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ABSTRACT

This work addresses the problem of pattern analysis in networks consisting of delay-coupled identical Lur’e systems. We study a class of
nonlinear systems, which, being isolated, are globally asymptotically stable. Assembling such systems into a network via time-delayed coupling
may result in the change of network equilibrium stability under parameter variation in the coupling. In this work, we focus on cases where
a Hopf bifurcation causes the change of stability of the network equilibrium and leads to the occurrence of oscillatory modes (patterns).
Moreover, some of these patterns can co-exist for the same set of coupling parameters, which makes the analysis by means of common
methods, such as the Lyapunov–Krasovskii method or the analysis of Poincaré maps, cumbersome. A numerically efficient algorithm, aiming
at the computation of the oscillatory patterns occurring in such networks, is presented. Moreover, we show that our approach is able to deal
with co-existing patterns, and both stable and unstable regimes can be simultaneously computed, which gives deep insight into the network
dynamics. In order to illustrate the efficiency of the method, we present two examples in which the instability of the network equilibria is
caused by a subcritical and a supercritical Hopf bifurcation. In addition, a bifurcation analysis of the subcritical case is performed in order to
further explain the occurrence of the detected coexisting modes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022610

We consider the dynamics of delay-coupled nonlinear systems
of Lur’e type. Although each system is globally asymptotically
stable in the absence of coupling, the collection of such systems
may induce an oscillatory behavior. In our work, we focus on
the case where oscillatory patterns arise from a Hopf bifurcation.
The bifurcation can be either subcritical and there is an unsta-
ble limit cycle in the neighborhood of the bifurcation point, or
supercritical, which results in a stable limit cycle. Two parameters
in the coupling function, namely, coupling strength γ and time
delay τ , take the role of bifurcation parameters. Networks with
two (or more) bifurcation parameters show rich and complex
dynamical behavior. This implies that basic bifurcation analysis
is required in order to understand network behavior. Moreover,
the co-existence of several modes (patterns) often occurs in such
networks, which makes the usage of common methods of analy-
sis, such as the Lyapunov–Krasovskii method and the analysis of

Poincaré maps, cumbersome. In this work, a numerically efficient
method for detecting (coexisting) oscillatory patterns (stable and
unstable) in delay-coupled Lur’e systems is presented. We develop
an approach based on the multivariable harmonic balance (MHB)
method.1 The idea of the method is to turn the problem of deter-
mination of an oscillatory profile (offset, amplitudes, phases,
and frequency) into an eigenvalue problem. Solving the eigen-
value problem for chosen parameters γ and τ , by numerically
efficient optimization routine, structurally possible patterns can
be simultaneously found.

I. INTRODUCTION

The investigation of complex networks formed by coupled
nonlinear dynamical systems has been an important subject in
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mathematical biology, control theory, applied physics, and interdis-
ciplinary fields in recent years. Complex networks are prevalent in
the world and can be used to describe the behavior of neuronal sys-
tems, heart cells synchronization, social networks, flocks of birds,
and other kinds of collective behavior.2,3 Complex networks exhibit
rich dynamical behavior, with synchronized or partially synchro-
nized motion being only a few out of many possibilities. To explore
the complex behavior that can occur, bifurcation analysis is essential,
as it allows to characterize the behavior that appears due to param-
eter variations.4 As such, it brings an insight into complex behavior
that may occur near well-understood dynamical regimes, such as
the synchronized state.5 A second motivation to investigate bifur-
cations in networked systems is to assess the robustness of a regime
to parameter variations and to identify structurally possible regimes
that are defined by a network topology. While a well-developed
theory for bifurcations of nonlinear dynamical systems with delays
exists,6,7 these results are restricted to low-dimensional systems and
do not exploit the network structure. About one decade later, theo-
retical bifurcation results were pursued that take into account the
structure in the networks.8 It is possible to exploit the theoreti-
cal results for the development of numerically efficient software
to assess the emergent behavior of complex systems and explore
different oscillatory regimes occurring in such systems.

Historically, the problem of the emergence of oscillations
in coupled systems (systems that are globally asymptotically sta-
ble when the coupling is absent) arises from Turing’s work on
morphogenesis.9 About two decades later, a nonlinear analysis of
Turing instability or diffusion-driven instability was performed by
Smale.10 An example of two identical diffusively coupled fourth
order systems is studied. Each individual system takes the role of a
cell, which is inert or “dead” in the sense that it is globally asymptot-
ically stable in isolation. However, when the cells are interconnected
via diffusive coupling, “the cellular system pulses (or expressed per-
haps overdramatically, becomes alive!) in the sense that the concen-
tration of enzymes in each cell will oscillate infinitely.” The author
posed the question of determining conditions under which an oscil-
latory behavior in networks of initially globally asymptotically stable
systems can be caused by diffusive coupling. A partial answer to
this question was given in Ref. 11. The authors studied the dynam-
ics of two diffusively coupled Lur’e systems using frequency domain
methods and showed that diffusion-driven oscillations are possible
with third-order systems. In Ref. 12, it was proven that the emer-
gence of diffusion-driven oscillations from a unique equilibrium, as
a result of the first bifurcation, is not possible in systems of an order
lower than three. Moreover, in that same paper, conditions for the
emergence of diffusion-driven oscillations were presented. Results
for different synchronous regimes, such as synchronization,13,14 par-
tial synchronization,15,16 and pattern formation including standing,
traveling, and rotating waves,1,17,18 are found in given references.

The above-mentioned studies all consider diffusive coupling,19

which is (usually) symmetric and delay-free. In this work, we focus
on pattern analysis of delay-coupled systems and study networks
of Lur’e systems interconnected via linear time-delayed coupling
functions. More precisely, the coupling function for a single sys-
tem in a network is defined to be the weighted difference of the
time-delayed output of its neighbors and its own non-delayed out-
put. Physically, the adopted delay model represents the time that

a signal takes to propagate from its source to its destination, and,
therefore, the systems have access to their own outputs immedi-
ately. Such time-delay coupling functions appear, among others, in
the network of neurons,20 electrical circuits,21 and networked control
systems.22 As a starting point for this research, the work of Ref. 23
is used. The authors derived conditions under which a network
of nonlinear dynamical systems which are globally asymptotically
stable by themselves, being interconnected via linear time-delay cou-
pling functions, display oscillatory behavior and different patterns
can emerge, such as partially synchronous oscillations and rotating
waves. The (network) equilibrium loses its stability via a Hopf bifur-
cation, which leads to the pattern formation. The Hopf bifurcation
changes the dynamics of the network from a stable equilibrium to
oscillatory patterns. As a corollary to these results, the authors have
shown that a network of inert systems with time-delay coupling can
be globally oscillatory (considering the case of a subcritical Hopf
bifurcation) only if the systems are at least of second order.

