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We consider the sum of digits functions for both base phi, and for the Zeckendorf 
expansion of the natural numbers. For both sum of digits functions we present morphisms 
on infinite alphabets such that these functions viewed as infinite words are letter-to-letter 
projections of fixed points of these morphisms. We characterize the first differences of both 
functions a) with generalized Beatty sequences, or unions of generalized Beatty sequences, 
and b) with morphic sequences.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Perhaps the most famous word in language theory is the Thue-Morse word

s2 := 0110100110010110 . . . ,

fixed point of the morphism μ : 0 → 01, 1 → 10. Here a morphism is a map from infinite words to infinite words that 
preserves the concatenation operation on the set of words. The remarkable property of s2 is that it can also be obtained 
from binary expansions: s2(N) gives the parity of the sum of digits in the binary expansion of the natural number N . The 
sum of digits in base 2 written as an infinite word equals

sTM := 0112122312232334, . . . ,

and sTM is fixed point of the morphism j → j, j +1 on the infinite alphabet {0, 1, 2, . . . }. The reason for this is simple: the 
number 2N has the same number of digits as N , and 2N + 1 has one more digit than N .

The question arises: do similar connections to language theory hold for expansions in other bases?
For expansions in integer bases b, b a natural number, it is not hard to establish that the answer is positive.
In this paper we consider the case where the powers of 2 are replaced by the Fibonacci numbers (the Zeckendorf expansion), 
respectively the powers of the golden mean ϕ = (1 + √

5)/2 (the base phi expansion).
For both expansions we give in Theorem 3, respectively Theorem 11 a morphism on an infinite alphabet, such that the 

sum of digits functions of these expansions considered as infinite words are letter-to-letter projections of fixed points of 
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these morphisms. This means that the sum of digits functions are morphic words, defined in general as letter-to-letter 
projections of fixed points of morphisms.

We then will show how these results permit to give precise information on the first differences of the sum of digits 
functions. The first differences of a function f :N0 →N0 are given by the function � f defined by

� f (N) = f (N + 1) − f (N), for N = 0,1,2 . . . .

We shall focus on the signs of � f . A number N is called a point of increase of a function f : N0 → N0 if � f (N) > 0. It is 
called a point of constancy if � f (N) = 0, and a point of decrease if � f (N) < 0.

For base two it is simple to see that the points of increase of the sum of digits function sTM are given by the even 
numbers, and that the points of constancy and decrease are given by the numbers 1 mod 4, respectively 3 mod 4.

We will prove (Theorem 4 and Theorem 12) for both the Zeckendorf representation and the base phi expansion that the 
points of increase, constancy and decrease are all given by unions of generalized Beatty sequences, as studied in [1]. These 
are sequences V of the type

V (n) = p�nα� + q n + r, n ≥ 1,

where α is a real number, and p, q, and r are integers. Here we denoted the floor function by �·�.
We will also prove that the first differences of the sequences of points of increase, constancy and decrease are all morphic 

sequences. See Theorem 5 for the Zeckendorf representation, and Theorem 13 for the base phi expansion.

A prominent role in this paper, both for base phi and the Zeckendorf expansion, is played by (�nϕ�), the well known 
lower Wythoff sequence.

A standard result (see, e.g., [14]) is that the sequence �(�nϕ�) is equal to the Fibonacci word x1,2 = 1211212112 . . .
on the alphabet {1, 2}, i.e., the unique fixed point of the morphism 1 → 12, 2 → 1. More generally, we have the following 
simple lemma.

Lemma 1. ([1]) Let V = (V (n))n≥1 be the generalized Beatty sequence defined by V (n) = p�nϕ� +qn +r, and let �V be the sequence 
of its first differences. Then �V is the Fibonacci word on the alphabet {2p + q, p + q}. Conversely, if xa,b is the Fibonacci word on the 
alphabet {a, b}, then any V with �V = xa,b is a generalized Beatty sequence V = ((a − b)�nϕ�) + (2b − a)n + r) for some integer r.

Let A(n) = �nϕ�, and B(n) = �nϕ2�. It is well known that A and B form a pair of Beatty sequences, i.e., they are disjoint 
with union N . In the next lemma, V A is the composition given by V A(n) = V (A(n)).

Lemma 2. ([1]) Let V be a generalized Beatty sequence given by V (n) = p�nϕ� + qn + r, n ≥ 1. Then V A and VB are generalized 
Beatty sequences with parameters (pV A, qV A, rV A) = (p + q, p, r − p) and (pVB , qVB , rVB) = (2p + q, p + q, r).

