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Abstract. The mobile element variant is a very important structural variant,
accounting for a quarter of structural variants, and it is closely related to many
issues such as genetic diseases and species diversity. However, few detection
algorithms of mobile element variants have been developed on third-generation
sequencing data.We propose an algorithm ricME that combines sequence realign-
ment and identity calculation for detecting mobile element variants. The ricME
first performs an initial detection to obtain the positions of insertions and deletions,
and extracts the variant sequences; then applies sequence realignment and identity
calculation to obtain the transposon classes related to the variant sequences; finally,
adopts amulti-level judgment rule to achieve accurate detection ofmobile element
variants based on the transposon classes and identities. Compared with a repre-
sentative long-read based mobile element variant detection algorithm rMETL, the
ricME improves the F1-score by 11.5 and 21.7% on simulated datasets and real
datasets, respectively.

Keywords: mobile element variants · sequence realignment · identity
calculation · third-generation sequencing data

1 Introduction

Transposons areDNA sequences that canmove autonomously across the genome. Trans-
posons show an important component of the human genome, which occupy approxi-
mately half of the human genome [1]. The transposons that have been verified to remain
active in the human genome include three classes, Alu, LINE-1 (L1) and SINE-VNTR-
Alu (SVA) [1]. The variants caused by transposon position changes are called mobile
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element (ME) variants, which can be divided into mobile element insertion (MEI) vari-
ants and mobile element deletion (MED) variants. ME variants have demonstrated to
be closely associated with various human genetic diseases such as hemophilia and neu-
rofibromatosis [2, 3]. In addition, ME variants account for about a quarter of the overall
structural variants [4]. Therefore, it is of great practical importance to carry out research
on the detection algorithm of ME variants.

The representative algorithms for detectingMEvariants on next-generation sequenc-
ing (NGS) data are Tea [3], MELT [4], Mobster [5], and Tangram [6]. Tea alignments
the paired-end reads with the reference genome and the assembled sequences composed
of ME sequences respectively, and extracts repeat-anchored mate reads and clipped
reads based on the alignment information to determine the insertion mechanism of MEs
[3]. MELT uses discordant read pairs from NGS data alignment information to detect
MEI variants, filters ME variants based on proximity to knownME variants, sequencing
depth, and mapping quality of reads; and finally uses discordant sequence pairs and split
reads to determine the type of ME variants and precise breakpoints [4]. Mobster uses
the discordant reads in the NGS data as the signals of MEI variants, and then extracts
the variant sequences based on the signals and compares the variant sequences with
the transposon consensus sequence (TCS) to determine the type of ME variations [5].
Tangram designs different ME variation features extraction methods for the read pair
and split read in the NGS data alignment information respectively, and then determines
the position and type of MEI variants according to the features [6].

Third-generation sequencing (TGS) data has great potential for structural variant
detection. It has been shown that structural variant detection algorithms based on TGS
data are better than those based on NGS data [7, 8]. rMETL [9] is a representative
long-read based ME variant detection algorithm, which is divided into four steps. The
first step extracts the candidate ME variant sequences from the long-read alignment
file. The second step clusters the candidate variant sequences to determine the ME
variant positions. The third step uses the read alignment tool NGMLR [10] to realign
the candidate variant sequences with transposon consistency sequences. And the final
step counts the transposon classes of the mapped sequences and selects the transposon
class with the highest frequency as the type of the ME variant.

However, the existing long-read based ME variant detection algorithms encounter
the following problems:

(1) Some insertions (INSs) or deletions (DELs) were not effectively detected, which
will directly affect the recall of the final removable element variant detection;

(2) Some of the variant sequences could not be successfully realigned by NGMLR,
which could not provide more judgment basis for the final ME variant detection to
improve the recall and accuracy of the final detection results.

(3) If the maximum number of transposon class is zero, i.e., all the variant sequences
are not mapped with the TCS, the variant may be missed as a false-negative mobile
component variant. And if the transposon class with the highest number of occur-
rences is not unique, the variant may be misclassified as a false positive ME variant
when randomly selecting a transposon as the final ME class.
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To address the above-mentioned issues, we propose an ME variants detection algo-
rithm ricME using sequence realignment and identity calculation to effectively improve
the performance of detecting ME variants.

