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ABSTRACT

The continuous shift of various industries towards internet-based services have caused
an exponential growth in the amount of data produced over the past few years. On top
of this, the increasing need for real-time analytics and the increase in data velocity have
made asynchronous, event-driven applications the norm. In this context, the reactive
programming paradigm has gained much traction as it focuses on the propagation of
change and composing/transforming streams of data. The industry standard reactive
programming library for the JVM, .NET and Javascript ecosystems is the Reactive Exten-
sions (Rx) library. However, despite being well equipped to deal with asynchronous data,
it does not offer any way of scaling the computation on multiple machines. In this thesis,
we attempt to lay the groundwork for a scalable Rx library by implementing infrastruc-
ture and operators for remote execution of Rx streams.
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1.1. INTRODUCTION
The growth of the Internet since the turn of the millenium and the increasing num-

ber of applications and services that have millions or even billions of users have given
birth to a new domain area dedicated to managing and processing "big data".

As a term, big data has been used since the 90s[1], with a number of research papers[2–
4] attempting to provide a formal definition and identify challenges and opportunities.
In a nutshell, the term refers to data sets that cannot be handled by traditional software
tools in a tolerable amount of time, due to their size, complexity or velocity. Common
challenges in this area include effective storage, processing, querying and visualization.

Thus, modern applications typically have to be able to process varying amounts of
data that arrive from different sources (often times in differing formats: structured or
not) and with different velocities. In his 2012 paper "Your mouse is a database"[5], E.Mei-
jer argues that along each of these 3 dimensions of volume, velocity and variety we find
a well-known database technology.

For example, traditional RDBMS systems handle relatively small sets of well-structured
data, which is consumed in a pull manner. Systems based on MapReduce[6] such as
HBase[7] also handle well-structured data in a synchronous/pull fashion, but this time
the system is able to handle large amounts of data by distributing it on a cluster of ma-
chines.

On the other hand, the increase in data velocity and the rising need of real-time ana-
lytics have brought push-based, event-driven systems into the limelight. This led to the
rise in popularity of the reactive programming paradigm which revolves around asyn-
chronous data streams and the propagation of change and is well-suited for the devel-
opment of event-driven applications.

One such example is the reactive extensions (Rx) library which enables users to co-
ordinate and orchestrate asynchronous push-based computations. Currently, there are
a number of implementations of Rx in different programming languages including C#,
Java, Scala, Clojure, Javascript and Kotlin, among others.

Rx offers a large number of operators that allow developers to process streams of
asynchronous events. Additionally, many implementations of Rx use Schedulers to con-
trol an Observable’s transition between threads in a multi-threaded environment. This
gives developers the option of running multiple Rx streams in parallel. However, par-
allelizing an application by executing it on multiple threads is becoming insufficient in
this day and age.

Over the past few years, the constant increase in data volume coupled with stalling
processor speeds and I/O capabilities have caused a shift in the development of comput-
ing systems. In order to keep up with this growing volume of data, produced by either
the web, business systems or scientific instruments, applications are forced to scale out
to distributed systems.

While certainly appealing from a potential benefits point of view, the development
of distributed applications comes with its own set of challenges and pitfalls. The first
big challenge is finding an adequate programming model that is both expressive and
well-equipped to deal with parallelism and asynchronous events. The second important
challenge, characteristic to the distributed environment, is designing a system that can
handle faults.
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We believe that the Rx programming model is a good answer to the first challenge,
being built from the ground up with the purpose of handling asynchronous, push-based
event streams. However, out of the box it only offers parallelism via multi-threading, by
using the Scheduler abstraction. This thesis aims to take the first steps towards executing
an Rx program on multiple machines, by extending the library with operators for fault-
tolerant remote execution. The addition of such operators would facilitate Rx users to
look towards scaling Rx computations across clusters.

1.2. BACKGROUND
The reactive extensions library defines a set of abstractions and operators that en-

able users to fluently create, compose and consume asynchronous, push-based data
streams. From now on, whenever we refer to Rx, we specifically refer to its RxMobile
flavor, which is a lightweight implementation in Java and Scala, targeting the Android
environment.

The main abstractions defined by the library are the Observable<T> and Observer<T>
interfaces which are used to model asynchronous data streams with values of type T.

The Observable represents a source of events ordered in time and can emit three
different types of events: a value, an error or a signal that the stream stream is completed.
An additional restriction placed on the semantics of the stream is that the stream ends
when an error or completed event is sent. This practically means that a stream consists
of zero or more values followed by either an error or a completed event.

The events emitted by an observable are captured asynchronously with the help of
an Observer, which represents a consumer of the stream. Observers are typically created
by defining the functions that will execute when a value, error or completed event is
emitted. Implementations of an observer can be assumed to be synchronized, which
means that a maximum of only one event will be treated at any given time. In the Rx
world, connecting the stream of events with its consumer(s) is called subscribing, and it
will cause the events to be sent to the subscribed observers.

With this in mind, let’s look at the code snippet below that shows an example Rx
query where lines is an Observable<String> that reads a file line by line.

val lines: Observable[String] = Observable.create(...)
lines.flatMap(line => Observable(line.split(" "))

.scanLeft(0)((count, word) => count + 1)

.subscribe(println, Console.err.println, () => println("Completed")

The query in this example implements the by now famous word count example. Ev-
ery line received by the flatMap operator is split at the space character and the result-
ing words are pushed as a new Observable to the scanLeft operator. For every word re-
ceived, the scanLeft operator increments a counter that starts with an initial value of 0
and pushes the updated counter value to the stream observer that will print each event
received on the screen.

One thing to note is that Observables in Rx are lazy and by default execute syn-
chronously on a single thread. When a new Observable is created, no events are pushed
until an observer subscribes and when that happens, any event produced is sent in a
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synchronous fashion, on the same thread on which the subscribe method is called. This
means that in the example above, the subscribe function will block the thread until the
whole file is read from disk or until an error is raised.

Asynchronous execution and multithreading is supported in Rx via operators that
instruct observables to operate on particular Schedulers. The two operators in case
are subscribeOn, which instructs the stream to run the create function on a scheduler
and observeOn, which instructs the stream to send events to its observers on a specific
scheduler.

The previously presented example could be parallelized by having the processing of
each line execute on a different thread. This could be easily achieved by changing the
flatMap lambda to:

line => Observable(line.split(" ").observeOn(NewThreadScheduler())

In this case, the work of actually splitting the line into words is still executed on the
thread that called the subscribe function, but the rest of the operators in the stream will
execute on a new thread.

If we consider the example presented above, one could gain significant speedup by
executing parts of the query in parallel, on multiple threads. Analogously, one could
imagine use cases where it would be useful to execute parts of an expensive query in
parallel, but this time on multiple remote machines.

1.3. GOALS AND CONTRIBUTIONS
The main goal of this work is to show a possible approach to designing and imple-

menting a system that extends the Rx library with operators for fault-tolerant, remote
execution, while maintaining an interface consistent with the vanilla Rx library.

Such operators have multiple potential uses. Out of the box, they enable users to
write long-running, fault-tolerant queries that integrate seamlessly with the rest of the Rx
API. Additionally, they allow developers to parallelize parts of an Rx stream over multiple
machines, which can bring significant speedup in certain classes of applications. Lastly,
these operators have potential to be used as building blocks for higher-level abstractions
such as cluster schedulers that efficiently distribute a stream over multiple machines and
coordinate its execution.

In order to achieve this goal, the primary contributions of this thesis are:

• A novel implementation of the Raft consensus algorithm, based on the Rx libray

• A extension to Raft that allows clients to send and execute arbitrary code on the
remote statemachine.

• An extension to the Raft consensus algorithm that allows a cluster to forward mes-
sages to another cluster on behalf of the client. This has the benefit of freeing the
client from having to act as a message broker between the two clusters.

• The implementation of a replicated statemachine capable of executing Rx streams.
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• Orthogonal extensions to the Rx library that allow users to interact with remote
streams in a way similar to standard Rx operators.
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RELATED WORK

The amount of data produced has been growing significantly over the past few years,
which in turn has driven up the demand for data processing frameworks. Additionally,
the increasing need for real-time analytics, driven by internet-based services, has shifted
the focus from batch processing to stream processing systems. Currently, there are a num-
ber of well-known stream processing frameworks, the most notable of which are: Apache
Spark, Apache Flink, Apache Storm, and Google Millwheel. This chapter will take a look
at these frameworks’ features and their approach in dealing with faults.
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2.1. APACHE STORM
Apache Storm[1] is a real-time, distributed and fault-tolerant stream processing frame-

work that aims to make it easy to reliably process unbounded streams of data.
Applications in Storm are designed as topologies[2], which are directed graphs with

vertices representing computation and edges representing streams of data (represented
as tuples) flowing between computation nodes. Graph vertices in a Storm topology can
be one of two types: either spouts or bolts. Spouts are stream sources for the topology
and read data from an external source (typically queues such as Kafka[3] or Kestrel[4])
and emit it into the topology. On the other hand, bolts represent the computation part
of the stream and are responsible for processing incoming tuples and passing the results
to the next set of bolts downstream.

Clients interact with the system by submitting topologies to a master node (called
the Nimbus), which is responsible for distributing and coordinating the execution of a
topology. The computation vertices of a topology are run on worker nodes, which are
used to execute on or more worker processes. Each worker node also runs a supervisor
process that is responsible for communicating with the master node. The supervisor’s
job is to receive assignments from the master node, spawn worker processes and moni-
tor their health.

From a fault-tolerance point of view, both the Nimbus and supervisors are fail-fast
and stateless and all their state, as well as the coordination between them is managed by
Zookeeper[5] or kept on local disk(s). This makes sure that in case of master node fail-
ures the workers will continue to make progress, and in case of worker failures they can
be restarted by the supervisor processes. However, Nimbus is still a potential point of
weakness in the system, since if it is down, users will not be able to submit new topolo-
gies and running topologies can’t be re-assigned to different machines.

Out of the box, Storm provides two types of semantic guarantees: at least once, or
at most once message processing semantics. Using the at most once processing seman-
tics, tuples entering a topology are either processed once or not at all, while using at
least once semantics the tuple is guaranteed to process once, but it might also be pro-
cessed multiple times. This potential shortcoming is addressed by Trident[6], which is
an alternative interface to Storm that offers exactly once message processing semantics.
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2.2. APACHE SPARK AND SPARK STREAMING
Apache Spark[7–9] is an open-source cluster computing framework that builds upon

frameworks like MapReduce[10] and Dryad[11] by introducing a data structure that en-
ables efficient data reuse in a broad range of applications. This abstraction is called a
resilient distributed dataset (RDD) and is an immutable, fault-tolerant, partitioned col-
lection of records that allows users to explicitly persist intermediate results in memory.
Most cluster computing frameworks based on MapReduce write their intermediate re-
sults to stable storage (e.g. a distributed file system), which incurs significant overheads
due to serialization, replication and disk I/O. Keeping intermediate results in memory
enables Spark to be significantly faster than MapReduce for iterative algorithms, which
typically visit their dataset or partial results multiple times.

Spark defines a rich set of operators on RDDs that allows users to transform data or
control RDD partitioning to optimize data placement. RDDs can only be created through
deterministic operations on data in stable storage or other RDDs. Additionally, each
RDD keeps information about how it was created/computed (called its lineage), which
allows the framework to recompute partitions starting from data in stable storage.

At their core, RDDs are targeted at batch applications that apply the same operations
on a whole dataset. On top of this data abstraction, Spark provides a number of libraries
that provide support for structured and semi-structured data [12], machine learning[13]
and graph processing[14].

On an architectural level, Spark relies on a distributed storage system(such as HDFS,
Cassandra or Amazon S3) and a cluster manager (either the Spark native cluster man-
ager, Apache Mesos[15] or Hadoop Yarn[16]). Spark users write their applications in a
functional programming style, by invoking operations such as map, filter and reduce on
RDDs. The execution of these operators is scheduled by the cluster manager on Spark’s
worker nodes. The worker nodes have the responsibility of receiving data, storing parti-
tions of input/RDDs and executing tasks.

