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Abstract

In this thesis, we propose a method titled "Task Space Policy Learning (TaSPL)", a novel
technique that learns a generalised task/state space policy π(st+1|st), as opposed to learning
a policy in state-action space π(at|st), from interactive corrections in the observation space or
from state only demonstration data. This task/state space policy enables the agent to execute
the task when the dynamics of the environment is changed from the original environment,
without the need of additional demonstrative effort from a human teacher. We achieve this by
decoupling the objective task into a Task space policies and dynamics model. A Task space
policy, describes how the observable states transit in order to reach the goal of a task and an
Indirect Inverse Dynamics model, which is responsible for performing the action that obtains
the desired transition. Thus, effectively decoupling the task objective from the dynamics
of the environment. In case, the dynamics of the environment changes, only the agent’s
dynamics model has to be relearnt, while the task space policy can be reused.

The method was tested and compared to other imitation learning methods, for various control
tasks of the OpenAI Gym toolkit in their original environment. The obtained policies were
also tested in the modified environments, showing that this method can be used to obtain
imitation policies with the benefits of interactive IL methods, while also being able to general-
ize that knowledge to several varied conditions unseen during the teacher interventions. The
method was validated in two different tasks with a KUKA iiwa robot manipulator, testing
generalization capabilities of the learnt policies.
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Chapter 1

Introduction

In 2000, Honda Corporation created a general purpose humanoid robot called ASIMO (Ad-
vanced Step in Innovative Mobility), which could carry-out simple tasks like move objects with
its 6-DOF robotic arms and move around within its environment [Sakagami et al., 2002]. The
behaviour of ASIMO and other similar humanoid robots was either hard-coded for each task
or requires live teleoperation by a human. Without any feedback from the robot, it is up to
the human operator to gauge the environment and control the robot robustly. Furthermore,
in many cases like space and deep-sea applications, communication time delay interferes with
the human operator’s ability to control the robot. Hence there is a need for learning approach
for robot control.

The most popular approach nowadays for learning control in robots is reinforcement learning.
RL enables an agent to learn an optimal behavior through trial-and-error interactions with its
environment. In order to find the optimal solution to a given task, the agent needs to execute
new actions and explore the state-action space. Robotic RL faces a few unique challenges in
this regard as explained in Kober et al. [2013]. One, continuous interaction of the robot with
the environment can be expensive (w.r.t time and w.r.t hardware, due the to wear and tear
of the robot). Two, modern robots have high degrees of freedom (54 in the case of ASIMO),
which makes it nearly impossible to search the entire state space for an optimal action. Hence
it is necessary to either find more compact state action representations or to learn a portion
of the state–action space that is relevant for the task at hand [Schaal, 1999].

If the demonstrations provided cover the entire state space, then the robot could perform the
task by simply executing the recorded demonstration. However, in the real world, state and
action spaces are continuous and possibly infinite, the necessary data cannot be gathered.
Thus, as the goal of imitation learning is to enable the robot to accomplish the task in a novel
situation, the robot must generalize the demonstrations in the form of a policy.

For Learning a policy from a set of recorded demonstrations, there are two main approaches
in standard IL methods: i) directly deriving a policy from the data with supervised learning,
known as Behavioral Cloning (BC) [Michie et al., 1990; Daftry et al., 2016]; ii) using Inverse
Reinforcement Learning (IRL) to obtain the objective function of the task which is implicitly
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2 Introduction

described in the demonstrations, then using that learned objective function and Reinforcement
Learning (RL) to train an imitation policy [Ng et al., 2000; ?].
The former family of methods has the advantage of deriving an explicit policy without the
additional computationally expensive/data hunger RL process. However, the latter, also
known as indirect IL, has the advantage of being able to generalize the obtained knowledge
encoded in the objective function, that could be used to learn an imitation policy in environ-
ments with different dynamics, or with mismatches between the embodiment of the teacher
and the learner, i.e. without the need to record new teacher demonstrations in the changed
environment.
Directly deriving a policy after collecting demonstrations has two major limitations: i) the
distribution shift, given by the compound error that occurs when the learned policy shifts
towards states unseen during the demonstration recording, and it is not able to recover and
fulfill the task; ii) the policy performance is at most as good as the demonstrations, therefore,
the methods only work for teaching tasks that the teachers are able to perform successfully.
Interactive IL or IL with humans in the loop methods have recently become popular in the
robot learning community [Cui et al., 2021], especially because they overcome the mentioned
limitations of standard approaches. These methods iteratively keep collecting information
from the teachers, while rolling out the current learning policy. These approaches allow the
teacher to correct the agent when the policy performs wrong actions and/or needs to recover
actions to move towards desired states.
Although interactive IL methods have been demonstrated to obtain more robust policies than
with standard IL, most of them obtain explicit policies mapping from states to actions, that
cannot be reused to fulfill the task objectives when the dynamics of the environment change.
For example wear of the system, change of the manipulator, the tools, or the objects to be
manipulated. Therefore, whenever the learned policy is not valid anymore, these methods
require the intervention of the teacher to tune the policy for the new situation, i.e. requiring
a higher workload from the teachers who may not be available.
In this thesis, we propose a method titled Task Space Policy Learning from demonstration,
a novel imitation learning technique that learns a generalised state space policy π(st+1|st),
as opposed to learning a policy in state-action space π(at|st). The learnt task space policy,
enables the agent to execute the task even when the dynamics of the environment is changed,
without the need additional intervention by the human teacher, therefore, reducing their
workload.

1-1 Thesis Outline

This thesis report is structured in the following manner:
Chapter 2 provides information about Dynamic Model learning techniques. Firstly, some
preliminary information is provided about how dynamics models are formulated and math-
ematically represented. We then elaborate on various model learning techniques and their
advantages. Learning a dynamics model is necessary to utilise a generalised state space policy
(that is independent of the dynamics of the environment), however, a reader who has basic
background on model learning for control could skip it and go to chapter 3 that has more
relevant literature to the topic.
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1-1 Thesis Outline 3

Chapter 3 gives a detailed background of sequential imitation learning and interactive imi-
tation learning, followed by a discussion on the current imitation learning from Observation
(IfO) and imitation learning in latent space methods.

In Chapter 4, we explain the proposed algorithm : ‘Task-Space Policy Learning’ (TaSPL)-
an imitation learning method that learns a generalized task policy from either state only
demonstrations or interactively from corrections in state space. The chapter elaborates on
the learning framework for the two proposed algorithms and the method used to infer actions
that result in the desired state transition are also presented.

In Chapter 5, we elaborate on the experimental environment used to evaluate our method.
This includes an explanation of the Open AI Gym tasks as well as the robotic manipulation
task.

In Chapter 6, we provide the results of our experiments and show the advantage provided by
TaSPL over baseline imitation learning techniques.

In Chapter 7, some conclusions and possible future improvements to this work are provided.

Appendix A consists of all the results of the algorithm tested.

Appendix B consists of a draft version of the paper that this thesis work resulted in.
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Chapter 2

Model Learning

A model is a mathematical representation of systems or events. In control theory, a model
is used for understanding the underlying working mechanism of a system, for instance, in
order to make predictions on how the system will behave with or without external input.
Models are commonly used for optimal control, by deciding on an action that will lead to
the next desirable state before they are executed. The most commonly used method for
modeling dynamical systems is by using ordinary differential equations (ODEs), which are
derived using physics-based approaches that rely on the knowledge of the process. In cases
where the system’s dynamics are too complex and cannot be accurately modelled, an empirical
model can be derived from data collected from a series of experiments. And in cases where
a theoretical model is known, experimentation data can be used for tuning the theoretical
model by parameter estimation. These methods are commonly known as model learning.

For most systems, the model dynamics can be derived using the first principles. For a
car, we know the vehicle dynamics, we can predict how the motion of the car is affected by the
input actions, steering angle, velocity, etc. There are systems for which models of dynamics
are very tedious to construct like robotic manipulators with deformable surfaces. Another
example is when a robot interacts with humans; human users are unpredictable/ difficult to
model. Therefore there are situations where one might not know exactly how executing an
action in the current state can lead to the next state. But in order to control the system, you’d
like to have an algorithm that can predict the model’s next state without actually executing
the control action. Therefore it is necessary to learn the dynamics model so that one can use
standard optimal control algorithms (like LQR, MPC, model-based reinforcement learning,
etc.) to carry out the desired task.

In the field of robotics, a model describes the kinematics and dynamics capabilities of the
robot and how it interacts with external objects. Robots rely on sensor and motor functions
to perform a wide range of tasks. However, programming an autonomous robot to perform a
task, by designing controllers for each task is often time-consuming and infeasible to program
for all possible scenarios. The ability to predict the consequence of actions has several uses in
robotics, such as learning controllers for executing a particular task or imitating the actions of
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6 Model Learning

humans or other robots. Another added advantage to learning a model is that the model can
also be used to improve the robot’s performance and to adapt it to a specific environment.

Learning models is important in many decision-making approaches that require under-
standing the evolution of the dynamics of the environment. Section 2-1 gives details about
Markov decision process, a sequential decision method that is most commonly used in Robot
Learning (Reinforcement Learning, and Imitation Learning).

A transition function describes how the system evolves from one state to another as
a result of the previous action. A dynamical model of a system can be written as a state
transition function f whose inputs are the current state the system is in st, and the input
action given to the system at, while the output is the next state st+1, which the system ends
up in after executing the action, mathematically it can be written as :

st+1 = f(st, at) (2-1)

where f represents the state transition function.

Based on the argument of the function, we can classify the models as forward dynamics
models, inverse dynamics models and multi-step prediction models. Section 2-2 provides
more descriptions in detail. These transition functions can be deterministic or stochastic in
nature, and modelled with different kinds of function approximators, section 2-3 provides
more description in detail. Since model learning requires ground truth data for training the
models, section 2-4 provides more information on the different data collection techniques.

2-1 Markov decision process

A model of a robot executing a task describes interactions of a robot with its surrounding
environment into a useful framework that can be used to predict possible future states from the
current state. One such framework is Markov Decision Process (MDP) [Puterman, 2014]. It is
commonly used in machine learning for modeling decision making in a sequential environment.
Many problems in the field of robotics regarding planning and control can be modelled as an
MDP.

The setting in which a robot executes its task is called an environment. An environment
can be represented by a finite set of states that can fully describe the configuration of all
entities. The control system or the decision maker which can sense the state and execute an
action to change the environment is called the agent. Actions are used to control/change
the system state in order to achieve a goal. At time step t, the agent senses the environment’s
state, st ⊆ S, (where S is the set of possible states), and executes an action, at ⊆ A,
(where A is the set of actions), which results in the agent reaching a new state st+1 at time
t+ 1. For example, a robotic arm interacting with an external object, a complete set of robot
actuator angles and angular velocities along with the position and velocities of the object
form a complete state st. The set of all torques the actuators can execute to change its state
forms the action of the MDP at.

The dynamics of the environment are represented by the transition functions. They can
be deterministic or stochastic in nature. In deterministic models, the next predicted state
will always be the same for a given state and action. For stochastic models, the next state is
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2-2 Types of models 7

defined by a probability distribution Pr over all possible future states after executing action
at in state st.

All states of an MDP follow the Markovian property, it means the next state of the
system does not depend on the previous action or the history of previous states, but only
depends on the current state and action. Mathematically, the environment’s dynamics can
be specified by a probability distribution function :

p(st+1|st, at) = Pr(st+1|st, at) = Pr(st+1|st, at, st−1, at−1, ...) (2-2)

The environment gives feedback in terms of a special signal called reward r, when the
agent carries out a transition from the current state st to the next state st+1. The agent’s
goal is to maximize the cumulative reward it receives in the long run. The objective of the
task is defined by the reward function.

A policy π, the decision making part of the agent, is a function that maps from states to
actions. Policies can be stochastic or deterministic. For a stochastic policy, the output would
be a probability distribution over actions. For a deterministic policy, the policy directly gives
the action to be taken.

For an agent to maximise its cumulative reward, the agent must have an estimate of how
much reward is expected in future states under the current policy. This is obtained from a
value function V (s), which represents how good a state is for an agent to be in. It is equal
to the expected total reward for an agent starting from state st. The value function depends
on the policy by which the agent picks actions to perform. Knowing the value of each state,
the agent can figure out what is the best action to be carried out.

vπ(s) =
∑
a

π(a | s)
∑
s,r

p (st+1, r | s, a) [r + γvπ (st+1)] , for all s ∈ S (2-3)

where γ is discount factor that represents the difference in importance between present and
future reward. More information on MDPs can be got from Sutton and Barto [2018]

2-2 Types of models

We can classify models based on what information the model predicts as forward dynamics
models, inverse dynamics models and multi-step models (Fig. 5-1)

Figure 2-1: Types of dynamics models
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8 Model Learning

Forward models predict the next state st+1 of a dynamic system given the current
action at and current state st. The forward model describes the mapping (st, at) → sk+1. If
the mapping of the state action pairs are unique, then learning can be done using standard
regression techniques (such as gaussian processes regression or neural networks). For stochas-
tic systems, the forward models describe the conditional probability of the next possible state
given the current state and action.

Forward models can be used for finding a solution for optimal control problems. The
most commonly used method is model predictive control (MPC) [Kerrigan and Maciejowski,
2002]. These controllers find the optimal action to be executed in each state to minimizing
a cost function, by predicting the future states using the forward dynamics model over a
prediction horizon N. Further application of forward models is in model-based reinforcement
learning which again relates to the problem of learning an optimal policy. Abbeel et al. [2007]
was able to successfully stabilize a helicopter in an inverted flight using the learnt forward
dynamic model.

Inverse models are used to predict the required action at to move the systems from
the current state st to a desired future state st+1. If we know the current state and the
desired or expected future state we can use the inverse model to infer the necessary action,
i.e., the relation (st, st+1)→ at. Craig [2009] used an inverse dynamics model to predict the
torques required to move the robot along the desired joint-space trajectory. If the mapping
(st, st+1 → at) is unique, a model can be learnt with standard regression techniques, if the
mapping is not unique, (say for robotic arms with kinematic redundancy), it can be solved
by introducing additional constraints such as minimizing energy to move from current state
to the next state. Additionally, a combination of forward and inverse models can be used to
resolve the non-uniqueness of the inverse model. These models are called mixed models and
are not widely used in traditional control applications, but they’ve shown promising results
in biologically inspired robot, due to the presence of kinematic redundancies [Salaün et al.,
2010], [Ting et al., 2009].