The remainder of this paper is organized as follows. Section2details the proposedME
variant detection algorithm ricME. Section 3 describes the experimental environment,
dataset, results and analysis. Section 4 concludes the paper.

2 Method

Our proposed ricME algorithm comprises the following four steps.
Firstly, the long-read based structural variant detection algorithm cnnLSV [11] is

executed on the read alignment file Dset to obtain the initial detection result Cset con-
taining only INSs and DELs. Secondly, the ricME applies different sequence extraction
methods according to the characteristics of INSs and DELs to extract variant sequences
within Cset, and save the sequences into the set S. Thirdly, all variant sequences in the
set S are realigned with TCS using the tool NGMLR. For the variant sequences that can
be successfully aligned, the transposon class te mapped by the sequences is stored in
the set Tset; for the variant sequences that are not aligned, the ricME calculates their
identity with TCS, and the potential transposon class pte corresponding to the maximum
identity is selected and deposited into the set Tset. Finally, the ricME uses a multilevel
judgment rule to determine the final class of ME based on the distribution of te, pte and
identity in the set Tset. Figure 1 shows the process of algorithm ricME.

2.1 Initial Variant Position Detection

Since ME variants are caused by transposons moving autonomously across the genome,
ME variants are essentially special INSs and DELs. And the sequences of variants are
highly similar to transposon families including Alu, L1 and SVA. Therefore, the first
step of algorithm ricME is to initially identify INS and DEL position.

In our previous work, we proposed an algorithm called cnnLSV [11] to detect struc-
tural variants by encoding long-read alignment information and modeling convolutional
neural network. Experiments have shown that the algorithm cnnLSV has a high overall
F1-score compared to other existing algorithms. We use cnnLSV to detect the structural
variants on sequence alignment file Dset, and save the INSs and DELs to the set Cset.

2.2 Variant Sequence Extraction

The algorithm ricME using the following method to extract the variant sequences for
INS and DELs in Cset.

Variant Sequence Extraction for INSs. As shown in Fig. 2(a), the ricME extracts
variant sequences using intra- and inter-alignment signatures.

(1) Extracting variant sequences based on intra-alignment signatures. The flag “I” in the
CIGAR strings in the alignment information indicates the INS, while the number
preceding the flag represents the length of the variant. The ricME searches all read
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alignment information around the INSs in Dset to obtain the variant sequences with
a length of more than 50 base pairs (bps) within the CIGAR strings, and saves the
information about the variant sequences seq to the FA format file.

(2) Extracting variant sequences based on the inter-alignment signatures. When long-
reads are aligned to the reference genome, long-reads that span structural variants
may split into multiple segments. According to the characteristics of INSs, the dis-
tance between two segments from the same read will change before and after the
alignment, and the redundant segments that cannot be aligned are exactly the INS
variant sequence seq. In addition to the above case, a read alignment situation around
the INS is also mentioned in the algorithm rMETL. When the sequencing reads
cannot span the whole INS segment, there will be a fragment that can be aligned
successfully, and the adjacent fragment is clipped off because it is located at the
boundary of the variant region. The sequence is clipped off, and it is exactly the INS
sequence seq. The ricME extracts the variant sequences according to the above two
cases, and saves the information related to the variants to the FA format file.

Variant Sequence Extraction for DELs. Unlike the existing algorithm rMETL, which
searches for variant features before detecting variant position, our algorithm ricME uti-
lizes the detection results Cset of the existing structural variant detection algorithm
cnnLSV to obtain the initial positions of DELs. Therefore, the ricME can directly inter-
cept the variant sequence seq in the corresponding region of the reference genome based
on the chromosome number chr, variant position pos, and variant length svl where the
DEL occurs in the Cset, as shown in Fig. 2(b). And last, the ricME saves the information
of the DEL to the FA format file.

2.3 Sequence Realignment and Identity Calculation

In algorithm rMETL, sequence realignment means that the variant sequences extracted
from the long-read alignment information are realigned to TCS by NGMLR to obtain
the transposon class te. The rMETL could judge the ME variant class according the
distribution of the te.