In this paper, we develop a numerically efficient method aim-
ing at detecting co-existing oscillatory modes (patterns) even if some
of them are unstable, in networks of nonlinear systems of Lur’e
form interconnected via linear time-delayed coupling functions.
Lur’e models are widely used in many fields (e.g., computational
biology, control theory, etc.) and simplify the analysis by means
of the harmonic linearization due to a scalar nonlinearity. The
harmonic function approximation is characterized by offset compo-
nents, amplitudes, phases, and a frequency of oscillations. We con-
sider the case where a Hopf bifurcation of both types (subcritical and
supercritical) causes the instability of the network dynamics. The
coupling strength and time-delay term take the role of bifurcation
parameters. A challenge is that there may be co-existence of differ-
ent oscillatory patterns for the same parameters (coupling strength
and time delay), e.g., stable relaxation oscillations and unstable har-
monic oscillations. Due to the co-existence of different modes, the
application of common methods for the analysis of delay-coupled
system behavior, such as the Lyapunov–Krasovskii method and the
analysis of Poincaré maps, becomes highly non-trivial.

To solve these problems, we present an extension of the
multivariable harmonic balance (MHB) method for delay-coupled
systems and elaborate it by a tool for bifurcation analysis called
ddebiftool. The method allows us to analyze the behavior of the
complex network and to determine an oscillatory profile that
approximates the output of the studied network without simulat-
ing delay differential equations (DDEs), which is time-consuming
for networks of many agents. The method presented in this paper
extends the approach presented in Ref. 1 toward networks with
a time-delay coupling and shows additional possibilities of the
multivariable harmonic balance method, such as the simultane-
ous detection of stable and unstable coexisting periodic solutions.
The MHB approach is numerically efficient and scalable due to the
exploitation of a network structure and allows us to compute all
co-existing regimes, even if some of them are unstable. The results
of the MHB analysis can be also used as an input for continuation
tools (e.g., DDE-BIFTOOL, AUTO-07P, MATHCONT), since they
require accurate initial conditions.

It is worth mentioning that the conventional harmonic balance
method is sometimes considered as a rather empirical approach.
This issue is overcome at least for scalar nonlinearities by the
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mathematical analysis in Refs. 24–26. The extension of these results
to the MHB method, which facilitates the study of the oscillatory
networks, is an open and interesting problem, which lies outside the
scope of this paper. This paper focuses on the numerical efficiency of
the MHB method. In addition, we provide numerical evidence that
the MHB method can accurately predict the oscillation profiles.

This paper is organized as follows. Preliminary results and
the problem statement are given in Sec. II. More precisely, in
Subsection II A, networks of Lur’e systems with time-delay cou-
pling are introduced. Conditions for the occurrence of oscillations
are presented in Subsection II B. We give some details about two
types (subcritical and supercritical) of a Hopf bifurcation and show
how to compute analytically critical values of the time-delay com-
ponent in Subsection II C. The problem is stated in Subsection
II D. In Sec. III, the harmonic balance method is introduced and
the MHB equation for delay-coupled systems is derived. Numerical
examples are provided in Sec. IV. The latter includes the results for
both the supercritical Hopf bifurcation case and the subcritical Hopf
bifurcation case. In Sec. V, the conclusions are given.

Throughout the paper, the following notations are used. Let R

and C denote the real and complex numbers, respectively. j stands
for the imaginary unit, j2 = −1. Notation C+ corresponds to the
open right half plane, {z ∈ C : Re(z) > 0}. For a positive integer k,
we let Ik denote the identity matrix of the size k × k and 1k denotes
the column vector of length k with all entries equal to 1. The symbol
⊗ stands for the Kronecker product and ⊕ stands for the Kronecker
sum (i.e., A ⊕ B = A ⊗ IB + IA ⊗ B). Symbols > and ∗ stand for the
transposition and conjugate transposition, respectively. Given posi-
tive integers p, q, for X ⊂ R

p and Y ⊂ R
q, we denote the space of

Cr r-times continuously differentiable functions from X into Y as
C r(X , Y ).

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Networks of Lur’e systems with delays

We consider a network of identical delay-coupled systems. N
single-input-single-output (SISO) nonlinear systems of Lur’e type
are and described by following equations:

ẋi = Axi + Bui,

yi = Cxi,

ui = uci + ψ(yi),

(1)

where i ∈ 1, . . . , N stands for the system index, xi ∈ R
n is the state

of ith system, ui ∈ R is the combined input of the ith system, which
consists of two components: ψ(·), which is a C1 scalar nonlinear
time-invariant memoryless function, and uci ∈ R, which is the input
receiving data from the coupling of multiple systems. yi ∈ R is the
output of the ith system used for the coupling and A, B, and C are
constant matrices of appropriate dimension with CB being a positive
constant. In addition, we make the following assumption.

Assumption 1. The isolated (uci ≡ 0) system (1), described
by ẋi := f(xi) := Axi + Bψ(Cxi), has a unique equilibrium point xi0,
which is globally asymptotically stable and locally exponentially
stable.

FIG. 1. An example of the directed network consisting of dynamical systems.

We remark that local exponential stability of the equilibrium is

equivalent to the Jacobian matrix J0 = J(xi0) =
∂f

∂xi
(xi0) at xi0 being

Hurwitz, i.e., all eigenvalues of J0 have negative real parts.
The N systems (1) are interconnected via linear time-delay

coupling functions of the form

uci(t) = γ
∑

l

γil[yl(t − τ)− yi(t)], (2)

where positive constant γ stands for the coupling strength, positive
constant τ stands for the time delay, and non-negative constants
γil ∈ [0, 1] are the interconnection weights. We remark that γil is
positive if and only if there is a connection from system l to system i.
Graphically, the connection between the nodes l and i is represented
by an edge (arrow) between l and i (see Fig. 1). Positive constants γ
and τ will be used as bifurcation parameters later on.