2. The Zeckendorf sum of digits function

Let F0 = 0, F1 = 1, F2 = 1, . . . be the Fibonacci numbers. Ignoring leading and trailing zeros, any natural number N can 
be written uniquely with digits di = 0 or 1, as

N =
∑
i≥0

di Fi+2,

where didi+1 = 11 is not allowed. We denote the Zeckendorf expansion of N as Z(N), with digits di(N).
Let sZ be the sum of digits of such an expansion: for N ≥ 0

sZ(N) =
∑
i≥0

di(N).

We have

(sZ(N)) = (0,1,1,1,2,1,2,2,1,2,2,2,3,1,2,2,2,3,2,3,3,1,2,2,2, . . . )

Our first result is that sZ is a morphic sequence. The alphabet will consist of symbols 
(

j
0

)
and 

(
j
1

)
. Note that in the 

theorem 
(

j
0

) (
j+1
1

)
is a word of length 2 over this alphabet.

Theorem 3. The function sZ , as a sequence, is a morphic sequence on an infinite alphabet, i.e., (sZ(N)) is a letter to letter projection of 
a fixed point of a morphism τ . The alphabet is {0, 1, ..., j, ...} × {0, 1}, and τ is the morphism given by
71
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τ (
(

j
0

)
) =

(
j
0

) (
j+1
1

)
,

τ (
(

j
1

)
) =

(
j
0

)
.

The letter-to-letter map is given by the projection on the first coordinate: 
(

j
i

)
→ j for i = 0, 1. The fixed point xτ of τ with initial 

symbol 
(

0
0

)
projected on the first coordinate equals (sZ(N)).

Proof. See the Comments of sequence A007895 in [15] for a proof of this. �
Let IZ, CZ and DZ be the functions listing the points of increase, constancy, and decrease of the function sZ. We have1

IZ = (0,3,5,8,11,13,16, . . . ), CZ = (1,2,6,9,10,14, . . . ), DZ = (4,7,12,17,20,25, . . . ).

To state our results it is actually convenient to define DZ = (−1, 4, 7, 12, 17, 20, 25, . . . ).

When (an) and (bn) are two increasing sequences, indexed by N , then we mean by the union of (an) and (bn) the 
increasing sequence whose terms go through the set {an, bn : n ∈N}.

Theorem 4. The function IZ , the points of increase of the function sZ, is given for n = 1, 2, . . . by

IZ(n) = �nϕ� + n − 2.

The function CZ , the points of constancy of the function sZ, is given for n = 1, 2, . . . by the union of the two generalized Beatty sequences 
with terms

2�nϕ� + n − 2 and 3�nϕ� + 2n − 3.

The function DZ , the points of decrease of the function sZ, is given for n = 1, 2 . . . by

DZ(n) = 2�nϕ� + n − 4.

Proof. Let IZ be the sequence of the points of increase of the function sZ.
Projection on the second coordinate of τ yields the Fibonacci morphism σF given by

σF(0) = 01, σF(1) = 0.

Thus the second coordinates of the fixed point of τ equal the infinite Fibonacci word x0,1 = 0100101001001.... Obviously, 
the increase points of sZ occur if and only if the word ( j, 0) ( j +1, 1) occurs in the fixed point xτ of τ if and only if the 
word 01 occurs in x0,1. Since 11 does not occur in x0,1, this means that we have to shift the positions of 1’s in x0,1 by 
1. It is well known that the positions of 1 are given by the upper Wythoff sequence (�nϕ2�) = (�nϕ� + n). Since the first 
coordinate of the fixed point of τ starts from index 0, and the second from index 1, we have to replace n by n + 1, and this 
yields the first result of Theorem 4.

The points of constancy are more difficult to characterize with the fixed point xτ than the points of increase. We there-
fore take another approach. Write Z(N) = . . . w , where w is a word of length 4. Then w can be any word of the 0-1-words 
of length 4 containing no 11. Obviously, the three words w = 0000, w = 0100 and w = 1000 give points of increase.

Furthermore the numbers N with Z(N) ending in w = 0001, 1001 and w = 0010 give

Z(N) = . . . 001 ⇒ Z(N + 1)
.= . . . 002

.= . . . 010, Z(N) = . . . 0010 ⇒ Z(N + 1)
.= . . . 0011

.= . . . 0100.

We see that these give points of constancy.
Finally, we show that the N with Z(N) having suffix w = 0101 or w = 1010 give points of decrease. In the following 

two computations the .=-sign indicates that we use also non-admissible Zeckendorf representations.

Z(N) = . . . 0101 ⇒ Z(N + 1)
.= . . . 0102

.= . . . 0110
.= . . . 1000,

Z(N) = . . . 01010 ⇒ Z(N + 1)
.= . . . 01011

.= . . . 01100
.= . . . 10000.