However, some of the variant sequences were discarded because they could not be
successfully aligned to TCS by NGMLR, i.e., they could not provide more basis for ME
variant type judgment. In addition, relying only on the distribution of te to determine the
ME class may lead to accidental errors. As shown in Fig. 3(a), three sequences seq1, seq3
and seq6 are finally judged as the Alu class, and the other three sequences seq4, seq7 and
seq8 are aligned to the L1 class, i.e., the number of variant sequences supporting Alu and
L1 classes are of equal sizes, which will lead to the difficulty for the algorithm rMETL to
determine the final ME variant class. To solve the above problem, the algorithm ricME
introduces the sequence identity calculation based on sequence realignment, as shown
in Fig. 3(b).

Sequence identity reflects the degree of similarity between two sequences. The
premise of sequence identity calculation is to align two sequences [12, 13]. The two-
sequence alignment algorithms include global-based and local-based alignment. Due
to the large differences between the lengths of the three transposons and the lengths
of each variant sequence, if the global based approach is used to calculate the identity,
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Fig. 1. Procedure of proposed mobile element variant detection algorithm ricME
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I

intra-alignment signatures

(CIGAR strings)

CIGAR strings

seq

inter-alignment signatures

(Split read)

INS variant sequence

reference

genome

split read

seq

(a)Extracting INS variant sequenc

(b)Extracting DEL variant sequence

chr

pos svl

seq

(c) Saving variant sequence

>chr1_1337322_352_INS_1

TTAGTCCAGGGATGCAGATGGCTCACGCCTGAA…TCCCCAGCACTTTGGGAGCGGCCGAGGGC

>chr1_1337322_352_INS_2

GACAATTGCCAGGTGCAGTGGCTCTCACGCCTG…ATGCCCAGCCTTGTTTGGAGCTCGAGGCAT

reference genome

Fig. 2. Variant sequence extraction and storage in FA format

Fig. 3. Example of sequence realignment and identity calculation

the longer variant sequence will always get a higher identity with the longer transposon
sequence. To avoid this bias caused by sequence length, the algorithm ricME uses the
local-based alignment algorithm based on affine gap penalty to calculate the identity of
two sequences. The ricME calculates the identity between unmapped variant sequences
and the TCS to obtain the potential ME class pte and the corresponding identity identity,
and stores the te, pte, and identity in the set Tset.
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2.4 Mobile Element Variant Determination

In order to avoid the random selection error caused by the same frequency of transposon
class te, the algorithm ricME introduces the potential variant classpte and identity identity
as judgment factors, and proposes a multi-level judgment rule based on three factors of
te, pte and identity to accurately detect the ME variant.

The process of the ME class judgment rule is as follows.

(1) To improve the accuracy of detection, the ricME defines the identity threshold
identity0 and eliminates the pte with identity < identity0 within Tset.

(2) The ricME constructs 3 triples TAlu, TL1 and TSVA according to the distribution of te,
pte and identity within Tset, where the triple Tme = (nte, npte, score),me ∈ {Alu, L1,
SVA}, nte denotes the number of te in Tset with class me, npte denotes the number
of pte, and score denotes the sum of identity corresponding to the pte of class me.

(3) A multilevel judgment rule is used to determine the ME variant class. The ricME
ranks the three tuples TAlu, TL1 and TSVA in the order of priority of nte, npte, and
score.

(4) The ricME stores the ME variant information and transposon class to the VCF file
as the final detection output.

3 Experiment

3.1 Experimental Environment and Data

Experimental Environment. The experiment was carried out on the computing node
X580-G30 with CPU 2 × Intel Xeon Gold 6230, GPU 2 × Tesla T4, and main memory
192GB DDR4 of Sugon 7000A parallel computer cluster system at Guangxi University.
The running operating system is CentOS 7.4. The proposed method was implemented
by Python3.8 programming. The PyTorch was used to train and test the constructed
network model.

