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Abstract—Drone base stations can help safeguard coverage and
provide capacity relief when cellular networks are under stress.
Examples of such stress scenarios are events with massive crowds
or network outages. In this paper we focus on a disaster scenario
with emergence of a traffic hotspot, where agile drone positioning
and load management is a critical issue. In order to address this
challenge, we propose and assess a data-driven algorithm which
leverages real-time measurements to dynamically optimize the
3D position of the drone as well as a cell selection bias tuned for
optimized load management. We compare the performance with
three benchmark scenarios: i) no drone; ii) a drone positioned
above the failing site; and iii) a drone with a statically optimized
position and cell selection bias. The results demonstrate that the
proposed algorithm significantly improves the call success rate
and achieves close to optimal performance.

Index Terms—Drone-assisted cellular networks, drone posi-
tioning, load management, performance assessment

I. INTRODUCTION

In today’s digital society wireless cellular networks are a
critical infrastructure and need to be highly reliable. When
adequately planned, these networks are able to provide reliable
coverage and sufficient capacity in normal conditions. In
atypical situations however the provided coverage and capacity
may no longer be sufficient, e.g. in case of festivals or sports
events with massive crowds or network anomalies due to
failures or disasters. For these kinds of events the use of drone
base stations offers an agile mechanism to provide capacity
relief as well as safeguard coverage in the case of network
failures [1].

The effective deployment of drone base stations in unpre-
dictable scenarios involves several key challenges. In partic-
ular, it is crucial for the drone to find a good 3D position
as this will have a critical impact on the performance. For
example, a well-positioned drone can significantly increase the
call success rate (CSR) [2], while a badly positioned drone
may simply be ineffective or even cause high interference
and therefore degrade performance. It is also critical to find a
good policy or cell selection bias for assigning UEs to regular
cells or to the drone base station in order to balance the
loads. However, the optimal 3D position and selection bias
of the drone cannot be easily determined as these depend on

a variety of factors, such as the locations of the base stations,
the positions of the UEs, antenna features and propagation
characteristics. While some of these aspects may be known
from RF planning procedures, other variables may be hard to
predict with any accuracy, especially the positions of the UEs
which could even be strongly affected by network disruptions.
Hence in practice we will likely rely on data-driven algorithms,
which leverage online measurement data or network statistics
in order to determine an appropriate 3D position and cell
selection bias for the drone.

A priori, it is unclear what algorithm to use to steer the
drone operation in an online manner, and what the most
suitable type of network measurement data is for that purpose.
It would be natural to relate the measurement data to a
performance indicator like the CSR, but it might simply take
too long to accurately measure the CSR. Thus it might be
better to consider other metrics as proxies for the CSR, or
adopt load-related metrics with the intention to optimize the
CSR through load balancing.

A. Contributions

We focus on a network disruption event with a failing base
station and the emergence of a traffic hotspot. As alluded to
above, it is quite natural for a network disruption event to cause
a significant displacement or accumulation of UEs resulting in
a traffic hotspot. As a way to restore service, we consider the
deployment of a drone base station to take care of the UEs
that would normally be served by the failing base station.
Motivated by the above-mentioned challenges, we propose
and analyze a data-driven algorithm to dynamically adjust
the 3D position of the drone as well as a cell selection bias
used for load management purposes. The dynamic adjustment
procedure leverages measurement data that is easy to obtain
in practice, henceforth referred to as control metrics.

The performance achieved by the proposed algorithm using
different control metrics is compared with three reference
scenarios i) no drone assistance, ii) a drone positioned above
the failing site and iii) a drone deployed with a statically
optimized position and cell selection bias. The comparison
reveals a strong candidate optimization algorithm, which is



subsequently further tested in a more extensive sensitivity
analysis. The results show a significant improvement with
respect to the scenarios without a drone and a drone posi-
tioned above the failing site, and indicate close to optimal
performance.