The scheduling strategy is very similar to Dryad’s and it will try to assign tasks to ma-
chines based on data locality. If a job needs to process data that is available in memory
on a certain machine, then the job will be scheduled on that machine.

Fault-tolerance is achieved by keeping track of an RDD’s lineage. If a job fails, but
the input RDDs are still available, then it will be re-run using the existing inputs. In the
worst case scenario, missing RDDs will be recomputed using data from stable storage.

Natively, Spark is a framework for batch data processing, but it does provide the Spark
streaming[17] extension for streaming analytics. The main abstraction behind this ex-
tension are discretized streams (D-streams), which structure a streaming computation
as a series of micro-batch computations. D-streams are built on top of RDDs, which en-
ables Spark streaming to leverage Spark’s scheduling and fault-tolerance mechanisms,
but comes with a latency penalty equal to the micro-batching interval.
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2.3. GOOGLE MILLWHEEL
Google Millwheel[18] is a scalable, low-latency and fault-tolerant stream processing

framework. Computations in Millwheel are expressed as directed graphs, where nodes
represent the user’s computation logic and records are delivered continuously along the
edges of the graph. The Millwheel system manages fault-tolerance, persistent state and
the continuous flow of records between nodes and guarantees exactly once message de-
livery from the user’s perspective.

From an architectural point of view, each computation in the graph can run on one or
multiple machines, with load-balancing and distribution handled by a replicated mas-
ter. Computations are split in a set of key intervals and assigned to sets of machines.
In response to varying system load, these key intervals can be moved around, split or
merged, depending on the needs of the system. Any persistent state in the system is
saved to a reliable database such as Bigtable[19] or Spanner[20]. Failure recovery is han-
dled by reading metadata from this backing store whenever a key interval is assigned to
a new owner.

One of the contributions of Millwheel is the implementation of a low watermark sys-
tem, which is used to provide a bound on the timestamps of future records arriving at a
computation. The low watermark system allows the user to determine if he has a com-
plete picture of the data up to that time. For data consistency, this system is imple-
mented as a central authority and tracks all low watermarks values and writes them to
reliable storage. Due to the usage of low watermarks, Millwheel does not require a strict
monotonicity for inputs and can process out-of-order data.
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2.4. APACHE FLINK
Similar to Spark, Apache Flink[21, 22] is an open-source system for processing both

streaming and batch data. In Flink, a program is a directed acyclic graph of stateful op-
erators connected by data streams.

However, in contrast to Spark, where both the batch and stream processors were run-
ning on top of a batch processing engine, Flink does the opposite: it is a system based on
a streaming dataflow engine that is used to execute both stream and batch processing
jobs. Flink programs can be written using a multitude of APIs, but eventually they will all
be transformed into dataflow graphs to be executed by this engine. For efficient execu-
tion, operators can be parallelized into multiple instances and data streams can be split
into partitions.

From a system architecture point of view, a Flink cluster is composed of three types
of processes: the client, the job manager and at least one task manager. The client trans-
forms the user program into a dataflow graph and submits it to the job manager, which
is responsible for scheduling operators, tracking state and progress and coordinating
checkpoints and recovery. Finally, the task mangers are the worker nodes in a Flink clus-
ter; they process one or more operators and report progress to the job manager.

Regarding fault-tolerance, Flink offers reliable execution and exactly-once process-
ing semantics. The system is built with the assumption that its data sources are persis-
tent and replayable (e.g. files or durable message queues such as Apache Kafka[3]) and
failures are handled by checkpointing and partial re-execution. In order to take con-
sistent checkpoints of parallel operators without halting their execution, Flink uses a
mechanism called Asynchronous Barrier Snapshotting[23]. This injects special control
sequences (barriers) into data streams, which are then used by operators to decide when
to snapshot (effectively splitting the stream into logical sub-streams).
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3
THE STATE MACHINE APPROACH

Distributed systems are often structured in terms of services and clients. Typically, each
service runs on one or more servers and exposes operations that the clients can invoke via
network requests. Obviously, the most simple way to implement a service is to use a sin-
gle, centralized server, but this approach is only as fault tolerant as the physical machine
used to host that service. If this level of fault tolerance is not acceptable, a fault tolerant
version of the service can be implemented by replicating the server and running replicas
on multiple isolated machines that can fail independently. This general solution is called
the state machine approach[1] (or state machine replication) and, at a high-level, is a
method of obtaining a fault tolerant service by replicating servers and coordinating client
interactions with server replicas.

15
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3.1. STATE MACHINES
Services, servers and most programming structures for supporting modularity de-

fine state machines. A state machine is a mathematical model of computation that con-
sists of state variables (which encode its possible states) and commands which are used
to transform its state. A state machine can be in exactly one of its possible states at
any given point in time and its commands can change the state variables and/or pro-
duce some output. The state machine commands are implemented by deterministic
programs and each executes atomically with respect to other commands.

Formally, a state machine is defined by the tuple (S, I, O, Tf, Of, Start) where:

• S = set of possible states
• I = set of inputs
• O = set of outputs
• Tf = transition function (Input x State -> State)
• Of = output function (Input x State -> Output)
• Start = initial starting state

A client interacts with a state machine by sending a request to execute a command
(Input). The request should contain information about the command that needs to be
executed and any data that might be needed by the state machine during execution. Af-
ter executing the command, the state machine might change its internal state and/or
produce output to another system, another peripheral device, or to clients awaiting re-
sponses from previous commands. In a nutshell, a state machine defines a determinis-
tic computation that reads and processes a stream of requests and occasionally produces
some output. An important characteristic of state machines is that their output are com-
pletely determined by the sequence of Inputs processed, independent of time or other
factors.

3.2. FAULT TOLERANCE WITH REPLICATED STATE MACHINES
A fault-tolerant version of a state machine can be implemented by replicating it and

running a replica on multiple isolated physical machines in a distributed system.
The basic idea is that, if each replica starts in the same Start state, executes the same

commands in the same order (triggered by the same sequence of Inputs), they will each
do the same thing and end up in the same State while generating the same Outputs.
Intuitively, a fault in one of the replicas would be noticeable as a difference in the internal
State or in the Outputs produced compared to the other (non-faulty) replicas. This is
only true if the state machine is deterministic. If it is not, we couldn’t know for sure if the
variance in State/Outputs is caused by faults or non-determinism.

In order to tolerate a number of failures f, an ensemble implementing a replicated
state machine must contain at least 2f + 1 replicas. In this case, the final output of the
replicated state machine is the Output produced by the majority of the replicas. This
means that the minimum number of replicas needed for fault tolerance is 3, in which
case the system can tolerate 1 failure and the other 2 replicas are used to establish the
correct State and Output. Two replicas are not enough since there is no way to tell which
replica is faulty and which one is not.
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Popular examples of replicated state machines include Chubby[2] and Zookeeper[3]
which are systems that provide hierarchical key-value stores and synchronization prim-
itives. They are typically used for storing configuration data and coordinating clients.

However, replicated state machines are just the basic building block for making a
system fault-tolerant. They can be employed in a number of different ways, depending
on the usage scenario.

The most common setup involves a replicated state machine (typically made out of
3 or 5 servers) which other nodes in the system use to coordinate their activities. This is
commonly used by systems that provide configuration management or distributed locks
[2, 3].

Another common setup is where a leader is used to coordinate the other nodes in the
system and the replicated state machine is used to store critical meta-data and coordi-
nate leader elections. This approach is typically used in large-scale storage systems that
rely on a single cluster leader like GFS[4], HDFS[5] and RAMCloud[6].

In the case of systems that replicate very large amounts of data[7–9], a third approach
is used, where data is partitioned across many replicated state machines and any oper-
ations that span multiple partitions use a two-phase commit protocol to maintain con-
sistency.

3.3. CONSENSUS
Having all state machines start in the same Start state is trivial, which means that

the key to obtaining a fault-tolerant state machine is to ensure that all replicas receive
and process the same sequence of Inputs. This challenge, also known as consensus, is
a fundamental problem in fault-tolerant distributed systems and is faced by all systems
that need to be consistent while also providing high levels of availability.

Replicated state machines are typically implemented using a replicated log that is
used to store the Inputs before their appropriate commands are executed. In order for
the state machines to process the same sequence of commands, all the logs must con-
tain the same Inputs, in the same order. That is achieved with the help of a consensus
algorithm.

Figure 3.1 shows a typical architecture of a replicated state machine running on 3
servers. From a high-level viewpoint, the consensus module runs on each replica and
receives Input from clients, stores them in the local log, coordinates with the consensus
modules of the other replicas to make sure that every log contains the same Inputs and,
once the Inputs are properly replicated, they are applied/executed on the local state ma-
chine. Each state machine will process the Inputs in log order and any Outputs produced
are returned to the clients. As a result, the group of servers running replicas appear to
form a single, highly-reliable state machine.

The consensus modules ensure that the replicated state machine never returns an
incorrect result under non-Byzantine conditions (network delays, network partitions,
packet loss, message duplication and message reordering). They also guarantee that the
replicated state machine is available as long as a majority of servers are operational and
able to communicate with other servers and clients. Lastly, as a side-effect, the consen-
sus module diminishes the impact of slow machines, since a command can complete
(and an Output can be returned) as soon as a majority of the cluster has finished pro-
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cessing it.

Figure 3.1: Replicated state machine architecture

Over the last two decades, a number of consensus algorithms have been developed
with the most well-known being Paxos[10, 11], Viewstamped Replication[12–14] and
Zab[15]. Paxos has been by far the most popular, but each of these options are noto-
riously difficult to understand and implement correctly. As a result, Raft[16, 17] was de-
veloped as a fully-featured consensus algorithm focused on understandability and ease
of implementation. Because of its ease of understanding, Raft was the preferred choice
as the basic infrastructure of my system. I developed a Raft implementation in the Scala
[18] programming language using the gRPC[19] framework for network communication
and RxMobile (a lightweight alternative to RxJava[20]) for handling asynchronous event
streams.

3.4. THE RAFT CONSENSUS ALGORITHM
Raft implements consensus by first electing a leader and then giving the leader re-

sponsibility for keeping the replicated log consistent. The Leader is the only server in
the cluster that can accept requests/Inputs from clients, which it then appends to the
log and replicates to the rest of the cluster. Once the leader detects that a log entry has
been successfully replicated, it applies the entry to its state machine and instructs the
other servers to apply it to their state machines. Using this approach, the consensus
problem is split into 2 logical steps: leader election and log replication.

A Raft cluster contains several replicated servers, each of them being in one of three
possible states: Follower, Candidate or Leader. Under normal circumstances, there will
be exactly one Leader, while all other members of the cluster will be Followers. Servers
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in the Follower state only wait and respond to requests from Leaders and Candidates.
They are otherwise passive and issue no requests on their own. As mentioned before,
the Leader handles client requests, while the Candidate state is used only during the
leader election process.

Raft divides time into terms of arbitrary length, identified by consecutive integers.
The beginning of a new term is determined by an election, when one or more candi-
dates attempt to become leader. Whichever candidate wins the election will serve as
leader for the rest of that term. Internally, each server stores a current term variable,
which increases monotonically over time and acts as a logical clock [21]. These term
variables are exchanged and compared whenever servers communicate, which allows
cluster members to detect obsolete information such as stale leaders or delayed requests
from previous terms. Whenever a server finds that its term is out of date (meaning there
is at least one server in the cluster with a higher term number), it will immediately update
its term to the higher value and revert to the Follower state. Any requests from servers
with a stale(lower) term number are also immediately rejected.

3.4.1. LEADER ELECTION
All servers in a Raft cluster begin in the Follower state and remain in that state as long

as they receive messages from a Leader or Candidate. Leaders maintain their authority
by periodically sending Heartbeat messages to the rest of the cluster. Each server keeps
an internal timer that they use to keep track of how much time has elapsed since they
last heard from a Leader/Candidate. If a certain period of time (called election timeout)
elapses without any communication, the Follower will assume there is no current Leader
and will attempt to become Leader themselves by starting the leader election process.