In both cases at least one digit 1 is lost, so these N are the points of decrease.
With this knowledge we can apply Theorem 2.3 and Proposition 2.8 in the paper [9], obtaining that one part of IZ is 

given by the generalized Beatty sequence (2�nϕ� + n − 2) and the other part is given by (3�nϕ� + 2n − 3).

1 IZ is the sequence A026274 in [15].
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Again from Theorem 2.3 and Proposition 2.8 in the paper [9], we obtain that (DZ(n + 1)) is the union of the two 
generalized Beatty sequences (3�nϕ� + 2n − 1) and (5�nϕ� + 3n − 1).

It is not a simple matter to see that this union is given by the single generalized Beatty sequence (2�nϕ� +n − 4), where 
the index starts at n = 2.

Let us write V (p, q, r) = (p�nϕ� + qn + r)n≥1. We have proved so far that IZ = V (1, 1, −2), and CZ is the union of 
V (2, 1, −2) and V (3, 2, −3). If we add 2 to all terms of these sequences, we obtain the three sequences V (1, 1, 0), V (2, 1, 0), 
and V (3, 2, −1).

The triple of sequences

{V (1,1,0), V (2,1,0), V (1,1,−1)}
is known as the ‘first classical complementary triple’, i.e., these are three disjoint sequences with union N . See page 334 in 
[1]. The third sequence of this triple, V (1, 1, −1), can be written as a disjoint union of the two sequences V (3, 2, −1) and 
V (2, 1, −2), by Lemma 2. Thus

{V (1,1,0), V (2,1,0), V (3,2,−1), V (2,1,−2)}
forms a complementary quadruple. If we subtract 2 from all terms of these four sequences, the first gives IZ , the second and 
the third together, CZ. Since {IZ, CZ, DZ} is a complementary triple, with union {−1, 0, 1, 2, . . . } this implies that (DZ(n + 1))

has to be equal to V (2, 1, −4). �
Next, we give a characterization of IZ, CZ and DZ in terms of morphisms.

Theorem 5. The points of increase of the function sZ are given by the sequence IZ, which has IZ(1) = 0, and �IZ is the fixed point of 
the Fibonacci morphism 3 → 32, 2 → 3.

The points of constancy of the function sZ are given by the sequence CZ, which has CZ(1) = 1, and �CZ is the fixed point of the 
2-block Fibonacci morphism on the alphabet {1, 4, 3} given by 1 → 14, 3 → 14, 4 → 3.

The points of decrease of the function sZ are given by the sequence DZ , which has DZ(1) = −1, and �DZ is the fixed point of the 
Fibonacci morphism 5 → 53, 3 → 5.

For the proof of Theorem 5 we have to make some preparations. Let �3 := {2}, �3 := {0, 1} =: [0, 1], and define for n ≥ 4
the intervals of integers �n and �n by

�n := [Fn, Fn+1 − 1], �n := [0, Fn − 1].
The (�n) form a partition of N0 \ {0, 1}, and the (�n) satisfy

�n+1 = �n ∪ �n. (1)

For an interval I , let CZ(I) denote the points of increase lying in the interval I . Also, let �CZ(I) denote the first differences 
of the points of increase lying in the interval I , considered as a word on the alphabet {1, 2, 3, 4}. At first sight, the latter 
definition is problematic, as one has to know the first point of increase after the last element of CZ(I). However, we shall 
only consider intervals I = �n and I = �n+1, which both are followed by �n+1, and one verifies easily that the first point 
of increase in �n+1 is always the second point. Actually, this follows directly from the following lemma.

Lemma 6. For all n ≥ 3 one has CZ(�n+1) = CZ(�n) + Fn+1 .

Proof. We used the notation A + y = {x + y : x ∈ A} for a set A, and a number y. The lemma follows from the basic 
Zeckendorf recursion: the numbers N in �n+1 all have a digit 1 added to the expansion of the number N − Fn+1. �

Let h be the morphism on the alphabet {1, 3, 4} given by

h(1) = 14, h(3) = 14, h(4) = 3.

Proposition 7. For all n ≥ 5 one has (i) �CZ(�n) = hn−4(3) (ii) �CZ(�n) = hn−5(3).

Proof. The proof is by induction. For n = 5, we have �5 = [0, 4], which has two points of constancy: N = 1 and N = 2. 
Therefore CZ(�5) = 14 = h(3). Here the difference 4 is coming from N = 6, the second point of the interval �5. We further 
have �5 = [5, 7], which has one point of constancy N = 6. Therefore CZ(�5) = 3.

Suppose the result has been proved till n.
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(i) By equation (1),

�CZ(�n+1) = �CZ(�n)�CZ(�n) = hn−4(3)hn−5(3) = hn−5(h(3)3) = hn−5(143) = hn−5(h2(3)) = hn−3(3).