B. Related literature

In recent years multiple papers have investigated the deploy-
ment of aerial base stations such as drones. In [3] the optimal
altitude of a drone is determined for a given maximum allowed
path loss. In [4] the authors use Q-learning to determine the
optimal position of a drone base station and compare the
drone-assisted network with a conventional terrestrial network.
The authors of [5] propose a Q-learning algorithm for optimal
drone positioning in an emergency scenario where the conven-
tional network is completely destroyed. In a similar setting the
authors of [6] use Q-learning to determine the best transmit
power allocation and positioning of drones. The disadvantage
of the proposed solutions of [5] and [6] is that in each iteration
they determine the optimal positions for a snapshot of the
environment, while in reality the environment is continuously
changing. Therefore the proposed implementation could be
too slow in finding good positions in a real scenario. In [7]
the authors consider three algorithms (Q-learning, a gradient-
based technique and a greedy search) to minimize the path
loss. In [8] a heuristic scheme is proposed to find the minimum
number of drones and their optimal 3D positions in a scenario
without any regular base stations. The authors in [9] use a
machine learning algorithm to detect peaks of user demands,
and formulate an optimization problem to maximize coverage
using drones. The authors of [10] study the placement of a
tethered drone with the objective to minimize the average
path loss between the drone and a ground user. In [11] an
approach using multiple drones to form a communication
‘bridge’ is considered to offload excessive traffic demand to
an underloaded base station.

In a previous paper [2] we determined the optimal position
and cell selection bias for the drone by an exhaustive search of
many possible configurations. This provides a good benchmark
for the performance of online algorithms. However, in practice
this would not be a feasible online approach because it would
take too long to obtain reliable measurements. Also, it does
not provide a viable offline method, since that would involve
accurate knowledge of the propagation environment and in
particular the spatio-temporal traffic characteristics, which is
typically not available for unforeseen disruption events. On
the other hand, the results provide useful insights for the
development of online algorithms aiming to find a good 3D
position and cell selection bias. In the present paper we
therefore propose an algorithm which exploits measurements
that can be performed more quickly in order to dynamically
find a good 3D position and cell selection bias in an online
manner.

C. Organization of the paper

The remainder of the paper is organized as follows. In
Section II we explain the most important modeling aspects.
In Section III we introduce an algorithmic framework and
the control metrics that will be considered. In Section IV
we present simulation results, and make a comparison of the
proposed algorithm using different combinations of the control
metrics, followed by a more extensive analysis of the algorithm
with the best combination of control metrics. In Section V we
summarize the key conclusions and provide recommendations
for further research.

II. MODELING

In this section we elaborate on the most important modeling
aspects, largely based on [2] to allow for comparison with
static drones with an optimized position and cell selection
bias. Therefore we repeat the key modeling aspects here in
a condensed manner for the paper to be self-contained. A key
difference with respect to [2] is that here we consider a drone
that dynamically adjusts its position and cell selection bias.
These dynamic adjustments affect the channel quality of the
UEs, and therefore requires the modeling of additional aspects
like handovers and dropping.

A. Network and antenna aspects

We consider a hexagonal layout of twelve three-sectorised
sites comprising 12 × 3 = 36 cells. Each of these cells is
assigned a single 5 MHz FDD carrier in the 2 GHz band, and
is served by directional antennas as illustrated in Figure 1.
A wraparound feature is applied to mimic an infinite-size
network and avoid boundary effects. We assume that the
antennas are located at a height of 30 m [12] and that the
inter-site distance is 500 m corresponding to a dense urban
environment.

Fig. 1: Best-server area before a disaster event. The different
colored areas indicate the cells of the regular base stations,
the blue colored cells indicate the evaluation area and the red
dot with arrows indicates the failing site.