To start an election, the Follower increments its current term, transitions to the Can-
didate state, votes for itself and sends vote requests to the other cluster members. The
server will remain a Candidate until it either:

• wins the election
• discovers another Leader
• another election timeout elapses

To win an election, a Candidate must receive votes from a majority of servers in the
cluster. Each server is allowed to vote for at most one candidate in any given term, and it
does so on a first-come, first-served basis. Once a candidate receives a majority of votes,
it transitions to the Leader state and begins sending Heartbeat messages. Whenever a
Follower receives heartbeats, it will reset their election timeout. This makes sure that the
Raft cluster does not start elections while a Leader is still operational.

While waiting for votes, a Candidate might receive a message from a Leader. In this
case, the candidate compares its term with the Leader’s and if the Leader’s term is at
least as large, then the Candidate will recognize the Leader as legitimate and stops the
election process by reverting to the Follower state. If the Leader’s term is smaller though,
then the candidate will reject the message and continues the election.

There’s also a possibility that a Candidate neither wins nor loses an election, which
can happen if multiple servers become Candidates at the same time and the votes get
split in such a way that no Candidate obtains a majority. When this happens, the election
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timeout will eventually trigger again, in which case each candidate starts a new election
by incrementing its term and requesting new votes from the cluster. In order to prevent
this split-vote situation from repeating indefinitely, Raft uses randomized election time-
outs which practically force Candidates to time out and start new elections at different
times. This effectively ensures that, in most cases, a single server will time out and win
the election before any other servers time out.

3.4.2. LOG REPLICATION
Once a Leader has successfully been elected, it can begin servicing client requests.

Each request contains a command to be executed by the replicated state machine and,
as soon as it is received by the leader, it will be appended to the Leader’s log and sent to
the other cluster members for replication.

Each log entry stores a state machine command along with the term number when
the entry was received by the Leader (the term is stored to detect any inconsistencies
between logs on different server). When the entry has been replicated, the Leader applies
the entry to its state machine and returns the result to the client. A log entry is safe to
apply to a state machine when it has been committed and this happens only once the
leader that created the entry has successfully replicated it to a majority of the servers in
the cluster. If an entry at index n in the log is committed, this also commits all entries up
to index n.

The leader also keeps track of the highest index known to be committed, and will
include this number in all messages sent to followers. This makes sure that followers
also find out which entries are committed and are safe to apply to their state machines.
In case multiple entries are committed at once, they will be applied to the state machines
in log order.

The Raft algorithm was designed in such a way as to guarantee that if two log entries
on different servers have the same index and term, then they store the same command
and both logs are identical in all entries up to that index. During normal operation, the
logs of the Leader and Followers always stay consistent, but this can change in the case
of Leader crashes. For example, a Follower might be missing entries from the Leader,
might have extra entries compared to the Leader, or both. Such situations are solved in
Raft by having the Leader always force Followers to duplicate his own log, so in the case
of conflicting entries, the Follower will override his entries with the ones received from
the Leader.

3.4.3. FAULT TOLERANCE
The previous steps for leader election and log replication are still not sufficient to

ensure that all state machines execute the same commands in the same order. Using
the previous rules, it is still possible to have a Follower unavailable for a period of time,
then be elected Leader and rewrite previously committed entries from the log. This is
especially dangerous since committed entries are considered to be safe to apply to the
state machine and overriding these entries would corrupt the state of the system.

This issue is solved by adding an additional restriction to the election process: a
server will not grant a vote to a Candidate that does not have a log that is at least as
up-to-date than its own. To determine which log is more up-to-date, Raft compares the
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index and term of the last entries. The log with the higher term is more up to date and
if the terms are equal, then whichever log is the longest is more up to date. This rule,
coupled with the fact that a Candidate must receive a vote from a majority of servers
to become Leader, ensures that any new Leader will contain all previously committed
entries (since committed entries are, by definition, present on the majority of servers).

In the case of Follower or Candidate crashes, any messages sent to the crashed servers
will fail and Raft handles this situation by retrying indefinitely. Once the affected servers
restart, they will eventually receive the messages from the Leader and continue normal
operation. If a failure occurs after receiving a message, but before responding, then the
server in case will receive the same message again after restarting. This is not a problem,
since Raft messages have the same effect if they are repeated.

To correctly handle crashes and restarts, Raft servers must persist enough state to
stable storage to ensure that the state of the system cannot be corrupted. This means
that all servers must persist their current term and votes (otherwise, a server could vote
twice in the same term or overwrite log entries from newer leaders with entries from
defunct leaders). Each server also needs to write newly appended log entries to stable
storage. Leaders must do this before sending them to the rest of the cluster for replica-
tion and Followers before responding to Leaders. This makes sure that any committed
entries can not be lost when servers restart. One thing to note is that if a server loses any
of this information, it cannot safely rejoin the cluster under the same identity.

3.4.4. IMPLEMENTING EXACTLY-ONCE SEMANTICS

With the algorithm described so far, Raft provides at-least-once semantics to its
clients, which means that it is possible for the replicated state machine to apply the same
command multiple times.

Such a situation may arise if a client submits a command to the Leader which ap-
pends the command to its log, commits it and applies it to the state machine, but crashes
before responding to the client. Since the client does not receive a response, it will even-
tually retry with the same command, in which case the new Leader appends it, commits
it and also applies it to the state machine. Since both commands have been committed,
they will both be applied and even though the client intended for the command to be
executed once, it is actually executed twice. This is especially problematic if the com-
mands applied to the state machine modify its internal state. In that case, the system
can enter a corrupt state, or produce incorrect results which are difficult for clients to
detect or recover from.

This issue is very common and is encountered by most distributed systems. In or-
der to offer linearizable semantics [22], where each operation appears to execute exactly
once, Raft servers must be able to filter out duplicate requests. The basic idea is to have
the servers save the results of client commands and re-use these results instead of ex-
ecuting the same request multiple times. This is implemented by adding a new logical
step in the communication flow between a client and the Leader. Before sending any
command, a client needs to register itself with the Leader, which will assign a unique
identifier to each client. The clients will then use this identifier in any future communi-
cation with the Leader.

Clients are also responsible for assigning a unique sequence number for each com-
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mand they submit. Each server state machine maintains a session object for each client,
which tracks the latest sequence number processed, along with its associated response.
Whenever a server receives a command, it will first check the session and if it has al-
ready been executed, it will respond immediately with the stored response, without re-
executing the request. If it is a new command, it gets applied to the state machine, and
the new sequence number and response are stored in the session and old values dis-
carded.

This approach can also be extended to allow multiple concurrent requests from the
same client by having the session track a set of sequence number and responses. To
make this work, the client must include the lowest sequence number for which it has yet
to receive a response in each request. The state machine can then use this number to
discard responses for lower sequence numbers.

While the addition of session objects provide linearizable semantics, they also intro-
duce an additional issue: servers must now agree when to (deterministically) expire a
client’s session. If that does not happen, then state machines on different servers could
diverge from one another. For example, the state machine could become inconsistent if
one server expired the session for a particular client and then reapplied the duplicated
commands from that client, while another server kept the session alive and filtered du-
plicates.

There are multiple possible approaches to address this issue; one would be to set an
upper bound to the number of sessions and use a least-recently-used policy for eviction.
Another possibility, which is also the one I used for my implementation of the system
is to use an agreed-upon time source for session expiration. This works by having the
leader append a timestamp to every command received and appended to the log. The
timestamp gets replicated together with the command, and the state machines will use
this timestamp to deterministically expire inactive sessions. This additional mechanism
imposes a new requirement on the clients, which now need to keep sending keep-alive
requests during periods of inactivity to make sure their sessions are not expired prema-
turely. The Raft cluster treats these requests as normal (empty) client commands; they
get replicated and committed, but don’t have any effect on the state machine.

Taking into account these changes to the algorithm, whenever a Leader receives a
request from the client, it will append it to the log, replicate it and commit it. If the
request is to register a new client, the Leader will assign a unique id and include it in
the response to the client. If the request contains a command, the Leader will attempt
to apply it to the state machine. If the state machine session contains no record of that
client, or if the command’s sequence number has already been discarded it is not safe
to apply this command, in which case the Leader will send a sessionExpired error to the
client. Otherwise, if the command has already been processed, the Leader can send the
response stored in the session back to the client and if it hasn’t, it can be safely applied
to the state machine. Once the state machine successfully executes the command, the
result can be stored in the session and sent back to the client.
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3.4.5. CLIENT’S PERSPECTIVE
From a client’s perspective, the first thing it needs to do in order to send commands

for processing is to find the Raft cluster. To keep things simple, in my implementation
clients are required to know the address of the servers in the Raft cluster beforehand, but
this could easily be pushed out to an external service available at a well-known location,
such as DNS.

Secondly, since client requests are processed only by the Raft Leader, there must be a
way for a client to find the Leader. There are multiple ways to approach this, the simplest
which is to have the client try to connect to a random server. If this server is not the
Leader, then it will reject the request, and the client can try again with another server
from the cluster.

This process can be sped up significantly using the fact that servers usually know the
address of the current leader and thus they can include it in their response. Another,
more sophisticated approach is to have the Follower proxy the client’s request to the
current leader. However, this requires additional mechanism to implement correctly and
for simplicity, the first approach was chosen.

Additionally, even without request proxying, Raft must take additional measures to
prevent stale leadership information from delaying client requests indefinitely. For ex-
ample, a stale Leader might be partitioned from the rest of the cluster, while still being
able to communicate with the client. In this case, the client’s request could be delayed
forever, since the Leader would never be able to commit the client’s command. This
is solved by having the Leader step down and revert to Follower if an election timeout
elapses without it being able to reach a majority of the cluster. If a Leader steps down, it
will also notify any pending clients which can then retry their requests with other servers.

Similarly, stale leadership information in Followers can unnecessarily delay client re-
quests. Currently, Followers record the leader’s identity so that they can redirect clients,
but without additional mechanism it is possible for two Followers to redirect to each
other. To prevent this from happening, it is necessary that Followers discard Leader in-
formation whenever a new election takes place or the term changes.

Once the client successfully located the Leader of the Raft cluster, it first needs to reg-
ister before it can begin sending requests. During registration, the client gets assigned a
unique identifier, which it will need to append to any command sent to the cluster. Once
a client is successfully registered, it can begin sending requests/commands. The client
is responsible for assigning a unique and monotonically increasing sequence number
to each command that it sends. It also needs to keep track of which commands it re-
ceived a response for and resend any commands (with their original sequence number)
for which it did not receive a response for a certain period of time. Additionally, the client
also keeps track and updates a response sequence number variable, which is appended
to every command sent to the distributed state machine. This variable tracks which is
the lowest command sequence number for which the client still misses a response. The
session object then uses this value to decide which commands from the session can be
safely discarded.
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3.4.6. ARCHITECTURE

Figure 3.2: Raft architecture

Figure 3.2 shows the architecture of a Raft cluster with 3 members. RPC messages
from the client arrive at the Leader where they get added to the local Log and sent to the
rest of the cluster for replication.

The Consensus State module on the Leader keeps track of how many members of
the cluster have successfully replicated the new entry. These values are updated after
the Log has been successfully persisted to disk on the leader, or after RPC responses are
received from the Followers.

Once a majority of the cluster has replicated the entry, it can be ’executed’ on the
state machine. This is done by first checking the session object to see if the command
has already been executed. If it has, then the stored result is sent back to the client,
otherwise the command gets applied to the state machine and the result is stored in the
session before being sent to the client. If there’s no entry of the client in the session
object, or the session values for this command have been discarded, then the client will
receive a sessionExpired error and it will have to decide how to recover from that.

3.4.7. EXTENSIONS
In addition to the core Raft algorithm, the paper[16] also describes two extensions

to the basic consensus algorithm that add additional features. The first one addresses
cluster membership changes and allows the cluster to change its configuration while
running by adding or removing servers. To achieve this safely, changes are limited to
one server (added/removed) at a time. Newly added servers won’t have any log entries,
and thus, in order to avoid availability issues, they will initially be in a new state: non-
voting member. Servers in this state are not counted for voting or commitment ma-
jorities. However, they will receive log entries from the Leader and they will remain in
this state until they catch up with the rest of the cluster, or the configuration change is
aborted.