(ii) Directly from Lemma 6: �CZ(�n+1) = �CZ(�n) = hn−4(3). �
Proof of Theorem 5. The statements on IZ and DZ follow immediately from Lemma 1.

The statement on CZ follows from Proposition 7, part (i), since hn(3) = hn(1) for all n > 0. �
3. The base phi expansion

A natural number N is written in base phi ([2]) if N has the form

N =
∞∑

i=−∞
diϕ

i,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed. Ignoring leading and trailing 0’s, the sum is actually finite, 
and the base phi representation of a number N is unique ([2]).

We write these expansions as

β(N) = dLdL−1 . . .d1d0 · d−1d−2 . . .dR+1dR .

Let for N ≥ 0

sβ(N) :=
k=R∑
k=L

dk(N)

be the sum of digits function of the base phi expansions. We have

(sβ(N)) = (0,1,2,2,3,3,3,2,3,4,4,5,4,4,4,5,4,4,2,3,4,4,5,5,5,4,5,6,6,7,5,5,5,6, . . . ).

The case of base phi is considerably more complicated than the Zeckendorf case. We need several preparations, before 
we can prove Theorem 11 in Section 3.2, Theorem 12 in Section 3.3 and Theorem 13 in Section 3.4.

3.1. The recursive structure theorem

The result of this section was anticipated in [10], [11], and [16], and proved in [8].
The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . ) are defined by

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

For n ≥ 2 we are interested in three consecutive intervals given by

In := [L2n+1 + 1, L2n+1 + L2n−2 − 1],
Jn := [L2n+1 + L2n−2, L2n+1 + L2n−1],

Kn := [L2n+1 + L2n−1 + 1, L2n+2 − 1].
To formulate the next theorem, it is notationally convenient to extend the semigroup of words to the free group of 

words. For example, one has 110−101−100 = 100.

Theorem 8. [Recursive Structure Theorem] I For all n ≥ 1 and k = 1, . . . , L2n−1 one has β(L2n + k) = β(L2n) + β(k) =
10 . . . 0 β(k) 0 . . . 01.
II For all n ≥ 2 and k = 1, . . . , L2n−2 − 1

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.
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It is crucial to our analysis to partition the natural numbers in what we call the Lucas intervals, given by �0 := [0, 1], 
and for n = 1, 2 . . . by

�2n := [L2n, L2n+1], �2n+1 := [L2n+1 + 1, L2n+2 − 1].
If I = [k, 
] and J = [
 + 1, m] are two adjacent intervals of integers, then we write I J = [k, m].

We code the Lucas intervals with four symbols ©0 , ©1 , ©2 and ©3 (for extra readability these symbols are in color in the 
web version of this article), by a code � in the following way:

�(�0) = ©0 ,�(�1) = ©1 ,�(�2) = ©2 ,�(�3) = ©3 .

We then code �(�4) = �(�0)�(�1)�(�2) = ©0 ©1 ©2 , �(�5) = �(�3)�(�2)�(�3) = ©3 ©2 ©3 , and in general by induc-
tion, suggested by Theorem 8:

�(�2n+2) = �(�0)�(�1)�(�2) . . .�(�2n),

�(�2n+1) = �(�2n−1)�(�2n−2)�(�2n−1).

Let σ be the morphism on the alphabet {©0 , ©1 , ©2 , ©3 } defined by

σ(©0 ) = ©0 ©1 , σ (©1 ) = ©2 ©3 , σ (©2 ) = ©0 ©1 ©2 , σ (©3 ) = ©3 ©2 ©3 .

Lemma 9. For each n ≥ 0 we have �(�2n+2) = σ n(©2 ), �(�2n+3) = σ n(©3 ).

Proof. By induction. For n = 0: �(�2) = ©2 , �(�3) = ©3 . The induction step:

�(�2n+5) = �(�2n+3) �(�2n+2) �(�2n+3) = σ n(©3 )σ n(©2 )σ n(©3 ) = σ n+1(©3 ).

Also, using the simple identity σ (©2 ) ©3 σ (©2 ) = σ 2(©2 ) in the last step:

�(�2n+4) = �(�0)�(�1)�(�2) . . .�(�2n)�(�2n+1)�(�2n+2) = �(�2n+2)�(�2n+1)�(�2n+2) =
σ n(©2 )σ n−1(©3 )σ n(©2 ) = σ n+1(©2 ) �
We will now show that the fixed point xσ of the morphism σ is quasi-Sturmian, and determine its complexity function 

pσ , i.e., pσ (n) is the number of words of length n that occurs in xσ . Let ga,b the morphism on the alphabet {a, b} given by

ga,b(a) = baa, ga,b(b) = ba. (2)

The morphism ga,b is well-known, and closely related to the Fibonacci morphism. In fact, xg = bxa,b , if xg is the fixed point 
of ga,b , and xa,b is the fixed point of the Fibonacci morphism a → ab, b → a (see [3]).

