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ABSTRACT Spiking Neural Networks (SNNs) are Artificial Neural Networks which promise to mimic
the biological brain processing with unsupervised online learning capability for various cognitive tasks.
However, SNN hardware implementation with online learning support is not trivial and might prove
highly inefficient. This paper proposes an energy-efficient hardware implementation for SNN synapses.
The implementation is based on parallel-connected Magnetic Tunnel Junction (MTJ) devices and exploits
their inherent stochasticity. In addition, it uses a dedicated unsupervised learning rule based on optimized
Spike-Timing-Dependent Plasticity (STDP). To facilitate the design of the SNN, its training and evaluation,
an open-source Python-based platform is developed; it takes as input the SNN parameters and discrete
circuit components, and it automatically generates the associated full netlist in SPICE then launches the
simulation; moreover, it extracts the simulation results and makes them available in python for evaluation
and manipulation. Unlike conventional neuromorphic hardware that relies on simple weight mapping post-
off-line training, our approach emphasizes continuous, unsupervised learning, ensuring an energy efficiency
of 11.2nW per synaptic update during training and as low as 109fJ/spike during inference.

INDEX TERMS MTJ, neuromorphic, SNN, STDP, unsupervised learning.

I. INTRODUCTION
Artificial Intelligence (AI) is transforming both society and
the economy with two crucial drivers at its core: energy-
efficient computing and unsupervised online learning [1],
[2]. These qualities are particularly important for IoT and
edge computing devices which must operate on limited
battery power and adapt in real-time. Current cloud-based AI
chips (being power-hungry and relying on offline training)
have large silicon footprints, suffer from static power and
bandwidth constraints due to memory bottleneck [3], [4],
[5]. To address these issues, AI must not only achieve
up to 100 times more energy efficiency but also facilitate
post-deployment continuous unsupervised learning. Brain-
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inspired computing, especially Spiking Neural Networks
(SNNs) [6], [7] that emulate the brain’s Spike-Timing
Dependent Plasticity (STDP), have shown a huge potential in
achieving both energy-efficient and unsupervised computing.
However, the development of low-power, reliable hardware
for SNNs remains an open question for research.

The work published on the hardware implementation
of SNN can be classified into three classes, based on
their computing paradigm. The first class is based on
computing platforms such as CPUs, GPU and TPUs, which
make use of the traditional Von-Neumann architecture and
are capable of handling intense parallel computing [8],
[9], [10]. Although these platforms deliver high accuracy,
they consume significantly more power compared to other
neuromorphic architectures. The second class are near-
memory implementations, focusing on power efficiency, they
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include dedicated CMOS-based computing engines such
as TrueNorth [11] and Loihi [12]. However, these chips,
despite their near-memory character, still suffer frommemory
bottleneck which limits the bandwidth and requires massive
data shuffling. The third class uses in-memory computing
paradigm, which makes it more biologically plausible. The
synapses that hold the weights are stored in non-volatile (NV)
technology devices [13], [14] in a crossbar array between the
neurons. However, the vast majority of the aforementioned
proposals don’t support online learning [15]; they only map
the trained weights to the crossbar array for inference, after
training the network offline. Although there are a few works
that proposed the use of Magnetic Tunnel Junctions (MTJs)
for plasticity dynamics in SNN [16], [17], [18], there is a need
to demonstrate this in full network training. In short, the state-
of-the-art of SNN implementations suffer from high power
consumption, poor biological plausibility, and are unable to
perform unsupervised online learning in a full SNN. Hence,
there is a need for new energy-efficient implementations
of SNNs, that are capable of learning in an unsupervised
manner, and do this online, which means continuous learning
after deployment.

This study advances the state-of-the-art of SNN hardware
implementation by introducing energy-efficient spintronic
synapses, combined with an adapted STDP learning rule
[19], to perform unsupervised learning, and develops a user-
friendly framework for SNN training in SPICE. In short, the
major contributions of the paper are:

• Introduction of multistate synapses by exploiting the
inherent stochasticity of parallel connected MTJs.