The second extension, log compaction, addresses the issue of the replicated log grow-
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ing in size during normal processing of client requests. Since log entries are always ap-
pended to the log and never deleted, some form of log compaction becomes necessary
in order to keep the system running. The general idea is based on the observation that
much of the information in the log becomes obsolete over time and can be discarded.

The Raft paper discusses a number of different approaches for log compaction, de-
pending on the needs of the system implementer, but they are all based on the fact that
the internal state of the state machine at a moment T has been reached by applying a
number nT of log entries. The idea is that if the state at moment T is snapshotted and
written to disk, and the snapshot is loaded when the server restarts, it is then safe to dis-
card the nT log entries without having a loss of information. One thing to note is that the
session object also needs to be snapshotted together with the statemachine, otherwise
it would be possible for the same command to be reapplied after a restart.

I won’t be discussing these extensions is more detail since they are both orthogonal
to the core Raft algorithm and are not essential to understanding the remainder of my
work.
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4.1. REMOTE CODE EXECUTION ON THE STATE MACHINE
A number of commonly used Rx operators transform streams by applying user-defined

functions to their elements. For example, the map operator takes a transformation func-
tion of the type T => R and uses it to transform each element of the stream. On the other
hand, the filter operator takes a function of the type T => Boolean and only keeps stream
elements that return true.

In order to implement a remote state machine that can execute such operators, we
need to add support for arbitrary code execution on our Raft cluster. Scala has the ability
to serialize/deserialize closures, which are implemented as anonymous classes, but that
is not enough for our use case due to the fact of how serialization works in Java/Scala.

Both languages make a distinction between the concepts of class and data (an ob-
ject). The class represents the code to be executed, while the object represents the state
values associated with that code. Different instances of the same class can have different
state, but they all refer to the same code. Classes in the JVM are identified by their fully
qualified name, which consists of their class name, package name and the ClassLoader
instance that loaded that class.

Once a class is loaded into a JVM successfully, it will be reused and not loaded again.
The basic class loaders in a JVM application are the "bootstrap" class loader, responsible
for loading key Java runtime classes, the extension class loader that loads classes in the
java.ext.dir path and the app class loader, that loads classes in the java class path. All
class loaders, except for the "bootstrap" class loader have a parent, and that parent is the
class loader instance that loaded that class loader.

Whenever a class loader has to load a class, it will try to load it itself, and if it fails it will
propagate the call to the parent class loaders, until it eventually reaches the bootstrap
class loader. If a class definition still cannot be found, then the findClass() method is
called, which by default throws a ClassNotFoundException and developers are expected
to implement this method to define custom class loaders.

When an object is serialized, its data (internal state) is written to an OutputStream
along with other metadata such as its class identifier. Whenever the object is deserial-
ized, its class identifier is read and the current class loader will attempt to load the correct
class. However, the class bytecode (the implementation of the class) is not included in
the OutputStream at serialization, which means that when deserializing the object using
the standard approach, the appropriate class must already be loaded. Since the goal of
the library is to allow users to write arbitrary code inside Rx operators, it is impossible to
have the class definitions already present on the Raft servers, which means they must be
loaded dynamically [1].

4.1.1. SENDING INDIVIDUAL CLIENT CLASSES TO A RAFT CLUSTER
The first attempt to tackling this problem was to set up a class server on the client and
have the raftCluster contact this server to request any missing classes during deserializa-
tion. On the server side, to avoid naming collisions, a different class loader is used per
client. Thus, when the raft Leader would receive a command that it could not deserial-
ize, it would contact the client and request the bytecode for the missing classes. Once all
the missing class definitions were received, they would be attached to a special type of
StatemachineCommand and appended to the raft log.
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case class ClassDefCommand(command: StatemachineCommand, classDefs:
Map[String, Array[Byte]]) extends StatemachineCommand

Attaching the class definitions to the command and appending them to the log makes
sure that they are also sent and replicated to the rest of the cluster, and thus exempts
other servers from having to request the class definitions from the client. It’s also worth
noting that only the first log entry that contains a certain command type has to contain
the class bytecode. Once these definitions have been read and loaded into a class loader,
they will be reused and not loaded again.

Since log entries are guaranteed to be applied in log order, it is safe to skip the inclu-
sion of class definitions in later log entries, since they would always be already loaded.
Of course, if an extension like log compaction is used, where entries from the log are
discarded, it becomes necessary to save (and load, upon restart) the class definitions to
stable storage. Otherwise, if the log entry that contains the definitions is discarded, and
the server is restarted, it might become impossible for the server to deserialize and reap-
ply some commands from its log, leading to a corrupt statemachine state. For example,
this would happen if the client is no longer available during deserialization, and thus the
server would have no way of finding the class definitions for the commands it needs to
deserialize and apply.

While this approach works in practice, it also introduces some latency due to the
communication needed to load all the classes necessary from the client. Whenever the
server would attempt to deserialize a command that it had no class for, it would contact
the class server on the client and request the bytecode for that class. Upon receiving
the reply, the server would continue with the deserialization process until it finished or
found another missing class, in which case it had to contact the client again and repeat
the process. In a nutshell, for every missing class, the server would have to wait for a
message round trip before it could continue with the deserialization. This delay might
become significant as it increases linearly with the number of missing classes on the
server.

4.1.2. SENDING THE CLIENT APPLICATION TO A RAFT CLUSTER

The second attempt to handle sending client class definitions to the server was to
package the client application with its dependencies into a jar file, that would then be
sent to the raft server on client registration.

On the server side, whenever a register client command is committed, a new jar class
loader is created using the received jar file and associated with the client session. Any
new commands received from this client will then be deserialized using this new class
loader. The previous observation regarding log compaction still stands, if the register
client log entry can be discarded, then the jar file must be saved to stable storage and
kept until the client session expires.

However, this second approach does have the potential of creating a significantly
large register client message, especially if the client-side code has a lot of large depen-
dencies. This could be improved by analyzing the bytecode of sent commands with li-
braries like [2], which would make it possible to append only the classes that are actu-
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ally used in the serialized command. However, due to the added complexity necessary
to make this work, we chose to keep things simple and package and send the jar with
dependencies, which is also what other systems like Spark[3] and Storm[4] also do to
ensure that the client classes are present on their worker nodes.

4.2. FORWARDING MESSAGES TO OTHER CLUSTERS
While a system based only on the core raft algorithm would definitely work, it would

run into an issue caused by the way Raft was designed: as a replicated server that pro-
cesses commands from the clients and replies with responses. This means that in the
case of queries that chain multiple ObserveOnRemote operators, the client will always
have to act as an intermediary between each remote step since it will always be the one
that receives the responses.

For example, let’s consider a query like the one below:

Observable.of(words)
.observeOnRemote(raftClusterA).filter(length > 5)
.observeOnRemote(raftClusterB).map(count vowels)
.observeOnRemote(...)...

In this case, the client will stream words to raftClusterA, which will perform the fil-
tering on length and stream the results back.

The client will basically receive the responses only to forward them to raftClusterB
for further processing. The same thing will happen for every observeOnRemote step in
the query. Ideally, in such a case, we would like the client to be responsible only for
producing the input events of the stream and not act as an intermediary between the
different remote steps in the query.

To achieve this, each raftCluster needs to be able to propagate commands to the ap-
propriate downstream clusters. As a side effect of this approach, the client would also
have the possibility of exiting the system once all its events have been successfully repli-
cated by the first cluster in the stream.

What this means in practice is that the upstream cluster needs to be able to also act
as a client for the downstream. From the perspective of the client, raft servers will have
the same behavior as before: they receive commands, replicate and process them and
send back responses.

From the perspective of the downstream cluster though, a raft server upstream will
behave the same as any other client: it needs to find the cluster Leader, register, send
keep alive messages, keep track of commands sent and increment their sequence num-
bers accordingly, keep track of responses received and lowest sequence number for which
a response is still missing and also resend commands for which there was no response
for a certain period of time.

4.2.1. MESSAGE FLOW OVERVIEW
Considering these new requirements, the message flow in the Raft server is very sim-

ilar with the default algorithm up until the message gets applied to the statemachine. A
command is received from the client, is appended to the log and replicated and, once it
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is successfully committed, applied to the statemachine.
The differences start here: once the command is applied, the statemachine needs to

produce both a response that will be sent back to the client and a command that will
be sent to the downstream servers. Sending a response back to the client is necessary,
even if the response is empty, because it lets the client know that the server successfully
received and replicated the command. Since we want to tolerate failures, the commands
produced by the statemachine need to be saved and stored until they have been success-
fully sent and replicated to downstream.

The forwarding module is responsible for registering the client on the downstream,
sending the commands produced by the statemachine to the downstream clusters, send-
ing keepAlive messages and keeping track of received responses and sequence numbers.

As soon as the statemachine on raftClusterA produces an output that contains a com-
mand for raftClusterB, the forwarding module is notified that it needs to register a client
on raftClusterB, and the command is stored in the session object. The forwarding mod-
ule cannot start sending commands to the downstream cluster until it has received a
valid clientId, and this clientId has been successfully replicated. Without this precaution,
it would become possible for commands to be duplicated on the downstream statema-
chine which would result in a corrupt state. Additionally, any commands received while
the clientId is missing, will be stored in the statemachine sessions.

Once the clientId received from the downstream cluster has been successfully repli-
cated, it is safe to start sending commands to the downstream, in the order they were
produced. There is one additional precaution we must take in order to make sure that
we comply with raft’s rules: the forwarding module cannot update it’s response sequence
number until the majority of the upstream cluster is aware that a valid response has been
received.

The problem is similar to registering a new client, but in this case would result with
a sessionExpired exception instead of a corrupted downstream statemachine. For ex-
ample, let’s consider a leader that receives a response for command 0 and immediately
updates the response sequence number and sends the update with command 1. As soon
as the downstream cluster applies command 1, it will discard command 0 from the ses-
sion. Now, if the upstream leader crashes before the majority of its cluster finds out that
command 0 has received a response, the new leader will resend command 0. On the
downstream, this would result in a sessionExpired exception, since command 0 has just
been discarded.

Thus, in order to avoid this possible issue, the upstream Leader needs to determinis-
tically remove commands from its session by appending RemoveCommand entries (with
appropriate sequence numbers) to its log. Once these log entries are successfully repli-
cated and committed, the downstream commands can be discarded and response se-
quence numbers updated.
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Figure 4.1: Raft forwarding architecture

4.2.2. STATEMACHINE CHANGES

From an interface point of view, the statemachine no longer returns only a response,
but an output that can be either a simple response or a response and sequence of down-
stream commands.

trait Statemachine {
def apply(command: StatemachineCommand): StatemachineOutput

}

trait StatemachineResponse extends StatemachineOutput

trait ForwardingResponse extends StatemachineOutput {
def response: StatemachineResponse
def commands: Seq[DownstreamCommand]

}

Since the commands will be sent to another raft cluster for processing, they need to
not only be valid commands for that cluster’s statemachine, but also contain identifying
information about the downstream cluster (i.e the network addresses of its members).

Also, to keep things simple, the forwarding module will only used received responses
to discard commands from the command sessions. If any responses returned are also
valid statemachine commands, they will not be re-applied to the local statemachine.
This means that whenever the statemachine produces a ForwardingResponse, the re-
sponse should effectively be Empty/No-Op.

case class DownstreamCommand(downstreamClusterClient: RaftClusterClient,
command: StatemachineCommand)

The downstreamClusterClient parameter of a downstream command identifies a ’vir-
tual’ client on the downstream. The id part of a RaftClusterClient object is completely
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determined by the implementer of the state machine and does not refer to a registered
clientId on the downstream.

case class RaftClusterClient(raftCluster: Set[ServerAddress], id: String)

4.2.3. SESSION CHANGES

In the core Raft algorithm, the session object keeps track of (command, response)
pairs for each client. Any command received that was already present in the session
object would not be applied to the statemachine and the client would receive the stored
response. Values from the session object would be deterministically discarded based on
the response sequence number received from the client.

