising given that the variances were low
and the averages were mostly above 90%.
The runtime on the other hand fluctuated of-
ten, most likely caused by pipelines that were
incompatible with the fit functions provided
by the Scikit-learn framework. The best
pipelines for the datasets were provided by
the Metropolis-Hastings, Monte Carlo Tree
Search and the Breadth-first search. Yet
their performance was not much greater than
the other synthesizers. In the case of the
mentioned datasets, there is not a great no-
table difference in quality among the search
algorithms. The simple baseline breadth-first
search is as qualified to find quality pipelines
as the other synthesizers. This could have
been caused by the limited sizes of the sam-
ple spaces in the datasets. The conclusion
can be made that the designing of complex
synthesizers is not in particular a good so-
lution when dealing with small and simple
classification problems. Yet the search algo-

rithms could be more beneficial in classifica-
tion problems with a larger sample set, and
a larger number of features and labels. But
this theory has not been proven nor denied
during this research.

7 Future Work
As mentioned in the conclusion, the perfor-
mances of the research synthesizers on larger
datasets remain untested. This was a goal
set for this research project for which the su-
percomputer of the Technische Universiteit
Delft would have been used. But due to com-
plications and time limits, the focus was kept
on the smaller datasets mentioned through-
out the report. Yet this could be a sub-
ject that could be examined and researched
further in future work. Once a solution
has been found for the runtime irregulari-
ties, making it more balanced, the research
could continue with larger and more com-
plex datasets. The grammar could be ex-
panded with more transformers and classifi-
cation algorithms, which would allow a larger
search space. Parameters could be tuned
more precisely and enumeration and pipeline
depths can be increased. The increment of
the search space would allow more specific
tests that could prove that the machine learn-
ing synthesizers have merit compared to the
general breadth-first search algorithm on big-
ger machine learning-related problems.

8



8 Appendix

Figure 1: Final grammar.

9



Figure 2: Accuracy graph of enumerative A* search on Seeds dataset.

Figure 3: Time graph of enumerative A* search on Seeds dataset.

10



Figure 4: Accuracy graph of enumerative A* search on WDBC dataset.

Figure 5: Time graph of enumerative A* search on WDBC dataset.

11



Figure 6: Accuracy graph of enumerative A* search on HAR dataset.

Figure 7: Time graph of enumerative A* search on HAR dataset.

12



Figure 8: Accuracy graph of breath first search on Seeds dataset.

Figure 9: Time graph of breath first search on Seeds dataset.

13



Figure 10: Accuracy graph of breath first search on WDBC dataset.

Figure 11: Time graph of breath first search on WDBC dataset.

14



Figure 12: Accuracy graph of breath first search on HAR dataset.

Figure 13: Time graph of breath first search on HAR dataset.

15



Figure 14: Accuracy graph of the genetic algorithm on Seeds dataset.

Figure 15: Time graph of the genetic algorithm on Seeds dataset.

16



Figure 16: Accuracy graph of the genetic algorithm on WDBC dataset.

Figure 17: Time graph of the genetic algorithm on WDBC dataset.

17



Figure 18: Accuracy graph of the genetic algorithm on HAR dataset.

Figure 19: Time graph of the genetic algorithm on HAR dataset.

18



Figure 20: Accuracy graph of Monte Carlo search on Seeds dataset.

Figure 21: Time graph of Monte Carlo search on Seeds dataset.

19



Figure 22: Accuracy graph of Monte Carlo search on WDBC dataset.

Figure 23: Time graph of Monte Carlo search on WDBC dataset.

20



Figure 24: Accuracy graph of Monte Carlo search on HAR dataset.

Figure 25: Time graph of Monte Carlo search on HAR dataset.

21



Figure 26: Accuracy graph of metropolis hastings search on Seeds dataset.

Figure 27: Time graph of metropolis hastings search on Seeds dataset.

22



Figure 28: Accuracy graph of metropolis hastings search on WDBC dataset.

Figure 29: Time graph of metropolis hastings search on WDBC dataset.

23



Figure 30: Accuracy graph of metropolis hastings search on HAR dataset.

Figure 31: Time graph of metropolis hastings search on HAR dataset.