For the antenna gains of regular base stations we use the
model proposed by [13] where the total antenna gain is given
by G(ϕ, θ) = Gh(ϕ) +Gv(θ) with

Gh(ϕ) = −min

{
12

(
ϕ

HPBWh

)2

, FBRh

}
+Gr,

Gv(θ) = max

{
−12

(
θ − θetilt

HPBWv

)2

, SLLv

}
,

where HPBW{h,v} denotes the horizontal or vertical half-
power beamwidth, Gr the maximum gain in dBi, FBRh the
front back ratio in dB, and SLLv the side lobe level in dB, both
relative to the maximum gain of the main beam. Furthermore ϕ
denotes the horizontal angle relative to the azimuth direction,
θ the negative elevation angle relative to the horizontal plane,
and θetilt the electrical downtilt. We assume that these regular
base stations each have a transmission power of P Tot

r = 20 W
where the power of the reference signal PRS

r = 1 W.
For the drone base station we have rotated the model in [14,

Table 7.3.1], and adapted the horizontal component to ensure
a circular footprint, so that the antenna gain is modeled as

G(θ) = −min

{
12

(
θ

HPBWd

)2

, SLLd, FBRd

}
+Gd,

with similar notation as before. We assume that the drone base
station has a transmission power of P Tot

d = 0.5 W where the
power of the reference signal PRS

d = 0.025 W. The drone is
assumed to be wirelessly connected to the backhaul network
using a transmission frequency other than that used to serve
the UEs.

B. Propagation characteristics

To be able to model different kinds of urban scenarios, the
ITU recommends three statistical parameters [15]:
α: The ratio of built-up land area to the total land area.
β: The number of buildings per square kilometer.
γ: A scale parameter describing the buildings’ heights ac-

cording to a Rayleigh distribution.
We will consider a dense urban scenario, and therefore set
α = 0.5, β = 300 and γ = 20 [16].

For the link between UEs and regular base stations, we
model the path loss according to the COST 231 Walfisch-
Ikegami model [17]. We derive the parameters of this model
using the statistical parameters α, β and γ. First the value of
γ implies an average building height of γ

√
π/2. Following

the reasoning in [16], the average width of the roads and the
building separation are given by 1000/

√
β − 1000

√
α/β and

1000/
√
β, respectively. Lastly, we take the road orientation

with respect to the direct radio path to be 90 degrees as
suggested in [17].

As the COST 231 Walfisch-Ikegami model is only valid for
transmitter heights up to 50 m, and we would like the drone
to fly at higher altitudes, a different model is needed for the
path loss between a UE and the drone base station. A model
that is better suited for this purpose is the model described in

[3], which considers two types of links, either having Line-
of-Sight (LoS) or not (NLoS), with the LoS probability given
by

pLoS = 1− pNLoS =
1

1 + ξ exp (−ψ[arctan(h/r)− ξ])
,

where h denotes the difference in height, r represents the hori-
zontal distance between the drone and UE, and ξ = 12.081 and
ψ = 0.1139 are environment parameters calculated according
to the model in [3], which also uses the statistical parameters
α, β and γ. Now the path loss is assumed to be the free-space
path loss plus the excessive path loss η which depends on
the type of link (LoS or NLoS). We take ηLoS = 1.6 dB and
ηLoS = 23 dB corresponding to a dense urban environment
with a carrier frequency f = 2000 MHz as reported in [16].
Thus the path loss is given by

L = 20 log10

(
4πdf

c

)
+ pLoSηLoS + (1− pLoS)ηNLoS,

where c denotes the speed of light and d the 3D-distance
between the drone and UE.

We further impose a minimum coupling loss of 70 dB for
all links [12].

C. Traffic characteristics

UEs are assumed to initiate calls according to a spatial
Poisson process with intensity λ. The occurrence of the
disruptive event could result in an increased intensity of active
UEs in an area close to the location of this event. We model
such a hotspot as a circle with a radius of 100 meters, and
assume that the intensity of initiated calls in the hotspot is a
factor ρ times higher than elsewhere.

The calls have an exponentially distributed duration with a
mean equal to τ seconds, and are characterized by a minimum
bit rate requirement of R Mb/s.