• Implementation of an optimized STDP rule tai-
lored to the unique characteristics of our spintronic
synapses.

• Proposition of behavioral neuronmodels for both input
(spiking) and output (integrate-and-fire) neurons.

• Development of an automated Python framework1

interfacing between user-defined parameters and SPICE
simulator, featuring netlist generation, training and
evaluation.

• SPICE validation of unsupervised SNN training fol-
lowed by an evaluation on a functional framework
demonstrated an accuracy above 90% on MNIST data
recognition.

• Demonstration of a very energy-efficient SNN with
11.2nW per synaptic update during training and as low
as 109fJ/spike during inference.

The remainder of the paper is organized as follows:
Section II provides some background about MTJs and SNNs.
Section III details the synapse structure, the learning rule, and
the models of neurons, section IV explains the modules of
the the developed SNN framework. Next, section V shows
the obtained results with discussion. Finally, section VI
concludes the paper.

1Available at: https://github.com/salah-daddi-nounou/snn_simulator

II. BACKGROUND
A. MAGNETIC TUNNEL JUNCTION (MTJ)
A Magnetic Tunnel Junction is a nanoscale structure com-
prising two ferromagnetic layers separated by an insulating
oxide barrier (Fig. 1B). The thicker ferromagnetic layer,
often referred to as the ‘‘reference’’ layer (RL), has a
fixed magnetization direction. In contrast, the thinner layer,
known as the ‘‘free’’ layer (FL), has a magnetization that
can be manipulated to be either parallel or antiparallel to
the reference layer. The relative orientation of these layers
determines the MTJ’s resistance: a parallel configuration
results in low resistance (Rlow or ‘‘0’’), while an anti-parallel
configuration yields high resistance (Rhigh or ‘‘1’’). The
MTJ’s functionality is harnessed in Spin Transfer Torque
Random Access Memory (STT-RAM) applications, where
the bistable resistance states represent binary data. The
transition between these states is driven by Spin Trans-
fer Torque (STT), a phenomenon wherein the angular
momentum from spin-polarized electrons influences the
magnetization direction of the free layer. Our simulations
employ a comprehensive VerilogA MTJ model [20], which
encompasses a wide range of parameters, such as geometric
dimensions, saturation magnetization, damping factor, and
crystalline anisotropy. This behavioral model is derived from
the Landau-Lifshitz-Gilbert (LLG) equation [21], a funda-
mental equation in magnetism that describes the temporal
evolution of magnetization under various influences:

∂m⃗
∂t

= −γµ0m⃗× H⃗eff + αm⃗×
∂m⃗
∂t

− βJm⃗× (m⃗× m⃗r )

(1)

where m⃗ represents the unit magnetic moment of the FL
magnetization under the macrospin approximation. H⃗eff is
the effective magnetic field, which is the sum of different
magnetic fields. γ is the gyromagnetic ratio and µ0 is the
vacuum permeability. α is the Gilbert damping constant. β is
the STT coefficient. J is the switching current density, and
m⃗r is the unit vector of the RL magnetization.
The switching dynamics of the MTJ, governed by STT,

are inherently probabilistic due to thermal fluctuations. The
model distinguishes two regimes based on the magnitude
and duration of the switching current: the Sun model (for
currents greater than the critical current, I > Ic0) and
the Neel-Brown model (for I < 0.8Ic0). The former is
characterized by rapid switching events but at the cost of
higher power consumption, while the latter -used in our
simulations- exhibits slower, thermally-assisted switching
with reduced power consumption.