In order to specify the interaction structure of the network,
we define the (weighted) adjacency matrix of the graph 0 = (γil)

∈ R
N×N as

0 =











0 γ12 . . . γ1k

γ21 0 . . . γ2k

...
...

. . .
...

γk1 γk2 . . . 0











. (3)

We allow the graph to be directed in sense that all the edges are
directed from one node to another. The graph is assumed to be sim-
ple in the sense that self-connections and multi[al edges joining the
same pair of nodes are forbidden. Moreover, we assume that every
pair of systems can be joined by a sequence of directed edges, which
is equivalent to strong connectivity of the graph. In addition, the
following assumption is made.

Assumption 2. The sum of each row of the matrix 0

equals 1.
Previously, this assumption was used for the delay-coupled

nonlinear system analysis in Refs. 27 and 28, and it was used to
ensure that a synchronous (oscillatory) state exists in such networks.
Moreover, according to the Gershgorin Disc Theorem,29 Assump-
tion 2 implies that all eigenvalues of 0 are located in the closed unit
disc in C.
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B. Conditions for oscillations

The goal of this subsection is to present conditions that guar-
antee that the network (1) and (2) exhibits oscillatory behavior. Let
σ ∈ C ([0, ∞], R) be uniformly bounded. Such a function is oscilla-
tory (in the sense of Yakubovich) if limt→+∞ σ(t) does not exist.30

Likewise, we say that a system is oscillatory if it admits the following
properties: (1) all its solutions are uniformly (ultimately) bounded
[0, ∞) and (2) the system has a finite number of hyperbolically
unstable equilibria. Note that nonlinear systems (1) connected via
coupling (2) are described by Delay Differential Equations (DDEs).
An equilibrium solution of a DDE is called hyperbolic if the roots of
its characteristic equation have nonzero real part.31

Since the goal of this work is to analyze oscillatory patterns in
the networks, following Ref. 23, we establish conditions for oscilla-
tory behavior of networks (1) and (2). Suppose Assumptions 1 and
2 hold true and

• the solutions of the network (1) and (2) are uniformly bounded
and uniformly ultimately bounded;32

• networks (1) and (2) have a unique but hyperbolically unstable
equilibrium at x0 = 1N ⊗ x10.

Under these conditions, the coupled systems will exhibit oscil-
latory behavior. Uniqueness of the equilibrium is not necessary for
the existence of oscillations. However, the stability analysis of addi-
tional equilibria could be cumbersome as the locations of these
equilibria heavily depend on the overall coupling strength γ . In
addition, for a unique equilibrium, the coupled systems can be oscil-
latory only if one of outputs is an oscillatory function of time. In
case none of the outputs is an oscillatory function, the value of
each coupling function converges to zero and the system cannot be
oscillatory by Assumption 1.

We now discuss conditions under which the solutions are
bounded. We consider a single system (1) and let ui(·) be a piece-
wise continuous input function defined on [0, T), T ∈ R+, and
taking values in a compact set U ⊂ R. Let xi(·) = xi(·, xi0, ui[0, T))
be the solution of system (1) corresponding to input uci(·) and initial
conditions xi0 and t = 0. Then, a (strictly) C r-semipassive system is
defined as follows.

Definition 1. Assume that there is storage function S ∈
C r(Rn, R+ ∪ {0}), such that

S(xi(t))− S(xi(0)) ≤

∫ t

0

[(yiui(s))− H(xi(s))] ds, (4)

with H ∈ C (Rn, R) and t ∈ (0, T]. If there is a constant R > 0 and
a non-negative nondecreasing function h : R+ ∪ {0} → R+ ∪ {0}
such that

H(s) ≥ h(|s|), ∀|s| ≥ R, (5)

then system (1) is called C r-semipassive. If (5) holds for all |s| ≥
R and function h is strictly increasing and such that h(s) → ∞ as
s → ∞, then system (1) is strictly C r-semipassive.

Lemma 1 (Boundedness). Let w0, w1 : [0, ∞) → [0, ∞) be
strictly increasing functions, which satisfy w0(0) = w1(0) = 0 and
w0(s), w1(s) → ∞ as s → ∞. Suppose that each system (1) is strictly

C 1-semipassive with storage function S that satisfies

w0(|xi(t)|) ≤ S(xi(t)) ≤ w1(|xi(t)|).

Then, for each fixed γ and τ , the solutions of the coupled systems (1)
and (2) are uniformly bounded and uniformly ultimately bounded.

The proof of this lemma can be found in Ref. 33. Note
that, unlike in the Ordinary Differential Equation (ODE) (finite-
dimensional) case, uniform ultimately boundedness does not imply
uniform boundedness in the DDE case.34

In order to verify the second condition, we need to show that
the equilibrium point x0 is unique and unstable. Using Assump-
tion 2, we can write the network dynamics as

ẋ(t) = F(x(t))+ γ [(0 ⊗ BC)x(t − τ)− (IN ⊗ BC)x(t)]. (6)

The linearization of (6) around the network equilibrium x0 results
in

˙̂x(t) = [IN ⊗ (J0 − γBC)]x̂(t)+ (γ0 ⊗ BC)x̂(t − τ). (7)

It is well known that the zero solution of the linear system (7) is
unstable for some γ and τ if its associated characteristic equation

1(λ; γ , τ) = 0, (8)

with

1(λ; γ , τ) := det(λINn − IN ⊗ (J0 − γBC)− (γ0 ⊗ BC) e−λτ ),

which has a root in C+.35 However, computing the roots of the char-
acteristic equation in the (γ , τ )-parameter space is cumbersome for
large N. To address this issue, we use sufficient conditions for insta-
bility of the network equilibrium presented in Ref. 23. In order to do
so, we denote by

H (s) := C(sIn − J0)
−1B =

p(s)

q(s)
,

the transfer function from uci to yi of system (1), linearized around
its equilibrium. Here, p and q are polynomials of degree n − 1 and
n, respectively, because system (1) has relative degree one (CB > 0).
The following two lemmas are reported in Ref. 23:

Lemma 2 (Instability). Suppose that Assumption 2 holds true.
Let

ν := inf
ω>0

R(H (jω)).