This approach still works perfectly well with the changes to the statemachine inter-
face. The only change is that now it is possible for the statemachine to also produce
downstream commands in addition to responses. This means that we must also keep
track of which downstream clients have been registered, which commands we still need
to deliver and deterministically remove them once they have been successfully sent and
replicated to downstream.

Since the session object already needs to be as persistent as the statemachine, it is a
natural choice to use it for keeping track of downstream commands.

val pendingCommands: Map[RaftClusterClient, CommandSession]
val registeredClients: Map[RaftClusterClient, String]

Thus, in addition to tracking commands and responses for clients, the session object
will now also track which commands still need to be sent to which RaftClusterClient and
which clientIds are associated with which RaftClusterClients.

case class CommandSession(startingSeqNum: Int, producers: Set[String],
commands: Seq[StatemachineCommand])

As mentioned before, it is important to keep track of which clientId is used to push
commands to downstream for a certain RaftClusterClient. If the clientId is not saved,
then whenever a leader changes, a new clientId will be generated, which can allow for
duplicated commands to be applied on the downstream cluster.

For example, let’s take the case of a cluster with 3 servers. The Leader receives a
command, replicates and applies it to the statemachine, sends the response back to the
client and the command to the forwardingModule. The forwardingModule contacts the
downstream server, creates a clientId and sends the command, which is replicated and
applied on the downstream cluster.

If the Leader now changes on the upstream, the newly elected Leader will not know
what clientId the previous Leader used and thus create a new one and resend the com-
mand. Even though the command has the same sequence number as before, it will be
reapplied since the clientId is different. This will corrupt the state of the statemachine,
since the upstream cluster intended for the command to be applied once, but it was
actually applied twice.
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Another thing to note is that we also need to keep track of which sequence num-
bers to use when sending commands. Without keeping track of sequence numbers, any
leader change will cause the sequence number to reset, which might result in a session-
Expired error and cause the downstream to refuse new commands.

My approach was to keep track of a ’seed’ sequence number (startingSeqNum) in the
session object and use this value in the forwardingModule, incrementing it with every
new command sent. Once responses for commands would be received, the forwarding-
Module would append the confirmed sequence number to the log via a RemoveCom-
mands entry. When this message gets committed, the value for startingSeqNum is up-
dated in the commandSession and the respective commands are dropped.

For example, let’s consider a case when the Leader receives a command from a new
client, the pendingCommands map is empty and the clientId has just been successfully
registered. Let’s say that applying the command to the statemachine produces 2 down-
stream commands to raftClusterB. Once the command is applied and committed, since
there is no entry for raftClusterB, a new commandSession object is created with a start-
ing value of 0 for startingSeqNum, and the 2 downstream commands.

The forwardingModule will use this value of 0 as the sequence number of the first
command, and increment it for any new command sent. Thus, the second command
will get a sequence number of 1. Once the forwardingModule receives the response for
the first command (which, as noted before, it will be NoOp/Empty), it will append the
message RemoveCommands(raftClusterB, 1) to the log.

When this entry is committed, the commandSession for raftClusterB will update its
startingSeqNum to 1 and delete the first command from the commands sequence. Also,
the forwardingModule can now safely increase its response sequence number and at-
tach the new value(1) to any keepAlive messages that it sends. This lets the downstream
cluster know that it is safe to discard the session value for the command with sequence
number 0. Similarly, after a response is received for the second command, the forward-
ingModule will append RemoveCommands(raftClusterB, 2) to the log, which will cause
the commandSession to remove the second command and update its starting sequence
number variable to 2. Thus, any new commands that will be sent to raftClusterB will
start from a sequence number of 2.

4.2.4. PREVENTING INFINITE KEEPALIVE MESSAGES

Since we want the forwardingModule to send commands to downstream servers,
this also means that the forwardingModule has the responsibility of sending keepAlive
messages to the downstream, while commands arrive from clients and are committed/ap-
plied to the statemachine. This raises a new problem, where the forwardingModule
needs a way of finding out when it can stop sending keepAlive messages to a certain
cluster. Without any additional mechanism, the forwarding module would keep send-
ing keepAlive messages infinitely since it has no way of knowing if it has sent all the
commands to downstream.

This is where the producers set in the CommandSession comes in. This variable is
used to keep track of which upstream clientIds pushed values to the downstream Raft-
ClusterClient. Whenever a command from a clientId produces a downstream command
that needs to be sent to a raft cluster, that clientId is added to the producers set for the
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RaftClusterClient. Similarly, whenever the session for a clientId expires, that clientId is
removed from the sets of producers for the appropriate RaftClusterClient.

Thus, whenever a RaftClusterClient ends up with an empty producers set, we know
that there won’t be any new commands coming in and thus we can notify the forward-
ingModule that it is safe to stop sending keepAlive messages as soon as it has finished
delivering the current commands.

Also worth noting is the fact that if the downstream statemachine needs to be able
to load/execute arbitrary code from clients, it will need to receive the appropriate client
jar files in order to be able to deserialize commands. This is also where the producers set
proves useful: when the forwarding module needs to register a new client, it will read the
producers set and attach all client jars to the register client message.

There’s also one additional change needed to cover an edge case in the standard Raft
algorithm. The standard algorithm attaches a timestamp to any command that gets ap-
pended to the log and applied to the statemachine. This entry will get replicated to all
servers, and when it is applied to the statemachine, this timestamp value is used to de-
cide which sessions expired and which not. However, since heartbeat entries do not get
appended to the log, it means that at any moment, the session object could potentially
have undetected expired sessions. For example, if one client sends just one command
and stops sending keepAlives after receiving a response, its session will remain in the
session object until another command gets applied.

This is not a big issues for the standard algorithm, since in the worst case, a few ob-
jects will be kept in memory longer than needed. However, this is more problematic
when the forwardingModule comes into play, since it relies on session expiration to de-
cide when to stop sending keepAlives to downstream clusters. To solve this issue, the
RPC server on the Leader keeps track of how much time has passed since it has received
a message from a client. If no message has been received for a period of time greater
than or equal to a sessionTimeout, it will append a NoOp message to the log. This event
will get assigned a timestamp and it will be replicated the rest of the cluster and ap-
plied to the statemachine. This basically forces the server to detect any expired sessions
that are still in the session object, and will cause the forwardingModule to stop sending
keepAlives.

4.2.5. SENDING MESSAGES FROM THE LEADER

The initial implementation of message forwarding used the statemachine to syn-
chronously send commands to the downstream servers. This however raised a num-
ber of issues. First of all, since the statemachine is replicated, sending commands from
the statemachine means that we will send the same command at least once from each
replica. This, coupled with the fact that commands are applied to the statemachine in
parallel with log entries being appended and replicated, meant that the statemachine
state could have become inconsistent.

For example, considering a cluster with 3 servers, once a command gets committed,
it gets queued to be applied to the statemachines. If one of the servers is slow in applying
the commands, it becomes possible that the Leader sends the command downstream,
receives a response, replicates a new command and sends it to the downstream cluster
with an updated response sequence number. In this case, once the downstream receives
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the command from the Leader, it will discard the session entry for the previous com-
mand. If the slow server didn’t send the previous command up until this point, it will
now receive a sessionExpired error because the session entry has been discarded, in-
stead of receiving the result. This means that it is possible for the statemachine state on
the slow server to differ from the rest of the cluster, which corrupts the replicated state
machine.

Another issue with this approach is that, depending on cluster configuration, it might
have a significant impact on the downstream cluster’s ability to process client commands.
For example, if a cluster with 5 replicas wants to send commands to another cluster, and
those commands are sent from the statemachine, that downstream cluster will even-
tually receive the same command at least 3 times. Assuming there is no delayed/slow
statemachine in the initial cluster, all these duplicated commands will get appended to
the log, replicated and applied sequentially to the statemachine (first will actually be pro-
cessed, the rest will use the result stored in the session). Since commands are appended
to the log and processed by the statemachine sequentially, this will delay the processing
of commands from other clients, compared to a scenario where there are no duplicated
commands.

Thus, a more viable approach is to use a single server to send commands to the
downstream. The Leader makes a natural choice for this, since Raft guarantees that
there will only ever be a maximum of one Leader in the system at a certain time. More-
over, registering a new client and removing downstream commands from the pending
commands queue needs to happen deterministically, on all replicas at the same (logical)
time, which means that this needs to be done through a command that gets appended
to the log and replicated.

Having this functionality running on the Leader makes things easier, since the Leader
is the only server that is allowed to append entries in the log. In theory, it is possible to
have forwarding modules on other servers handle the sending of commands, but they
would need to contact the Leader whenever a new client has been registered, or a com-
mand has been successfully sent and needs to be removed from the queue.

To enforce this, whenever a new Leader is elected, the forwardingModule on that
server receives a snapshot of all the unregistered RaftClusterClients from the session, to-
gether with the downstream commands and their starting sequence numbers. The for-
warding module will then start registering the missing clients and start sending pending
commands and keepAlives for clients that have been already registered.

Whenever a new command gets applied to the statemachine and produces a down-
streamCommand, this also gets sent to the forwarding module, if the client is already
registered. If the client is not registered, the command is saved in the session and a Regis-
terDownstreamCommand is sent to the forwarding module instead. Any new incoming
commands for this client will also be saved until the clientId is successfully registered
on the downstream. As soon as that happens, any saved commands are passed to the
forwardingModule for delivery.

If and when the Leader steps down, it will stop the forwardingModule from sending
any commands and keepAlives. Any responses that are currently in flight towards the
old Leader will also just be ignored, since the Leader won’t be able to append any entries
to the log anyway.
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This is safe to do, since the newly elected Leader will pick up where the old Leader
left off and re-send any commands that have not yet been removed. Even if the down-
stream cluster already processed and sent a response for these commands, they will still
be present in the session and thus will not corrupt the statemachine.
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5.1. INTRODUCTION

Going back to the start of this paper, one of our goals is to implement a system that
allows part of an Rx query to execute on a remote machine. The query below shows an
example use-case of what we would like to achieve: the cluster raftClusterA will receive
a stream of words and execute the filter and map parts of the query, after which it will
send the results to raftClusterB.

Observable.of(words)
.observeOnRemote(raftClusterA).filter(length > 5).map(toLowercase)
.observeOnRemote(raftClusterB).map(countVowels)
.observeOnRemote(...)...

Considering the code snippet below as an example of a typical Rx query, if we look at
the map operator, the possible events that it can receive are Subscribe, onNext, onError
and onComplete. Subscribe has the role of providing an observer to which the map oper-
ator should push results, while onNext, onError and onComplete signal potential events
in the stream. OnNext provides the next element to be processed, onError signals that
an error was produced while onComplete marks the end of the stream.

Observable.of(words).filter(length > 5).map(toLowercase)
.subscribe(printObserver)

In addition to these events, there is an additional way in which the stream can be
cancelled, and that it by unsubscribing the consumer at the end, the printObserver. In
the Rx library this is done via a Subscription object that is wired throughout the stream,
which means that unsubscribing the printObserver will also be visible in the map and
filter operators.

Naturally, our Rx statemachine running on raftClusterA will also need to be able to
handle the same set of events. However, since part of the query will now run on a differ-
ent machine, or in a different context(JVM), it would be impossible to detect when the
observer unsubscribes without making it an explicit event. This makes our current set
of possible statemachine events: Subscribe, Unsubscribe, onNext, onError and onCom-
plete.

From the perspective of a statemachine running on raftClusterA, there are 2 major
possible use cases, illustrated below:

Observable.of(words)
.observeOnRemote(raftClusterA).filter(length > 5).map(toLowercase)
.subscribe(printObserver)

Observable.of(words)
.observeOnRemote(raftClusterA).filter(length > 5).map(toLowercase)
.observeOnRemote(raftClusterB).map(count vowels)
.subscribe(printObserver)
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The differences are fairly straight forward: in the first example, the stream ends on
the remote machine, while in the second example the statemachine will produce events
that need to be pushed to raftClusterB.