B. SPIKING NEURAL NETWORKS
The brain comprises billions of neurons interconnected by
trillions of synapses [22]. This network is unique in that
the communication inter-neuron is carried through spikes,
which confers a low power consumption to the brain. SNNs
that mimic the biological brain are inspired by this mode of
communication but also the method of learning that comes
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with it. Biological neurons integrate incoming spike voltages
from other connected neurons, forming the membrane
potential. When this potential surpasses a firing threshold,
the neuron emits a spike, ensuring information is conveyed
only upon reaching this threshold. Various models, such as
the Hodgkin and Huxley model and the Leaky Integrate and
Fire (LIF) model, have been developed to emulate biological
neurons, some modules focus on the biological plausibility
and others on the simulation speed [23], [24]. Since the SNN
communicates only through spikes, encoding the datasets that
need to be fed to the network as spikes is another important
topic of investigation. This encoding can be achieved through
methods like rate, frequency, or temporal coding. Another
active topic of research is SNN training, many works in
the literature propose training the SNN in two steps, first
training a usual ANN with backpropagation, then, once the
training is finished, the ANN is converted into an SNN
for inference [25] but both training and inference run in
classical hardware. Unfortunately, this does not fully unlock
the potential of SNN in terms of energy efficiency. We find
also a slightly better option in the literature, which consists of
training an SNN in classical hardware and then mapping the
weights into a crossbar array of memristors [26]. Although
this method is better because it uses In-memory computing
for inference, the memristors of the network don’t learn
online. Our method is more biologically plausible because
we train the network directly in the crossbar array of MTJ-
based synapses. Indeed, the NV synapses in the crossbar
change their stored weights as the network is learning
according to STDP learning rule. An SNN consists of input
spiking neurons (presynaptic) and output spiking neurons
(postsynaptic), interconnected by synapses. These synapses
can be arranged in a crossbar array as in Fig. 1A, with input
and output neurons positioned at the ends of each row and
column, respectively. Communication between neurons is
facilitated by spike trains. In tasks like image recognition
using frequency coding, each pixel is associated with one
input neuron (or three input neurons for colored images), with
the neuron’s spiking frequency proportional to the pixel’s
intensity. Hardware-implemented SNNs with probabilistic
MTJ synapses is explored. In such architectures, the synaptic
weight is represented in conductance levels, and a local
training algorithm based on STDP is employed.

III. PROPOSED SYNAPSE, NEURONS AND ASSOCIATED
LEARNING RULE
The goal of our study is to demonstrate unsupervised training
of SNN in hardware. To this end, we don’t content with
simulating the high-level functionalities of the synapses and
neurons, instead, we run electrical simulations with accurate
device models that capture the physics of the devices.
In this section, we present the overall architecture of the
SNN. We start by presenting the device models required to
run SPICE simulation, we present the spintronic synapses,
we describe the input and output neurons, and we explain the
learning dynamics. Subsequently, we show how important it

FIGURE 1. (A) A schematic of a fully connected SNN composed of: 1) a
crossbar array of spintronic synapses, each synapse is a set of multiple
MTJs in parallel. 2) input neurons that generate a train of triangular
voltage shapes. 3) output neurons that fire a bi-rectangular voltage shape
upon crossing the membrane threshold. (B) Top: A schematic of the MTJ
structure. Bottom: Probabilistic switching of the MTJ.

is to automate the design process, especially for large SNNs.
Finally, we introduce our Python framework that allows
for netlist automatic generation and its interaction with the
Specter simulator.

A. MTJ-BASED SYNAPSE
The SNN under study employs synapses, where each is a
compound of multiple MTJs connected in parallel. Table 1
displays the MTJ parameters that are used in simulations.
The resulting equivalent conductance of the synapse could
take one of multiple states. Indeed, a single-MTJ device
inherently supports only two distinct conductance states.
However, by integrating multiple MTJs in parallel, a broader
range of equivalent conductance levels can be achieved. The
number of possible states of conductance in the synapse is
equal to N+1, where N is the number of MTJs. In this
design, we operate the MTJ devices in the stochastic regime
to facilitate online training and reduce power consumption.
When a certain writing voltage is applied, the synapse will
end up in one of the possible states with a certain probability.
This is because the switching of state in each MTJ is
probabilistic, and the final state after writing depends on how
many MTJs are in parallel and how many are in an anti-
parallel configuration.