D. Resource management aspects

Besides considering the Reference Signal Received Power
(RSRP), we adopt the Cell Individual Offset (CIO) as a cell
selection bias to be able to steer traffic away from the drone
when it has a high load or to attract more load when it has
little load. Specifically, upon initiation of a call we assign the
cell with the highest RSRP + CIO as the call’s serving cell,
provided that the UE initiating the call has an RSRP > −120
dBm meaning that it has coverage. If the latter is the case,
an admission control mechanism accepts the newly requested
call when the estimated fraction of downlink resource blocks
needed at the serving cell to satisfy the minimum bit rate
requirements of all currently active UEs plus the new UE
does not exceed 98%. Here we leave a 2% margin to cope
with possible changes in the amount of interference due to the
movement of the drone. To guarantee the minimum required
bit rate of R Mb/s, we calculate the fraction of downlink
resources that a UE needs by R/ (B log2(1 + SINR)), where
B denotes the available bandwidth which is set to be 5 MHz
and SINR the Signal-to-Interference-plus-Noise Ratio of that



UE. For the calculation of the SINR, we assume a thermal
noise of -106.94 dBm and a noise figure of 8 dB for each UE.

Any surplus resources not needed to satisfy the minimum
bit rate requirements are divided among the active UEs in a
proportional fair way.

Although we do not consider user mobility, the dynamic
optimization of the drone position and the CIO may cause
active UEs to request handovers. Such a handover is attempted
when the RSRP + CIO of a candidate target cell exceeds that
of the current serving cell by at least 3 dB (hysteresis value) for
at least 200 ms (time to trigger or TTT). A handover request is
submitted to the admission control algorithm of the target cell
(to avoid overloading the target cell) where we do not consider
the margin of 2%. When a handover request is denied, it will
be repeated after 50 ms provided that the conditions triggering
the handover are still satisfied.

Lastly, changes in the 3D drone position may affect whether
active calls still experience coverage, as specified by the −120
dBm RSRP threshold. In case an active call looses coverage
and cannot be handed over to another covering cell, it is
dropped.

E. Performance measure

We adopt the Call Success Rate (CSR) as a key performance
measure. For this metric we consider a call to be successful if
it has coverage, is admitted, has received its required minimum
bit rate for the entire call duration and is not dropped. For the
evaluation area of the CSR we consider the cells of the failing
site and the nine cells adjacent to this site (indicated in blue
in Figure 1). This way, we only consider UEs in the vicinity
of the failed based station, and UEs connected to one of the
cells that now handles calls that would normally be handled
by the failing site.

III. ALGORITHMS

In this section we introduce the general framework and
control metrics (CMs) of the proposed algorithm. In order to
optimize the CSR, this data-driven algorithm uses the CMs to
dynamically adjust the x, y and z coordinates and CIO as the
control parameters (CPs) of the drone.

A. General framework

For our algorithm we combine the optimization of z and
CIO. This design choice is motivated by the observation that
the optimal z and CIO for a static drone are strongly related.
In particular, since increasing z or CIO both have the effect
of steering more load towards the drone, therefore a higher
optimal value of z corresponds to a lower optimal CIO value
and vice versa [2]. Given this strong relation, we propose an
algorithm which tries to keep the z or CIO at a default value
until the other CP has reached a pre-determined lower or upper
limit. Note that this yields two distinct options in terms of
whether z or CIO is the primary CP.

The algorithm repeatedly optimizes the x, y and z/CIO one
at a time. In this algorithm we measure two distinct CMs: one
for xy-adjustments and one for z/CIO-adjustments, which will

be defined in Section III-B. The algorithm starts by measuring
the CMs during 200 ms. Based on these CMs and the previous
action taken, our algorithm decides what action to take next
(increase/decrease x, y or z/CIO). Then the action is executed
which means that the drone moves to a new position or that
the CIO is adjusted. Now we wait until the TTT has passed, to
allow for possible handovers induced by the control action, and
then measure the CMs again. This iterative cycle of measuring,
adjusting the CP and waiting is illustrated in Figure 2.

Time

· · · Measuring Adjust CP Waiting Measuring Adjust CP · · ·

Decision point Decision point

Fig. 2: Illustration of the optimization process and its decision
points.