Multi-step models Both forward and inverse dynamic models discussed above made
1-step predictions of the next state. We can make multi-step predictions by repeatedly feeding
the prediction back into the learned forward dynamics model. Using feeding predicted states
to a model can result in accumulation of errors. These accumulating errors may cause the
model to diverge from the true dynamics. To overcome the error accumulation, there are two
main approaches i) different loss functions and ii) separate dynamics functions for 1,2..n-step
predictions. In the first approach, multi-step prediction losses are added to the loss function
used for training the model [Chiappa et al., 2017; Hafner et al., 2019; Ke et al., 2019]. These
models make 1-step predictions, but during training they are unrolled for n steps and trained
on a loss with the ground truth n-step observation. The second solution is to learn a specific
dynamics model for every n-step prediction [Asadi et al., 2018].

2-3 Different function approximators

For a discrete system or a discretized version of a continuous system, a discrete MDP can be
used to represent the transition function. Each transition can be input as a separate entry in
a table. Tabular models were popular in initial model-based and model-free RL algorithms

Lalith Keerthan Suresh Kumar Master of Science Thesis



2-3 Different function approximators 9

[Sutton, 1991]. However, they do not scale to high-dimensional problems, as the size of the
required table scales exponentially. For continuous or high dimensional state spaces, function
approximation methods are used to represent transition functions.

If the model dynamics can be derived by following the first principle methods, then the
transition function can be obtained by integrating the differential equations stemming from
Newton Euler methods, which lead to the most realistic models [Ross and Bagnell, 2012;
Colomé et al., 2015]. One disadvantage of physics based models is that they require many
constants like the coefficient of friction and spring constants to be known, to build an accurate
model of the system. For complex systems, where modeling from first principle methods is
not possible, transition function approximations are learnt from data. One method to learn
a function approximation is to perform regression analysis on the data, and some examples
are elaborated below

Locally Weighted Linear Regression (LWLR) is a non-parametric model that fits
regression models on the training data. The model’s coefficients are estimated using the
ordinary least square estimator, modified by a kernel that provides a measurement of the
similarity between new input and learned data. LWLR can be used for learning the models
directly from sensor data without any knowledge about the dynamics of the robot. [Kim
et al., 2004].

Dynamic Bayesian networks (DBN) extend standard Bayesian networks with the
concept of time, which allows us to model time series data like dynamic models. Learning
the local structure of the DBN corresponds to learning of MDPs’ transition probabilities by
exploiting conditional independence relations that exist between state features at time t and
t+1. A variant of logistic regression is used for training of the DBN on the collected data
[Hester and Stone, 2011].

Decision Trees can also be used to model deterministic models. They use a divide and
conquer approach in the feature space to predict the output or the next state of the system.
They are used because of their ability to generalize the learned model well [Hester et al.,
2010], [Hester et al., 2012].

Models can also be built using random forest, which is a collection of decision trees
[Hester and Stone, 2010]. Each decision tree is trained on only a subset of the agent’s expe-
riences. The final prediction of the next state/action is the average of the predictions of each
of the trees. The use of multiple sub-models could be used for estimating the uncertainty of
the model

Rather than providing a single ‘best-fit’ to the observed data, Gaussian Processes
(GP) take a Bayesian approach and provide a complete posterior distribution over states and
actions to the next possible states. The dynamics can be modelled as GP (m(x), k(x, x′)),
where x = [st, at], m(x) is the mean function and k(x, x′) the covariance function of the
Gaussian process (GP). The mean of the GP is assumed to be zero, i.e., no prior knowledge,
and the covariance function k(x, x′) is usually a general kernel such as a squared exponential.

Gaussian mixture models (GMM) can also be used to fit unknown model dynamics,
and such models are used in robots [Gribovskaya et al., 2011], [Calinon and Billard, 2009].
The model is trained on a tuple of the current state-action pair and the next combination
(st, at, st+1), to obtain a gaussian distribution p(st, at, st+1).
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In recent years, there has been much interest in using (deep) neural networks (DNN)
approximation for dynamics function approximation [Christiano et al., 2016; Polydoros and
Nalpantidis, 2016; Nagabandi et al., 2020]. DNNs have millions of parameters allowing them
to model complex functions such as nonlinear dynamics. They learn compact representations
of state from high-dimensional, multimodal sensor data commonly found in robotic systems
[Böhmer et al., 2015], and unlike many machine learning methods, they do not require hand-
engineer feature vectors from sensor data. This nonlinear regression of NN provides the
functionality that is needed for operating dynamical systems in continuous spaces [Lewis
et al., 2020; Müller et al., 1995].

DNNs are well suited for use with robots because they are flexible and can be used in
structures that other machine learning models cannot support. The simplest of the structures
is a feed-forward neural network which acts as function approximators/ transition function.
The input to the neural network is the current state and the current action, and output is the
next state. These models are trained to approximate the mappings represented in a training
set of pair-wise examples in a supervised manner. An optimization method is applied to
minimize the prediction loss. For such problems, loss is typically measured with sum-squared
error,

∑n
i (yi − ŷi)2. The most popular optimization method for neural networks is stochastic

gradient descent, but improved methods such as RMSProp and Adam have recently gained
popularity.

Another neural network structure that is used for modeling dynamics is Recurrent neu-
ral networks(RNNs) specialize in dynamics and temporal predictions. It is trained with an
approach called ‘backpropagation through time’ [Werbos, 1990],44]. Many advances, such as
‘long short-term memory units,’ have made recurrent neural networks much stronger [Hochre-
iter].

RNN excel at learning to anticipate complex dynamics as the recurrent connections
give the model a form of “memory” that is used for learning a relation between the current
and the previous states. This knowledge of state enables them to model the effects of time
in a changing environment. Several researchers have used recurrent networks to learn model
dynamics directly from full observations. Lenz et al. [2015] modeled robotic food cutting with
a knife. This includes difficult-to-model effects such as friction, deformation, and hysteresis.
Food-knife surface contact changes through the cut, and so do the material properties of the
food. Data obtained while operating under fixed-trajectory stiffness control was used to train
the RNN on the system dynamics, and the resulting model was used to implement a model
predictive control algorithm.

Artificial neural network can handle non-linearities and uncertainty on its inputs. Mak-
ing them ideal for modelling novel dynamics like those needed to solve problems such as
grasping new objects, traveling over surfaces with unknown or uncertain properties, manag-
ing interactions between a new tool and/or environment, or adapting to degradation and/or
failure of robot subsystems. The architecture of neural networks allow for learning of models
with high degrees of freedom. Kumar et al. [2019] carried out a comparative study of different
neural network architectures (MLPs, FNN, RNN, LSTMs ) for learning forward dynamics.
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2-4 Data collection methods

Since model learning is essentially a supervised learning problem [Jordan and Rumelhart,
1992], we need ground truth data for learning a model. In order to learn an accurate model
for applications in robotics, the sampled data must be representative of a large region of the
state space. The data collected should be processed to ensure there are no redundant and
irrelevant data, as spurious data can cause bias and affects the accuracy of the model. Data
is collected in the following methodologies as cited in Hong et al. [2020]:

Random exploration: The samples required for training the model are got by the
agent executing random action. It is the most commonly used method for learning inverse
dynamics models due to its simplicity in implementation [Pathak et al., 2018; Nair et al., 2017;
Agrawal et al., 2016]. In model learning RL, for an agent to execute its optimal policy, its
state space and action space must be explored. The agent follows an epsilon greedy policy, the
agent takes action using the greedy policy (policy that maximises the immediate reward) with
a probability of (1−ε) and a random action with a probability of ε. This approach ensures all
the action space is explored. The random transitions observed are recorded, and appended
to the training data. Given the additional training data, the dynamics model is re-trained,
which improves the dynamics model, as well as, the policy being executed. [Deisenroth and
Rasmussen, 2011; Gal et al., 2016]

Demonstration: The dynamics model is learnt directly with expert demonstrations.
The sequence of state-action pairs, recorded over time t during task execution by the expert are
called Trajectories, τ = (s0, a0), ...(st, at). Since expert demonstrations comprise successful
trajectories, the recorded state action pairs are sufficient to learn a dynamics model to be able
to replicate the demonstrated task [Bain and Sammut, 1995; Abbeel and Ng, 2004; Nair et al.,
2017]. However, learning only from successful demonstration results in the co-variate shift
problem, as the model may not have learned different transition which it has not encountered
during the demonstration.

Curiosity: Curiosity can be used to explore the environment and discover goal states,
but also as a way of learning new states which might come handy for pursuing actions in the
future. This method incentivizes an agent to collect samples that lead to large errors of its
forward dynamics model [Pathak et al., 2017, 2018; Hong et al., 2020] .

2-5 Region of validity

Dynamics models can be classified as global models or local models based on the region of
state space where they are valid.

Global: These models approximate the dynamics over the entire state space. This
is the main approach of most model learning methods. It can be challenging to generalize
well over the entire state space, but it is the main way to store all information from previous
observations. In order to learn an accurate model for a large state space more data is required
which may be expensive or unsafe.

Local: The other approach is to only locally approximate the dynamics and each time
discard the local model after planning over it. This approach is especially popular in the
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control community, where they frequently fit local linear approximations of the dynamics
around some current state. A local model restricts the input domain in which the model
should be valid, and is also fitted to a restricted set of data. Because fitting data on smaller
state spaces is more computational efficient, such techniques have become widespread in model
learning for robotics [Atkeson et al., 1997; Bagnell and Schneider, 2001; Levine and Abbeel,
2014; Tevatia and Schaal, 2008]. A benefit of local models is that we may use a more restricted
function approximation class (like linear), and potentially have less instability compared to
global approximation [Moerland et al., 2020]. On the downside, we continuously have to
estimate new models and do not continue to learn from all collected data (since it is infeasible
to store all previous data points).

2-6 State abstraction

Since model learning is a supervised learning algorithm, it suffers from the curse of dimen-
sionality. These high-dimensional observations present a challenge for perception, learning
and planning. While deep reinforcement learning algorithms have shown that it is possible to
learn controllers directly from large dimensional observations (like raw images) [Mnih et al.,
2015], however, reinforcement learning (or other control algorithms) can take advantage of
low dimensional and informative representations, instead of raw data, to solve tasks more
efficiently [Munk et al., 2016]. Especially, in the field of robotics, which relys heavily on sen-
sors for estimating the states of the system for control tasks, finding and defining interesting
states (or features) for control tasks usually requires a considerable amount of manual engi-
neering. It is therefore of interest to learn these features with as little supervision as possible.
State Representation learning algorithms are a form of feature learning, where the pertinent
information from high-dimensional observations is extracted using machine learning instead
of human intuition.

The objective of state representation learning (SRL) algorithms is to learn a low dimen-
sional representation of a high dimensional state space while encoding information to carry
out a given task while discarding the many irrelevant aspects of the original data. The low
dimension representation must capture the variations in high dimensional states caused by
the agent’s actions. These low level or latent spaces can help improve performance and speed
in policy learning algorithms such as reinforcement learning. For a robot, sensors like cameras
act as high dimensional input, while the task could be expressed in a low dimensional state
space like the cartesian coordinates of the end effector.

The main advantage of carrying out state representation learning is the ability to carry
out computation and planning at latent spaces. Separation of representation learning and
policy learning is a way to lighten the complete process. As described in a few of the reviewed
papers [Van Hoof et al., 2016; Munk et al., 2016; Lesort et al., 2018], this approach is used
to make policy learning faster and lighter in computation.

SRL can also be used in a transfer learning setting by taking advantage of a state space
learned on a given task to rapidly learn a related task. This is for example the case in
[Jonschkowski and Brock, 2015] where a state space related to a robot position is learned in
a given navigation task.

Early methods of learning a lower dimensional state space involved using dimensionality

Lalith Keerthan Suresh Kumar Master of Science Thesis



2-7 Conclusion 13

reduction algorithms like principal component analysis (PCA). PCA is a linear transformation
able to compress and decompress observations with minimal reconstruction error. Using PCA,
Karakovskiy and Togelius [2012] was able to reduce images to 4-dimensional state spaces,
which reduced the time to converge to optimal policy in simulations such as mountain car.
Due to non linearities when compressing high dimensional data to a lower dimensional latent
state space, deep neural networks work well for state representation learning [Oh et al., 2015;
Watter et al., 2015; Chiappa et al., 2017]. Commonly used neural network architectures for
SRL are auto-encoders. They learn to reproduce the input under constraints on their internal
representations such as dimensionality constraints in a middle layer. The architecture of an
autoencoder can be split into i) an encoding function zt = fenc(st), which maps the observation
to a latent representation zt, ii) a decoder function st+1 = fdec(zt+1), which maps the latent
state back to the next state prediction. The latent state space z has a lower dimensionality
compared to the observed state s.

Models based on auto-encoders can not only reconstruct the high dimensional state
spaces, they can also be used to learn the system dynamics as proposed in Goroshin et al.
[2015]. The auto-encoder model can learn the forward dynamics by firstly making an encoding
from the original space to a latent state space to obtain zt and then reconstruct the next state
ŝt+1. The transition function is trained by minimising the error computed by comparing the
estimated next state ŝt+1 with the value from the next observation st+1 at the next time step.
However, we must ensure that the predicted next latent state lives in the same state space
as the encoded current latent state, else the model will deviate from the truth. This is done
by ensuring that the learnt latent dynamics function follows linear dynamics [Watter et al.,
2015] Karl et al. [2016].

Similarly, an inverse dynamics model can also be learnt using the autoencoder framework.
The model encodes the states st and st+1 to latent states zt and zt+1, then the model predicting
the action ât that can produce the transition from zt to zt+1. An example using inverse models
to learn state representations is the Intrinsic Curiosity Module(ICM) [Pathak et al., 2017].
Learning an inverse model is more sample efficient compared to learning a forward model,
since actions space is a much lower dimension compared to state spaceLesort et al. [2018].

Another method for state representation learning is with the Generative Adversarial
Network (GAN) framework. Chen et al. [2016] proposed InfoGAN that achieves the dis-
entanglement of latent variables on 3D poses of objects. State representation learning in
continuous state-action spaces using very high-dimensional observations remains a key chal-
lenge in developing fully autonomous systems [Lesort et al., 2018].