B. LEARNING RULE
Our objective is to leverage the probabilistic behavior of
the synapse so that when it receives signals from the pre-
and post-synaptic neurons, its conductance will be updated
according to a customized STDP rule, the Bi-sigmoid STDP,
presented in detail in [19]. On one hand, we know that the
probability that the spintronic synapse switches from one
state to another depends only on the magnitude and duration
of the voltage drop across its terminals. On the other hand,
in STDP, the crucial parameter that determines the value
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TABLE 1. MTJ parameters.

FIGURE 2. Temporal relationship between pre-synaptic input pulses
(Vpre), post-synaptic output pulses (Vpost ), and the resultant synaptic
weight modifications. The first two panels depict Vpre and a sequence of
Vpost respectively.The third panel shows the resulting voltage drop across
the synapse (Vpre − Vpost ). The bottom panel provides a normalized view
of the synaptic conductance update, highlighting periods of potentiation
and depression corresponding to the timing sequences t1 through t7. The
inset on the right shows a 6MTJ synapse.

of the weight update is the relative time between input and
output neuron spiking. To reproduce STDP, we manipulate
the probability of switching by tuning the voltage drop across
the synapse, so that an increase of conductance (potentiation)
takes place when the input-output relative spiking time is
small. Likewise, a decrease in conductance (depression)
takes place when the input-output relative spiking time is
large. This switching probability manipulation can be easily
obtained by custom-designing the voltage responses of input
and output neurons. A thorough investigation -that extends
beyond the scope of this article- allowed us to find the
optimal voltage shapes of input and output neuron signals.
A triangular shape for the input neuron voltage (blue pulse
in Fig. 2), and a double square voltage shape for the output
neuron (red pulse in Fig. 2). The weight update happens
when the output pulse overlaps (in time) with a part of the
input pulse, the resulting voltage drop across the synapse
Vpre − Vpost depends on the relative time between spikings.
This voltage drop which alters the probability of switching

is shown in Fig. 2 alongside the input and output voltage
profiles. Depending on the relative spiking time between
input and output, The obtained STDP (green curve in Fig. 2)
can be divided in five regions:

1) High Potentiation: Immediate post-synaptic spiking
after pre-synaptic results in a maximum Vpre −Vpost >

0, significantly increasing the synapse conductance.
2) Low Potentiation: A smaller positive voltage drop

with increasing delay slightly raises the synapse
conductance.

3) Unchanged Conductance: A transitional phase
between potentiation and depression where the voltage
drop diminishes and cannot induce either potentiation
or depression.

4) Low Depression: A substantial delay yields a negative
Vpre − Vpost, reducing the synapse’s conductance.

5) High Depression: A significant delay between pre-
and post-synaptic pulses results in a large negative
voltage drop, drastically decreasing the synapse con-
ductance.

C. NEURON MODELS
1) INPUT NEURON
We focus on the black-and-white image recognition task. The
number of input neurons corresponds to the image’s pixel
count. Each input neuron, modeled in Verilog-A, translates
the intensity of a single pixel into a series of triangular voltage
pulses (first panel of Fig. 2). Crucially, the frequency of
these pulses is directly proportional to the pixel’s intensity,
establishing a clear intensity-to-frequency conversion mech-
anism. A small challenge arises from neurons associated with
pixels of zero intensity, as the proportional conversion would
not generate any pulse, thus preventing that neuron from
contributing to learning. To address this, a small frequency
bias is introduced to the spike trains of all input neurons.
This ensures that even zero-intensity pixels contribute to
the synaptic training process. Fig. 3 presents a schematic
of the input neuron and how the designed voltage shape
could be generated. As the input neuron model is part of a
bigger framework, further customization is possible through
several adjustable parameters accessible via the framework’s
interface. This includes the ratio for converting intensity
to frequency, the duration for which an input image is
presented to the network, and the specific characteristics of
the triangular voltage pulses. These adjustable parameters
allow for fine-tuning of the input neuron model to suit
various image recognition scenarios, enhancing the system’s
flexibility and efficacy in processing diverse visual inputs.