Datasets

Simulated Datasets. Referring to the work of rMETL [9], the simulated datasets were
generated as follows. Firstly, the 20,000 real ME variants of classes Alu, L1 and SVA,
respectively, were collected from the database RepeatMasker [14]. And the sequences
corresponding to the positions of the selected ME variants were deleted in chromosome
1 of the human reference genome. We extracted the sequence of chromosome 1 of the
normal reference genome as seq1, the sequence of chromosome 1 containing the MED
variants as seq2, and recorded the chromosomes, positions, lengths and classes of the
real ME variants as the ground truth set. Secondly, we executed the tool PBSIM [15]to
simulate sequencing reads for seq1 to generate 4 PacBio CLR datasets with coverage
of 50×, 30×, 20×, and 10×, respectively, and executed read alignment tool NGMLR
to map the 4 datasets to the seq2 to generate 4 long read alignment files for detecting
MEI variants. Thirdly, we also used the PBSIM to simulate sequencing reads for seq2
to generate 4 datasets with coverage of 50×, 30×, 20×, and 10×, respectively, and
executed NGMLR to align the 4 datasets to the seq1 to generate 4 read alignment files
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for detectionMED variants. Finally, we used SAMtools [16] to sort and generate indexes
for the 8 simulated datasets.

Real Datasets. The real dataset used is the HG002 CCS [17] dataset generated by the
PacBio platform, which relates to the ground truth set that is a portion of theME variants
of HG002 dataset validated in [18]. This ground truth set contains 1353 Alu, 197 L1,
and 90 SVA ME variants.

3.2 Detecting Performance Evaluation Metrics

The experiments use the precision Pre, recall Rec and F1-score F1 as the detection
performance evaluation metric.

In the determination of true positive ME variant, when the detected ME variant call
and the ME variant base of the ground truth set satisfy Eq. 1, then call is considered a
true positive variant, otherwise it is a false positive variation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

callt = baset
callm = basem
callc = basec

min(calle + 1000, basee) − max(calls − 1000, bases) ≥ 0
min(calll ,basel)
max(calll ,basel)

≥ 0.7

(1)

where callt , callm, callc, calls, calle and calll denote variant type, ME class, chromo-
some, start position, end position and the length of variant call, respectively, and baset ,
basem, basec, bases, basee and basel represent variant type, ME class, chromosome,
start position, end position and the length of variant base, respectively, callm ∈ {Alu,
L1, SVA} and basem ∈ {Alu, L1, SVA}.

3.3 Experimental Results

Experiments on Simulated Datasets. The experiments were conducted on eight sim-
ulated datasets, including four datasets containing MEI variants with coverages of 50×
, 30×, 20×, and 10×, respectively, and four datasets containing MED variants with
coverages of 50×, 30×, 20×, and 10×, respectively.

Firstly, to verify the effectiveness of the algorithm ricME in detecting the initial
variant position, we looked at the detection results of simple INSs and DELs. The results
are shown in Table 1, where TP-call indicates the number of correctly detected variants
in the detection results, and TP-base represents the number of correctly detected variants
in the ground truth set.

From Table 1, it can be concluded that for the cases of INSs and DELs, the F1-
score of the algorithm ricME is about 12–17% higher than that of the algorithm rMETL.
For the INSs, the detection performance of algorithm rMETL, especially the recall,
decreases significantly as the coverage of the dataset decreases. In contrast, algorithm
ricME performed significantly better than algorithm rMETL in terms of recall Rec,
especially at low coverage, and could detect more than 4000 INSs and had about 23%
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higher recall than rMETL. Even though the Pre was slightly lower than that of rMETL
under partial coverages, the larger recall by the ricME results in a significant higher F1
values. For the DELs, both algorithms rMETL and ricME achieved very high detection
accuracy on the datasets with different coverages, especially rMETL could reach 99%. In
terms of recall Rec, the algorithm ricME had a significant advantage over the algorithm
rMETL, especially in the low coverage dataset, with a lead of about 13%. The F1 values
of ricME were also higher than that of algorithm rMETL by about 6–8%. Compared
with the similar algorithm rMETL, ricME had higher F1 values in the detection of INSs
and DELs.