Proposition 10. The fixed point xσ of σ is equal to the decoration δ(xg) of the fixed point xg of g = ga,b. The decoration morphism δ
is given by δ(a) = ©2 ©3 , δ(b) = ©0 ©1 . For all n ≥ 1 one has pσ (n) = n + 3.

Proof. For the two words ©0 ©1 and ©2 ©3 occurring in xσ we find

σ(©0 ©1 ) = ©0 ©1 ©2 ©3 , σ (©2 ©3 ) = ©0 ©1 ©2 ©3 ©2 ©3 .

In other words,

σ(δ(a)) = δ(baa) = δ(g(a)), σ (δ(b)) = δ(ba) = δ(g(b)).

Thus σ δ = δ g , which implies σ n δ = δ gn for all n. Since xσ has prefix ©0 ©1 = δ(b), with b the prefix of xg , this implies the 
first part of the proposition.

For the second part, Proposition 8 in [4] is not conclusive, as we do not know a priori the constant n0. But there 
is a direct computation possible. The complexity function of the Sturmian word xg is given by p(n) = n + 1. We have, 
distinguishing between words of even and odd length, and then splitting according to words occurring at even or odd 
positions in xσ ,

pσ (2n) = p(n) + p(n + 1) = n + 1 + n + 2 = 2n + 3, pσ (2n + 1) = p(n + 1) + p(n + 1) = 2n + 4. �
Proposition 10 in combination with the main result of the paper [13], explains why the factors of xσ have a simple 

return word structure. This lies at the basis of Theorem 12 in Section 3.3.
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3.2. A morphic sequence representation of sβ

The image under a morphism δ of the fixed point x of a morphism, will be called a decoration of x. It is well known that 
such a δ(x) is a morphic sequence, i.e., the letter to letter projection of the fixed point of a morphism. This is the way we 
formulate the morphic sequence result in the next theorem.

Theorem 11. The function sβ , as a sequence, is a decoration of a morphic sequence on an infinite alphabet, i.e., (sβ(N)) is an image 
under a morphism δ of a fixed point of a morphism γ . The alphabet is {0, 1, ..., j, ...} × {©0 , ©1 , ©2 , ©3 }, and γ is the morphism given 
for j ≥ 0 by

γ (
(

j

©0

)
) =

(
j

©0

)(
j

©1

)
,

γ (
(

j

©1

)
) =

(
j

©2

)(
j

©3

)
,

γ (
(

j

©2

)
) =

(
j+2

©0

)(
j+2

©1

)(
j+2

©2

)
,

γ (
(

j

©3

)
) =

(
j+1

©3

)(
j+2

©2

)(
j+1

©3

)
.

The decoration map is given by the morphism δ:

δ(
(

j

©0

)
) = 0 + j,1 + j, δ(

(
j

©1

)
) = 2 + j, δ(

(
j

©2

)
) = 2 + j,3 + j, δ(

(
j

©3

)
) = 3 + j,3 + j.

The image δ(xγ ) of the fixed point xγ of γ with initial symbol 
(

0
©0

)
equals (sβ(N)).

Proof. One combines Theorem 8 with Lemma 9. We see from part I of Theorem 8, that the number of 1’s in the expansion 
of N from �2n+2 is 2 more than the number of 1’s in the corresponding N ′ in �0�1 . . .�2n . This gives the three upper 
indices j + 2 in γ (

(
j

©2
)
). Similarly, part II gives that the number of 1’s in the three intervals �2n−1, �2n−2, and �2n−1 is 

increased by 1, by 2, and respectively 1 for the corresponding N ′ in the interval �2n+1. This gives the three upper indices 
in γ (

(
j

©3
)
). The lower indices are given by the morphism σ . This all happens at the level of the shifted versions of the 

four intervals �0, �1, �2 and �3. Here �0 = [0, 1] with sβ(0) = 0 and sβ(1) = 1; �1 = {2} with sβ(2) = 2; �2 = [3, 4] with 
sβ(3) = 2 and sβ(4) = 3; �3 = [5, 6] with sβ(5) = 3 and sβ(6) = 3. This yields the decorations δ, taking in to account the 
corresponding increments of the sum of digits. �

We illustrate Theorem 11 with the following table.