2-7 Conclusion

Traditionally roboticist relied on manually generated physics based models for control and
planning, but future autonomous robots need to be able to automatically learn models that are
based on information that is extracted from the data collected by the robot. Model learning
can be a useful alternative to manual pre-programming, as the model is estimated directly
from measured data. With model learning, unknown non linearities can be directly taken into
account, while they are neglected by the standard physics-based modeling techniques and by
hand-crafted models. Model learning has been shown to be an efficient tool in a variety of
scenarios, such as robot manipulation, autonomous navigation or robot locomotion.
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The two main problems faced for model learning for robotics are : high dimensional data
and small data sets. Firstly model learning algorithms have to deal with massive amounts
of data, such as in learning dynamics from image data. The algorithms need to be efficient
in terms of computation without sacrificing the learning accuracy. Secondly, as the data
generation may be too tedious and expensive, we need algorithms that allow us to learn and
improve the model in the presence of sparse data, by incorporating prior knowledge or using
active learning. Standard model learning approaches, such as Gaussian process regression,
scale cubically in the number of training data, preventing a straightforward usage in robotics.
In recent years, there have been serious efforts to speed up model learning algorithms by using
deep neural networks. These DNN are able to work with sparse and large data sets to learn
a function approximation of the system’s transition function.

In the field of imitation learning explained in the following section, a policy is learnt
from trajectories of optimal states and actions. However, in real-life demonstrations, the
action information may be missing in some cases and only state trajectories are available.
The demonstration provided could have a viewpoint mismatch or embodiment mismatch (the
kinematic model of the demonstrator may be different from that of the robot). To solve these
problems it is necessary to learn the model of the system.
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Chapter 3

Imitation Learning

A more intuitive way for an agent to learn control is to learn from demonstrations of the
desired behavior. Imitation Learning (IL) is a machine learning technique where a robot
(or an agent) learns a policy to execute a task by observing demonstrations performed by a
human or an expert [Schaal, 1997; Argall et al., 2009]. Imitation learning was developed in
the field of robotics to address difficulties programming autonomous robots using standard
methods. Primarily due to the inability of humans to pre-program a robot for every possible
scenario. Secondarily to allow people who do not have the specific set of skills and knowledge
to program robots to modify a robot’s behavior.

By observing demonstrations executed by an expert, the agent can reduce the search
for a possible solution, by either starting the search from the observed good solution, or by
pruning parts of state spaces which produce a bad solution [Billard and Grollman, 2012]. It
is considered to be a key technology for applications such as autonomous vehicles [Sammut
et al., 1992; Pan et al., 2017], manufacturing [Jha et al., 2017], elder care [Bemelmans et al.,
2012] and the service industry [Saunders et al., 2006; Nicolescu and Mataric, 2003].

Section 3-1 provides preliminary information about IL is provided, followed by details
about traditional IL techniques and highlights two of the prominent IL methods, namely,
Behavioral Cloning (BC) and Inverse Reinforcement Learning (IRL).

Section 3-3 provides detailed methods that use inputs from a demonstrator during learn-
ing phase to improve the agent’s performance i.e. Interactive Imitation Learning.

Section 3-4 provides details on Imitation from Observation, IL techniques where policy
is learnt from state only trajectories.

Section 3-5 delves into Imitation learning in latent space and the types of methods used.

Section 3-6 summarizes the chapter and offers a hypothesis on an Interactive Imita-
tion Learning (IL) method that learns a policy in state space invariant on the environment
dynamics.
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3-1 Preliminaries

The behavior of the expert demonstrator (or the learner itself) can be observed as a trajectory
τ = [(s0, a0), ..., (sn, an)], which is a sequence of state/observation, action pairs. In imitation
learning, a dataset of demonstrations D = (τi, ri)Ni=1 that consists of pairs of trajectories τ
and optionally reward signals r are collected. Using the collected trajectories, the imitating
learning problem can be reframed as an optimization problem

π∗ = arg min D(q(φ), p(φ)) (3-1)

where the agent learns a policy π∗ such that it minimises the difference between executed
sequence of states and the demonstrated trajectory [Osa et al., 2018], where φ represents state
(or observation) - action pairs, q(φ) is the distribution of the features induced by the experts’
policy, p(φ) is the distribution of the features induced by the learner, andD(q, p) is a similarity
measure between q and p.[Osa et al., 2018]

Imitation learning techniques can be characterized based on the modes of interaction,
which enable a robot to learn (1)through doing (Learning from Demonstration (LfD)), (2)
through observation (Learning from Observation (LfO)), and from critique.

Learning from Demonstration (LfD), popularised by Atkeson and Schaal [1997],
explores techniques for learning a task policy from examples provided by a human teacher,
who demonstrate how to perform the desired task. These demonstrations are provided as a
sequence of the state and the control input. Teleoperation provides the most direct method
for accessing state and action from demonstrations [Chernova and Veloso, 2009]. During
teleoperation, the robot is operated by the teacher while recording from its sensors. Demon-
strations recorded through human teleoperation have been used in a variety of applications,
including flying a robotic helicopter [Abbeel et al., 2007], robotic arm assembly tasks [Chen
and Zelinsky, 2003] and obstacle avoidance and navigation Min et al. [2005].

In some situations, the teacher performs the task demonstration using their own body
or with another robot embodiment instead of controlling the robot directly, as a result, the
agent has access to the robot’s state observed by its sensors. Here, the trajectory is given as a
sequence of the state of the system τ = [s0, ..., sn]. These IL algorithms are called Learning
from Observations (LfO) [Liu et al., 2017]. IfO algorithms are discussed in detailed in
section 3-4.

3-1-1 Model-Free and Model-Based Imitation Learning

Imitation learning algorithms can be classified into model-free and model-based algorithms.
Model-free imitation learning methods learn a policy that replicates the behavior demon-
strated by experts without learning a model of the system. Behavioral cloning (BC) is one
such IL algorithm that learns a direct mapping from states to actions. Therefore, there is no
need to estimate the system dynamics in model-free imitation learning method. The model
dynamics is encoded into the policies learned by model-free methods. Such algorithms can
be easily applied to motion planning for fully actuated robotic systems when expert demon-
strations are available.
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Model-based imitation learning methods learn a policy that reproduces the demonstrated
behavior by using a transition model, like a forward dynamics model of the system. If the
transition model is given, then a policy can be derived from simple planning algorithms. When
no transition model is given, then the model can be learned by sampling the environment,
and be used with planning to update the policy.

For high dimensional problems, the complexity of learning the transition model, followed
by a planning algorithm is smaller than the complexity of learning the policy model directly
and is more sample efficient. In model-free learning, a sample is used once to optimize the
policy, and then discarded, in model-based learning the sample is used to learn a transition
model, which can then be used many times in planning to optimize the policy. The sample
is used more efficiently.

Inverse reinforcement learning (IRL) is one such IL algorithm that attempts to recover
a reward function from the demonstration. Using the dynamic model makes inverse rein-
forcement learning easier since the learner’s performance can be predicted when the system
dynamics is known. IRL has focused on learning a policy that needs to be iteratively evalu-
ated in a given system. A model-based approach is suitable for such applications, hence many
model-based methods have been developed for IRL.

3-2 Sequential Imitation Learning

Traditional methods of imitation learning can be classified as sequential imitation learning.
These methods learn to imitate the task in two phases: 1) demonstration recording, 2) policy
derivation. Depending on the learning strategy and information available, two of the most
prominent sequential IL approaches are, Behavioral Cloning (BC) and Inverse Reinforcement
Learning (IRL).

3-2-1 Behavioral Cloning

One way to learn a policy that reproduces the demonstrated behavior is to capture the expert’s
cognitive skill into a program. The data set of demonstrated trajectories with state-action
pairs D = (st, at) is used to build a regression model with the current state as input and action
to be executed to reproduce the expert’s trajectory as an output. Typical standard supervised
learning techniques used to learn a policy directly map from the state or the observation to
the control input. This method is often referred to as Behavioral Cloning (BC) [Bain and
Sammut, 1995; Ross et al., 2011].

Algorithm 1 Behavioral cloning
Require: a set of trajectories demonstrated by the expert D

1: Initialize πθ with objective loss function L
2: Optimize L w.r.t. the policy parameter θ using D
3: return optimized policy parameters θ

Algorithm 1 gives a description of the procedure of BC methods. The first step of BC
is to record a set of expert demonstrations D which are usually given as a set of trajectories.
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Thereafter, we need to select a policy representation πθ appropriate for a given application.
In addition, we need to select an objective function L that represents the similarity between
the demonstrated behaviors and the learner’s policy. Commonly used loss functions are l2 or
quadratic loss functions. The parameters θ are then optimized using the collected data set of
demonstrations.

When using supervised learning, an appropriate regression method must be chosen,
based on the complexity of the model. Simple models can be trained using linear regression
techniques [Atkeson et al., 1997; Atkeson and Schaal, 1997]. Complex models use different
architectures of neural networks to handle highly nonlinear mappings [Wen et al., 2015; Baram
et al., 2017; Nair et al., 2017]. Various function approximators described in section 5-1 are
used for behavior cloning. However, training such complex models require a large amount of
training data [Bojarski et al., 2016].

Model-free BC methods do not learn system dynamics, they learn a mapping directly
from the state to the action. Direct learning means that the learning algorithm does not
iterate between trajectory and behavior generation. However, model-free methods are hard
to apply to underactuated systems, since without a model predicting desired behavior is hard.
Model learning BC methods on the other hand do not suffer from this issue, since they utilise
the transition model of the system [Torabi et al., 2018a; Van Den Berg et al., 2010]. But learn-
ing the transition model of high dimensional problems requires high capacity networks that
require many samples for training to achieve high generalization while preventing overfitting,
potentially undoing the sample efficiency gains of model-based methods.

Model learning/based BC methods are used in systems where there exists an embodi-
ment mismatch between that of the demonstrator and the learner. This mismatch is known
as the correspondence problem in imitation learning [Billard et al., 2008]. The demon-
strated trajectory needs to be modified to adapt the demonstrated trajectories to follow the
constraints and dynamics of the learner.

The supervised learning algorithms used in BC can suffer a domain shift between the
training experience and the online behavior. This domain shift is called covariate shift [Osa
et al., 2018]. If the system encounters a new state that it has never seen during training,
the model would not know the appropriate action to execute. From the regression model,
the agent approximates the closest state. Sequential estimation of actions can lead to com-
pounding errors leading to derivation from the desired trajectory. This would be dangerous
for safety-critical applications like autonomous driving [Codevilla et al., 2019]. One solution
to fix the covariate shift is to carryout on-policy data collection. In DAGGER [Ross et al.,
2011], data is collected from the current robot policy and the policy is updated on the ag-
gregate data set collected. Bojarski et al. [2016] and Laskey et al. [2017b] learn a stabilizing
policy where the policy mitigates the trajectory drift issue by learning a corrective action
simultaneously.

3-2-2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) [Ng et al., 2000], is an imitation learning algorithm
where the learner tries to recover/learn a reward function from a policy (or demonstrations
of a policy). From the obtained reward signal, a policy can be obtained so as to maximize
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the expected return following reinforcement learning. Such a policy can be expressed as

π = arg max J(π̂) (3-2)

where J(π̂) is the expectation of the accumulated reward given the policy. The reward function
needs to be shaped from expert demonstrations. Alternatively, this can also be thought of as
learning a cost function that produces the same trajectory as the demonstrator.

Algorithm 2 Inverse Reinforcement Learning
Require: a set of trajectories demonstrated by the expert D

1: Initilize V (s) = 0, for all s ∈ S+

2: repeat
3: learn reward rθ(st, at)
4: Using the learnt reward function rθ,learn policy using RL;
5: Compare π with π∗(experts’ policy);
6: until π is satisfactory

Algorithm 2 gives a description of the procedure of IRL methods. IRL involves two
steps: (i) We start with a set of expert’s demonstrations (we assume these are optimal) and
then we try to estimate the parameterized reward function, that would cause the expert’s
behaviour/policy. (ii) Using the estimated reward function, we try to find the optimal policy
using standard reinforcement learning methods. Finally, policy improvement can be carried
out by repeating the previous steps until the learnt policy π is satisfactory.

Similar to behavioral cloning methods, IRL methods can be categorized into two cate-
gories: model-based and model-free methods. Model-based IRL methods use the knowledge
of the system dynamics to evaluate the model-based RL on the learnt reward function and
policy. These methods use the model to estimate the agent policy’s trajectory distribution
[Abbeel and Ng, 2004; Levine et al., 2011]. Model-free IRL methods do not require prior
knowledge of the system dynamics. Model-free IRL methods employ sampling techniques
to evaluate and update the learned reward function and policy. These algorithms avoid ex-
plicit learning of system dynamics, but need many trajectories to estimate the trajectory
distribution, which can be time-consuming and computationally expensive [Ho and Ermon,
2016].

IRL methods work on the assumption that learning a reward function is statistically
faster than learning a policy π directly [Arora and Doshi, 2018]. However, reward estima-
tion/RL needs to be done repeatedly for policy optimization for every reward function de-
rived, which can be costly from a time and safety perspective. [Torabi et al., 2019b]. Another
limitation of IRL is finding a unique reward function for a given demonstration. For most
observations of behavior there are many fitting reward functions. Additional objective func-
tions which employ the principle of maximum entropy can be used to resolve the ambiguity
in choosing a distribution over decisions which result in obtaining a unique solution in IRL
[Ziebart et al., 2008]. Finally, IRL algorithms assume that the observed behavior is optimal.
Demonstrations provided by humans are sub-optimal, therefore the learnt policy will always
be sub-optimal, despite carrying out RL repeatedly for policy improvement.
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3-3 Interactive imitation learning

A common drawback of agents trained using IL is that they suffer from compounding error
problem [Bagnell, 2015]. Due to small errors accumulating, the agents will inevitably reach
unknown states that were not explored in the demonstration [Osa et al., 2018]. Most super-
vised learning IL methods require a lot of training data to learn the transition model and
the imitation policy, but the demonstrator may not be able to cover all possible situations,
or demonstrations may be highly expensive, therefore there is a need for alternative meth-
ods that provide the necessary information to the agent efficiently. One way to do this is
to use the provided feedback during training of the algorithm to guide the agent towards
desired behaviour. This can be considered Interactive Machine Learning (IML) [Chernova
and Thomaz, 2014; Amershi et al., 2014]. Using interactive machine learning, the model gets
updated immediately in an incremental manner in response to teacher’s feedback. This allows
the teacher to interactively examine the impact of their actions and adapt subsequent inputs
to obtain the desired behavior. As a result of these alternating policy execution and policy
updation cycles, even teachers with little or no machine-learning expertise can adjust the
behavior of agent through low data trials and experiments. Based on the nature of feedback
provided by an expert, interactive learning can be classified into the following - (i) evaluative
feedback, (ii) corrective feedback [Mourad et al., 2020; Zhang et al., 2019b].

In evaluative feedback, the human provides evaluative critiques to indicate the merit
of the performed action. This kind of feedback is used when the teacher is not a expert at
performing the task or is too difficult for humans to provide corrective action, but can assess
the agent’s state or action. Corrective action feedback is used where the human teacher
cannot provide an optimal action, which true in most realistic cases.