2) OUTPUT NEURON
The behavioral model of the output neuron describes a leaky
integrate-and-fire (LIF) neuron adapted from [27]. This LIF
neuron which is depicted in Fig. 4 integrates incoming signals
and produces a double rectangular spike when its membrane
potential surpasses a predefined threshold. At its core, the
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FIGURE 3. Presynaptic neuron design, generating the specific presynaptic
pulses with a proportional frequency to the pixel intensity. The design is
described by a behavioral model.

FIGURE 4. Postsynaptic neuron design described by a behavioral model.

LIF circuit operates as an RC (Resistor-Capacitor) circuit,
it is composed of a capacitor, a charging, and discharging
resistances, and finally, a voltage source that generates the
double rectangular spike. Three switches control the signal
flow in the neuron giving place to three primary phases: inte-
gration, leakage, and spiking. During the integration phase,
only the charging switch is connected to charge the capacitor
with incoming synaptic signals. If no incoming spike is being
received, leakage starts with connecting another switch that
allows the capacitor to discharge via Rdischarge while the
charging switch is disconnected. When the voltage across the
capacitor reaches the predefined threshold of the membrane
potential, the neuron enters the spiking phase, during which a
third switch connects the neuron terminal to a voltage source
that generates back the postsynaptic signal to update the
synapse connections. During this time, the charging switch
is disconnected and the discharging switch is connected to
a high resistance (Rpostdischarge) for a fast resetting of the
membrane potential.

IV. AUTOMATED SNN FRAMEWORK
Development and training of SNNs at the device level
presents some unique challenges due to the extensive compu-
tational resources required. Our open-source framework [28]
addresses these challenges by automating the design and
training of SNNs for electrical simulations, specifically
tailored for SPICE environments.
♣ Framework Overview:

Our tool depicted in Fig. 5 streamlines the creation of intricate
SNN architectures for SPICE simulations. It facilitates

the generation of detailed netlists, which are essential for
accurately modeling the neural network’s behavior at the
device level. Unlike general netlist generators, such as
those referenced in [29] and [30], our tool is specifically
optimized for SNN applications. It incorporates user-defined
parameters, including the number of input and output
neurons, as well as the configuration of MTJs in each
synapse, thereby allowing for a high degree of customization.
♣ Integration with SPICE Simulator:

A notable feature of the framework is its seamless integration
with Cadence Ocean tool. This compatibility enables users to
easily set simulation parameters all at once, the tool then takes
care of updating all the necessary files accordingly. Our tool
automates the simulation process, including the recording of
various signals for subsequent analysis.
♣ Simulation and Analysis:

Post-simulation, the framework presents comprehensive
results that encompass synaptic weight evolution, neuron
membrane potential dynamics, and overall learning per-
formance. This analysis is conducted in the background,
requiring minimal user input beyond the initial setup.
♣ Parallel Processing Capabilities:

One of the core strengths of the framework is its multipro-
cessing capability while satisfying the simulator constraints.
This feature is particularly beneficial for conducting parallel
simulations and parametric analysis across different SNN
designs, significantly reducing the time and computational
resources required for extensive exploratory studies.
♣ Key Modules:

The framework’s architecture which is summarized in Fig. 5
is modular, with the main Python script
(snn_simulator.py) coordinating the flow between the
following main components:

• Parameter Specification: Design choices (number of
neurons, synapses. . . ) and simulation options (duration,
step. . . ) are respectively handed to net_generator.
py and subst_run.py from the main script.

• Netlist Generation: net_generator.py script
dynamically constructs SNN netlists, adaptable to vari-
ous sizes and architectures, and outputs to netlist.

• SPICE Simulation Execution: subst_run.py
script substitutes design options in Cadence Ocean
scripts (oceanScript.ocn) and defines the execu-
tion function.

• Performance Analysis: Post-simulation, the script
plot_weig_membr.py automates uploading and
displaying the key signals, facilitating the analysis of
SNN training.

• Parallel Processing: snn_simulator.py integrates
multiprocessing with parametric analysis to simulta-
neously conduct multiple simulations for large design
exploration.