N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
sβ(N) 0 1 2 2 3 3 3 2 3 4 4 5 4 4 4 5 4 4
Lucas interval �0 �1 �2 �3 �4 �5

shifted Lucas intervals �0 �1 �2 �3 �0 �1 �2 �3 �2 �3

©0 ,©1 ,©2 ,©3 -coding ©0 ©1 ©2 ©3 ©0 ©1 ©2 ©3 ©2 ©3

Remark. In the paper [7] the base phi analogue of the Thue-Morse sequence, i.e., the sequence (sβ (N) mod 2), is shown 
to be a morphic sequence. This result follows also from Theorem 11, by mapping 2 j to 0, and 2 j + 1 to 1. The morphisms 
found in this way are on a larger alphabet than the morphism in [7].

3.3. Generalized Beatty sequences for sβ

Let Iβ be the sequence listing the points of increase of sβ(N). We see that the first six points of increase are Iβ(1) = 0, 
Iβ(2) = 1, Iβ(3) = 3, Iβ(4) = 7, Iβ(5) = 8, Iβ(6) = 10. Similarly we define Cβ and Dβ .

Theorem 12. The sequence Iβ , the points of increase of the function sβ , is given by the union of the two generalized Beatty sequences

(�nϕ� + 2n)n≥0, and (4�nϕ� + 3n + 1)n≥0.

The sequence Cβ , the points of constancy of the function sβ , is given by the union of the four generalized Beatty sequences

(3�nϕ� + n + 1)n≥1, (4�nϕ� + 3n + 2)n≥0, (7�nϕ� + 4n + 2)n≥0, and (11�nϕ� + 7n + 4)n≥1.

The sequence Dβ , the points of decrease of the function sβ , is given by the union of the three generalized Beatty sequences

(4�nϕ� + 3n − 1)n≥1, (7�nϕ� + 4n)n≥1, and (7�nϕ� + 4n + 4)n≥1.
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Proof. I: Points of increase

Any occurrence of a ©0 gives two points of increase, namely the pair 0 + j, 1 + j, and the pair 1 + j, 2 + j. Here we use 
that ©0 is always followed by ©1 . Similarly, any occurrence of a ©2 gives a point of increase 2 + j, 3 + j.

As a consequence we obtain the numbers N which are point of increase by the sequences of occurrences of ©0 , and those 
of ©2 . How do we obtain these sequences? We have to study the return words to ©0 , and ©2 . The sets of these return words 
are respectively

{©0 ©1 ©2 ©3 , ©0 ©1 ©2 ©3 ©2 ©3 }, and {©2 ©3 , ©2 ©3 ©0 ©1 }.

Both ©0 , and ©2 induce the descendant morphism ga,b (the descendant morphism is a generalization of the derived 
morphism, see [12]). Here we coded b := ©0 ©1 ©2 ©3 , a := ©0 ©1 ©2 ©3 ©2 ©3 , respectively b := ©2 ©3 , a := ©2 ©3 ©0 ©1 .

The occurrences of ©0 in the fixed point of σ occur at distances given by the lengths of δ(©0 ©1 ©2 ©3 ) and δ(©0 ©1 ©2 ©3 ©2 ©3 ). 
These are |δ(©0 ©1 ©2 ©3 )| = 7, and |δ(©0 ©1 ©2 ©3 ©2 ©3 )| = 11. It then follows from Lemma 1 that the increase points are given 
by the union of the two generalized Beatty sequences V ′(4, 3, 0) and V ′(4, 3, 1), where the ′ indicates that these start from 
index 0. Similarly, the occurrences of ©2 have first differences 7 and 4, giving the generalized Beatty sequence V (3, 1, −1).

This is not yet the first result in Theorem 12, but by Lemma 2 the sequence V (1, 2, 0) splits into the two sequences 
V (3, 1, −1) and V (4, 3, 0). Adding N = 0 to V (1, 2, 0) and to V (4, 3, 0) then yields the result on Iβ in Theorem 12.

II: Points of constancy

Any occurrence of a ©1 gives a point of constancy, namely the pair 2 + j, 2 + j. Here we use that ©1 is always followed 
by ©2. Similarly, any occurrence of a ©3 gives a point of constancy 3 + j, 3 + j.

But there are more points of constancy. At the inner boundary of �2�3 in the quadruple �0�1�2�3 occurs 3, 3. 
However, this is not the case at the inner boundary of the interval �2�3 in the triple �3�2�3 in �5. Since �(�0�2�3�4)

= ©0 ©1 σ(©1 ), and �(�3�2�3) = σ(©3 ) these points of constancy occur if and only if σ(©1 ) occurs in the fixed point of σ .
This still does not yet exhaust all possibilities: there is the point N = 14 with sβ(N) = sβ(N + 1) = 4 in �5, not yet 

covered by the previous sequences. This induces points of constancy occurring at all shifted �5, which occur if and only 
if σ(©3 ) occurs in the fixed point of σ . Since any �k for k > 5 can be written as a union of shifted versions of the three 
intervals �0�1�2�3, �4, and �5, we have covered all possibilities.