As mentioned above, we repeatedly optimize the CPs x, y
and z/CIO, meaning that we adjust only one of the four CPs
at a time. For the algorithm we consider two optimization
methods. The first method is an improvement-based method
which can be used for all CPs (x, y and z/CIO), and works
as follows: Given a baseline measurement of a CM, we first
take an action to increase the current CP. At the next decision
point (after the next measurement period), we check whether
the CM has improved. If that is the case, we keep increasing
the CP until the CM does not improve anymore. If the CM has
degraded, we reverse the CP adaptation direction and hence
in this case decrease the CP, and continue taking this action
until the CM does not improve anymore. At that point, we start
optimizing one of the other CPs (in the order x, y, z/CIO).

Since a change in the CIO does not necessarily affect the
currently active UEs, we cannot conclusively infer from the
measurements of the CMs whether or not the adjustment
was an improvement. Therefore we also consider a different
approach for the optimization of z/CIO, which is a value-based
method. In this method we measure the CM, and determine
whether the CP should increase or decrease based on the CM
value itself, rather than on whether it improved or degraded.
So depending on the value of the CM, we will either increase
or decrease the z/CIO in order to direct additional or less load
to the drone cell or do not adjust z/CIO. For this method we
also limit the number of actions, meaning that we allow at
most one adjustment in z/CIO every minute. The reason for
this is that an adjustment of the CIO does not affect most
active UEs, except UEs that request a handover due to this
change. As only a few (if any) UEs request a handover, we
choose to incorporate the impact of new and finished calls on
the CM, and therefore need to wait some time before adjusting
the z/CIO again.

B. Control metrics

As our ultimate goal is to optimize the CSR, it might seem
logical to use the CSR as CM. However, it would take too long



to measure the CSR accurately enough due to the relatively
large time scale at which call arrivals and terminations take
place, and hence making the adjustments based on the CSR
would likely be too slow. Therefore, the adjustments are driven
by other specific CMs, which are easy to obtain and can be
measured well more quickly.

For the improvement-based optimization method we con-
sider the following CMs which are measured over the cells of
the evaluation area:

C1: the total amount of resources needed to satisfy the
minimum bit rate requirement of all currently as-
signed UEs to a cell.

C2: the average fraction of resources needed per UE to
satisfy the minimum bit rate requirement.

C3: the absolute difference of the 75th percentile of the
fraction of resources needed to satisfy the minimum
bit rate requirements of the currently assigned UEs
to one of the cells adjacent to the failing site and the
fraction of resources that the drone needs to satisfy
the minimum bit rate requirements of the connected
UEs.

C4: same as C3 but now using the 50th percentile (me-
dian).

C5: the total number of currently assigned UEs that do
not receive their minimum bit rate.

C6: the total number of currently assigned UEs that do
not receive their minimum bit rate divided by the
total number of assigned UEs.

CMs C1-C4 are chosen with the intention to balance the load,
while C5 and C6 are more closely related to the CSR as these
measure the number/fraction of currently successful calls.

For the value-based optimization method (which is only
used for adjusting z/CIO) we consider the following CMs:

C7: the difference of the 75th percentile of the smoothed
fraction of resources needed to satisfy the minimum
bit rate requirements of the cells of the regular cells
and the smoothed fraction of resources that the drone
needs to satisfy the minimum bit rate requirements.

C8: same as C7 but now with the 50th percentile (me-
dian).

For these last CMs we use a smoothing parameter such that
70% of the measured value is based on the last minute.

IV. SIMULATION SETUP AND RESULTS

In this section we first discuss the setup of the simulation
experiments. Then we quantify how well (in terms of the CSR)
different combinations of the CMs (one for the xy-adjustments,
and one for the z/CIO-adjustments) work for our algorithm,
and use that to select a good combination of CMs. Finally, we
conduct a more extensive analysis for the algorithm with this
selected combination of CMs. Specifically, we examine the
convergence speed and compare the performance with baseline
scenarios for different hotspot locations and traffic loads.