Eachmodule is geared towards simplifying and automating
the complex processes involved in SNN design, training, and
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FIGURE 5. Overview of the SNN training framework detailing module interactions and data flow.

analysis. The main script orchestrates the entire simulation
process. It initializes with user-defined parameters, generates
the netlist through a dynamic and scalable approach, and
interfaces with simulation tools for execution. The use of
Python’s multiprocessing capabilities not only accelerates
the simulation process but also allows for the simultaneous
exploration of multiple SNN configurations.

V. RESULTS AND DISCUSSION
In this section, we first demonstrate the efficiency of the
proposed framework performing online training. SPICE
simulations emulate the SNN training process to recognize a
small dataset selected merely as an illustrative example. The
derived leaning rule is then evaluated in a larger SNN using a
functional simulator.We then evaluate the power efficiency of
training and inference, and show the effect of spiking activity
and the synapse composition in the energy consumption.

A. VALIDATION WITH THE PROPOSED SPICE
FRAMEWORK
Our approach to training SNNs is unique because it trains
online directly on the MTJ crossbar array. Unlike typical
methods where an external algorithm trains the SNN
conventionally before mapping the weights to the crossbar,
our system updates connections in response to the ongoing
activity of input and output signals, without relying on a
separate, explicit algorithm. However, the valuable demon-
stration of hardware-based SNN training in SPICE comes
at the cost of dealing with computational overhead, which
is influenced by the number of input and output neurons,
and the number of MTJs per synapse. Each component
adds more currents and voltages to be calculated. Given
the intense computational demands and lengthy processing
times, we choose to illustrate our approach in a manageable

way, using 25 input neurons. Each neuron is associated with
a single pixel of an input image that represents a character
in a 5 × 5 pixel format. For computational considerations,
we let the SNN learn one character at a time, hence only
one output neuron is required. Our main objective through
this basic SNN is to show that our design together with the
customized STDP online learning rule, performs effectively
while maintaining reasonable simulation times. We trained
the SNN to learn 10 characters shown in Fig. 6, where each
couple of images shows the synaptic conductances before
and after training. Initially, conductances of the synapses
are randomly initialized, then after 150 ms of presenting the
image to the SNN, the synapses perfectly learn that character.
It is worth noting that the whole process happens with no
supervision, but solely thanks to the input-output activity that
updates the MTJ-based synapses accordingly.

We first trained the network to learn the character ‘‘X’’
(top left on Fig. 6) in a network that has 6MTJs per synapse,
when the network perfectly learned, we reduced the number
of MTJs to only 2MTJs per synapse for all other trainings.
As shown in Fig. 6, SNN always learns the presented
character, which indicates the robustness and versatility of
our design. The Fig. 7A provides a temporal evolution of
synaptic weights dynamics when the network is learning
the character ‘‘X’’. First, the 25 synapses are distributed
randomly through 7 states, then as learning evolves, some
weights potentiate and others depress until stabilization. The
Fig. 7B illustrates the membrane potential of the output
neuron over time, capturing the neuron’s accumulation,
leakage, and firing activity in response to incoming spikes.

B. VALIDATION WITH A FUNCTIONAL FRAMEWORK
In our study, we first utilized SPICE simulations to authen-
ticate the efficacy and physical compatibility of our newly
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FIGURE 6. Synaptic weights before and after training, 10 showcases are
presented. The weights are randomly initialized and finish by learning the
presented character each time.