3-3-1 Evaluative feedback

The simplest form of evaluative feedback is a scalar value given by a human in real time
indicating how desirable an observed state or action is while watching the agent performing
the task. This approach greatly reduces the needed human effort. One of the main challenges
in this approach is use human feedback effectively since such interpretation determines how
the feedback is used to improve the policy in the MDP framework. The evaluative feedback
provided can be either over entire trajectory executed by learners [Akrour et al., 2014; Jain
et al., 2013] or can be provided for each action executed in order to nudge the agent in the
right direction [Knox and Stone, 2009].

One such method is TAMER (Training an agent manually via evaluative reinforcement)
[Knox and Stone, 2008], where the human feedback is learnt as the value function or a human-
specified reward function (H). In any given state, the agent’s goal is to choose the action
that will receive the most reward from the human. To do this, the agent chooses the actions
that will maximise the expected reward. After learning an accurate model of the human’s
reward (H), the agent can continue to perform the task in the absence of the human, choosing
actions that maximize the received reward as if the human were providing them. Once H
is trained, the human need not provide input continuously, feedback is provided only when
the agent reaches an unknown state. The TAMER framework was recently extended to deep
TAMER [Warnell et al., 2018]. Deep TAMER uses a neural network to represent and learn
an estimate of H, via supervised learning.
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Another form of evaluative feedback is preference. Many RL tasks may be too complex
for humans to provide demonstrations or these could be control tasks with many degrees of
freedom, like MuJoCo Ant [Todorov et al., 2012]. It is, therefore, harder for humans to control
or to tell whether a particular state-action pair is good or not. However, it may be possible to
set a ranking between multiple behaviors. This ranking or preference is used as feedback to
modify the policy. Busa-Fekete et al. [2013] used preference to learn policies directly, Akrour
et al. [2014] learnt a reward function using preference. The preference framework can be used
to evaluate states, actions or a segment of trajectory. Christiano et al. [2017] used a pair of
agent trajectories of 1-2 seconds long are simultaneously presented to human trainers to query
for their preference. Accurate selection or ranking of preferences ensures policy improvement.
But if all the presented trajectories are sub optimal, the resultant policy also will be sub
optimal. Because of this, the algorithm will query the user a large number of times before it
converges to an optimal policy.

3-3-2 Corrective feedback

Corrective feedback is given to steer the agent to the preferred state or action. The assumption
is made such that the expert knows what is the correct input to be given to the system.
One of the commonly used methods for corrective feedback is DAGGER (Data Aggregation
Approach) [Ross et al., 2011]. In DAGGER, an expert simultaneously provides corrective
actions while the agent is executing in order to correct the agent’s behavior. These action
labels are appended to the current state of the agent. It solves the covariate shift problem
faced by BC algorithm by collecting a dataset at each iteration under the current policy and
trains the next policy under the aggregate of all collected datasets. This is considered to be
an on-policy approach to imitation learning [Xiong et al., 2019].

In the first iteration, the policy replicates the actions of the demonstrations, which
results in policy πL0 (where L represents the policy of the learning agent). The data set of
states visited and actions executed are recorded when following the previous policy. The
policy is now trained on an aggregated dataset containing the new data (newly visited states
and actions) and the previously collected data. The improved policy πLi is now used for
mimicking the demonstrated trajectory (i represents the iteration). The general policy used
by DAGGER algorithm can be written as πLi = βiπ

E + (1 − βi)π̂Li , a stochastic mixing of
expert policy πE and learnt policy πLi is used to collect the next data set, where βε[0− 1] is
a gating function , is used to execute the expert’s action with probability β and the agents
action with probability (1− β).

The executed policy is always a mixture of the learnt policy and the expert’s policy,
the expert does not know if the input correction is sufficient (in case of conflicting control
efforts from the agent and the expert). This can cause the agent to learn behaviors that
are significantly different from the expert behavior [Kim et al., 1992]. To overcome these
limitations, in HG-DAGGER [Kelly et al., 2019], the current policy is executed out until the
expert observes that the agent has entered an unsafe region of the state space. The expert
takes full control of the agent’s actions and guides the system back to a safe and stable region
of the state space. The recovery actions provided by the expert are collected and added to
D, during which the human expert has uninterrupted control of the system. This way the
expert can observe the execution of the corrective action given to the agent immediately.
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HG-DAgger outperformed policies trained with DAgger and behavioral cloning in terms of
sample efficiency, training stability in the simulated driving task.

Also, DAgger queries the expert for every instance of time for the expert action which
is expensive. To minimize the number of queries required, Zhang and Cho [2016] and Laskey
et al. [2017a] the expert only gives corrective actions when there is a significant discrepancy
between the executed trajectory of the agent and the demonstration.

Chernova and Veloso [2009] proposed a method that learns a policy by requesting addi-
tional demonstrations based on the confidence metric when the current policy is executed in
a given state. The agent learns a model from a finite set of demonstrations by using classifiers
that return selection confidence. When the confidence is lower than a threshold, additional
expert demonstrations are requested.

For simple systems the expert may be able to estimate the magnitude of action but
it may be difficult to estimate it for continuous systems. For such systems the corrective
feedback provided can be used to modify or adjust the current behaviour of the agent. Argall
[2009] defined advice-operators which are a finite predefined list of corrections, which are
used for modifying low-level continuous valued motion control actions. These operators tell
modification that has to be carried out on the current action. This modified action and state
is used for retaining the model. The addition of state-action pair generated from the human
feedback can address the LfD limitation of dataset sparsity for continuous action spaces.

Celemin and Ruiz-del Solar [2019] proposed COACH (COrrective Advice Communicated
by Humans) which uses a sequence of binary signals as operators to modify the magnitude of
the action to the learning agent. In COACH, the expert provides a sequence of feedback in
terms of a binary signal h = {−1, 0,+1}, which represents an increase/decrease in the value
of an action. The corrective feedback h, modifies the desired action as shown

adest = at + h.e, where e is step size (3-3)

The agent’s policy is then trained with the current state and the desired action adest . If a
feedback of "+1" is received while executing the policy, that the executing policy must increase
its magnitude of action to return to desired trajectory, a feedback of "-1" is received, then the
executing policy must decrease the magnitude of action to return to the desired trajectory, 0
indicates no corrective feedback to be given to the system. The COACH algorithm is more
intuitive since the algorithm executes the corrected action immediately and the user is able
to see the effect of the correction. The method has been used to successfully learn tasks such
as a cart pole, ball-dribbling (with a humanoid robot) and learning to balance on a bicycle.
The results of their experiment show that an agent can learn much faster with lesser data
using the corrective advice from a non expert operator’s intuition (just based on the trend of
the correction).

For higher dimensional systems where neural network is used to represent a policy, D-
COACH algorithm [Pérez-Dattari et al., 2019] can be used. D-COACH combines the human
feedback mechanism of COACH with a deep neural network using a replay buffer. On each
execution of the policy, the corrected state-action pair are stored in the replay buffer. The
neural network is trained again on the state action pairs stored in the buffer.

Feedback is usually used to provide correction in state or action. Most algorithms dis-
cussed above provide corrections by a human teacher in action spaces where the corrective
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actions are discrete. But it is unintuitive for humans to know what the corrective action
is for providing feedback to the agent (say corrective joint torques in a multi DOF robotic
arm). Whereas it is more intuitive for humans to provide corrective feedback in state space
(provide feedback in the workspace than in the configuration space i.e.joint torques for a multi
DOF robotic). In TIPS (Teaching Imitative Policies in State space), Jauhri et al. [2020] uses
human feedback in state-space during the execution of the current policy to teach a policy.
The corrective feedback, h = {−1, 0,+1}, is used to indicate the desired state as shown

sdest+1 = st + h.e, where e is step size (3-4)

Algorithm 3 Teaching Imitative Policies in State-space (TIPS)
Initial Model-Learning Phase

1: Generate Ne experience samples st, atNe1 by executing a random/exploration policy πe
2: Append samples to experience buffer E
3: Learn forward dynamics model fθ using inputs st, atNe1 and targets st+1

Ne
1

Teaching Phase:
1: for episodes do
2: for t = 0, 1, 2, ...T do
3: Visit state st
4: Get human corrective feedback ht
5: if ht is not 0 then
6: Compute desired state sdest+1 = st + ht.e

7: Compute action adest+1 = argmin
a

∥∥∥fθ(st, at)− sdest+1

∥∥∥
8: Append (st, adest ) to demonstrations buffer D
9: Update policy πφ using pair (st, adest ) and using batch sampled from D

10: Execute action at = adest , reach state st+1
11: else
12: ## No feedback
13: Execute action at = πφ(st), reach state st+1
14: end if
15: Append (st, at, st+1) to experience buffer E
16: if mod(t, T ) then
17: Update policy πφ using batch sampled from demonstration buffer D
18: end if
19: Update learnt FDM fθ using samples from experience buffer E
20: end for
21: end for

In this approach, an inverse dynamics model (IDM) which is learnt previously, translates
the corrections in the state space to corrections in the action space for the visited states that
receive feedback from the user. The desired state could be in the partial state dimension or
could be infeasible, therefore an indirect inverse dynamics model is used. From the current
state using a forward dynamics model all possible next states are sampled and the action is
chosen such that the next feasible state st+1 is closest to the desired state sdest+1. The agent’s
policy is then trained with the current state st and the desired action adest got from the
indirect IDM.
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TIPS outperforms other IL techniques like BC and GAIL in OpenAI environments like
CartPole, Reacher and LunarLanderContinuous. This showed the advantage of TIPS as an
interactive learning technique suitable for scenarios where demonstrators are non-experts.
When comparing interactive learning techniques in state space (TIPS) and action space
(D-COACH), for the Reacher task and cart-pole task, there is a significant reduction in
demonstrator task load and frustration with state space demonstration. This also shows the
state-space feedback mechanism can lead to a significant reduction in demonstrator effort.

A major limitation of TIPS is learning an accurate inverse dynamics model to compute
actions. This can be challenging for environments with high dimensional state and can require
a large number of interactions with the environment. Another limitation is action selection,
TIPS identifies the correct action by querying the FDM will all possible actions before ex-
ecuting the in the agent’s action-space. This would not scale well to high-dimensional or
continuous action spaces.

3-4 Imitation Learning from Observation

Conventionally algorithms developed for solving IL problems require the demonstration in-
formation to include the expert’s states (e.g.robot joint angles), and its actions (e.g., robot
torque commands). However, these algorithms don’t exploit existing resources such as videos
of humans performing the task. Thus there is a need for methods that learn by utilizing
demonstrations that have state only trajectories. Thus imitation learning algorithms, where
an agent learns how to perform the tasks from state-only demonstrations given by an ex-
pert are called Imitation learning from Observation (IfO). Compared to the typical IL
paradigm described earlier, IfO is more similar to the way animals and humans learn a task by
observing other executing the task (state/observation only), without getting any information
about which muscles to move exactly (action).

Challenges faced in LfO algorithms are viewpoint difference and embodiment mismatch
[Torabi et al., 2019b]. Since the IfO algorithms learn only from state only demonstrations,
they are sensitive to the perception of the state from agent’s and teacher’s point of view. For
robots sensors can be placed on joints to read the states [Ijspeert et al., 2002], for human
teachers motion capture technology can be used to observe states [Field et al., 2009] and for
sources like videos, computer vision with deep learning techniques can be used to extract
features that are used in IfO algorithms. Embodiment mismatch arises when the kinematic
model of the expert and the learning agent are not the same, then the agent cannot learn
the policy directly from the expert. One solution is to encode the states invariant of the
embodiment of the expert or the learner. Gupta et al. [2017] used an auto-encoder to learn
correspondence between the embodiments in a supervised manner.

3-4-1 Model based and Model free IfO algorithms

IfO algorithms can be split into two general groups: (i) model-free algorithms,(ii) model-based
algorithms based on whether the algorithm learns a model of the system using observations
or not.
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Model-free IfO algorithms learn an imitation policy by using inverse reinforcement learn-
ing techniques. A technique called reward shaping is used, where a reward function is manually
designed, such that it rewards the agent if it executes actions that result in producing the
expert state trajectories. One such reward function could be the Euclidean distance between
the actual next state reached and the next state predicted by the sequence model. This re-
ward function is used by Kimura et al. [2018] where a predictor is trained to predict the next
state of the agent given the current state. Finally, the imitation policy is learnt via regular
RL methods. Aytar et al. [2018] applied the same idea of closeness between the imitator’s em-
bedded states and demonstrator’s states for video based on the demonstration. Gupta et al.
[2017] showed that a similar reward function can be used even if the experts and the agents
have an embodiment mismatch. The reward function is defined as the Euclidean distance of
the expert and imitator state features in the invariant space at each time step (invariant to
the embodiment of the demonstrator and the learning agent). Liu et al. [2018] showed that a
similar reward function would work even if there exists a viewpoint mismatch. This is done
by learning a translation model through which observations of a task from one point of view
can be converted to the other. Like most model-free algorithms these methods need many
demonstrations to learn the translation model.

Adversarial approaches to IfO are inspired by the generative adversarial imitation learn-
ing (GAIL) algorithm. Unlike GAIL which uses generative adversarial networks (GANs) Ho
and Ermon [2016] to bring the distribution of state and action pairs of the agent and the
demonstrator closer together, GAILfO (GAIL from Observations) [Torabi et al., 2018b], uses
GANs to learn a distribution state transition (instead only states) of the expert and that of
the imitating agent. The discriminator’s output is used as a reward function to train the
imitation policy using standard RL techniques. IRL-based algorithms need a large number
of interactions with the environment during the learning phase to construct a reward sig-
nal, therefore these methods have primarily been applied in simulated robots and systems.
Torabi et al. [2019a] modified GAILfO to be more sample efficient by using linear quadratic
regulators (LQR) for the policy training step, in order to be able to execute it directly on
physical robots. Stadie et al. [2017] also try to solve the viewpoint difference problem. In
their method, the network is then trained in such a way that the demonstrations fed to the
discriminator are invariant to viewpoint differences.

In Model-based IfO, a model of the system is either known or learnt during the learning
process or by pre-training. The model can be written as a mapping state/observation tran-
sition (st, st+1) to action at, commonly known as inverse dynamics model. Since the desired
state trajectory is provided by the demonstration, the appropriate action can be computed
through the model. If the model of the system is available, then the action can be inferred
easily. The policy can be learnt from simple IL methods like BC etc. If a model is not
available, the model can be learnt using standard regression techniques (explained in chapter
1).