If ν < 0, then for each γ ≥ −1
2ν

, there exists a τ > 0 such that the
characteristic equation (8) has a root in C+.

Note that using Lemma 2, a value of γmin := −1
2ν

can be com-
puted. It is important to mention that the condition for instability
is delay-dependent. We continue with conditions for uniqueness of
the network equilibrium.

Lemma 3 (Uniqueness of the network equilibrium). Let
Assumption 1 hold true and denote the eigenvalues of 0 by λ0i ,
i = 1, . . . , N. Let λ∗ be the smallest real-valued eigenvalue of 0.
Choose γ̄ ∈ (0, ∞] as the largest number for which matrix

J(χ)− γ (1 − λ∗)BC

is nonsingular for all χ ∈ R
n and all γ ∈ [0, γ̄ ) with the Jaco-

bian matrix J(χ) =
∂f

∂xi
(χ). Then, the network equilibrium solution

x0 = 1N ⊗ x10 is the unique equilibrium solution of (6) for γ ∈ [0, γ̄ ).
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Using the conditions presented in Lemmas 2 and 3, one can
easily determine a range of coupling strengths γ ∈ [γmin, γ̄ ) for
which there exists delay values such that oscillations are present.

C. Critical values of time delay

In this subsection, we discuss two types of Hopf bifurcations
that cause the instability of the network equilibria and may lead to
pattern formation in oscillatory networks and show how to compute
critical time delays. It will be shown how to detect Hopf bifurca-
tion in such networks for the bifurcation parameter space (coupling
strength γ and time delay τ ). Networks (1) and (2) are described by
DDEs of retarded type. We remark that for the considered class of
delay systems, even though they are infinite-dimensional, the Hopf
bifurcation theorem holds, and the center manifold correspond-
ing to a Hopf bifurcation is finite-dimensional. Accordingly, when
a linearized equilibrium becomes unstable, the number of unsta-
ble modes is always finite. This allows a direct extension of tools
for finite-dimensional systems to detect/compute bifurcations and
periodic solutions nearby.31

The Hopf bifurcation results in the birth of a limit cycle from an
equilibrium in dynamical systems. For ODEs and DDEs, the Hopf
bifurcation is characterized by eigenvalues crossing the imaginary
axis. The bifurcation can be supercritical or subcritical, resulting
in stable or unstable limit cycle, respectively. According to nor-
mal form theory (see Ref. 36, and references therein), oscillations
are sinusoidal-like near the bifurcation point. It justifies using the
describing function method to replace the nonlinearity by its gain
approximation and then to analyze the system of nonlinear (die
to nonlinear dependence of the gain on the offset and amplitudes)
equations by means of the harmonic balance method.

In order to determine bifurcation points, we need to compute
critical values of τc for γmin. In our approach, we fix γ first and then
compute critical values of the delay parameter, values for which the
linearized system has imaginary axis eigenvalues. The critical delays
of a DDE can be computed by solving a nonlinear two-parameter
eigenvalue problem.37 The solution of this two-parameter prob-
lem can be translated to solving a quadratic eigenvalue problem.
Recall the characteristic equation (8). In order to compute critical
delays needed to find bifurcation points, γ is fixed at γ = γmin. One
substitutes λ by jω, with ω ≥ 0.

Define the time-delay component as follows:

P := exp(−jωτc). (9)

Solve a quadratic eigenvalue problem for P

det
[(

A + BP)⊕ (A > + B
>
( 1

P

))]

= 0, (10)

with A = In ⊗ (J0 − γminBC) and B = (γmin0)⊗ (BC) and select
the eigenvalues on the unit circle. For each such eigenvalue P , we
compute the imaginary axis eigenvalues of A + BP . Next, the
delay values τc are derived from (9) for each pair (P , ω). Note that
there are infinitely many values, separated by 2π/ω. The key of this
approach is that we do not need to compute eigenvalues of a delay
system, only of matrices.

Each pair (γmin, τc) is a Hopf bifurcation point. Since we have
a parameter space of dimension two (coupling strength γ and time

delay τ ), it is convenient to combine the presented above approach
with the numerical computation of bifurcation curves. In order to
compute bifurcations curves, it is necessary to employ a numerical
bifurcation analysis tool for delay systems such as ddebiftool.38

D. Problem statement

Networks, whose individual dynamics and coupling functions
are represented by (1) and (2), respectively, exhibit oscillatory
behavior with a certain pattern and this pattern is a function of the
parameters γ and τ . Such oscillatory patterns are characterized by
a set of parameters (oscillatory profiles): offsets α0 amplitudes α,
phases φ, and frequency ω. These patterns, either stable or unsta-
ble, may co-exist for the same values of parameters γ and τ . Since
we consider the case where oscillations appear via Hopf bifurca-
tion, either subcritical, or supercritical, the use of an approach based
on the harmonic balance method is justified. The harmonic bal-
ance method helps us to avoid the direct Lyapunov method, which
is cumbersome when we deal with co-existing periodic solutions.
Using the harmonic balance method, it is possible to compute the
oscillatory profile and approximate oscillations by

y(t) ∼= α0 + α sin(ωt + φ0 + φ). (11)

Moreover, the harmonic balance method is numerically efficient, it
can be used as additional tool in terms of bifurcation analysis, and
it provides good oscillatory profiles for continuation procedures. In
this paper, we consider the problem of deriving oscillatory profiles
and computing approximations (11) of all patterns of oscillations in
a given network.

III. MULTIVARIABLE HARMONIC BALANCE FOR DELAY

COUPLED SYSTEMS

In this section, the harmonic balance method is introduced and
extended to networks consisting of nonlinear dynamical systems of
Lur’e type with linear time-delay coupling. The method allows us
to compute an approximation to a periodic solution of ODEs and
DDEs. We show how the Harmonic balance equation for a SISO
nonlinear system of Lur’e type is derived. Consider the following
system:

ξ̇ (t) = ALξ(t)+ BLw(t),

w(t) = ζ(η(t)),

η(t) = CLξ(t),

(12)

where ξ(t) is the state of the system, w(t) is the input of the system,
η(t) is the output of the system, ζ(·) is a continuously differen-
tiable scalar nonlinear, time-invariant, memoryless function, and
AL, BL, and CL are constant matrices of appropriate dimension with
CLBL > 0.