derived STDP learning rule with MTJ-based synapses in a
small dataset. This approach confirms that our learning rule
is both theoretically robust and directly applicable to neuro-
morphic hardware, leveraging MTJ’s advantages for efficient
in-memory computing. Given SPICE’s detailed electrical
simulations, which align closely with the equations governing
the synaptic devices, we could validate our STDP rule’s
device-level feasibility. However, to explore the scalability
and broader applicability of our learning rule, we injected our
STDP in Bindsnet [31], a functional framework to speed up
the simulations, while ensuring that it uses a learning rule that
originated from SPICE-based simulations of the spintronic
synapse. This shift allowed us to apply our learning rule to
train an SNN on MNIST dataset [32] with the architecture
presented on [33] adopting leaky integrate-and-fire neuron
models and conductance-based synapses, and consisting of
784 input neurons and 400 output neurons. The Fig. 8
illustrates the network’s classification performance on the
MNIST dataset over three epochs, showing a progressive
improvement as it processes an increasing number of training
samples. After training, the network was evaluated, achieving
an accuracy of 90.28%. While this figure may be modest
compared to state-of-the-art ANNs, it’s crucial to highlight
the significance of this achievement within the context of
SNNs. The observed performance underscores not only the
energy efficiency inherent to SNNs but also the advantage
of their unsupervised learning nature, as opposed to the
supervised paradigm common in DNNs. Moreover, the
foundation of our learning rule in the physical properties
of MTJ-based synapses positions it as a particularly fitting
choice for neuromorphic computing, aligning closelywith the
operational principles of neuromorphic hardware.

FIGURE 7. (A) Synaptic weight history during the network’s training
phase, showing transitions between various conductance states. (B)
Membrane potential dynamics of the output neuron, depicting the
threshold-triggered firing and subsequent weight adjustment in the
synapses.

FIGURE 8. Incremental improvement in classification performance as a
function of the number of training samples.

C. ENERGY EFFICIENCY
Employing multiple MTJs in parallel as synapses in SNNs
presents a significant advantage in reducing energy con-
sumption. We analyzed the power consumption of synapses
(excluding the power consumption of the neurons and of
the rest of the system). The synapses are equipped with
varying numbers of MTJs (2 to 8) depending on design
choices which are dictated by the complexity of the learned
task and the needed resolution of the synapse. Our analysis
focuses also on the power consumption dynamics of the
synapses when subjected to different spiking frequencies
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(20Hz to 80Hz). This range of frequencies corresponds to
the encoding of black and white pixels, respectively. Notably,
during inference phases, by disabling feedback from the
output neuron—which exhibits high impedance—we achieve
a significant reduction in power consumption. The power
estimation of a single synapse is quantified through SPICE
simulations, which capture the average power P over a 150ms
image presentation interval, calculated as:

P =
1

t1 − t0

∫ t1

t0
P(t) dt (2)

where t1 − t0 = 150 ms. Averaging the power as given in
Eq. 2 is performed to account for the varying instantaneous
power within a given spike, but also for the silent inter
spike intervals. The energy per spike is finally derived by
multiplying the average power by the spike’s duration (set
at 10ms in this analysis). Notably, the power consumption
escalates with the number of MTJs per synapse due to
a decrease in the equivalent resistance of the synapse.
This effect is depicted in Fig. 9A which shows the power
consumption of synapses with different number of MTJs
during training at a maximum spiking frequency of 80Hz.
Consequently, our analysis benchmarks in Fig. 9B the upper
bound of power consumption using 8-MTJ synapses, which
are subjected to varying neuron spiking frequencies. The
results show a power consumption ranging from 1.29 nW
to 11.2 nW corresponding to an energy consumption per
spike of 112pJ and 12.9 pJ for synapses connected to the
most and least active neurons, spiking at 80Hz and 20Hz
respectively, during training. Inference stages show even
more promising figures, with energy per spike dropping to
as low as 438fJ and 109fJ for synapses connected to the
most and least active neurons, respectively. This efficient
synapse is neuron-agnostic and can be matched with any
neuron design available on the literature. This allows more
optimization from the neuron side for the energy efficiency
of the system.