Table 1. Results of algorithms in detecting INSs and DELs on simulated datasets

Type Coverage Algorithm TP-
Call

TP-
Base

FP FN Pre (%) Rec (%) F1 (%)

INS 50 × rMETL 13942 15013 1128 4987 92.515 75.065 82.881

ricME 18493 18692 694 1308 96.383 93.46 94.899

30 × rMETL 13100 14168 1046 5832 92.606 70.840 80.274

ricME 18218 18482 624 1518 96.688 92.410 94.501

20 × rMETL 12182 13235 916 6765 93.007 66.175 77.329

ricME 18038 18433 573 1567 96.921 92.165 94.483

10 × rMETL 9949 10944 636 9056 93.991 54.720 69.170

ricME 14980 15408 399 4592 97.406 77.040 86.034

DEL 50 × rMETL 16472 16804 129 3196 99.223 84.02 90.991

ricME 18999 19017 574 983 97.067 95.085 96.066

30 × rMETL 16630 16919 171 3081 98.982 84.595 91.225

ricME 19026 19072 619 928 96.849 95.360 96.099

20 × rMETL 16318 16658 122 3342 99.258 83.290 90.576

ricME 18808 18913 441 1087 97.709 94.565 96.111

10 × rMETL 13500 13918 60 6082 99.558 69.590 81.919

ricME 16388 16583 259 3417 98.444 82.915 90.015

Note that the values in bold represent the best results.

Next, the performance of two algorithms rMETL and ricME is compared for
detecting ME variants. The experiment results are shown in Table 2.

From Table 2, we can see that the performance of the algorithm ricME was signif-
icantly better than that of the algorithm rMETL in detecting MEI variants and MED
variants on datasets with different coverages, with 8–11% higher F1 values. For MEI
variants, in terms of the detection precisionPre, the ricME slightly outperformed rMETL
on high coverage datasets, while both performed comparably on low coverage datasets.
In terms of recall Rec, the algorithm ricME was significantly higher than rMETL, espe-
cially about 15% higher on the low-coverage datasets. In addition, the value of metric
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TP-base also shows that the ricME detected about 3000more true positives than rMETL.
For the overall performance metric F1-score, the ricME also obtained higher F1 values
due to the high precision and recall. For the MED variants, in terms of the detection
precision Pre, the rMETL achieved a high detection precision on all datasets, which
was about 2% higher than that of ricME. However, in terms of recall Rec, algorithm
ricME achieved significantly higher than rMETL on the datasets with each coverage,
namely about 7–8% higher. In terms of the F1 values, the algorithm ricME obtained
higher F1 values due to the overall high precision and recall, namely about 2–5% higher
than the algorithm rMETL. The combined experiment results in Table 2 show that the
algorithm ricME had a better performance in terms of recall Rec and was comparable
to the algorithm rMETL in terms of detection precision Pre. This indicates that the pro-
posed algorithm ricME is able to detect more ME variants than the algorithm rMETL,
and has higher accuracy in the variant class judgment stage. The above results show that
the proposed algorithm ricME use the sequence realignment and identity calculation to
enhance the basis for variant class judgment, which improves the detection precision,
recall and F1-score to achieve higher detection performance.

Table 2. Results of algorithms in detecting mobile element variants on simulated datasets

Type Coverage Algorithm TP-
call

TP-
base

FP FN Pre
(%)

Rec
(%)

F1
(%)

MEI 50 × rMETL 13785 14837 1285 5163 91.473 74.185 81.927

ricME 16894 17432 1235 2568 93.188 87.16 90.073

30 × rMETL 12964 14017 1182 5983 91.644 70.085 79.428

ricME 16643 17150 1294 2850 92.786 85.750 89.129

20 × rMETL 12047 13085 1051 6915 91.976 65.425 76.461

ricME 16314 16861 1428 3139 91.951 84.305 87.962

10 × rMETL 9831 10807 754 9193 92.877 54.035 68.321

ricME 13397 13911 1148 6089 92.107 69.555 79.258

MED 50 × rMETL 16388 16717 213 3283 98.717 83.585 90.523

ricME 17696 17875 677 2125 96.315 89.375 92.715

30 × rMETL 16542 16830 259 3170 98.458 84.150 90.744

ricME 17715 17914 724 2086 96.074 89.570 92.708

20 × rMETL 16238 16577 202 3423 98.771 82.885 90.133

ricME 17507 17742 586 2258 96.761 88.710 92.561

10 × rMETL 13437 13858 123 6142 99.093 69.290 81.554

ricME 15273 15562 400 4438 97.448 77.810 86.529

Note that the values in bold represent the best results.