Suppose η(t) is ω-periodic and let

η(t) =

+∞
∑

k=−∞

ak ekjωt, ak = ā−k. (13)
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Using Fourier series, the system’s input is rewritten as follows:

w(t) = ζ(η(t)) =

+∞
∑

k=−∞

ck ekjωt, ck = c̄−k. (14)

We seek for a set of Fourier coefficients ak, ck and frequency ω,
which satisfy the system’s equations. Using the orthogonality of the
functions {exp(kjωt)}k, on an interval of length ω, we find that the
Fourier coefficients ak and ck must satisfy

ak = W(kjω)ck (15)

for all integers k and W(s) = CL(sI − AL)
−1BL, which is the trans-

fer function representing the linear time-invariant part of system
(12). Because W(kjω) = W̄(−kjω), ak = ā−k, and ck = c̄−k, we need
only look at (15) for k ≥ 0. Since W(kjω) is strictly proper, most
information of the system behavior is contained in the first harmon-
ics (k = 1). Moreover, when the nonlinearity is not odd, an offset
component related to k = 0 appears. According to this, we con-
sider equations for k = 0, 1.24 Relations between coefficients ak and
ck can be established via the linear part of the system, which holds
(due to the separation principle) frequency wise, and via the expres-
sion w(t) = ζ(η(t)) which is approximated using the describing
functions. Using these relations, we can rewrite Eq. (15) as follows:

[1 − W(0)K0(a0, a1)] a0 = 0,
[

1 − W(jω)K1(a0, a1)
]

a1 = 0,
(16)

where K0(a0, a1) and K1(a0, a1) stand for describing functions which
are computed as follows:

K0(a0, a1) =
c0

a0

=
1

2a0π

∫ 2π

0

ζ(η(ωt)) d(ωt),

K1(a0, a1) =
c1

a1

=
1

a1π

∫ 2π

0

ζ(η(ωt)) sin(ωt) d(ωt).

(17)

Note that describing functions K0 and K1 are real due to the fact
that nonlinear function ζ(·) is time-invariant and memoryless.24 It
is worth mentioning that the describing function method approx-
imates a nonlinearity by a gain using the first harmonic, which
means that the approximation is the most accurate when high-order
terms are negligibly. In the neighborhood of the Hopf bifurcation
point, oscillations are sinusoidal and can be accurately described by
the harmonic balance method due to negligible small high-order
nonlinear terms. A rigorous mathematical justification of this fact
is outside the scope of our paper. For a classical harmonic bal-
ance method, its mathematical justification is derived in Ref. 25,
where the accuracy of the method is estimated by the contraction
mapping argument. The result in Ref. 25 provides a conservative
estimate, which is derived under restrictive assumptions; however,
these assumptions do not require the amplitude of the oscillations to
be small. It would be very interesting but challenging to extend the
result from Ref. 25 to the case of the multivariable harmonic balance
method, studied in this paper.

Our goal is to study a network behavior. The harmonic balance
method extended for networks is called Multivariable Harmonic
Balance (MHB). We are now going to apply the MHB method to
coupled systems (1) and (2). The idea of the method is to turn the

problem of determining an approximate periodic solution in the
form of a harmonic signal, characterized by offsets α0, amplitudes α,
phases φ and frequency ω, into an eigenvalue problem. By means of
the Laplace transformation, the time-invariant linear part of coupled
systems (1) and (2) is rewritten into the transfer function repre-
sentation, leading to the following description of the closed loop
system:

y = W(s)INu,

u = M(1τ )y + ν,

ν = 9(y),

(18)

where y, u, and ν are of dimension N × 1, IN ∈ R
N×N is an identity

matrix, W(s) = C(sI − A)−1B, M(1τ ) = γ1τ0 − γ IN represents
the coupling structure, 1τ is the delay operator (1τ f(t) = f(t − τ))
and9(y) ∈ R

N is a column vector of nonlinearities. We remark that
s stands for the differentiation operator.

Recall (18) and rewrite the coupled system’s input u as

u = M(1τ )W(s)INu + ν, (19)

W(s)

[

1

W(s)
IN − M(1τ )

]

u = ν. (20)

Defining R(s,1τ ) =
[

1
W(s)

IN − M(1τ )
]−1

, the input u takes the

form

u =
1

W(s)
R(s,1τ )ν. (21)

Substituting (21) in (18), we obtain

y − R(s,1τ )9(y) = 0. (22)

Premultiplying (22) by R(s,1τ )
−1 , we derive

[

1

W(s)
IN − M(1τ )

]

y −9(y) = 0. (23)

The nonlinearities 9(y) are approximated by their describing func-
tions, whose components can be computed using (17). The network
output signal y is approximated by a sum of the offsets and signal’s
first harmonic

y ∼= q0 + q1, q0 = α0 = const, q1 = α sin(ωt + φ0 + φ), (24)

where α0 = [α01,α02, . . . ,α0N]>, α = [α1,α2, . . . ,αN]>, and
φ = [φ1,φ2, . . . ,φN]>. The objective is to determine an oscillatory
profile consisting of the following parameters: α0 is a constant off-
set vector, α is a vector of amplitudes, φ is a vector of phases, and ω
stands for the frequency of oscillations.

Recalling the Fourier expansion and substituting s by kjω, and
1τ by exp(−kjωτ), we obtain
[

1

W(kjω)
IN − M(exp(−kjωτ))− diag [Kk(α0i,αi), . . . , Kk(α0N,αN)]

]

qk = 0. (25)

We now have two multivariable harmonic balance equations for the
networks with delay coupling from (25) for k = 0, 1, respectively.
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These can be expressed as

J0(α0,α)q0 :=

[

1

W(0)
IN − M(1)

− diag [K0(α0i,αi), . . . , K0(α0N,αN)]

]

q0 = 0, (26)

and

J1(α0,α,ω)q1 :=

[

1

W(jω)
IN − M(exp(−jωτ))

−diag [K1(α0i,αi), . . . , K1(α0N,αN)]

]

q1 = 0.