24



Figure 32: Accuracy graph of very large neighbourhood search on Seeds dataset.

Figure 33: Time graph of very large neighbourhood search on Seeds dataset.

25



Figure 34: Accuracy graph of very large neighbourhood search on WDBC dataset.

Figure 35: Time graph of very large neighbourhood search on WDBC dataset.

26



Figure 36: Accuracy graph of very large neighbourhood search on HAR dataset.

Figure 37: Time graph of very large neighbourhood search on HAR dataset.

27



Figure 38: best pipeline accuracy graph of all search algorithms..

Figure 39: Time graph of all search algorithms.

28



References
[1] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. Kowalski, and S. Lukasik. seeds. UCI

Machine Learning Repository, 2012. DOI: https://doi.org/10.24432/C5H30K.

[2] I. De Falco, âªA. Della Cioppa, and E. Tarantino. Mutation-based genetic algorithm:
performance evaluation. Applied Soft Computing, 1(4):285–299, 2002.

[3] A. de Sá, W. Pinto, L. Oliveira, and G. Pappa. Recipe: a grammar-based framework
for automatically evolving classification pipelines. In Genetic Programming: 20th Eu-
ropean Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017,
Proceedings 20, pages 246–261. Springer, 2017.

[4] B. Filius, T. Hinnerichs, and S. Dumanˇ cić. Solving ml with ml: Evaluating the per-
formance of the monte carlo tree search algorithm in the context of program synthesis.
TU Delft preprint: available from repository.tudelft.nl, 2023.

[5] R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. DOI:
https://doi.org/10.24432/C56C76.

[6] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. volume 1 of Foundations of Genetic Algorithms, pages 69–93. Elsevier, 1991.

[7] S. Gulwani, O. Polozov, R. Singh, et al. Program synthesis. Foundations and Trends®
in Programming Languages, 4(1-2):1–119, 2017.

[8] M. Katz, P. Ram, S. Sohrabi, and O. Udrea. Exploring context-free languages via
planning: The case for automating machine learning. Proceedings of the International
Conference on Automated Planning and Scheduling, 30(1):403–411, Jun. 2020.

[9] R. Lejeune, T. Hinnerichs, and S. Dumanˇ cić. Solving ml with ml: Effectiveness of
a star search for synthesizing machine learning pipelines. TU Delft preprint: available
from repository.tudelft.nl, 2023.

[10] T. M. Mitchell. The discipline of machine learning, volume 9. Carnegie Mellon Uni-
versity, School of Computer Science, Machine Learning âŠ, 2006.

[11] M. Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems. Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edition, 2001.

[12] J. Reyes-Ortiz, D. Anguita, A. Ghio, L. Oneto, and X. Parra. Human Activity
Recognition Using Smartphones. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C54S4K.

[13] J. De Jong P. Klop S. Dumanˇ cić, T. Hinnerichs. Herb.jl. https://github.com/
Herb-AI/Herb.jl, 2023.

[14] D. Sheremet, T. Hinnerichs, and S. Dumanˇ cić. Solving ml with ml: Effectiveness
of the metropolis-hastings algorithm for synthesizing machine learning pipelines. TU
Delft preprint: available from repository.tudelft.nl, 2023.

[15] D. Sheremet, A. Sonneveld, R. Lejeune, B. Filius, M. Butenaerts, S. Dumanˇ cić, and
T. Hinnerichs. Herb.jl. https://github.com/Herb-AI/Herb.jl, 2023.

29



[16] Michael Sipser. Introduction to the Theory of Computation. Course Technology, 2006.

[17] A. Sonneveld, T. Hinnerichs, and S. Dumanˇ cić. Solving machine learning with machine
learning: Exploiting very large-scale neighbourhood search for synthesizing machine
learning pipelines. TU Delft preprint: available from repository.tudelft.nl, 2023.

[18] A. J. Umbarkar and P. D. Sheth. Crossover operators in genetic algorithms: a review.
ICTACT journal on soft computing, 6(1), 2015.

[19] W. Wolberg, O. Mangasarian, N. Street, and W. Street. Breast Can-
cer Wisconsin (Diagnostic). UCI Machine Learning Repository, 1995. DOI:
https://doi.org/10.24432/C5DW2B.

30