A. Setup of simulation experiments

Table I provides a list of simulation parameters that have
not been specified before. Based on regulatory restrictions the
maximum altitude of the drone is set at 120 m [18]. For the
movement of the drone we assume a maximum speed of 24
km/h. Furthermore, we set the default CIO and altitude equal
to 0 dB and 120 m, respectively, and assume the drone to
begin above the failing site with these default settings.

In the simulation experiments we consider a time period
of more than 2.5 hours and measure the CSR over the last
hour. The measured CSR will serve as a basis for comparing
the performance achieved by the different configurations of
the algorithm. In addition, we have investigated the evolution
of the CSR averaged over a moving two-minute window
starting when the drone is activated. Inspection of these results
showed that the average CSR over the last hour was generally
approached well within the first 1.5 hours, indicating that an
equilibrium situation had thus been reached at the start of the
CSR assessment period. Obviously, conditional on good CSR
performance in equilibrium, it remains crucially important to
reach that service level as quickly as possible, and we will
further examine the convergence speed of the deemed best
configuration of the algorithm in Section IV-C.

TABLE I: Simulation parameters.

General parameters

hUE Height of UE 1.5 m
λ Arrival intensity (outside the hotspot) 2.1383 arrivals/s/km2

τ Average call duration 120 s
R Minimum bit rate 0.4 Mb/s

Antenna gain - link with regular BS

Gr Maximum antenna gain 18 dBi
HPBWh Half-power beam width (horizontal) 65◦

HPBWv Half-power beam width (vertical) 6.2◦

FBRh Front back ratio 30 dB
SLLv Side lobe level -18 dB
θetilt Electrical downtilt 8◦

Antenna gain - link with drone BS

Gd Maximum antenna gain 8 dBi
HPBWd Half-power beam width 65◦

FBRd Front-back ratio 30 dB
SLLd Side lobe level 30 dB

B. Selection of best algorithm configuration

To evaluate the performance of the algorithm using different
CM combinations, we assumed that the CMs used for x and
y-adjustments are the same, but could be different for the
z/CIO-adjustments. This implies a total of 6 × 8 × 2 = 96
(six for xy-adjustments, eight for z/CIO-adjustments, and the
two choices z or CIO as the primary optimization variable for
z/CIO-adjustments) combinations of CMs and choices for the
primary optimization variable of z/CIO. Moreover, we also
consider the six possible CMs for the xy-adjustments where
we perform no adjustments of the z/CIO (indicated by ‘None’).
Together with these configurations, we also consider three



Fig. 3: Illustration of simulation scenario. The black dots
indicate the regular base stations (with their azimuth directions
indicated by the arrows), the red dot with arrows indicates the
failing site, and the blue circle indicates the hotspot area.

benchmarks i) no drone, ii) a static drone above the failing
site, and iii) a static drone with optimal values for x, y, z and
CIO obtained by simulating many possible configurations).

Let us first consider a scenario where the load in the hotspot
is ρ = 4 times higher than elsewhere, and where the center of
the hotspot is located 160 m from the failing site along one
of its azimuth directions as illustrated in Figure 3. For each
of the combinations of CMs we conduct twenty independent
simulation runs and report the average CSR in Table II.

Each entry in this table indicates the CSR of one con-
figuration of the algorithm. Here each row indicates a CM
for the z/CIO-adjustments and each column a CM for the
xy-adjustments. We see that C3 and C4 for xy-adjustments
perform worst among all CMs for the xy-adjustments, while
C6 yields the best performance in almost all cases for
each z/CIO-control metric. But more interestingly, for xy-
adjustments based on CMs C1, C2, C5 and C6, we notice
that the improvement-based method for z/CIO (z/CIO-control
metrics C1 to C6) is outperformed by the configuration without
z/CIO-adjustments. The latter is outperformed in most cases
by C7 and C8. A possible explanation for this is that it is
better to incorporate some information about new and finished
calls in the CM before adjusting the z/CIO again. This is
because the drone would ideally be configured to fly at an
altitude above 120 m. Since this is not allowed, we mostly
adjust the CIO which has no direct consequences for the
SINRs and thus resource usage of the active UEs except for
a few possible handovers, but does have consequences for
new calls. Moreover, we also simulated C7 and C8 for z/CIO-
adjustments where we allowed an adjustment every 10 and 30
seconds (instead of 60) and found worse performance. This
indicates that we should not adjust the z/CIO too often to
better incorporate the effect of new and finished calls on the
CM.