Experiments on Real Datasets. We used the tool SAMtools to downsample the long-
read alignment file HG002 CCS 28× to generate a new dataset with 10× coverage, then
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executed the algorithms ricME and rMETL to detect ME variants on the two datasets,
and compared the detection results with the ground truth set to evaluate the detection
performance. The detection results of the two algorithms rMETL and ricME are shown
in Table 3, where “\” indicates that the calculation of F1 is meaningless in the case that
both metrics Pre and Rec are zero.

Table 3. Detection results of algorithms rMETL and ricME on dataset HG002

Type Coverage Algorithm TP-
call

TP-
base

FP FN Pre
(%)

Rec
(%)

F1
(%)

28 × Alu rMETL 4 4 364 1349 1.087 0.296 0.465

ricME 589 589 1898 764 23.683 43.533 30.677

L1 rMETL 14 14 292 183 4.575 7.107 5.567

ricME 59 59 946 138 5.871 29.949 9.817

SVA rMETL 1 1 101 89 0.98 1.111 1.042

ricME 32 32 1011 58 3.068 35.556 5.649

All rMETL 19 19 757 1621 2.448 1.159 1.573

ricME 680 680 3855 960 14.994 41.463 22.024

10 × Alu rMETL 2 2 55 1351 3.509 0.148 0.284

ricME 657 657 2198 696 23.012 48.559 31.226

L1 rMETL 1 1 65 196 1.515 0.508 0.76

ricME 62 62 1053 135 5.561 31.472 9.451

SVA rMETL 0 0 14 90 0 0 \

ricME 26 26 1133 64 2.243 28.889 4.163

All rMETL 3 3 134 1637 2.19 0.183 0.338

ricME 745 745 4384 895 14.525 45.427 22.012

Note that the values in bold represent the best results.

As can be seen from Table 3, the overall detection performance of the algorithm
ricME was significantly higher than that of the algorithm rMETL for the detection of
the all classes of ME variants on the real datasets with coverages 28 × and 10 ×. The
F1-scores of ricME was about 20% higher than that of rMETL. In terms of recall Rec,
the ricME was much higher than rMETL, especially for the detection of Alu transposon
class, which are 40% higher. In terms of precision Pre, although the Pre of the ricME
was higher than that of rMETL in all classes, both performed less well. For the rMETL,
the main reason is that the rMETL detected fewer true positive variants, i.e., insufficient
detection of ME variants. For the algorithm ricME, the main reason for the low accuracy
is the high number of false positive variants detected. However, it is worth noting that
despite the high frequency and importance of ME variants, there are still few studies
and annotations on ME variants [19, 20]. The ground truth set corresponding to the real
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dataset HG002 used in the experiments is the validated information ofME variants given
in the work [18], and this ground truth set only contains some of the ME variants with
a high confidence. This means that the false positives detected by the ricME may not
actually mean that no variants have occurred.

4 Conclusion

Mobile element variant is a very import structural variant that is closely associated with
a variety of genetic diseases. We propose the ricME, an algorithm for detecting the
variation of movable components that integrates re-matching and sequence consistency
calculation, to improve the existing representative ME variation detection algorithm
rMETL. The ricME has the following features and innovations. First, the ricME use
the detection results of algorithm cnnLSV to obtain the initial results with high recall.
Secondly, the ricME extracts the variant sequences of all INSs and DELs in initial
results. Thirdly, the ricME realigns and calculates identity between variant sequences
with transposon consistency sequences to obtain the corresponding transposon classes
and the identities. Finally, the ricME applies a multi-level judgment rule to determine the
final ME class based on transposon classes, potential transposon classes and identities.
The experiment results show that the proposed algorithm ricME outperforms the existing
representative algorithm for ME variant detection in general. In the future, we will
investigate algorithms for detecting more types of structural variants on more types of
datasets.
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