As a consequence we obtain the numbers N which are point of increase by the sequences of occurrences of ©1 , ©3 ,
σ(©1 ), and σ(©3 ). As before, all four have a set of two return words, and a descendant morphism that is equal to g . For
©1 the δ-images have lengths 11 and 7, for ©3 the δ-images have lengths 7 and 4, for σ(©1 ), the δ-images have lengths 29 
and 18, and for σ(©3 ) the δ-images have lengths 18 and 11. Application of Lemma 1 then gives the four generalized Beatty 
sequences of Cβ in Theorem 12.

III: Points of decrease

The first point of decrease is N = 6, which occurs at the end of �3, so N + 1 = 7 occurs at the beginning of �4 =
�0�1�2. This gives occurrences of points of decrease at every occurrence of ©3 ©0 . This word has two return words: b :=
©3 ©0 ©1 ©2 , and a := ©3 ©0 ©1 ©2 ©3 ©2 . These induce as descendant morphism the morphism g , once more. As |δ(a)| = 11, and 
|δ(b)| = 7, this leads to the sequence V ′(4, 3, −1).

The next point of decrease is at N = 11, occurring at the inner boundary of the adjacent �4�5. The third point of 
decrease is at N = 15, which lies inside �5. The coding of �5 is �(�5) = ©3 ©2 ©3 = σ(©3 ). As in the previous section, this 
gives the sequence V (7, 4, 0) for the occurrences of the decrease points N = 11, and later shifts. Then V (7, 4, 4) gives the 
occurrences of the decrease points N = 15 = 11 + 4, and later shifts. Again, since any �k for k > 5 can be written as a union 
of intervals �0�1�2�3, �4, and �5, we have covered all possibilities. This finishes the Dβ part of Theorem 12. �
3.4. Morphisms for the first differences

As for the Zeckendorf expansion, we have seen in the previous section that the points of constancy have a more compli-
cated structure than the points of increase or the points of decrease. This phenomenon expresses itself also in the ‘morphic 
versions’ of the characterization.

Theorem 13. The points of increase of the function sβ are given by the sequence Iβ , which has Iβ(1) = 0, and �Iβ is the fixed point of 
the morphism on the alphabet {1, 2, 4} given by

1 → 12, 2 → 4, 4 → 1244.

The points of constancy of the function sβ are given by the sequence Cβ , which has Cβ(1) = 2, and �Cβ is a morphic sequence, given by 
the letter-to-letter projection 1 → 1, 2 → 2, 3 → 3, 3′ → 3, 4 → 4 of the fixed point of the morphism on the alphabet {1, 2, 3, 3′, 4}
given by

1 → 43, 2 → 21, 3 → 21, 3′ → 13′43, 4 → 13′4.
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The points of decrease of the function sβ are given by the sequence Dβ , which has Dβ(1) = 6, and �Dβ is the shift by one of the fixed 
points of the morphism on the alphabet {2, 4, 5, 7} given by

2 → 542, 4 → 542, 5 → 7, 7 → 7542.

Proof. We use in all three cases the return words to ©0 which are b := ©0 ©1 ©2 ©3 and a := ©0 ©1 ©2 ©3 ©2 ©3 to follow the 
occurrences of the points of increase, constancy and decrease. The important property of these return words is that the first
occurrence of the points of increase is at the same position in the decorated a and b, and the same holds for the points of 
constancy and decrease.

Proof. I: Points of increase

We take in to account the increase in the differences of the occurrences of the increase points in the decorations

δ( 
(

j

©0
)(

j

©1
)(

j

©2
)(

j

©3
)
) = 0 + j, 1 + j, 2 + j, 2 + j, 3 + j, 3 + j, 3 + j,

δ( 
(

j

©0
)(

j

©1
)(

j

©2
)(

j

©3
)(

j

©2
)(

j

©3
)
) = 0 + j, 1 + j, 2 + j, 2 + j, 3 + j, 3 + j, 3 + j, 2 + j, 3 + j, 3 + j, 3 + j,

of the extended return words a and b. For a these differences are 1, 2, 4 and 4. For b the differences between the occurrences 
of the increase points are 1, 2, and 4. Recall here, that the last 4 comes from the first increase point of the next word. It 
follows that we can obtain �Iβ by decorating the fixed point of the morphism g given by a → baa, b → ba with the two 
words 124 and 1244. To turn this decorated fixed point in to a fixed point, we apply the natural algorithm (cf. the proof of 
Corollary 9 in [5]). In this case this gives the following block map on the alphabet {a1, a2, a3, a4, b1, b2, b3}:

a1a2a3a4 → b1b2b3a1a2a3a4a1a2a3a4

b1b2b3 → b1b2b3a1a2a3a4.