(27)

All parameters of the oscillatory profile are encoded in the relations
(26) and (27). These equations are nonlinear due to the describing
functions (17). In order to determine these parameters, we formu-
late an optimization problem. Since we are not interested in the
trivial solution q0 = 0 and q1 = 0, we look for a set of phases φi,
amplitudes αi, offset components α0i and frequency ω, which solve
nonlinear equations (26) and (27). We define the objective function
to minimize as

F(g) := Q∗
0Q0 + Q∗

1Q1 + p>p, (28)

where

g := [φ;α;α0;ω] ∈ R
3N+1, p := α − |q1| ∈ R

N,

Q0 := J0(α0,α)q0 ∈ C
N, Q1 := J1(α0,α,ω)q1 ∈ C

N,

where |q1| = [|q11|, |q12|, . . . , |q1N|]>. Vector g consists of phases,
amplitudes, offset components, and frequency, the component p
represents the second equation of (24). To simplify the problem,
the phase of the first node is fixed at φ1 = 0 without loss of gen-
erality, and boundaries are chosen as: φi ∈ [0, 2π] ∀i 6= 1, αi ∈
[0,β] ∀i, α0i ∈ [−β ,β] ∀i, ω ∈ [0, 2ωbif], where β is a user defined
number that bounds the region of interest in the search space.

It is worth mentioning that the relative phases in ring networks
can be extracted from the symmetry argument.39,40 An advantage
of the MHB approach is that it is not limited only to the networks
with a ring structure and aiming at computing the whole oscillatory
profile (i.e., the offset, amplitudes, phases, and frequency) in one
shot. Another large advantage of the multivariable harmonic balance
method is the small number of parameters of the harmonic approx-
imation looked for (at the price of a possible over-approximation of
the solution’s profile). This makes the method particularly suitable
for the efficient detection of coexisting patters, given the reduced
small space.

Solutions to nonlinear equations (26) and (27) are found by
minimizing the squared residual norm of the objective function
(28). The local solver fmincon included in MATLAB is used.41 The
solver uses the interior-point algorithm42 in order to find a mini-
mum of a constrained nonlinear multivariable function satisfying
the imposed constraints. Since Eqs. (26) and (27) are nonlinear and
multiple solutions exist, these solutions depend on the initial condi-
tions. Multiple values of the initial conditions are generated by the
MultiStart algorithm within the defined region of interest.43

FIG. 2. Network structure for numerical examples.

A big advantage of the MultiStart method is that starting points
for the minimization procedure are not needed to be specified. A set
of random points choosing from the feasible region is used as initial
conditions. The key point in the procedure is to choose the correct
boundaries for the starting points and the unknown variables. More-
over, the approach can deal with co-existed periodic solution. Stable
and unstable solutions can be simultaneously found. Having a set of
parameters g, oscillatory profiles can be reconstructed using (24).

IV. NUMERICAL EXAMPLES

In this section, it is shown how the multivariable harmonic
balance method is applicable to networks consisting of dynami-
cal systems of Lur’e form interacting via linear time-delay coupling
functions. We present two different networks in terms of individ-
ual system dynamics to show that both cases result in instability of
the network equilibrium: supercritical and subcritical Hopf bifurca-
tions. Illustrative examples are given with the same network struc-
ture which is a directed ring (Fig. 2) in order to show different
possibilities of the MHB approach. Note that the MHB method can
be easily applied for different networks in terms of the structure.

The graph topology is described by the following adjacency
matrix:

0 =





0 1 0
0 0 1
1 0 0



 . (29)

The software package with demo examples, which are presented
below, can be downloaded by the following link: https://github.com/
RogovKO/DMHB.git.

A. Network with a supercritical Hopf bifurcation

In this subsection, we present the example of coupled nonlin-
ear systems of Lur’e type that we studied in Ref. 1 with delay-free
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coupling. In this work, the coupling has a time-delay component
and is given by (2). The goal is to show that the MHB method
for delayed systems gives a very accurate approximation when
oscillations emerge as a result of a supercritical Hopf bifurcation.
The individual dynamics of the nodes, as in Ref. 15, are given by

ẋi = Axi + Bui,

ui = uci − ψ(zi),

zi = Zxi,

yi = Cxi,

(30)

with

A =





1 −1 1
1 0 0

−4 2 −3



 ,

B =
(

0 0 1
)>

, C =
(

0 0 1
)

, Z = B>P,

where P is the solution to the Lyapunov equation

A>P + PA = −I3.

The nonlinear function ψ(·) is given as follows:

ψ(zi) = z3
i ;

and computing the describing functions using (17), we obtain

K0(α0i,αi) = α0i +
3

2
α2

i , K1(α0i,αi) = 3α0i +
3

4
α2

i .

Note that nonlinearity ψ(zi) is odd and, due to this, the offset
component satisfies α0i = 0.

For coupled systems (30) and (2), MHB equations (26) and (27)
become as follows:

J0(α0,α)q0 :=

[

1

Wy(0)
IN − M(0)+

Wz(0)

Wy(0)
K0(α0,α)IN

]

q0 = 0,

(31)
and

J1(α0,α,ω)q1 :=

[

1

Wy(jω)
IN − M(jω)+

Wz(jω)

Wy(jω)
K1(α0,α)IN

]

q1 = 0,

(32)

with vectors K0(α0,α) = [K0(α01,α1), . . . , K0(α0N,αN)]
>, K1(α0,α)

= [K1(α01,α1), . . . , K1(α0N,αN)]
>, and frequency response func-

tions Wy(jω) and Wz(jω) defined as

Wy(jω) = C(jωI3 − A)−1B,

Wz(jω) = Z(jωI3 − A)−1B.

As the first step of the MHB procedure for delay systems, the crit-
ical values of coupling strength γ and time delay τ are computed
by means of Lemma 2 and (9) in order to detect a Hopf bifurca-
tion point. It is found that ν = infω>0 R(H (iω)) = −0.771, which
is attained atω = ω∗ = 0.8146. Thus, the minimal coupling strength
to have characteristic roots on the imaginary axis for some τ > 0
is γmin = 0.6481. The critical value of time delay τc = 1.5304 is
computed by solving quadratic eigenvalue problem (10). The Hopf

FIG. 3. Rightmost characteristic roots computed for fixed γmin = 0.6481 and
τc = 1.5304.

bifurcation point is detected for the parameter values γmin = 0.6481
and τc = 1.5304.