In comparing various SNN implementations, several works
rely on offline training, followed by weights mapping to a
crossbar array of synapses based either on Resistive Random
Access Memory (RRAM) [26], [34] or MTJ [35], the
network is then intended for inferencewithout online learning
capabilities. The works in [34] and [36] employed gradient
descent algorithm (supervised) and reported inference energy
efficiencies of 3.6fJ /spike experimentally and 270fJ /spike
in SPICE, respectively. However, the offline nature of their
training limits real-time application potential. In a similar
approach, [26] trains an SNN using unsupervised learning
with STDP, yet still follows an offline training methodology
before mapping the weights to the RRAM crossbar for SPICE
simulations, resulting in 20fJ /spike energy consumption. The
authors of [35] demonstrated that Spin-Orbit Torque (SOT)
MTJs are very energy efficient for inference. The work
demonstrates experimentally the plasticity of a compound
synapse composed of 16 SOT MTJ devices. the MNIST
offline training of a network followed by weight mapping

FIGURE 9. Comparison of power consumption of the synapse. (A)
Average power consumption during training with different counts of MTJ
per synapse at a fixed spiking frequency of 80 Hz. (B) Average power
consumption during training (nW) and inference (pW) across varying
spiking frequencies, in 8-MTJs-based synapses.

to SOT-MTJ based crossbar array achieved 1.3 fJ per spike
during inference. Meanwhile, comprehensive evaluations
of power consumption of training within networks using
unsupervised STDP on MTJ-based synapses, especially via
accurate SPICE simulations, remain limited. Furthermore,
the variation in communicated metrics, including total power
consumption, energy per spike, and energy per image,
complicates the task of establishing clear benchmarks, hence
we choose to benchmark the power required by a basic
operation during trainingwhich is a single weight update. The
study by [37] introduces a simplified STDP mechanism for
synapses based on a singleMTJ, specifically targeting vehicle
counting applications. The authors preferred using a local
fast simulator over the accurate but slow SPICE simulations.
The reported weight update power dissipation ranges from
180nW to 0.42 mW depending on the spiking mode. In this
context, the study by [38] explores stochastic computing
by performing system-level simulations of networks using
synapses comprised of MTJs in series, with configurations
extending to as many as 49 MTJs per synapse. Their
simplified STDP involves three phases in one training
process: communication, potentiation, and depression. For
a synapse configuration of 4 MTJs in series, the authors
reported an estimated power consumption of 47.6 µW to
update the state of the synapse. Table 2 compares our work to
other proposals.

6852 VOLUME 13, 2025



S. Daddinounou et al.: SPICE-Level Demonstration of Unsupervised Learning With Spintronic Synapses in SNNs

TABLE 2. Training method & energy efficiency comparison.

Even with our most consuming synapse composed
of 8 MTJs and subject to the highest spiking frequency
(80Hz), the power dissipation of our proposed synapse
during training outperforms both the proposals of [38]
and [37]. Unlike the mentioned proposals, our work uses
a dynamic STDP that properly interprets the relative time
between spikes of pre- and post-synaptic neurons and
updates the spintronic weights accordingly. During inference,
our proposal is more energy efficient than [34] but it is
surpassed by [26] and [35]. However, our work not only
uses unsupervised STDP adapted to the physics of spintronic
synapses, but it also implements it in an online manner, which
is not the case of [26] and [35]. This feature, we believe,
is more suited for IoT devices and real-time applications,
offering a balance between energy efficiency and practical
applicability in dynamic environments. Our work’s nuanced
approach to synapse design and online training not only
reduces power consumption but also ensures compatibility
across various neuron models, fostering greater optimization
opportunities for overall system energy efficiency.

VI. CONCLUSION
In this paper, we presented an energy-efficient implementa-
tion of SNN. Our approach enhances SNNs for unsupervised
online learning by utilizing a specialized STDP learning
rule that is rooted in the physics of MTJ-based synapses
and exploits the inherent stochasticity of MTJs. An open-
source Python platform developed for this purpose simplifies
SNN training and evaluation, automating SPICE netlist
generation and simulation. The results showcase our design’s
effectiveness, achieving an energy efficiency of 11.2nW per
synaptic update during training and surpassing conventional
neuromorphic hardware that relies on post-offline training
weight mapping. These results pave the way for future
advancements in autonomous systems, IoT devices, and edge
computing.
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