The most efficient way to turn this in to a morphism:

a1 → b1b2, a2 → b3, a3 → a1a2a3a4, a4 → a1a2a3a4

b1 → b1b2, b2 → b3, b3 → a1a2a3a4.

The associated letter-to-letter map λ is given by λ(a1a2a3a4) = 1244, λ(b1b2b3) = 124. We see that we can consistently 
merge a1 and b1 to the letter 1, a2 and b2 to the letter 2, and a3 and b3 to the letter 4. Renaming a4 by 4, this then yields 
the morphism 1 → 12, 2 → 4, 4 → 1244 as generating morphism for �Iβ .

II: Points of constancy

We follow the same strategy as in part I. The differences of the occurrences of points of constancy in the decorated 
versions of a and b are now 2, 1, 4 and 3, 1, 3, 4. Decorating the fixed point of the morphism g on {a, b} by a → 214, and 
b → 3134 this time leads to a morphism on the alphabet {1, 2, 3, 3′, 4} given by

1 → 43, 2 → 21, 3 → 21, 3′ → 13′43, 4 → 13′4.

The letter-to-letter projection 1 → 1, 2 → 2, 3 → 3, 3′ → 3, 4 → 4 of the fixed point of this morphism on the alphabet 
{1, 2, 3, 3′, 4} yields the sequence �Cβ (where Cβ(1) = 2).

III: Points of decrease

The differences of the occurrences of points of decrease in the decorated versions of a and b are 7 and 5, 4, 2. Decorating 
the fixed point of the morphism ga,b by a → 7, and b → 542 this time leads to a morphism on the alphabet {2, 4, 5, 7}
given by

2 → 542, 4 → 542, 5 → 7, 7 → 7542.

The unique fixed point of this morphism on the alphabet {2, 4, 5, 7} yields the sequence �Dβ , when we put Dβ(1) =
−1. �
4. Alternative proofs of Theorem 12 and 13

The proofs of Theorem 12 and 13 have been based entirely on the properties of the infinite morphism γ of Theorem 11. 
The question rises whether there is also a more local approach based on the digit blocks of the expansion as was used 
for the points of constancy, and the points of decrease of the Zeckendorf sum of digits function. Here we give a sketch 
of how this might be achieved for the points of increase of the base phi expansion. We say a number N is of type B if 
d1d0d−1(N) = 000, and of type E if d2d1d0(N) = 001. One can then prove the following.
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Proposition 14. A number N is a point of increase of (sβ(N)) if and only if N is of type B or of type E.

Next, Theorem 5.1 from the paper [6] gives that type B occurs along the generalized Beatty sequence (�nϕ� + 2n)n≥0, 
and one can deduce from Remark 6.3 in the same paper that type E occurs along the generalized Beatty sequence (4�nϕ� +
3n + 1)n≥0. This gives the alternative proof of the I B -part of Theorem 12, based on Proposition 14.

We next give a proof of the �IB part of Theorem 13, directly from Theorem 12 by a purely combinatorial argument.

Alternative proof of Theorem 13. Let

IB := (�nϕ� + 2n)n≥0, IE := (4�nϕ� + 3n + 1)n≥0.

By Lemma 1, the difference sequence of the sequence (�nϕ� + 2n, n ≥ 1) is equal to the Fibonacci word x4,3 =
4344344344 . . . on the alphabet {4, 3}, and the difference sequence of the sequence (4�nϕ� + 3n + 1, n ≥ 1) is the Fi-
bonacci word x11,7 = 11, 7, 11, 11, 7, . . . . However, in Theorem 12 the sequences start at n = 0, yielding the two difference 
sequences

�IB = 3x4,3 = 34344344344 . . . , �IE = 7x11,7 = 7,11,7,11,11,7, . . . .

Recall that the sequences bxa,b are fixed points of the morphisms ga,b from Equation (2) given by ga,b(a) = baa, ga,b(b) = ba. 
The return words of 3 in �IB are 34 and 344. We code these words by the differences that they yield between successive 
occurrences of 3’s, i.e., by the letters 7 and 11. Then, since

g4,3(34) = 34 344, g4,3(344) = 34 344 344,

the return words induce a derived morphism

7 → 7,11, 11 → 7,11,11.

This derived morphism happens to be equal to g11,7, the morphism giving the sequence �IE. This implies that to merge the 
two sequences IB and IE to obtain I , one has to replace the 3’s in �IB by 1, 2. This decoration of �IB, induces a morphism 
μ on the alphabet {1, 2, 4} in the usual way, given by

μ(1) = 12, μ(2) = 4, μ(4) = 1244.

This proves the theorem. �
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