Hanna and Stone [2017] and Nair et al. [2017] learn an inverse dynamics model at a
pixel-level using supervised learning. The agent collects ground truth data (ot, ot+1, at) using
an exploratory policy which is then fed to a recurrent neural network to learn an inverse
dynamics model. The agent is able to replicate the task of rope manipulation using only
video demonstrations of the task being performed.

Behavioral Cloning from Observation (BCO) [Torabi et al., 2018a], learns a similar map-
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ping but it learns a model of the environment rather than that of the agent. BCO takes this
one step further by improving the inverse dynamics model learnt iteratively. A BC agent is
trained on the states (got from demonstration), and action (inferred from the model). The
agent then executes its current policy and the actual states visited are saved for policy im-
provement. The algorithm then carries out BC on the saved states and the actions (inferred
from the IDM) to improve the imitation policy. The state transitions visited are used for
IDM improvement. BCO shows promising results for simulated OpenAI Gym tasks such as
‘Reacher’ and ‘Ant’. The method converges to a good model and policy even in high dimen-
sional state spaces[Torabi et al., 2018a]. However, BCO suffers from the same problems as
Behavioral Cloning (BC) such as distribution-mismatch between the states observed by the
agent and the demonstrations. Guo et al. [2019] improved BCO by utilizing the reward for
policy improvement.

In model based IL algorithms, the agent still has to interact with the environment a
large number of times to learn an inverse dynamics model. To acquire samples(st, st+1, at),
the agent may use a random or an exploratory policy or a predefined trajectory. For these
models to be accurate and useful, the agent needs to cover a large distribution of the state
space. Executing such random transitions to reach these states could damage the robot or be
unsafe.

3-5 Imitation learning in latent space

Recently, a significant shift towards the use of latent dynamics models has emerged in model-
based reinforcement learning [Hafner et al. [2019], Watter et al. [2015], Kaiser et al. [2019],
Gelada et al. [2019], Zhang et al. [2019a]]. Learning the control policies in the latent dynamics
space results in better generalization when compared to learning the policy in high dimen-
sional state space [Hafner et al., 2019]. Recent research has learned latent dynamics [Watter
et al., 2015], trajectories [Co-Reyes et al., 2018], plans [Lynch et al., 2020], policies [Edwards
et al., 2019], and skills for reinforcement learning [Hausman et al., 2018]. Some of the most
common approaches to learning latent space representations in an unsupervised fashion are
latent variable models such as Variational Autoencoders (VAEs) [Kingma and Welling, 2013;
Rezende et al., 2014] or encoder-decoder based Generative Adversarial Networks (GANs)
[Goodfellow et al., 2014; Dumoulin et al., 2016].

One such method is ’Embed to Control’ (E2c),[Watter et al., 2015], where latent dynamic
model is learnt from raw images to control non-linear dynamic systems. E2C utilises a
variational autoencoder, that learns to generate image trajectories from a latent space, where
dynamics in the latent space are constrained to be locally linear. Here, the planning for
optimal action is carried out entirely in the latent space without access to any observations
except for the depiction of the current state. In comparison when the separately trained
autoencoders are used for planning, the models failed to discover the underlying structure of
the state space including the latent dynamics constraints in the E2c models ensures that the
learnt latent space approaches an optimal planar embedding.

Using the E2c model, a visual version of the classic inverted pendulum swing-up task and
balancing a cart-pole system was evaluated. The results show that E2C can find embeddings
on which control can be performed with ease, and can perform as close to that achievable
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by optimal control on the real system model. E2C models provide an accurate long-term
prediction by accumulating latent and real trajectory costs to quantify whether the "imagined"
trajectory reflects reality. Using global or local E2C models show that trajectories planned in
latent space are as good as trajectories planned on the real state space. Jaques et al. [2020]
used a VAE to learn a latent dynamics model which is linear in nature. This learnt dynamics
model makes it easier to carry out proportional control from high dimensional state spaces like
images. NewtonianVAE simplifies imitation learning, by framing imitation learning as a goal
inference problem under a switching proportional control law, where a specific proportional
controller in different regions of the latent space would move the agent proportionally to
match the trajectory.

Losey et al. [2020] used an autoencoder to learn a consistent and controllable latent
action, which provides a low dimensional embedding for controlling high-DoF robot actions.
These latent actions capture the most important aspects of high-DoF actions. The latent
actions for a task-specific training data are learnt in an online manner. The robot has access
to multiple demonstrations in the form of a dataset of state-action pairs, and the user then
inputs latent actions in the form of a low DoF joystick input while the task is being executed
following the expert policy. This is done to map the learned latent dimensions with the joystick
DoF. When the user interacts with the robot, their inputs are treated as z, and the robot
utilizes its decoder φ(a|z) to reconstruct high-DoF actions. The algorithm was evaluated on
a 7 DoF robot where the end effector follows 4 different trajectories. Users teleoperating
the cVAE robot reached their preferred goal more accurately than shared autonomy baselines
while requiring less time, effort, and movement. Users controlling the robot arm with low-DoF
latent actions completed the tasks more quickly and with less overall effort.

One limitation of this method is that the user has to manually map the latent action while
robot is following executing a demonstration, this may be expensive and the user input may
wary between demonstration. Another limitation faced is, if the robot reached configurations,
where the user had not provided demonstrations, the latent action executed was erratic.

Lynch et al. [2020] proposed a way to scale up skill learning from teleoperated play data
called learning from play, where play data is an unbounded sequence of states and actions
corresponding to voluntary, repeated, non-stereotyped object interaction between an agent
and its environment. The aim is to learn general-purpose policies that can flexibly accomplish
a wide range of user-specified tasks, using data that is not task-specific and is easy to collect.
Here a task is no longer discrete but continuous indexed by the pair (current state sc, goal
state sg). Learning in this setting can be formalized as the search for a goal-conditioned policy
π(a|sc, sg) [Kaelbling, 1993]. To learn control from play, Play-LMP simultaneously learns a
latent plan representation from play data and a goal-conditioned control policy at test time
to achieve specific goals. The algorithm learns to organize play behaviors in a latent space in
a self-supervised method, then reuse them at test time to achieve specific goals. The points in
the space correspond to behaviors recognized during play that got the agent from some initial
state to some final state. A policy conditioned on the current state st and the goal state sg,
and a latent plan z, is trained to reconstruct the actions the agent took to reach the goal state
from the initial state, as described by inferred plan z. Lynch et al. [2020] experiments show
that Play-LMP algorithm, despite not being trained on task-specific data was able to learn up
to 18 user-specified manipulation tasks, compared to a collection of single trained BC models.
The models trained on play data are far more robust to perturbation than models trained
using BC methods, and exhibit natural failure recovery despite not being trained explicitly
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to do so.

One approach for reducing the number of interactions with the environment is to learn
a self-supervised model which can selectively choose action sequences from the exploratory
data to take the agent from the current state to the desired state. This function that labels
the exploratory data is called goal-conditioned skill policy (GSP) [Pathak et al., 2018]. Given
desired state only trajectory from a demonstration, the GSP can infer the action or the
sequence of actions needed to reach the goal from the current state, thereby imitate the
task step-by-step. The method penalizes actions that produce states other than the states
predicted by the forward dynamics model f . This way multiple actions can be learnt which
produce the same resultant state.

Algorithm 4 Imitating Latent Policies from Observation
Learning Latent FDM and Latent Policy

1: for k = 0, 1, 2...#Epochs do
2: for i = 0, 1, 2...N − 1 do
3: Train latent dynamics parameters

θ ← θ −∇θ min z
∥∥Gθ (Epθ (si) , z)− si+1

∥∥2
2

4: Train latent policy parameters
ω ← ω −∇ω‖

∑
z πω (z | si)Gθ (Epθ (si) , z)− s∗i+1

)
‖22

5: end for
6: end for
Action remapping:

1: Observe state s0
2: for t = 0, 1, 2, ...#Interactions do
3: Choose latent action zt ← argmax

z
πω(z|Eaζ(st))

4: Take - greedy action at ← argmax
a

πζ(a|zt, Eaζ(st))
5: Observe state st+1
6: Infer closest latent action

zt = argmin
a
‖Epθ (st+1)− Epθ (Gθ (Epθ (st) , z))‖2

7: Train action remapping parameters
ζ ← ζ + ∆ζ log

πζ(at|zt,Eaζ(st))∑
πζ(at|zt,Eaζ

8: end for

Another method to reduce interaction with the environment is to learn a task only
from observations independent of the dynamics of the agent. This is done by carrying out
learning an imitation policy using latent actions (ILPO) [Edwards et al., 2019]. Using the
demonstrated data the agent learns a latent forward dynamics model f(st+1|Ep(st), z) where
z is a latent action that causes a transition from st to st+1, and Ep is the state encoding. The
forward dynamics model f has to learn these transitions in terms of states of the world after
taking a latent action labels z, as ground true action is not yet known. The agent replicates
the demonstrated trajectory by learning a latent policy πω(z|Epst), which represents the
latent action z that needs to be executed in state st. The latent forward model f and the
latent policy π are learnt offline with only the demonstrated observations and independent of
the agent interacting with the environment. The agent then interacts with the environment
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to learn an action remapping πω(a|z, Epst), which is a mapping from latent action zt to true
actions at in a supervised manner. The action remapping depends on the current state st
because latent action learnt is not necessarily invariant across state space. In order to imitate
an expert’s trajectory, the agent must find the latent cause that will result in the transition
the expert intended, z∗ = argmaxzπω(z|st), followed by finding the true action that can result
in this transition, a∗ = argmaxaπξ(a|z, st). The agent can then follow this policy to replicate
the expert’s behavior without any expert actions being provided explicitly.

ILPO was proven to be more sample efficient compared to BCO when tested in classic
control task like cartpole, acrobot, and mountain car, since BCO requires interacting with the
environment for learning an inverse dynamics model and then executing the updated policy
for collecting data ( for behavioral cloning for policy improvement).

3-6 Conclusions

In this chapter, we discussed the latest methods and algorithms for Imitation Learning (IL).
We briefly elaborated on the Imitation from Observation (IfO) and methods to learn tasks
using state-space information. Interactive algorithms show that human feedback given while
learning the task can improve agent learning rate and learn a more robust policy.

The main conclusions we note from this chapter are the following:

• Among interaction-based learning approaches, corrective feedback learning techniques,
a typical approach is to utilize corrections in the action-space [Celemin and Ruiz-del
Solar, 2019; Pérez-Dattari et al., 2019] to guide agents while learning policy. Providing
feedback to the agent in the action-space (Eg. joint torques for a robotic arm) is often
not intuitive for the demonstrator. The user requires significant prior knowledge of the
dynamics of the agent. TIPS [Jauhri et al., 2020] showed that providing corrections in
state action space is more intuitive for the expert. This state-space feedback mechanism
also leads to a significant reduction in demonstrator task load.

• To solve the control problem of learning using state-space information, many Imitation
from Observation (IfO) methods use or learn a dynamics model of the system, either
an Inverse Dynamics Model (IDM) [Torabi et al., 2018a; Nair et al., 2017] or a Forward
Dynamics Model (FDM)[Edwards et al., 2019]. Using these dynamic model, the action
need to produce the necessary state-to-state transition can be inferred. Using the state
and the inferred action, a regression policy is learnt in state-action space. In such
approaches, if the dynamics of the environment changes, the learnt imitation policy
may not be useful and the policy may need to be re-learnt. The agent may need
additional effort from the demonstrator to train the policy in the new environment.

• In ILPO, [Edwards et al., 2019], the imitation policy is learnt in state latent action
space. The method characterizes the causal effects of latent actions on observations
while simultaneously predicting their likelihood by learning a latent policy and a la-
tent forward dynamics model. The model remaps the latent action to real action by
leveraging a small number of environment interactions to determine a mapping between
the latent and real-world actions. In the new environment, latent policy learnt in the
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original environment can be reused, only latent and real-world actions remapping has
to be learnt for imitating the observed behavior.

• Hence it’s useful to learn an imitation policy in state space interactively like in TIPS
[Jauhri et al., 2020] or from state only demonstrations like in ILPO [Edwards et al.,
2019], such that the learnt policy can be reused even if the dynamics of the environment
changes. To use the learnt state-space policy, like TIPS, an Indirect Inverse Dynamics
Model (IIDM) can be learnt to compute the action need to produce the state to state
transitions. If the dynamics of the environment changes, the agent can reuse the imita-
tion policy by relearning the dynamics model without any additional expert actions or
demonstration given.

With these insights in mind, we propose a two new Imitation Learning methods, details
of which are provided in the next chapter.
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Chapter 4

Task-Space Policy Learning

As mentioned in the last chapter, there is a need for learning a state space policy (either
interactively or from offline data) that can be reused in a new environment where the agent’s
dynamics are different from the original environment. To use the learnt state-space policy,
the agent can compute the necessary action needed to produce the state to state transitions.
If the dynamics of the environment changes, the agent would be able to execute the task
in the new environment without any additional demonstrations, by reusing the state space
policy (previously learnt in the original environment) and the dynamics model of the agent
in the new environment.

This chapter details our proposed method Task-Space Policy Learning (TaSPL),
where we learn a generalized imitation policy in state-space, independent of the model dy-
namics which is used for predicting the next state the agent has to reach to replicate the
task. We propose 2 methods, one, an offline policy learning algorithm, which learns the im-
itative policy from state only demonstrations; two, an interactive model in which a human
demonstrator can interactively teach the agent an imitative policy by providing feedback in
state space. We presume environments with continuous state spaces (s ε S) with unknown
dynamics and discrete action spaces. The algorithms could be applied to continuous action
spaces, but we chose to prove our method in the discrete action spaces.

Section 4-1 provides a detailed explanation of the learning framework of both algorithms.
In TaSPL, a policy is learnt in state space, either from data collected from sequence of state
only demonstration or from a human demonstrator modifying the current state.

Section 4-2 provides an explanation on the indirect inverse dynamics mechanism that is
used in TaSPL. This is used to compute the action that is required to produce the necessary
state transition from the current state to the predicted next state.

Section 4-3 outlines the algorithms in full.

Section 4-4 discusses the advantages and disadvantages of TaSPL.
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4-1 Learning Framework

The general idea of Next state predictor is that the agent learns a policy in state space, such
that given the current state (st), the policy can be used to predict the next ideal state (sdest )
the agent has to be in to successfully carry out task. This can be done either in an offline
manner using state only demonstration data or in an interactive manner where the human
demonstrator provides feedback during execution time to shape the policy.