This will have an influence on the output of the statemachine when processing client
commands. In the case of streams that end locally, the statemachine will only produce
responses for the client, in order to notify it that its commands have been received and
applied. In the second case, the statemachine will produce both responses for the client
and new events (commands) for the downstream cluster.

5.2. INTERNAL STATE

In order to set up an Rx stream that runs operators sent by the client and processes
onNext, onError and onComplete events, the statemachine needs to create an object
that acts both as an observer (and thus can accept Rx events) and an observable, such
that it can be transformed using the Rx operators sent by the client.

In the Rx world, this role is played by a Subject, and it represents the input side of the
stream running on the statemachine. After transforming the events pushed to this sub-
ject using the client’s operators, we need to observe the produced events by subscribing
to the transformed stream. The functionality of the observer that we subscribe will differ
based on whether the stream will end locally or its results need to be pushed to another
machine.

This pairing of a subject on the input side and an observer on the output side is all we
need to set up a stream that processes events from the client. Whenever a new Rx event
gets applied to the statemachine, it will be pushed to the input subject, get transformed
by the operators and the result pushed to the observer.

If the results need to be sent to another machine for further processing then they will
need to be collected from the observer and the statemachine needs to return them as
downstream commands. Otherwise, if the stream ends on the cluster, the statemachine
can just return an Empty/No-Op message as the result.

This approach can also be generalized to support the processing of multiple streams
on one statemachine. In this case, instead of keeping track of just one pair of subject and
observer, the statemachine needs to keep track of multiple such pairs and discriminate
them based on a streamId.

Thus, the internal state of the Rx statemachine is map from streamIds to RxStreams,
where RxStreams represent a pairing of input subject and ResultObservers.

val streams: Map[String, RxStream]
case class RxStream(subject: Subject[Any], observer: ResultObserver[Any])

For streams that end locally, the ResultObserver behaves just like a regular observer,
but for streams that need to send commands to other clusters, it will save any events
produced by an input event. After an input event has finished processing in the stream,
any saved events produced are wrapped into downstream commands and returned as
part of a ForwardingResponse.
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5.3. COMMANDS
As mentioned before, the 5 basic events that the statemachine needs to support in

order to process Rx streams are: Subscribe, onNext, onError, onComplete and Unsub-
scribe. Since streams running on the cluster are identified by a streamId, any event that
needs to be applied to the statemachine needs to specify the target stream by including
the appropriate streamId.

5.3.1. SUBSCRIBE

Whenever the statemachine receives a Subscribe message it means that a client
wants to set up a new stream for execution on this cluster. Thus, the subscribe message
should contain the necessary information about the new stream: streamId, the opera-
tors that need to be executed and whether the stream ends locally or should produce
downstream commands.

trait StatemachineObserver

case class Subscribe(streamId: String, operators: Seq[Operator],
observer: StatemachineObserver)

Upon receiving a Subscribe message, the statemachine will first create a new result
observer using the information present in the statemachineObserver parameter.

case class LocalStatemachineObserver(onNext: Any => Unit, onError:
Throwable => Unit, onCompleted: () => Unit) extends
StatemachineObserver

In the case of a local stream, we will create a regular observer using the onNext, on-
Error and onComplete lambdas.

On the other hand, if the stream does not end locally, we will create an observer that
caches any events produced into a list and transforms them to downstream commands.
The target cluster of the downstream commands is determined using the raftCluster-
Client parameter passed to DownstreamStatemachineObserver.

case class DownstreamStatemachineObserver(streamId: String,
raftClusterClient: RaftClusterClient) extends StatemachineObserver

Finally, the streamId parameter on the statemachine observer is used to identify
which stream on the downstream statemachine needs to receive the produced events
(either onNext, onError, onComplete or Unsubscribe).

Once an observer is created, the statemachine will then check if a stream with the
supplied streamId already exists and if that is the case, it will push an onError event to
the newly created observer. If no stream exists with the supplied streamId, then a new
subject will be created and the operators will be sequentially applied to construct the
stream.

Any errors that might occur during this process will be pushed to the created ob-
server. Lastly, once all the operators are successfully applied, the observer will be sub-
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scribed to the newly created stream and a new entry containing the streamId, and RxStream
will be added to the streams map.

As a return value, the statemachine will return an Empty message in the case where
the stream ends locally or an output containing an Empty response and downstream
commands for the remote case.

5.3.2. RXEVENT (ONNEXT/ONERROR/ONCOMPLETE)
Handling Rx events is fairly straight forward. An RxEvent message will contain the

streamId, together with the actual event that needs to be pushed to the stream. In the
example below, Notification is an abstract class defined by the Rx library which has 3
children: OnNext, OnError and OnComplete.

case class RxEvent[T](streamId: String, notification: Notification[T])
extends StatemachineCommand

Whenever the statemachine receives an RxEvent, it will first check if the streamId
exists in the map. If it does not, or if it is unsubscribed, it will return an Unsubscribed
response. This message will be ignored by any forwarding module upstream, but it is
used in notifying the initial client know that the stream has unsubscribed and it can stop
producing events.

However, if the streamId exists and the stream is not unsubscribed, the statemachine
will push the event to the input subject and return the appropriate output (Empty re-
sponse for a local stream and an Empty response together with possible downstream
commands for remote streams).

5.3.3. UNSUBSCRIBE
Unsubscribe messages contain a single parameter, the streamId that has been un-

subscribed on the downstream.

case class Unsubscribe(streamId: String) extends StatemachineCommand

Whenever the statemachine receives this message, it needs to iterate through its
stream map and unsubscribe any streams that have observers with that streamId. In
order to free up resources, any streams that are unsubscribed can also be removed from
the map. The statemachine will always return an Empty response as an output for this
command.

5.3.4. SETUPSTREAM
The current set of statemachine events do a good job of handling streams that have

only one ObserveOnRemote operator. However, if multiple observeOnRemote operators
are chained, we need a way to notify each remote stream of it’s source stream location in
order to generate correct unsubscribe messages.

Consider the example of an infinite stream on the client, that gets transformed re-
motely and then observed on another cluster.



5

44 5. THE RX STATE MACHINE

Observable.of(infinteWords)
.observeOnRemote(raftClusterA).map(toLowercase)
.observeOnRemote(raftClusterB).filter(length < 10).take(10)
.subscribe(save)

In this example, without additional mechanism, the observable on raftClusterB would
terminate, but raftClusterA has no way of knowing about it, since responses are not re-
applied to its local statemachine. In order to get around this problem, we introduce an
additional statemachine command, SetUpstream, that is used to notify the stream on
raftClusterB which stream on raftClusterA it should unsubscribe when it unsubscribes.

case class SetUpstream(streamId: String, upstreamClusterClient:
ClusterClient, upstreamStreamId: String) extends StatemachineCommand

Whenever the statemachine receives this message, it stores it to be used when streamId
is unsubscribe. When this happens, the upstreamClusterClient and upstreamStreamId
fields are used to generate an Unsubscribe(upstreamStreamId) command that is going
to be sent to the upstream cluster.
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6.1. OBSERVABLES AND REMOTEOBSERVABLES
In the Rx world, an Observable is an abstraction for a stream of zero or more events

and represents a source of data. Events produced by an Observable can be transformed
using various operators, but the defining operation for an Observable is the subscribe
function, which is used to register an observer (a consumer) to the stream.

This function defines what happens when an observer subscribes to the observable
and can be used to implement observables with custom functionality. After an observer
subscribes, the Observable will start emitting items by calling the observer’s methods
(onNext, onError, onComplete).

For example, an observable that opens and reads a file line by line could be imple-
mented by overriding the subscribe function to open and read the file and emit lines
by calling the onNext method on the newly subscribed observer. Any errors that occur
should be pushed to the observer using the onError method and, once all the lines are
read, the observer’s onComplete method should be called.

In an analogous fashion, the RemoteObservable represents an observable stream ex-
ecuting on a remote raft cluster.

trait RemoteObservable[T]{
def cluster: Set[ServerAddress]
def subscribe(observer: StreamSetupObserver[T]): Unit

}

Similarly, the main operation to be performed on a RemoteObservable is also a sub-
scribe, but this time we don’t subscribe a regular observer, but a StreamSetupObserver.
Additionally, the RemoteObservable also keeps track on which cluster it is executing on.
This information is used by some operators to decide whether events produced by a re-
moteObservable need to be sent to another cluster or not, depending on where they
need to be observed.

One thing to note here is that the information used to identify a cluster are the ad-
dresses of the servers that form the cluster. This approach was used for simplicity and
it can break when used in conjunction with raft extensions such as cluster membership
changes. A more robust approach would be to use an identifier for each cluster and use
a third party service to find the addresses of servers belonging to a certain cluster, but we
will leave that for future work.

6.1.1. SUBSCRIBING TO A REMOTEOBSERVABLE

As mentioned above, subscribing is the defining operation of an Observable and can
be used to implement custom observables or operators. In the Rx world, the subscribe
function takes a single parameter: the observer that is interested in receiving the events
of the stream.

Operators can be implemented by overriding the subscribe function and creating
new observers that subscribe to the upstream source(s), apply some transformation on
the events and push the results to the downstream observer that was provided to sub-
scribe. This means that the observer received as a parameter by subscribe encodes the
whole series of transformations that will happen downstream.
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On the RemoteObservable side, the observer we subscribe needs to also be able to
encode the series of transformations that happen downstream, but the big difference in
this case is that different parts of the stream might be executing on different machines.
It is thus unnecessary for an observer to keep track of the whole chain of transformation.
Every statemachine that executes part of the chain needs to only know which operators
need to be applied locally and where the resulting events should be sent.

case class StreamSetupObserver(operators: Seq[Operator],
statemachineObserver: StatemachineObserver)

Taking this into consideration, a StreamSetupObserver contains the sequence of op-
erators that will be executed on a certain remote statemachine, together with the statema-
chineObserver, which defines whether the stream ends on the statemachine or produces
events elsewhere.

In addition to subscribing stream setup observers, ideally we would also be able to
subscribe regular observers to a RemoteObservable source. This would mean that the re-
mote stream does not produce any events downstream and ’ends’ on the statemachine,
but this could be useful for a variety of applications.

For this use case, it might be worth looking into making the RemoteObservable a
subclass of Observable, but this does not work at the moment due to the fact that an
observer is not serializable. As a workaround, the library provides subscribe functions
that wrap the onNext, onError, onComplete lambdas into a local statemachine observer.

These subscribe functions are implemented as extension methods on the Remo-
teObservable type and whenever called, will create new StreamSetupObservers with an
empty sequence of operators and a local statemachine observer created using the func-
tions passed as parameters.

6.2. OBSERVEONREMOTE OPERATOR
The ObserveOnRemote operator takes a cluster parameter and is applied to an Rx

stream to send the events produced by the stream to the statemachine executing on the
cluster.

Observable.of(words).observeOnRemote(raftCluster)

This operator returns a RemoteObservable which represents the remote stream. Since
the goal is to send any incoming events to the remote cluster for processing, this operator
needs to take care of all the steps necessary to make that happen.

First of all, it needs to create a clientId on the raftCluster, after which it needs to send
a Subscribe command containing the operators and the statemachineObserver.

Secondly, if the upstream is also a remote observable, and the downstream is not a
local statemachine observer, it needs to send an appropriate SetUpstream command.

Lastly, the operator also needs to subscribe to the source observable and send any
onNext, onError, onCompleted events produced to the raftCluster. Any commands/events
sent to the cluster need to be transformed into valid raft messages, which means they
need to have a correct sequence number attached and include any class definitions that
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are missing on the cluster. Additionally, this operator also needs to make sure that the
session is kept alive while messages can still be sent and any commands without re-
sponses are resent to the cluster.