Even though the differences in Table II are small, it seems
best to take C4 for the xy-adjustments, which is noted to be

TABLE II: CSR of three benchmarks and the algorithm using
different combinations of CMs, where the appended ‘CIO’ or
‘z’ label indicates the assumed primary control variable in the
z/CIO plane.

Control metric for x,y
C1 C2 C3 C4 C5 C6

C
on

tr
ol

m
et

ri
c

fo
r

z/
C

IO

None 0.928 0.929 0.914 0.931 0.929 0.931

C1-CIO 0.865 0.867 0.827 0.828 0.922 0.921

C2-CIO 0.870 0.867 0.825 0.817 0.923 0.923

C3-CIO 0.895 0.894 0.827 0.859 0.922 0.925

C4-CIO 0.892 0.915 0.848 0.842 0.922 0.926

C5-CIO 0.876 0.870 0.827 0.819 0.921 0.923

C6-CIO 0.898 0.914 0.859 0.907 0.924 0.927

C7-CIO 0.931 0.932 0.825 0.936 0.936 0.937

C8-CIO 0.924 0.930 0.823 0.832 0.939 0.940

C1-z 0.919 0.922 0.917 0.922 0.920 0.925

C2-z 0.921 0.923 0.916 0.922 0.920 0.922

C3-z 0.913 0.913 0.829 0.839 0.922 0.924

C4-z 0.918 0.921 0.919 0.922 0.920 0.924

C5-z 0.916 0.919 0.912 0.922 0.920 0.920

C6-z 0.921 0.922 0.922 0.923 0.920 0.923

C7-z 0.929 0.931 0.826 0.929 0.928 0.932

C8-z 0.925 0.927 0.823 0.870 0.926 0.923

Benchmarks:

No drone 0.820

Static at failing site 0.898

Static at optimal position 0.940

most closely related to the CSR. For the z/CIO-adjustments we
select C8-CIO as this performs best in combination with C4

for the xy-adjustments. In the remainder of the paper we focus
on this algorithm configuration and the three benchmarks.

C. Convergence speed

In the event of a network disruption it is crucial that the
impact on the service level is minimized, meaning that it is
important to find a good position and CIO for the drone as
quickly as possible. In order to examine the convergence speed
of our candidate algorithm, we consider three load intensities
ρ ∈ {2, 4, 8} where the center of the hotspot is located at 40 or
160 m from the failing site along one of its azimuth directions.
For these scenarios we simulated 50 independent runs and
determined the CSR over two-minute windows. In Figure 4
we plot how the window-averaged CSR evolves over time.
We observe that it takes more time for the CSR to approach
the long-term average for higher values of ρ (meaning a
higher load in the hotspot). However, in all cases we see that
after approximately twenty minutes the CSRs are close to the
equilibrium values. This suggests that our algorithm is able to
find a good position and CIO in twenty minutes or less.

D. Comparison for different hotspot and traffic scenarios

As the algorithm should be able to consistently find a
good 3D position and CIO for the drone in a wide range



Fig. 4: Evolution of the CSR over time for different scenarios,
from the moment that the drone becomes active.

Fig. 5: Illustration of simulation scenarios. The black dots
indicate the regular base stations, the red dot indicates the
failing site and the blue line indicates the possible locations
of the center of the hotspot area.

of network environments, we consider different locations of
the hotspot and different traffic intensities in the hotspot. For
this sensitivity analysis we consider locations where the center
of the hotspot lies along one of the azimuth directions of
the failed site (the blue line in Figure 5), and we consider
ρ ∈ {1, 2, 4, 8}.