In the offline method, from a set of expert demonstrations described through noisy
state observations s1...sNe εD. we learn to predict a policy in state space. As such, noise is
necessary for ensuring that there as little covariate shift in data used to learn the policy from.

In the interactive method, the human feedback is then used to update the agent’s
policy on-line i.e. during the execution of the current policy. The human feedback is used
to modify the current state using a binary feedback mechanism, similar to that used in
TIPS[Jauhri et al., 2020] (inspired by COACH [Celemin and Ruiz-del Solar, 2019], where the
human feedback is used to modify the policy). The expert modifies an observable state to
imply a change in the state similar to the modification in state carried out in TIPS [Jauhri
et al., 2020].

sdest+1 = st + ht.e (4-1)

where, ht is the binary human feedback (where ht ε {+1, 0,−1}) and e is a constant change
between the current state and the next desired state. The performance of TIPS [Jauhri
et al., 2020] shows that the demonstrator is able to teach an optimal policy by just suggesting
modifications in an observable partial state. The performance of COACH [Celemin and
Ruiz-del Solar, 2019] and D-COACH [Pérez-Dattari et al., 2019], show the efficacy of the
binary feedback mechanism as compared to providing an exact value of the desired action.
Furthermore, the binary feedback mechanism is simpler for the demonstrator. Even if the
computed next state (sdest+1) using binary feedback is slightly larger or smaller than the true
next state(st+1), Celemin and Ruiz-del Solar [2019] and Pérez-Dattari et al. [2019] show that
it is sufficient to show the direction of change.

A policy is learnt using a feed-forward artificial neural network. The neural networks
are trained by carrying out supervised learning on the collected data, taking the current state
st as input and the next state st+1 as target. The training is done in two steps, immediately
with the current state-next state sample, and again in a batch process periodically in every
T time-steps.

Once the desired next state(sdest+1), is known (from either the offline method or online
method), we can compute the action required ades for this state transition from the current
state st to the next state st+1, we use the indirect inverse dynamics model (IIDM) as proposed
in TIPS [Jauhri et al., 2020].

The computed action ades by the IIDM model can be immediately executed by the agent.
This makes it easy for the human demonstrator to observe the effect of the feedback that they
have just provided. The immediate execution of the action also helps in the shaping of the
policy, the human feedback provided helps to train the model faster, as the agent does not
have to explore undesirable states (unlike reinforcement learning).
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The advantage of learning the policy in state space is that, should the dynamics of the
environment change, the agent would only need to relearn the forward dynamics model used in
IIDM. Using the previously learnt policy, the next desired state can be predicted and using the
new forward dynamics model learnt, the agent can compute the desired action ades to produce
the necessary transition from the current state(st) to next state(st+1). The implication of
this, is that the agent will be able to execute the task and reuse the policy learnt even if
the dynamics changes, the agent simply has to sample all possible actions from the IIDM
for every time step in real-time, making the algorithm unsuitable for high dimensional action
spaces. Consequently, the performance of the agent in the new environment is dependent on
the policy learnt in the original environment and the quality of the FDM learnt in the new
environment.

4-2 Computing Actions via Indirect Inverse Dynamics

For computing the action (at) that leads to the desired state transitions from (st → sdest+1), the
an Inverse Dynamics Model (IDM) can be used, like in BCO [Torabi et al., 2018a]. However,
using IDM would not work for the following reasons [Jauhri et al., 2020] :

• There may exist some state transitions st → st+1 that have multiple valid actions at,
then an IDM learnt with multiple solutions to the regression function fθ(st, st+1) = at
would produce invalid results.

• There may exist kinematic redundancy in the agent or conditions in the environment
such that there may exist multiple actions that produce the same (st → sdest+1) transition.
In such cases, the IDM regression model fails to predict the right solution.

• The state transition (st → sdest+1) suggested by the demonstrator may not be possible for
the agent to execute. Here the IDM methods would not provide a valid solution hence
the method fails.

• In the interactive algorithm, the demonstrator provides feedback in the partial state
space, modifying only a few perceivable states, which can lead to ambiguity regarding
the desired state transition in the remaining dimensions.

To avoid these challenges, we propose to use the indirect inverse dynamics mechanism
proposed in TIPS [Jauhri et al., 2020]. This method involves sampling possible actions (aεA)
and using a learnt forward dynamics model (f) to predict the next states (st+1 = f(st, at))
for these actions. The action that results in a subsequent state that is closest to the desired
state in the full state dimensions is chosen. Mathematically it is written as:

adest = argmin
a

∥∥∥fθ(st, at)− sdest+1

∥∥∥ (4-2)

where aεA.

In discrete action spaces, the IIDM queries all possible actions and in continuous action
spaces, the actions are uniformly sampled from the action-space A. This indirect inverse
dynamics formulation avoids the infeasible transition problem by choosing the action that
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brings the agent closest to the desired next state, regardless of whether the desired state
transition is feasible. If the policy is learnt in partial state-space i.e. ot+1 = π(ot) where
o ⊆ s, then the computation of the action can be done in partial space, the equation 4-2 can
be modified as follows.

adest = argmin
a

∥∥∥w.sdest+1 − fθ(st, at)
∥∥∥ (4-3)

where w is a weight matrix that is used for mapping from a smaller observation state (ot)
space to the full state space (st). However, computing action in partial space may pose the
challenge in which there multiple viable actions can result in the desired state transition. One
method to solve the ambiguity in action selection is to select actions that result in the least
predicted change in the full state i.e. minimizes ‖st+1 − st‖. Another method would be to
add a small weight in the weight matrix w on an unobserved state, so that action selected
moves the agent to a more stable state.

The advantage of using such a method is that the action to be executed is computed
using the FDM model learnt in that environment, dependent on the state to state transitions,
making it an ideal method for computing actions from a policy learnt in state space. The
success of the policy depends on the accuracy of the forward dynamics model learnt in that
environment.

4-2-1 Dynamic Model Learning

A forward dynamics model f is learnt from state, action, state triplets (st, at, st+1), using a
feed-forward artificial neural network trained in a supervised-learning fashion. The collection
of (st, at, st+1) triplets and the training of the neural network is carried out in two different
ways, (1) following a random policy (πrand) to collect (st, at, st+1) triplets and training the
neural network prior to evaluating the state space policy (πs), (2) the (st, at, st+1) triplets are
collected whilst following the learnt state space policy (πs) and the FDM model is trained in
an online manner.

Dynamics model learning for Offline TaSPL

In the offline TaSPL, the FDM is learnt in an online manner whilst interacting with the
environment following the state space policy (πs). In state (st), the agent predicts the next
desired state sdest+1, the agent then queries the untrained IIDM model fθ for the desired action
(adest ). On executing the computed action, the agent reaches st+1. The current state, the
executed action, the visited next state are saved in the experience buffer E, the FDM model
fθ is trained in an online manner. The state-transitions and actions taken by the agent are
continuously added to the experience buffer E and the FDM is updated periodically every
Tupdate time-steps. The update is done using all prior experience i.e. batches sampled from
the experience buffer E. The online model learning not only learns the dynamics in state-
action spaces that are newly visited by the agent as it executes its policy, also reduces the
need for learning state transitions never taken by the agent to successfully complete the task.
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Dynamics model learning for the Interactive TaSPL

In the Interactive algorithm, prior to the expert providing demonstrations to the agent, the
agent interacts with the environment to learn the dynamics by executing a random policy
πrand. The (st, at, st+1) visited are saved on an experience buffer E which is used to train the
FDM model f . A learnt FDM is necessary since the teacher provides feedback in state space
by suggesting a desired next state, the agent has to compute the necessary action needed
to be executed to produce the necessary state transition. The policy is trained in an online
manner, while executing the current policy, if an untrained FDM model is used, the agent
can execute an action which would produce state transition different from what the teacher
intended, this, in turn, would make the teaching difficult for a human teacher and increase
the demonstrator effort significantly. Optionally, the initial FDM could then further be tuned
using the state visited during the teaching phase.

4-3 Algorithms in Full

4-3-1 Offline TaSPL

The full procedure for Offline TaSPL can be seen in Algorithm 5.

In the first phase, state-next state (st, st+1) samples are collected into a demonstration
buffer D, following an expert demonstration either got from a human or an RL policy or using
a closed-loop controller (line 4). But in order to learn a robust policy and to reduce covariate
shift in the data used for training the policy, the agent/teacher injects noise in the form of
random exploration by executing random action 20% of time (line 8). We inject noise into the
supervisor’s policy while demonstrating, similar to DART [Laskey et al., 2017b], this forces
the supervisor to demonstrate how to recover from errors. This is done in order to collect
trajectories from unstable states to that simulate the errors that the agent may make over
time. The policy πs, represented by a feed-forward neural network is trained on the samples
collected in the experience buffer E, in a supervised learning fashion (line 12).

In the second phase, The agent uses the learnt policy πs to predict the next desired
state the agent should ideally be in (line 3). The action necessary for this state transition
is computed using the IIDM explained in section 4-2 (line 4). While executing the action
computed by the IIDM, the state (st, st+1) visited and the action executed at are saved on an
experience buffer E which is used to train the FDM fθ in an online fashion while interacting
with the environment (line 6-3).

In case the dynamics of the environment changes changes, the agent has to only execute
the second online model learning phase, i.e. to relearn or fine-tune the original FDM f by
retraining the neural network using the state, action, state triplets (st, at, st+1) collected in
the new network. The agent would be able to perform the task using the originally learnt
policy πs and the new FDM fφ.

4-3-2 Interactive TaSPL

The full procedure for interactive TaSPL can be seen in Algorithm 6.
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Algorithm 5 Offline TaSPL
State-Space Policy learning
Required : Expert policy πe
Initialize : Demonstration buffer D = [], Agent state space policy πs

1: for i = 0, 1, 2, 3...Ne do
2: Visit state st
3: if random(0, 1) ≤ 0.8 then
4: Execute expert policy at = πe(st)
5: Observe State st+1
6: Append st, st+1 to Demonstration buffer D
7: else
8: Execute random action at
9: Observe State st+1

10: end if
11: end for
12: Learn state space policy model πs using inputs {st}Ne1 and targets {si+1}Ne1
Online forward dynamics model learning:
Initialize: Forward-dynamics model fθ, Experience buffer E = []

1: for t = 0, 1, 2, ...#Interactions do
2: Visit state st
3: Use policy to predict next state, st+1 = πs(st)
4: Compute action adest = argmin

a

∥∥∥fθ(st, a)− sdest+1

∥∥∥
5: Execute action at = adest , reach state st+1
6: Append (st, at, st+1) to experience buffer E
7: if mod(t, T ) then
8: Update policy fθ using batch sampled from demonstration buffer E
9: end if

10: end for
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In the initial offline model learning phase, a forward dynamics model fθ of the agent is
learnt using a feed forward neural network. The network is trained using samples generated
by executing a random exploration policy πr (line 3).

In the demonstration phase, when considered necessary the human demonstrator sug-
gests the next desired state st+1 the agent should be in by advising relative changes to the
observable states of the current vector i.e. st → sdest+1 (line 6). The agent then computes
the action required for this state transition by using the indirect inverse dynamics model as
detailed in 4-2 (line 13). The computed action adest is also executed immediately (line 14).
The imitation policy is updated using the (st, sdest ) pair. The (st, sdest ) pair is appended to
the demonstration buffer D. The policy πs is retrained periodically in batch training using
samples stored in the demonstration buffer D (line 15).

Similar to the offline algorithm, if the dynamics of the environment changes changes,
the agent has to only know the dynamics model of the agent in the new environment to
execute the task by reusing the policy πs learnt in the original environment. This knowledge
of the dynamics of the environment can either be provided as a known model, or the model
can be learnt from interactions with the environment. These interactions can be obtained
either by following a random/exploratory policy (learning the FDM in an offline manner) or
following the current state space policy (learning the FDM in an online manner). If the new
environment is similar to the original environment the FDM was trained in, the agent can
fine tune the original FDM fθ by retraining the neural network using the state, action, state
triplets (st, at, st+1) collected in the new setting. If the environment dynamics of the new
environment is very different from that of the original environment, the agent could learn the
FDM from scratch.
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Algorithm 6 Interactive TaSPL
Initial Model-Learning Phase

1: Generate Ne experience samples st, atNe1 by executing a random/exploration policy πr
2: Append samples to experience buffer E
3: Learn forward dynamics model fθ using inputs st, atNe1 and targets st+1

Ne
1

Teaching Phase:
1: for episodes do
2: for t = 0, 1, 2, ...T do
3: Visit state st
4: Get human corrective feedback ht
5: if ht is not 0 then
6: Compute desired state sdest+1 = st + ht.e
7: Append (st, sdest+1) to demonstrations buffer D
8: Update policy πs using pair (st, sdest+1) and using batch sampled from D
9: else

10: ## No feedback
11: Use policy to predict next state, st+1 = πs(st)
12: end if
13: Compute action adest = argmin

a

∥∥∥fθ(st, a)− sdest+1

∥∥∥
14: Execute action at = adest , reach state st+1
15: Append (st, at, st+1) to experience buffer E
16: if mod(t, T ) then
17: Update policy πφ using batch sampled from demonstration buffer D
18: end if
19: (Optional) Update learnt FDM fθ using samples from experience buffer E
20: end for
21: end for
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4-4 Discussion

In this chapter, we present our proposed method of "Task-Space Policy Learning" from data
or from human corrective feedback to teach the agent to carry out an imitation task.

We explained the learning framework used for learning a trajectory and how learning
the trajectory allows the agent to execute the task even if the dynamics of the environment
changes changes. We showcase two methods that allow the agent to learn trajectory either
from state only demonstration or from corrective feedback in state spaces inspired by TIPS
[Jauhri et al., 2020]. Learning the policy in state space allows the agent to execute the task
in the new environment by reusing the policy from the old environment and knowledge of the
agent’s dynamics model in the new environment. The dynamics model can be either provided
or can be learnt from interaction with the environment.

However, there are some considerations that can limit the performance of the proposed
algorithm. Firstly, the algorithm queries the dynamics model in each step for computing
the action that produces the desired state transition. The performance of our algorithm is
dependent on the quality of the learnt state space policy and the dynamics model. Learning
a dynamics model through random exploration can be difficult in many environments and
typically requires a significant number of environment interactions. The proposed algorithm
computes action by sampling random actions in a given state, followed by execution of the
chosen action. Secondly, the proposed algorithm suffers the limitations of IIDM outlined
in TIPSJauhri et al. [2020]. Computing actions from IIDM would not be scalable in high
dimensional continuous action spaces, such computation would require more computational
resources and affecting the real time execution.