Let’s consider an example where we subscribe to a remoteObservable and print the
produced events:

Observable.of(1).observeOnRemote(raftCluster)
.subscribe(v => println(v))

Since we subscribed using an onNext lambda, the subscribe extension method on
the remote observable will create a StreamSetupObserver initialized with an empty se-
quence of operators and a local statemachine observer.

As a last step, this StreamSetupObserver will be subscribed to the upstream remote
observable. Upon subscribing on the upstream, a new clientId will be created on the
raftCluster and for the sake of this example, let’s assume the value returned for clientId
is 5.

Once the client is registered, the subscribe function will send a Subscribe command
using 5 as clientId, a randomly generated UUID as streamId, a sequence number of 0
and the operators and statemachineObserver contained by the StreamSetupObserver.
In this case, the operators sequence will be empty, and the statemachineObserver will be
the LocalStatemachineObserver containing the lambda that creates the printObserver.

After sending the Subscribe message, the next step is subscribing to the upstream
observable which in this case produces the value 1 and completes. These events will
be wrapped in statemachine commands (RxEvent) and sent using the same streamId as
before.

On the statemachine side, when the Subscribe message is received, it will create a
new subject and attempt to apply the operators passed in by the client. Since in this
example the sequence of operators is empty, no transformation will be applied. After
this, an observer is created using the lambda passed to the LocalStatemachineObserver
and subscribed to the stream (which, in this example, consists of just the subject).

The resulting pairing of subject and observer is then wrapped into an RxStream ob-
ject and added to the streams map and finally, an empty response is sent back to the
client.

When the two events produced by the observable (onNext(1) and onCompleted) ar-
rive at the statemachine, the streamId value is used to push these events to the appropri-
ate subject. Since in our example we subscribed a local observer, no downstreamCom-
mands will be created and the client will receive empty responses.

Back on the client side, when responses are received for all 3 messages sent (Sub-
scribe, onNext(1) and onComplete) the sending of keepAlive messages will stop, which
will eventually clear out the client session on the cluster.
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6.3. OBSERVEONLOCAL OPERATOR
The ObserveOnLocal operator performs the reverse step to observerOnRemote: it is

applied to a remoteObservable and transforms it into a regular observable.

Observable.of(words)
.observeOnRemote(raftCluster)
.observeOnLocal(localAddress)

Since events produced by the remoteObservable are going to be transformed to down-
streamCommands and sent by the forwardingModule running on the raftCluster, this
operator needs to make sure that an RPC server is running on the client.

This RPC server needs to respond to the commands that can be sent by the forward-
ingModule, namely register client, client requests and keepAlives. Since multiple remo-
teObservables might be sending events to this machine, the RPC server needs make sure
it pushes the events received to the appropriate stream. Thus, similarly to the statema-
chine, the RPC server keeps track of a mapping from id to observer. This means that a
new id needs to be created whenever an observer subscribes to observeOnLocal observ-
able.

Once an RPC server is running on the local machine and an id has been created,
observeOnLocal can use this information to create the DownstreamStatemachineOb-
server, which lets the statemachine running on raftCluster know where to send produced
events. This observer is then used to create the StreamSetupObserver that will be sub-
scribed to the upstream remoteObservable.

Let’s adapt the previous example and have the statemachine send events back to the
client where they will be printed.

Observable.of(1)
.observeOnRemote(raftCluster)
.observeOnLocal
.subscribe(v => println(v))

When we subscribe the observer to the observeOnLocal operator, it will first check if
an RPC server is running and start one if that is not the case.

Once the RPC server is up and running the observer will be passed in to the RPC
server which will add it to its streams map and return an id (let’s say with a value of 1).
Next, the observeOnLocal operator uses the server address and the id value to create
the DownstreamStatemachineObserver and StreamSetupObserver (initialized with an
empty sequence of operators). Finally, this StreamSetupObserver is subscribed to the
upstream remote observable.

Next, the behavior of the statemachine and subscribe function on the remoteObserv-
able are similar to the previous example, the only difference being that the statemachi-
neObserver will be a DownstreamStatemachineObserver instead of a LocalStatemachi-
neObserver. This only has an impact on the output of the statemachine, which will use
the information from the DownstreamObserver whenever it needs to push results.

In the case of the Subscribe command, the stream does not produce any events, and
thus the statemachine will just return an empty response back to the client. However,
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in the case of onNext(1) and onCompleted, the statemachine will send empty responses
back to the client and propagate these events (via the forwardingModule) to the address
and stream contained in the DownstreamObserver.

Back on the client side, when the RPC server receives events, it will use the included
streamId to find the appropriate observer to push events to. In this case, for the on-
Next(1) and onCompleted events the included streamId will be 1, which means these
events will be pushed to the PrintObserver.

6.4. OPERATORS
Operators defined on a remoteObservable stream have the same semantics as their

counterparts in the default library. As a matter of fact, the purpose of the Operator trait
and its implementations is to just record the transformations that need to be applied to
the remote stream. These transformations will then be sent to the remote statemachine
as part of the Subscribe message that creates a remote stream.

In the Rx world there are two main types of operators when taking into account the
number of streams they subscribe to.

6.4.1. OPERATORS THAT TRANSFORM A SINGLE STREAM
The first type of operator is the one that subscribes to a single source and applies

some kind of transformation or filtering on the items emitted.

trait Operator

trait SingleObservableOperator[T, S] extends Operator{
def toObservable(left: Observable[Any]): Observable[Any]

}

For example, the map operator takes a function as parameter and applies it to every
item emitted by the source. The result will be a new observable that emits the results of
these function applications.

source.map(i => i + 1).subscribe(printObserver)

To achieve this, the map operator creates a new observable by overriding the sub-
scribe function. In the example above, when the printObserver subscribes to this map
observable, a new internal observer will be created and subscribed to the source. This
internal observer has the role of receiving items from the source, applying the function
on every element and pushing the result to the printObserver.

Similarly, the map operator on a RemoteObservable also takes a function as a param-
eter, but returns a new RemoteObservable as a result. Another difference in this case is
that the observer will be a StreamSetupObserver that has as parameters a sequence of
Operators and a statemachine observer.

def map[S](fun: (T) => S): RemoteObservable[S] = {
new RemoteObservable[S] {

override def cluster = src.cluster
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override def subscribe(downstream: StreamSetupObserver[S]): Unit = {
src.subscribe(StreamSetupObserver[T](observer.operators:+

Map(fun), observer.statemachineObserver) )
}

}
}

The behavior of map in the remote case is also very similar: it will add the Map opera-
tor to the list of operators passed from the downstream observer, create a new StreamSe-
tupObserver with this new list of operators and subscribe it to the source. Additionally,
any operator that does not push events on a new cluster will use the upstream cluster
value as it’s own.

The implementation of the operator classes is very straightforward, their only role
being to record the sequence of transformations defined by the client in a serializable
format that can be then sent to a raft cluster for execution. Thus, the only operation de-
fined on this class defines how it should transform a source stream. It takes an observ-
able as a parameter and returns a new observable created by applying the appropriate
transformation.

case class Map[T, S](fun: (T) => S) extends SingleOperator[T, S] {
override def toObservable(left: Observable[Any]): Observable[Any] = {

left.map(fun)
}

}

For example, in the case of the Map operator, the source observable should be mapped
with the function passed in by the client. Implementing other operators that transform
a single stream like Filter and Take is also very similar.

6.4.2. COMBINING OPERATORS

In addition to operators that transform a single stream, the Rx library also defines
operators that combine two source observables into a single one.

trait CombiningOperator[T, S, R] extends Operator{
def operatorId: String
def streamPosition: StreamPosition
def toObservable(left: Observable[Any], right: Observable[Any]):

Observable[Any]
}

sealed trait StreamPosition
case class LeftStream() extends StreamPosition
case class RightStream() extends StreamPosition

A good example for this case is the withLatestFrom operator. This operator sub-
scribes to two observables (in this example: letters and numbers) and whenever letters
emits an item it will be grouped with the last item emitted by the numbers observable.
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This grouping of a letter and number will then be transformed using the function passed
as a second parameter and the result sent to the printObserver. Similarly to the map op-
erator, withLatestFrom will create two internal observers that it will subscribe to the two
observable streams (letter and numbers) and will push results to the print observer.

letters.withLatestFrom(numbers).subscribe(printObserver)

In the remoteObservable case, withLatestFrom will behave in an analogous fashion,
creating two StreamSetupObservers and subscribing them to the source remote observ-
ables.

val letters = lettersObservable.observeOnRemote(clusterA)
val numbers = numbersObservable.observeOnRemote(clusterB)
letters.withLatestFrom(numbers).subscribe(v => println(v))

However, in this case the numbers observable is executing on clusterB and the with-
LatestFrom observable will execute on clusterA. This is where the cluster value defined
on the RemoteObservable becomes useful. This value is used to check if both remote
observables are executing on the same statemachine; if that is not the case, the numbers
observable will need to push its events on clusterA.

In the example below, this step is performed by the observeOnSameRemote exten-
sion method, which checks if the source stream is executing on the same cluster as the
stream passed as parameter. If they are, the source stream is returned unchanged, other-
wise its events will be pushed on the cluster of the parameter by adding an observeOn-
Remote(clusterA) step.

Without keeping track of which cluster a remoteObservable is executing on, opera-
tors would have been forced to always act as if a stream executes remotely. This means
that in order to make sure that both streams produce events on the same statemachine,
operators would always need to call observeOnRemote on the second stream. This intro-
duces unnecessary delay if the stream already executes on the same statemachine as the
operator, since the events produced would create downstreamCommands, which would
need to go through the replication process before being applied to the statemachine.

def withLatestFrom[S, R](other: RemoteObservable[S]): RemoteObservable[R]
= {

new RemoteObservable[R] {
override def cluster = src.cluster
override def subscribe(observer: StreamSetupObserver[R]): Unit = {

val operatorId = UUID.randomUUID().toString
other.observeOnSameRemote(src).subscribe(StreamSetupObserver(operators

:+ WithLatestFrom(operatorId, RightStream()),
observer.statemachineObserver))

src.subscribe(StreamSetupObserver(operators :+
WithLatestFrom(operatorId, LeftStream()),
observer.statemachineObserver))

}
}
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}

Considering the current approach, the case of operators that subscribe to two source
remote observables raises an issue caused by the fact that the input subjects on the
statemachine side are created when the Subscribe message is received.

This means that when the first of the two Subscribe commands arrives at the statema-
chine and the input subject is created and operators (including withLatestFrom) are ap-
plied, there will be no existing input subject for the ’other’ stream (since it will be created
at a later time, when its Subscribe command is processed).

Furthermore, because commands are sent asynchronously to the statemachine, it is
also impossible to know which stream’s Subscribe command will arrive first. Since not
all operators that subscribe to two observable streams are commutative, it is important
to know on which side of the operator the created input subject should be.

A solution to these issues is to assign a unique id to the operator that needs to sub-
scribe to two streams and specify whether the input subject needs to be on the left or on
the right side of the operator.

However, we still have the issue of the missing input subject for the second stream,
which can be solved by creating a new subject that will be used as an intermediary: it
will be subscribed to by the combining operator and it will subscribe to the end of the
second stream when it will be created. We cannot use this intermediary subject directly
as the input subject for the second stream, because the stream might still need to apply
operators to its events before sending them to the combining operator.

To handle this case, the statemachine will keep an additional map from operatorId
to RxStream that tracks ’partially subscribed’ streams. Whenever a Subscribe message
encounters a combining operator, it will first check to see if the map contains its opera-
torId.

In the case of the first Subscribe message, the operatorId will not be contained and
thus an intermediary subject will be created. Next the information present in the oper-
ator (LeftStream/RightStream) will be used to decide on which side of the operator to
place the newly created stream. Once the operator has been applied, the intermediary
subject created previously, together with the observer that will be subscribed at the end
of the stream are added to this ’partially subscribed streams’ map using the operatorId
as key.

When the Subscribe message for the second stream encounters the combining oper-
ator, the operatorId will be present in the map variable. At this point, the statemachine
stops applying the next operators in the sequence and subscribes the input subject of
the ’partially subscribed’ RxStream to the stream that was just created. This essentially
completes the creation of a remote combiner stream.