In order to verify our calculations, we compute rightmost char-
acteristics roots of our coupled systems described by DDEs using
the method described in Refs. 44 and 45. Figure 3 shows that the
rightmost characteristic roots are located on the imaginary axes.
They correspond to a Hopf bifurcation of the nonlinear system (note
that the bifurcation leading to instability of the network equilib-
rium must be a Hopf bifurcation because otherwise the condition
of Lemma 3 would be violated).

Now we fix the time-delay parameter at τ = 1.5304 and
increase the coupling strength to make sure that there is a pair of
eigenvalues with positive real part. Figure 4 shows that there is one
pair of unstable eigenvalues with the magnitude of imaginary part
0.8162, which is used in the MHB analysis to set up the search space
for the frequency of oscillations. For this pair of parameters, there is
one pair of eigenvalues with Re(λ) > 0 while all others are confined
to the open left half plane Re(λ) < 0.

FIG. 4. Rightmost characteristic roots computed for fixed γ = 0.7129 and
τc = 1.5304.
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FIG. 5. Network behavior obtained by simulating DDEs.

The oscillatory profile obtained by simulating the system of
DDEs is shown in Fig. 5. The results are obtained by simulat-
ing DDEs using the dde23 solver in MATLAB environment. The
standard set of options is used and the initial data are chosen as
a constant vector function defined on [−τ , 0] whose values are
(uniformly distributed) random numbers.

The oscillatory pattern emerges from the supercritical Hopf
bifurcation and has the sinusoidal-like form close to the bifurca-
tion point. It implies that the MHB method gives a very accurate
approximation of the pattern. In Table I, one can see the oscilla-
tory profiles derived from the DDE simulation and computed by the
MHB approach for delay-coupled systems.

In order to measure the accuracy of the MHB method, we pro-
vide the value of objective function (28) in computed minimum and
compare the offset components, amplitudes, and frequency with the
ones that are extracted from the DDE simulation as follows:

1α0 = 100||α0 − α0s||/||α0s||,

1α = 100||α − αs||/||αs||,

1ω = 100(ω − ωs)/ωs,

where α0s, αs, and ωs are obtained from the numerical simulation.
The result presented in Table II shows that the MHB approach

for delay-coupled Lur’e systems accurately predicts oscillatory pat-
terns in the neighborhood of a Hopf bifurcation point.

TABLE I. Oscillatory profiles of the network extracted from the DDE simulation and

computed by the MHB method.

Method ω α0 α1 α2 α3 φ1 φ2 φ3

DDE Sim 0.8239 0 0.3992 0.3991 0.3992 0 240 120
MHB 0.8242 0 0.3624 0.3627 0.3625 0 240 120

TABLE II. Comparison of the DDE simulation and the MHB method outputs.

Residual 1ω in % 1α0 in % 1α in %

2.87 × 10−8 0.02 0 0.94

In order to show that the MHB approach for delay-coupled
Lur’e systems is numerically efficient, we perform the pattern analy-
sis of 3 nodes, 10 nodes, 20 nodes, and 50 nodes ring networks (the
structure is given in Fig. 6) with node’s individual dynamics (30) and
coupling (2). Bifurcation parameter values are chosen as γ = 0.7129
and τ = 1.5304 for all networks. Results are given in Table III. The
direct simulation results depend on initial conditions and contain
only one pattern. Since there are co-existing patterns, it is nontriv-
ial to find the initial conditions for each mode. The MHB approach
deals with multistability. In our example, we have ten starting points
distributed in the region of interest and this allows us to compute
all structurally possible patterns in the network for selected param-
eters. Note that MHB computational time is given for all starting
points together.

Data in Table III show that the MHB approach is more numer-
ically efficient than the direct simulation by dde23 solver when we
need to analyze the behavior of complex networks. The value of
1α increases as we take larger network. It can be explained by the
fact that amplitudes become smaller when the amount of nodes
increases. It is necessary to mention that frequency and phases are
accurately computed for all patterns.

B. Network with a subcritical Hopf bifurcation

In this subsection, we consider a collection of three inert
FitzHugh–Nagumo (FHN) model neurons interconnected by a
linear time-delay coupling functions.46 The network structure is

FIG. 6. Ring network structure with N nodes.
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depicted in Fig. 2 and the adjacency matrix is given by (29). The
bifurcation analysis is performed using the ddebiftool software pack-
age and shows that relaxation oscillations, observed in simulations,
are emerged from a subcritical Hopf bifurcation. The MHB analy-
sis is used to show that both stable and unstable oscillatory patterns
exist for the same set of parameters and can be simultaneously
computed by our approach.

The dynamics of this model neuron are given by the following
equations:

ẋi1 = 0.08(xi2 − 0.8xi1),

ẋi2 = xi2 − (xi2)
3/3 − xi1 − 0.559 + ui,

yi = xi2.

(33)

One can easily verify that the FHN model has a locally exponentially
stable equilibrium at x̄i = (−1.225 − 0.980)>. Moreover, the FHN
model neuron is strictly C∞-semipassive with a quadratic storage
function (see Ref. 47). Hence, the solutions of any network consist-
ing of FHN neurons are uniformly bounded for any non-negative γ
and τ .

In order to simplify the MHB analysis of the network of
FHN neurons, we perform a change of coordinates. For that, we
define new variables zi1 = xi1 − x̄i1 and zi2 = xi2 − x̄i2. System (33)
is equivalent to the system

żi1 = −0.064zi1 + 0.08zi2,

żi2 = −zi1 + (1 − x̄2
i2)zi2 − (z3

i2 + 3x̄i2z
2
i2)/3 + ui,

yi = zi2.

(34)

It is easy to see that this system has an equilibrium at the origin and
is of form (1), with

A =

[

−0.064 0.08
−1 0.0391

]

, B =
[

0 1
]>

, C =
[

0 1
]

,

ψ(yi) = −y3
i /3 + 0.98y2

i ,

and i = 1, 2, 3. The network topology is defined by (29).
The nonlinear function ψ(yi) is not odd, which leads to a

nonzero offset component of signal yi. This implies that y0 6= 0 and
both Eqs. (26) and (27) have to be solved.

The describing functions for nonlinearity ψ(yi) are given as

K0i(α0i,αi) = 0.98α0i − 0.5α2
i − 0.33α2

0i + 49α2
i /(100α0i),

K1i(α0i,αi) = −0.25α2
i − α2

0i + 1.96α0i.