One solution to avoid querying the FDM in each step is to learn state action policy
in the new environment, without the need for additional human teacher interventions. The
state space policy learnt in the original environment can be used to train or retrain a state-
action policy in the new environment. The above proposed method was implemented as a
modification to TIPS [Jauhri et al., 2020], where the state action policy learnt in the original
environment is retrained using the state space policy learnt in the original environment. The
state space policy is learnt simultaneously in an online manner while the demonstrator trains
the state action policy. In the new environment, no additional demonstrative effort is required
for training the state action policy. The advantage of such a method is that the agent can be
trained in a human intuitive environment, but the agent is able to perform the same task in
a new environment where the dynamics of the environment may not be intuitive. However,
the quality of the new state action policy learnt is dependent on the quality of the state space
policy (πs) and the forward dynamics model fθ learnt. The full procedure for the modification
to TIPS can be seen in Algorithm 7. Algorithm 8 outlines the procedure to be followed to
retrain a state action policy in the new environment.

In the following chapters, we detail our experiments and provide results obtained from
the evaluation of TaSPL.
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Algorithm 7 Modified TIPS Algorithm
Initial Model-Learning Phase

1: Generate Ne experience samples st, at, st+1 by executing a random/exploration policy πr
2: Append samples to experience buffer E
3: Learn forward dynamics model fθ using inputs {st, at}Ne1 and targets {st+1}Ne1
Teaching Phase:

1: for episodes do
2: for t = 0, 1, 2, ...T do
3: Visit state st
4: Get human corrective feedback ht
5: if ht is not 0 then
6: Compute desired partial state sdest+1 = st + ht.e

7: Compute action adest = argmin
a

∥∥∥fθ(st, at)− sdest+1

∥∥∥
8: Compute next state st+1 = fθ(st, adest )
9: Append (st, adest ) to demonstrations buffer D

10: Append (st, st+1) to stats space demonstrations buffer Ds

11: Update policy πφ using pair (st, adest ) and using batch sampled from D
12: Update policy πs using pair (st, sdest+1) and using batch sampled from Ds

13: Execute action at = adest , reach state st+1
14: else
15: ## No feedback
16: Execute action at = πφ(st), reach state st+1
17: end if
18: Append (st, at, st+1) to experience buffer E
19: if mod(t, TUpdate) then
20: Update policy πφ using batch sampled from demonstration buffer D
21: Update policy πs using batch sampled from demonstration buffer Ds

22: end if
23: (Optional):Update learnt FDM fθ using samples from experience buffer E
24: end for
25: end for
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Algorithm 8 Algorithm to retrain state-action policy in new environment
Initial Model-Learning Phase

1: Generate Ne experience samples st, atNe1 by executing a random/exploration policy πr
2: Append samples to experience buffer E
3: Learn forward dynamics model fθ using inputs st, atNe1 and targets st+1

Ne
1

Retraining Phase:
1: for episodes do
2: for t = 0, 1, 2, ...T do
3: Visit state st
4: Use state space policy to predict next state, st+1 = πs(st)
5: Compute action adest+1 = argmin

a

∥∥∥fθ(st, at)− sdest+1

∥∥∥
6: Append (st, adest ) to demonstrations buffer D
7: Update policy πφ using pair (st, adest ) and using batch sampled from D
8: Execute action at = πφ(st), reach state st+1
9: if mod(t, TUpdate) then

10: Update policy πφ using batch sampled from demonstration buffer D
11: end if
12: (Optional:) Update learnt FDM fθ using samples from experience buffer E
13: end for
14: end for
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Chapter 5

Experimental Setting

In this section, we provide information about the experimental setting for the evaluation of
the proposed method: Task Space Policy Learning (TaSPL). We evaluate and compare TaSPL
to other techniques based on two main criteria: (i) the task performance of the trained agent
over time and (ii) the ability of the agent to learn generalization of the policy to environments
with different dynamics. The performance of the TaSPL agent is compared with other agents
trained using standard Imitation Learning (IL) techniques.

Offline TaSPL (algorithm 5), where the agent learns a policy from state only demonstra-
tions is compared with BCO [Torabi et al., 2018a] and ILPO [Edwards et al., 2019]. Interactive
TaSPL (algorithm 6), where the agent learns a policy interactively from corrections in state
space is compared with TIPS [Jauhri et al., 2020] and its modified version proposed in section
4-4.

Exhaustive experiments for evaluation and comparison of agents trained with TaSPL
were carried out with simulated environments from OpenAI gym. Additionally, the proposed
method was validated in two different manipulation tasks with a real robot arm KUKA iiwa.

Section 5-1, provides details of the implementation of the algorithm. Section 5-2 de-
scribes the different environments where the algorithm was evaluated. It also describes the
modification done to the environment, to modify the dynamics in order to test the learned
policies when the environment of the policy changes. Section 5-3, 5-4 provides details of the
experimental setup used and provides a list of the algorithms that are used for comparing the
performance of the two algorithms.

5-1 Implementation of the algorithms

The state space policy (πs) and forward dynamics model(f) are implemented as simple feed-
forward artificial neural networks. Training of the neural networks is done in a standard
supervised learning fashion. TensorFlow2 python library is used to implement and train the
neural networks. The number of layers and sizes of the neural networks vary as per the task
being learnt and these parameter settings can be seen in Table 5-1.
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Table 5-1: Parameter settings in the implementation of TaSPL for different evaluation tasks

Parameter Environments
CartPole MountainCar Pendulum Acrobot LunarLander

No. of exploration
samples (Ne)

500 1000 500 500 5000

Periodic policy update
interval (Tupdate)

10 10 10 10 10

FDM Network (fθ)
Network layer sizes 16,16 16,16 32,32 32,32 64,64
Learning rate 0.005 0.0025 0.0025 0.0025 0.0025
Batch size 16 32 32 32 32
State Space Policy Network (πs)
Network layer sizes 32, 32 32, 32 32, 32 128, 128 128, 128
Learning rate 0.005 0.005 0.005 0.005 0.005
Batch size 32 64 64 64 64

For training the policy and the forward dynamics model neural network in the original
environment, the neural nets are initialized with random small weights. The models are
trained in a supervised learning manner following the procedure outlined in algorithm 5 and
6. In the new environment with new dynamics, the policy from the original environment
can be reused, without additional training which would not be possible by other methods.
The dynamics model neural networks can be either retained from random small weights or
from weights tuned from the original environment. For learning the dynamic model, we use
a random exploration policy (πr) and the number of initial exploration samples (Ne) varies
with the size of state-action space and complexity of the task to be learnt. The parameters
for each of the tasks used for evaluation can be seen in Table 5-1.

5-2 Evaluation Domain - OpenAI Gym

The OpenAI gym [Brockman et al., 2016] is an open source toolkit used primarily for rein-
forcement learning research. It contains a collection of simulated benchmark environments
used for the purpose of evaluating learning agents. We use a few such environments for the
evaluation of agents trained via TaSPL, namely: CartPole, MountainCar, Pendulum, Acrobot
and LunarLander (depicted in Figure 4.1).

The reward function from each OpenAI gym environment has no influence on the learning
process of TaSPL, hence it can be used as a performance index of the policy learnt by the
agent.

In order to evaluate the learnt state space policy, physical properties like the mass, length,
magnitude and direction of force were modified from the original OpenAI Gym environment to
create new environments where the dynamics of the environment are different from the original
environment. In each modified environment, the agent was allowed to learn a dynamics model
from interaction with the environment. The policy from the original environment and the
FDM learnt in the new environment is used for evaluating the task in the new environment.

Lalith Keerthan Suresh Kumar Master of Science Thesis



5-2 Evaluation Domain - OpenAI Gym 45

Figure 5-1: Screenshots of environments (clockwise) the CartPole, MountainCar, Pendulum,
LunarLander and Acrobot from OpenAI GymBrockman et al. [2016]

5-2-1 CartPole - Original environment

This is a classic control problem that involves balancing a pole attached by an un-actuated
joint to a cart moving on a frictionless plane [Barto et al., 1983]. The objective of the task is
to prevent the pole from falling over by changing the cart’s position. The cart is controlled
by applying a force to it. For every time step the pole is upright a reward of +1 is provided.
If the pole is more than 40 degrees from the vertical or if the cart moves more than 2.4 units
from the center, the task is considered as a fail. The maximum length of an episode is 500
time-steps

5-2-2 Cart-pole - Modified environment

Physical properties like the mass of the pole (mp = 1), mass of the cart (mc = 1), length of
pole(l = 1), magnitude and direction of force(f = 1) were modified from the original CartPole
environment in order to test the learnt policy in situations with different dynamics.

• In CartPoleEnv_mph, the mass of the pole was halved, mp = 0.5

• In CartPoleEnv_mpd, the mass of the pole was double, mp = 2

• In CartPoleEnv_mch, the mass of the cart was halved, mc = 0.5

• In CartPoleEnv_mcd, the mass of the cart was double, mc = 2

• In CartPoleEnv_lh, the length of the pole was halved, l = 0.5

• In CartPoleEnv_ld, the length of the pole was double, l = 2

• In CartPoleEnv_fh, the force applied on the cart was halved, f = 0.5
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• In CartPoleEnv_fd, the force applied on the cart was double, f = 2

• In CartPoleEnv_fn, the force applied on the cart was negative, f = −1

5-2-3 MountainCar - Original environment

This is a classic control problem that involves an under powered car on a one-dimensional
track, positioned between two mountains. The objective of the task is to drive the car to the
top of the mountain on the right. The car’s engine being under powered is not powerful enough
to drive up the mountain in a single pass. The agent has to build up enough momentum by
driving back and forth in the valley between the two mountains, to be able to drive up the
mountain can reach the desired position[Moore, 1990]. For every time step the car hasn’t
reached the desired state, a reward of -1 is provided. If the car takes more than 200 time
steps, the task is considered to be failed.

5-2-4 MountainCar - Modified environment

The direction of the force(f = 1) was modified from the original MountainCar environment
in order to test the learnt policy in situations with different dynamics.

• In MountainCarEnv_fn, the force applied on the cart was negative, f = −1

5-2-5 Pendulum - Original environment

The pendulum swing-up task is a classic control commonly used in optimal control literature.
Here, the pendulum starts in a random position and velocity, and the objective is to swing
it upright with the least amount of angular velocity. The pendulum is a link actuated at
the point of rotation, however, the actuation force is insufficient to rotate the pendulum to
the upright position. The agent has to build up enough momentum by swinging the link
clockwise and anticlockwise to bring the link to its upright position and maintain an upright
position.[Moore, 1990].

5-2-6 Pendulum - Modified environment

Physical properties like the mass of the pole (mp = 1), magnitude and direction of force(f = 1)
were modified from the original Pendulum environment in order to test the learnt policy in
situations with different dynamics.

• In PendulumEnv_mph, the mass of the pole was reduced, mp = 0.75

• In PendulumEnv_mpd, the mass of the pole was increased, mp = 1.5

• In PendulumEnv_fh, the torque applied on the link was reduced, f = 0.75

• In PendulumEnv_fd, the force applied on the cart was increased, f = 1.5

• In PendulumEnv_fn, the force applied on the cart was negative, f = −1
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5-2-7 Acrobot - Original environment

The Acrobot is a two-link robotic arm in the vertical plane with a single actuator between
the links [Murray and Hauser, 1991]. Initially, the links are hanging downwards, the objective
of this task is to swing the end of the lower link up to a given height. In order to swing up
and balance the entire system, the agent must build momentum in the system by actuating
the joint in between to reach the necessary height. For every time step the lower limb hasn’t
reached the desired height, a reward of -1 is provided. If the agent takes more than 500 time
steps the task is considered to be failed.

5-2-8 Acrobot - Modified environment

Physical properties like the mass and its distribution of the two links were varied (m1 =
1,m2 = 1), magnitude and direction of force(f = 1) were modified from the original Acrobot
environment in order to test the learnt policy in situations with different dynamics.

• In AcrobotEnv_mh, the mass of the links was reduced, m1 = 0.75, m2 = 0.75

• In AcrobotEnv_mv1, the mass of the links was varied, m1 = 0.8, m2 = 1.2

• In AcrobotEnv_mv2, the mass of the links was varied, m1 = 1.2, m2 = 0.8

• In AcrobotEnv_fh, the torque applied on the link was reduced, f = 0.75

• In AcrobotEnv_fd, the torque applied on the cart was increased, f = 1.5

• In AcrobotEnv_fn, the torque applied on the cart was negative, f = −1

5-2-9 LunarLander - Original environment

The objective of the task is to land a spaceship between two flags smoothly. The ship has
3 actuators to control the flight. One actuator points downward and the other 2 points in
the left and right direction, these affect the spaceship’s vertical and angular velocity. The
space-ship starts at the top of the screen with a random angular velocity, the agent needs to
navigate the space ship to the landing pad at the bottom. If the space-ship lands with zero
velocity between the flags it receives a reward of 140. Firing of the actuators in each step
costs -0.3 points each step. The episode ends if the spaceship goes out of the frame or crashes
or lands successfully, receiving an additional -100 or +100 respectively.

5-2-10 LunarLander - Modified environment

Magnitude of main engine power(fMAIN_ENGINE_POWER = 13), magnitude and direction of
side engine power(fSIDE_ENGINE_POWER = 0.6), were modified from the original LunarLan-
der environment in order to test the learnt policy in situations with different dynamics.

• In LunarLanderEnv_mh, the main engine power was reduced, fMAIN = 10
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• In LunarLanderEnv_md, the main engine power was increased, fMAIN = 16

• In LunarLanderEnv_sh, the side engine power was reduced, fSIDE = 0.4

• In LunarLanderEnv_sh, the side engine power was increased, fSIDE = 0.9

• In LunarLanderEnv_sh, the side engine power was negative, fSIDE = −0.6

5-3 Experiment Setup for Offline Policy learning

The data for training the policy is obtained from state only demonstrations. We recorded a
data set of state, next state (st, st+1) pairs from an oracle based on a closed-form policy [Xiao,
2020]. The agent follows the teacher(oracle) 80% of the time, and executes random action
20% of the time, as mentioned in section 4-3-1 inspired by DART. Data is not collected when
a random action is executed.

A state space policy πs is trained on the collected state - next state pairs in an offline
manner (without any further interaction with the environment), following the steps outlined in
algorithm 5. Once the agent has learnt a policy from the collected data, it learns the forward
dynamics model needed for the action computation, in an online manner while executing the
learnt state space policy. To exploit the policy learnt in state space, the agent is made to
execute its policy in new environments where the dynamics model is different from that of
the original environment from wherein the demonstration data was recorded.