Finally, the observer part of the partially subscribed RxStream, together with the
newly created input subject for the second remote stream are added to the statemachine
streams variable using the streamId as key. The entry for operatorId in the partially sub-
scribed stream map is no longer useful and can removed.

Sharing the observer between the two RxStreams that push values into the com-
bining operator makes sure that the statemachine produces correct output whenever
it pushes events to either of the two input subjects.
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case class WithLatestFrom[T, S, R](operatorId: String, streamPosition:
StreamPosition) extends CombiningOperator[T, S, R]{

override def toObservable(left: Observable[Any], right:
Observable[Any]): Observable[Any] = {

left.withLatestFrom(right)
}

}

On the operator implementation side, things are very similar to the case where op-
erators subscribe to a single stream. There’s only one operation needed, which needs to
apply the appropriate transformation to the left and right observable streams.
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7.1. INTRODUCTION
We have designed and implemented a system that extends the Rx library with oper-

ators for fault-tolerant, remote execution of observable streams. In addition to the main
design goal of enabling this new set of functionality, we have attempted to keep an in-
terface that is consistent with the current Rx API while maintaining a small dependency
footprint. The rest of this chapter will discuss the design decisions taken during devel-
opment and possible alternatives.

7.2. TARGET RX LIBRARY
The reactive programming paradigm and the reactive extensions library stand at the

core of this project and thus the first choice during planning was to decide which flavor
of Rx to target.

The possible choices here were the original Rx.NET implementation[1], it’s JVM coun-
terpart, RxJava/RxScala[2], or RxMobile, a lightweight version of Rx with native imple-
mentations in both Java and Scala. RxMobile aims to offer the same core functionality as
RxJava with a significantly simplified implementation by freeing itself from the concerns
of backpressure. The lack of familiarity and experience with the .NET ecosystem and
tooling made the JVM versions the only realistic choices. Between these two options,
RxMobile was preferred due to it’s decreased complexity. While the initial implementa-
tion of this project was in RxMobile, it was eventually ported to RxScala as part of the
effort to open-source the project code source.

Considering the fact that this work is a proof-of-concept and is not intended for pro-
duction use, we feel that the choice of target library does not really impact it’s value. The
ideas presented could pe taken and applied in any of the Rx flavors currently available.

7.3. CONSENSUS IMPLEMENTATION
Consensus is a fundamental problem in distributed computing systems that aim

to achieve system reliability in the presence of faulty processes. There are a number
of algorithms that address this problem, among which the most popular are Paxos[3,
4], Raft[5, 6], Viewstamped Replication[7–9] and Zab[10]. We feel that we couldn’t have
gone wrong with any of these options and any of these algorithms would have performed
adequately for our requirements, but we ultimately decided to use Raft due to its focus
on understandability and ease of implementation.

Once we have decided on a consensus algorithm, the next step was to choose a suit-
able implementation. The raft consensus website keeps a list of open-source implemen-
tations that are in various stages of development[11]. Out of these, the most notable and
mature ones at that time were etcd/raft[12, 13], Logcabin/raft[14] and Copycat[15, 16].

Since this work targets the JVM, we decided against using etcd/raft or Logcabin/raft
since their implementations are written in Go and C++ respectively. We ultimately de-
cided to roll our own Scala-based implementation, using Rx to coordinate and orches-
trate the asynchronous events in the system. This decision paid off in the end, allow-
ing us to become familiar with the Raft consensus algorithm and easily extend it where
needed.

On the more technical side, there were a number of decisions we had to take when
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implementing different parts of the system. On the networking side, we followed the Raft
paper[5], which describes the algorithm in terms of RPC calls between Raft clients and
servers. There are quite a few RPC libraries/frameworks available in the JVM ecosystem,
and we considered some popular choices which include the native Java RMI, Apache
Thrift[17–19], Google gRPC[20, 21], Twitter Finagle[22, 23] and Akka[24, 25].

Out of these, gRPC and Finagle were the most interesting alternatives, being simple
to use and configure, lightweight and offering streaming APIs for client-server commu-
nication. We had experience with neither of these 2 options and eventually went with
gRPC, despite being the younger project of the two. The beta state of the gRPC library
and tooling caused a few issues during development, which probably wouldn’t have hap-
pened with a more mature library like Finagle, but these issues/bugs were patched rela-
tively quickly.

Another technical decision that has influence on the design of the system is the
choice of how remote client code is sent and executed on the server. For simplicity, our
approach was to pack the whole client application and its dependencies as a jar archive
and send it to the cluster during the client registration phase.

While this approach works in practice, it also has the drawback that applications with
large dependencies will encounter a big delay during client registration.

7.4. API
This work was inspired by the observeOn operator in the standard Rx library, which

is used to execute the downstream operators on a different scheduler. Our idea was to
come up with an implementation for a similar operator (observeOnRemote), but which
is capable of executing the downstream on remote machine(s), with support for fault-
tolerance. One of our goals while implementing the Raft-based back-end system and
the Rx operators meant to interact with it, were to keep the API close to the standard Rx
library.

Despite being similar to the regular observeOn, the current iteration of the observeOn-
Remote operator has a few notable differences. Immediately noticeable is the fact that
the standard observeOn operator takes a scheduler as a parameter, while observeOnRe-
mote takes a raft Cluster as parameter. In a way, the observeOnRemote operator is closer
in semantics to an observerOn(Scheduler.worker) operator.

In practice, this has an impact on the ease of use: in the case of observeOn the sched-
uler will create an internal worker and schedule subsequent work to be executed on it,
while in the observeOnRemote case the ’worker’ will be the remote cluster referred by
the Cluster parameter. This means that when the observeOnRemote operator is called,
the remote cluster must already be up and running.

This is something that could definitely be improved upon in future work. A possi-
ble solution would be to use cluster schedulers such as Apache Mesos[28–30] or Apache
Yarn[31, 32] to dynamically allocate and start the Raft cluster workers.

Another important difference from a usability perspective comes from the fact that
the downstream of observeOnRemote executes on a replicated Raft cluster. This places
some restrictions on what operations can be performed in the downstream of observeOn-
Remote, and these restrictions which do not exist in the case of observeOn. In a nutshell,
the observeOnRemote downstream cannot perform any operations that are blocking,
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non-deterministic or non-terminating. This will be further discussed in the limitations
section.

7.5. LIMITATIONS

While the work presented in this report shows a possible approach to adding fault-
tolerant remote execution operators to the Rx library, it does not come without limita-
tions. Stemming from various factors, such as deliberately limiting the project’s scope or
restrictions imposed by the consensus algorithm, these limitations can be used as inspi-
ration for further research.

7.5.1. MISSING SUBSCRIBEON EQUIVALENT

The work presented in this report extends the Rx library with remote execution sup-
port by implementing an operator analogous to the vanilla observeOn operator. Ob-
serveOn takes a scheduler as parameter and is used in an Rx stream to specify the sched-
uler on which an observer will observe the events of a stream. ObserveOnRemote works
in a similar way, but it will push the stream to a raft Cluster instead of a scheduler. One
of the important limitations of this work is that it does not offer an analogous version of
subscribeOn, the other operator that the standard Rx library provides to control stream
threading. This was a deliberate decision, made in an attempt keep the scope of the
project manageable.

7.5.2. NO RX SCHEDULERS IN REMOTE STREAMS

One of the main requirements of the replicated state machine approach is that the
state machine must be deterministic, since every server needs to arrive at the same result
after applying the same series of commands.

As an example, the results of state machine commands must not depend on things
like each server’s current time, or command scheduling order. In the case of our system,
this means that the client must not use any Rx schedulers or non-deterministic opera-
tors in the Rx query that will be executed on the Raft server. If a client would use such
operations, then it becomes possible for Raft servers to execute commands in different
order (depending on various factors like scheduling order and command execution tim-
ing), which would lead the replicated state machine into a corrupt state.

7.5.3. NO INFINITE OR BLOCKING OPERATORS IN REMOTE STREAMS

This limitation is closely related to the requirement of keeping the replicated state
machine deterministic. In order to achieve that, state machine commands are applied
sequentially, one at a time. This means that any command that blocks the current thread,
or runs infinitely, will effectively prevent subsequent commands from being executed by
the state machine. In this case the Raft servers will still be able to receive commands
from clients and replicate them, but the system will not make any meaningful progress
since the state machine will be ’stuck’ executing the same (blocked) command. It is the
responsibility of the user to make sure these situations will not arise.
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7.5.4. LIMITED SET OF OPERATORS
The fact that the current implementation of observeOnRemote returns a RemoteOb-

servable has the advantage of easily tracking which part of the stream executes locally
and which executes remotely. On the other hand, this also means that any operators
that we want to execute on the remote Cluster needs to also be defined on the Remo-
teObservable type. We have given examples of how to implement the two major types
of operators: operators with a single source observable and operators that combine two
sources. Since this work is a proof of concept, we have only implemented a limited set of
operators, but an implementation targeting end-users would need to implement a wider
range of the Rx operator set.
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8.1. CONCLUSIONS
The goal of this thesis was to show a possible approach to designing and implement-

ing a system that allows parts of an Rx stream to be executed remotely in a fault-tolerant
fashion. As part of this work, we have shown an implementation for a distributed state
machine capable of running Rx queries together with extensions to the Rx library that
allow users to orchestrate and compose local and remote streams.

We believe our approach and contributions are valuable for a number of reasons.
First of all, it opens up new use cases for the Rx library, enabling users to fault-tolerantly
execute parts of a query or parallelize Rx streams over multiple physical machines.

Secondly, under the hood our system relies on a novel implementation of the Raft
consensus algorithm that allows users to run generic distributed state machines and
adds support for message forwarding and remote code execution. While there are other
implementations of Raft that allow users to run generic statemachines (such as Copycat[1]
or akka-raft[2]), we do not know of any that provide these features.

Additionally, since the infrastructure of our system was build from the ground up, it
relies on a minimal set of dependencies (grpc, protocol buffers and Rx). We believe this
helps with the understandability of the system and makes it a valuable learning tool for
developing distributed systems. This approach also allows for new features or extensions
to be implemented with relative ease, as evidenced by the two extensions described in
chapter 4.

Last, but not least, we believe this work also has value as a foundation for future
abstractions that could be developed on top of the remote execution operators. One
particular interesting possibility is the implementation of cluster schedulers that would
efficiently distribute a stream over multiple machines.

8.2. FUTURE WORK
While we believe the implementation presented in this report brings a valuable con-

tribution to the Rx environment, there are also numerous opportunities to improve and
extend it with new features.

First of all, the usability of operators like observeOnRemote could be improved by in-
tegrating with cluster schedulers like Mesos and Yarn. This could make the observeOn-
Remote api more similar to the standard observeOn and would free the user from having
to statically identify and manage the cluster that will execute the downstream operators.

A second area for potential future work is related to the ’no schedulers’ limitation dis-
cussed in the evaluation section. With the current implementation the user cannot use
Rx schedulers in the downstream of observeOnRemote because that would make the re-
mote state machine non-deterministic and could corrupt the distributed state. However,
one possible way around this limitation would be to implement deterministic sched-
ulers which would assure that the state machine replicas execute the same commands
and produce the same outputs.

Another potential area for improvement is sandboxing the Raft worker process. The
fact that the Raft statemachine can execute arbitrary user code poses a risk on the whole
system. Sanboxing would mitigate this risk and make the system more robust and stable
overall.



REFERENCES

8

63

Finall, we hope that this work has sparked the reader’s interest towards distributed
systems and reactive programming. The standard Rx library offers an elegant API for
manipulating and orchestrating streams of asynchronous events and provides standard
operators that allow developers to control which schedulers execute the stream. We be-
lieve that the next logical step is to implement similar abstractions that operate at ma-
chine and cluster level instead of just threads. This work has shown a possible approach
towards reaching this goal. While by no means complete, or production ready, we believe
it is valuable as a starting point and inspiration for implementers looking to address this
challenge.
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