In Figure 6 we observe that the attained CSR for the
benchmark without a drone (dash-dotted lines) increases as the
distance between the hotspot and the failing site increases. This
can be explained by the fact that the UEs in the hotspot are
closer to the adjacent cells. Therefore they experience better
signal strengths from these cells which means that the UEs
need fewer resources when connected to these cells. This in
turn leaves more resources for other UEs, thus reducing the
number of blocked/dropped calls.

Furthermore, we observe that the benchmark without a
drone performs worst, which is as expected. Comparing the

Fig. 6: CSR for different scenarios. The black, blue, red
and green lines correspond to the different values of ρ ∈
{1, 2, 4, 8} respectively. The solid, dashed, dotted and dash-
dotted lines correspond to the proposed algorithm, optimal
static drone, static drone above failing site and no drone
respectively.

proposed algorithm using the selected CMs, we see that it
improves the CSR with at least 0.06, 0.06, 0.09 and 0.15 com-
pared to the benchmark without a drone for ρ ∈ {1, 2, 4, 8}
respectively. Moreover, our algorithm nearly achieves the
performance of the static drone with optimized position and
CIO.

In order to take a closer look at the improvement with
respect to the fraction of unsuccessful calls, we can define
the improvement factor as (1−CSRbenchmark)/(1−CSRalgorithm).
This ratio represents the number of unsuccessful calls of
the benchmark for each unsuccessful call using the proposed
algorithm. Plotting the improvement factor for the benchmark
without a drone and with a static drone at the failing site at
an altitude of 120 m and with a CIO of 0 dB yields Figures
7 and 8, respectively.

In Figure 7 we observe that the fraction of failed calls
is more than twice as high in a scenario without a drone
compared to a scenario where the proposed algorithm is used.

When we look in Figure 8 at the improvement factor when
comparing our algorithm with the static drone, we see that this
value depends on the location of the hotspot and the intensity
of initiated calls in the hotspot. When the center of the hotspot
is located at the failing site (distance 0) and ρ = 8, we see
that the benchmark has still 30% more unsuccessful calls, due
to the fact that using our algorithm the CIO is adjusted while
the benchmark has a fixed CIO.

Furthermore, we observe that the improvement factor attains
a maximum value when the hotspot is located between 110
and 150 m from the failing site. The explanation for this is
that the performance of the benchmark (static drone above the
failing site) degrades as the hotspot is located further away



Fig. 7: Improvement factor of our algorithm compared to a
scenario without a drone.

Fig. 8: Improvement factor of our algorithm compared to a
scenario with a static drone above the failing site at an altitude
of 120 m and with a CIO of 0 dB.

from the failing site. However, at approximately 150 m, the
performance starts improving. This in turn is caused by the
fact that the regular base stations will be able to serve the
UEs in the hotspot more efficiently, thus reducing the number
of unsuccessful calls.

V. CONCLUSION

We have designed and analyzed a data-driven algorithm to
dynamically adjust the 3D position and cell selection bias of
a drone base station in a scenario with a failing site and
emerging hotspot. The proposed algorithm does not require
any explicit knowledge of the antenna features, propagation
characteristics, location of the hotspot or traffic density, and
leverages easily available measurement data in order to steer
the drone operation in an online manner. While the CSR serves

as the ultimate optimization objective, other metrics which
are easily measurable turn out to provide a more effective
basis for driving the dynamic adjustments towards CSR op-
timization. Remarkably, with the right selection of control
metrics and associated time scales, the proposed algorithm
is able to quickly reach a stable and near-optimal operating
point. Indeed, the performance in terms of CSR is comparable
to the performance of a static offline optimization with full
knowledge of the relevant system attributes. In future research
we plan to expand the analysis of the convergence speed, and
also consider the tracking capability of the proposed algorithm
in situations where the location of the hotspot and traffic
density may change over time. Another topic that we would
like to investigate in future research is the optimal control of
multiple drones.
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