TABLE III. Computational time and comparison of the MHB approach and the direct

simulation.

Size of the ring 3 10 20 50

MHB (s) 2.14 9.09 35.07 629.5
dde23 (s) 2.45 160.5 355.7 4455
1ω in % 0.02 0.009 0.04 0.89
1α in % 0.94 6.97 14.35 20.82
Multistability No No Yes Yes

FIG. 7. Rightmost characteristic roots computed for fixed γmin = 2.5376 and
τc = 4.7643.

In order to determine the bifurcation point, we recall the condition
from Lemma 2. It is found that ν = infω>0 R(H (iω)) = −0.197,
which is attained at ω = ω∗ = 0.4202. Thus, the minimal coupling
strength to have characteristic roots on the imaginary axis for some
τ > 0 is γmin = 2.5376. The critical value of time delay τc = 4.7643
is computed by solving quadratic eigenvalue problem (10). We ver-
ify the calculations by computing rightmost characteristic roots by
means of the method described in Ref. 44. Figure 7 shows that a
couple of characteristic roots is located on the imaginary axis, which
corresponds to the Hopf Bifurcation.

The basic MHB analysis of the given network was performed
in Ref. 48. It was found that the simulation output consists of oscil-
lations of the relaxation type. According to normal form theory,36

oscillations in the neighborhood of the Hopf bifurcation must be
sinusoidal-like with zero offset. One may think that the Hopf bifur-
cation of the subcritical type occurs in the example under consid-
eration. In order to verify this, a bifurcation analysis of the FHN
neuron network is performed by means of the software package
ddebiftool.38

As a first step, we compute Hopf bifurcation curves in the
parameter space (γ , τ ) which are shown in Fig. 8.

FIG. 8. Bifurcation curves in (τ , γ ) parameter space.
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FIG. 9. Branch of periodic solutions that emerges from the subcritical Hopf bifurcation.

These curves computed for the (τ , γ ) bifurcation parameter
space for networks (34) and (2). The gray area stands for the region
in which the network equilibrium is stable. When a bifurcation curve
is crossed, the Hopf bifurcation occurs and the network equilibrium
loses stability. The red dot represents a previously computed pair

of parameters (τc, γmin) and lies on a bifurcation curve, which also
verifies our computations of γmin and τc.

The second step of our analysis is the continuation procedure.
We start from bifurcation point (τ = 4.4063, γ = 2.6733), compute
the first point of a branch of periodic solutions, and then we fix

FIG. 10. Oscillatory profiles of the periodic solutions represented by red dots in Fig. 9.
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TABLE IV. Stable and unstable co-existing oscillatory patterns, which are computed

by the MHB method.

Periodic solution ω α0 αe φ1 φ2 φ3

Unstable 0.4491 0.0011 0.0529 0 120 240
Stable 0.4491 0.7063 1.8803 0 120 240

bifurcation parameter τ and change parameter γ with an adaptive
step in order to compute the next point of the branch. The com-
puted branch of periodic solutions is shown in Fig. 9. Each dot (320
in total) on this plot is a periodic solution computed by means of
ddebiftool. The branch is represented in the (γ , amplitude) space.
The blue line and dots stand for the unstable periodic solutions that
emerge from the subcritical Hopf bifurcation. The brushed green
line and dots stand for the stable periodic solutions. This confirms
the hypothesis given in Ref. 48 about the subcritical type of the Hopf
bifurcation.

In order to show that the MHB for delay-coupled sys-
tems deals with coexisting patterns, we choose two periodic
solutions (red dots in Fig. 9). These solutions coexist for the
same set of parameters (τ = 4.4063, γ = 2.383). Oscillatory pro-
files, obtained by bifurcation analysis software, are shown in
Fig. 10.

One can see that the unstable periodic solution located in a
neighborhood of the bifurcation point has a sinusoidal-like shape.
The stable periodic solution that co-exists with the unstable one
for the same pair of parameters is represented by relaxation oscil-
lations. We employ the MHB method to simultaneously compute
the oscillatory profiles of these two regimes. The oscillatory patterns
are given in Table IV.

Using data from Table IV and (24), the oscillations can be
reconstructed. The MHB approach gives good approximation of
the harmonic-like oscillation, which are in the neighborhood of the
bifurcation point.

It is clear that the accuracy of the MHB approach cannot
be good when it is applied for oscillations of relaxation type (see
Table V), but it gives an accurate prediction in terms of phases of
the oscillations and good starting points for the tools to accurately
compute periodic solutions such as collocation based approaches.
The MHB method for delay coupled systems deals with co-existing
patterns even if some of them are unstable. In addition, one may
say that since oscillatory profiles presented in Table IV share the
phases and the frequency and belong to one branch of periodic
solutions, the MHB approach can be used for basic bifurcation
analysis.

TABLE V. Comparison of the DDE simulation and the MHB method outputs.

Periodic solution Residual 1ω in % 1α0 in % 1α in %

Unstable 3.67 × 10−10 1.60 1.85 2.02
Stable 2.94 × 10 − 13 2.25 26.04 4.95

V. CONCLUSIONS

This work addresses the problem of detecting (coexisting)
oscillatory patterns in networks of delay-coupled nonlinear systems
of Lur’e form. We focused on the cases where oscillatory patterns
appear in the networks via both subcritical and supercritical Hopf
bifurcations. We developed fast and efficient numerical tools, which
help us to avoid time inefficient simulations of DDEs and can handle
co-existing periodic solutions. The multivariable harmonic balance
method was modified and extended for systems described by DDEs,
and applied to two examples with subcritical and supercritical Hopf
bifurcations in order to show that the method can successfully com-
pute a good approximation of periodic solutions, which appear in
such networks, even if the periodic solution does not occur in the
neighborhood of the bifurcation point. We showed that the method
is numerically efficient in comparison with the direct simulation
approach. Moreover, the MHB method for delay coupled systems
can simultaneously compute co-existing periodic solutions even if
some of them are unstable and perform basic bifurcation analy-
sis. In addition, we performed a bifurcation analysis of the delay
coupled systems with the subcritical Hopf bifurcation by means of
ddebiftool, using MHB results as starting points.
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