We evaluate and compare TaSPL to other techniques based on two main criteria: (i) the
task performance of the trained agent over time and (ii) the ability of the agent to be able to
execute the task it was trained to do, but in a new environment where the agent dynamics
are different from that of the original environment. The performance of the TaSPL agent is
compared with other agents trained using standard Imitation Learning (IL) techniques.

• Torabi et al. [2018a] proposed Behavior Cloning from Observation (BCO), a supervised
learning method intended to imitate the demonstrator using state-only demonstrations.
The agent learns an inverse dynamics model using an exploratory policy, and then uses
that model to infer the expert’s missing action information. With the states and the
inferred actions of the demonstrator, behavioral cloning is used to learn the policy. Since
the agent is inferring the action from the IDM model learnt to train a BC policy, the
agent is able to adapt the change in the environment dynamics.

• Edwards et al. [2019] proposed Imitating Latent Policies from Observation (ILPO),
using the state only demonstration, a latent policy πz(st) and a latent forward model
f(st, z) is learnt in latent action (z) space. Subsequently, the agent maps the latent
actions(z) to actual actions (a) in supervised learning fashion. In a new environment
where the model dynamics are different, the agent only has to relearn the mapping from
latent actions(z) to actual actions(a) and thus the agent is able to execute the task in
the new environment.

All three algorithms tested utilised the same data set of state only demonstrations for learning
the imitation policy. Once a policy is learnt in the original environment, the policy is tested
in a new environment where the agent’s dynamics are different.
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5-3-1 Ablation Study

From the discussion in section 4-4, we know that the performance of the agent is dependent
on the quality of the learnt state space policy (πs) and the forward dynamics model (fθ). In
order to evaluate the influence of the FDM learning strategy on the overall performance of
the system, an ablation study with varying FDM learning schemes and including the use of
the actual FDM model was carried out. This study involves learning both the state space
policy and forward dynamics models in the original environments. The independent variable
of this study is the strategy to obtain the FDM with the following cases:

1. Using the actual FDM (not learning it).

2. Learning the FDM online, without the initial phase of Algorithm 6.

3. Learning the FDM offline, with the exploratory policy πrand in the initial phase.

5-4 Experiment Setup for Interactive Policy learning

In Interactive TaSPL experiments, human teachers who are non-experts are used to train the
agent. But for the purpose of an exhaustive evaluation of the learnt policy, we used oracles
based on a closed form policy. This is done so that the experiments are not affected by human
factors, (like mental fatigue alertness) and thus providing similar feedback conditions to both
algorithms used in the comparison.

The oracle is used as a teacher to provide the desired state-space modification information
as a non-expert human teacher would do. We ran 5 sets of experiments with non-expert human
participants, the trend in human input provided for training the agent to successfully execute
the task was used as a reference for the amount of feedback given by the oracle to mimic
human effort put into providing feedback. The number of episodes where oracle provided
feedback was provided was progressively reduced until the agent was able to learn the policy
with the least amount of feedback. The amount of feedback given per episode by the oracle
was determined based on an average input given by a human demonstrator over 5 trials.

We evaluate and compare TaSPL to TIPS based on two main criteria: (i) the task
performance of the trained agent over time and (ii) the ability of the agent to execute the
task it was trained for, but in a new environment where the agent dynamics are different from
that of the original environment. The performance of the TaSPL agent is compared with an
agent trained using TIPS policy [Jauhri et al., 2020].

• Jauhri et al. [2020] proposed Teaching Imitative Policy in State space (TIPS), an in-
teractive imitation learning algorithm that uses binary corrective feedback in the state
space. The demonstrator suggests the next desired state by modifying it to the current
state. The agent then converts this suggest change in state space to a change in action
space by using the indirect inverse dynamics model. An FDM model is learnt using
an exploratory policy, and then uses that model to infer an action that produces the
desired state transition information. With the state and the computed action available,
a regular state action policy is learnt in a supervised learning manner.
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The demonstration for both algorithms was provided using an oracle which followed a
deterministic policy [Xiao, 2020].

5-4-1 Ablation study

In order to evaluate the influence of the FDM learning strategy on the overall performance
of the system, two ablation studies varying the FDM learning scheme and including the use
of the actual FDM model. The two ablation studies cover all cases- of learning only the state
space policy, only the forward dynamics model, and both.

Learning in the original environment

This study involves learning both the state space policy and forward dynamics model in the
original environments. The independent variable of this study is the strategy to obtain the
FDM with the following cases:

1. Using the actual FDM (not learning it).

2. Learning the FDM online, without the initial phase of Algorithm 6.

3. Learning the FDM offline, with the exploratory policy πrand in the initial phase.

The first case works as the reference for evaluating how is the progress of only learning
the state space policy, i.e., it measures how long does it take to shape the state space policy
since there is no influence of the low performance of forward dynamics model. The other two
cases show actually how is the convergence of learning both models either simultaneously as
in the second case, or sequentially as in the third case.

Learning in a modified environment

In this study, a learnt state space policy is reused in a modified environment, without addi-
tional training, while learning only the forward dynamics model. Two independent variables
are considered in this study, one is the initialization of the FDM which could be either a com-
plete random set of parameters or the FDM parameters obtained while learning the policy in
the original environment. The other variable is the sampling/update strategy, which could
be either learning offline or online, as in the previous study. It also includes the use of the
actual FDM as a reference that works for measuring the performance of the actual state space
policy, and in order to know what is the upper bound performance of the study. Therefore,
there are four possible cases that were considered in this study, along with the one using the
actual FDM, as listed below.

1. Using the actual FDM (not learning it).

2. Learning a new FDM from scratch online, without the initial phase of Algorithm 6.

3. Learning a new FDM from scratch offline, with the exploratory policy πrand in the initial
phase.
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4. Learning the FDM online, without the initial phase of Algorithm 6, but initializing it
with the learnt FDM of the original environment.

5. Learning the FDM offline, with the exploratory policy πrand in the initial phase, but
initializing it with the learnt FDM of the original environment.

In the first study, the cases of learning only the state space policy, and learning both
together are evaluated, while in the second study the remaining case of learning only the
forward dynamics model is evaluated considering the main possible variants.

5-5 Validation

The proposed method was validated in two different manipulation tasks, namely ’car balanc-
ing’ and ’object pulling’ with a real robot arm KUKA iiwa. The tasks were performed using
a Cartesian position controller. ROS (Robot Operating System) is used as middleware to
interface the robot using the iiwa stack. Optitrack camera system, an optical marker tracking
system is used to track the position of the objects.

To teach these tasks, the teacher uses a joystick as an interface, for providing feedback
in the form of correction of the current observation. The IIDM takes the desired transition
and finds the corresponding action that moves the robot end-effector accordingly.

5-5-1 Car Balance Task

Figure 5-2: The robotic Balance task using a KUKA iiwa 7 robot. The task is to balance the
car at the middle of the track.

In this task (fig 5-2), a car is placed on a track which is pivoted at the center, allowing
it to tilt around the axis, and moving the car along the track depending on its inclination.
The robot tilts the track by pulling a thread attached to one end of it. The objective is to
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Figure 5-3: Modified environment to test state space policy: Balancing the car by pushing the
lever on the opposite side.

place the car at the center of the track. The state space of the environment st = [x ẋ θ θ̇],
i.e. the position, and velocity of the car, and the angle, angular velocity of the track. The
action space of the robot is limited to discrete actions in the vertical axis.

To teach the task, feedback is provided in the position and velocity of the car. The agent
learns the policy in partial state space i.e. ˆot+1 = π(ot) where ot = [x, ẋ]. The demonstrator
provides left/right signals that should accordingly move the end-effector in the z axis. To
enable this, a forward dynamics model within the entire state space is learnt. The agent then
selects the action that minimises the difference in partial space i.e.

adest = argmin
a
‖w.ôt − fθ(st, a)‖ ,where w =

[
1 0 0 0
0 1 0 0

]
(5-1)

w is weighting matrix to mask the state the policy is learnt in. This also has the as
added advantage of prioritizing having the track leveled and static, i.e., a state that would
not move the car to any side, but at the same time a state that could produce a movement
to any side with just a small change, thus, it is easy to quickly compensate the car position
if required.

To evaluate the task, we define a reward function to be used as a performance metric.
The function is inspired by the MountainCar task and consists of a negative reward at every
time-step until the car is centered on the track with an almost zero velocity. The learnt
observation state space policy πo is tested in a modified environment, wherein the robot
instead of pulling the track from one end, pushes down the other end of the track, as shown
in figure 5-3.

This setting changes the way the manipulator interacts with the track, the movements
of the robot have an opposite effect on the movement of the track. Another change of the
environment was tested with the change of the pivot to a point more distant from the end of
the track wherein the robot is attached as shown in figure 5-4.

This requires the robot to perform larger actions.

This experiment is run to validate the application of TaSPL on a robotic task, compar-
isons are not made with other learning methods.
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Figure 5-4: Modified environment to test state space policy: The pivot point is moved to one
end of the track, larger actions are required to move the car on the track.

5-5-2 Object pulling task

In this task (fig 5-5), a puck is tied to the end-effector by a string. The objective is to move
the end effector in such a way that the puck being pulled traces a path around some obstacles.
The state space of the environment is st = [xp yp xr yr], i.e., [xr yr] the coordinates of the
puck, and [xr yr] the coordinates of the robot’s end-effector. The action space of the robot is
limited to discrete changes in the XY plane but with different magnitudes.

To teach the task, feedback is provided in the position and velocity of the car. The agent
learns the policy in partial state space i.e. ˆot+1 = π(ot) where ot = [x, ẋ]. The demonstrator
provides left/right signals that should accordingly move the end-effector in the z axis. To
enable this, a forward dynamics model within the entire state space is learnt. The agent then
selects the action that minimises the difference in partial space i.e.

adest = argmin
a
‖w.ôt − fθ(st, a)‖ ,where w =

[
1 0 0 0
0 1 0 0

]
(5-2)

w is weighting matrix to mask the state the policy is learnt in.

To evaluate the performance of the policies in this task, the trajectory of the puck is
compared with a reference trajectory of the object going from the starting to the target point,
while avoiding collisions with some obstacles. The executed trajectory is compared with the
reference trajectory using the Hausdorff distance Huttenlocher et al. [1993].

The learnt state space policy πo is tested in an environment with different dynamics, by
changing the length of the string attaching the end-effector to the puck. With this change,
the robot has to perform a different and wider trajectory which is not necessarily proportional
to the one executed in the original environment, rather a nonlinear transformation of it.
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Figure 5-5: Experiment setup for rope drawing task on the KUKA robot. The task is to move
the end effector in such a way that the puck traces a path around obstacles
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Chapter 6

Results

In this section, we provide the results from our experiments. We show the performance of
the agents trained by the two TaSPL algorithms, whilst comparing them against the baseline
imitation learning techniques listed in the previous chapter. The results show the advantage
provided by the proposed method in learning the policy in state space when the system dy-
namics changes. We validated TaSPL with real robot settings by computing the performance
obtained during the learning process of two manipulation tasks.

The results from offline TaSPL in the OpenAI environments are presented in section
6-1 followed by the results of interactive TaSPL in section 6-2. For each of the proposed
algorithm, results of the comparison of TaSPL with the baseline IL algorithm using the
simulated environments are presented, followed by the results of the generalization to the
change of the dynamics, and then the ablation study regarding the learning of the FDM.
Sections 6-1 and 6-2 only show the most relevant results, for all the results in all modified
environments check Appendix A

Section 6-3 shows the results of validating the online method with a real robot.

6-1 Offline TaSPL

6-1-1 Performance in original environment

Figure 6-1 shows the average return obtained by an agent trained in the original environment
using the offline TaSPL for each of the simulation tasks (averaged over 20 experiments)
compared against the baselines defined in the previous section IL techniques, namely, ILPO
and BCO.

We can observe that the performance of the agent trained by TaSPL is at par with the
performance of BCO and ILPO in terms of the cumulative return obtained by the agent at
the end of the 2000 steps. Compared to BCO and ILPO, TaSPL takes a few more steps to
learn an optimal policy, as the agent has to lean FDM in an online manner. The performance
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(a) Average return in Cartpole environment (b) Average return in MountainCar environment

(c) Average return in Pendulum environment (d) Average return in Acrobot environment

Figure 6-1: Average performance of TaSPL, ILPO and BCO agents over training steps when
trained by oracles in the original unmodified environments
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of the agent depends on its ability to learn the forward dynamics model in an online manner.
This can be seen clearly in the MountainCar environment (fig A-5b), the rewards obtained
by the agent following TaSPL are low for nearly 500 steps as the agent is stuck in the valley
between the two mountains, before it learned the dynamics of the agent at the mountain tops.

6-1-2 Performance in modified environment

Physical properties (like mass, length, force applied) of the environment were modified such
that the dynamics of the agent become different from the original environment. Figure 6-2
shows the average return obtained by an agent in the worst-case scenario where the applied
force is negative. By learning the FDM in an online manner the agent is able to adapt to the
highly modified environment. The learning progress of the agent trained in TaSPL and ILPO
is the same as that of the agent executing the task in the original unmodified environment,
as the policy learnt in state space and latent action space. The BCO agent takes longer to
learn in the modified environment, as the agent has to carryout behavior cloning on the new
state action pairs obtained while following the original policy.

Sections 6-1-2 shows only the worst-case scenario of negative force, for plots of the agents
return in other modified environments check Appendix A

6-1-3 Ablation study

The results of the ablation study to test the efficacy of the state space policy using FDMs
learnt from different techniques. The agents used the policy from the original environment but
the policy was evaluated in the modified environment (here, force applied is negative). Figure
6-3 shows agents that used the true known FDM were able to execute the task immediately
with no further interactions in the modified environment. In the MountainCar environment
(Fig 6-3b), the agent was unable to learn an effective forward dynamics model following a
random policy due to the nature of the environment. However, if agent combines offline model
learning with online model learning, the agent is able to learn the forward dynamics model
more effectively following the learnt policy and exploring new state spaces.

6-2 Interactive TaSPL

The comparisons of teaching a policy interactively with TaSPL and TIPS are plotted in the
figures 6-4 to 6-7, wherein the learning curves are showing the return obtained by the current
policy throughout the time steps of the learning process. For each problem, it is shown the
learning curves in the original environment (in the left), and the curves of learning in one of
the multiple tested modified environments (in the right), which is the case of the environment
with actions being multiplied by -1, which we call ‘Negative Dynamics’.

In general, when learning the policies in the original environment, both algorithms show
a very similar convergence, and similar human input. The cases of Cartpole, and Lunarlander
required slightly more human input with TaSPL. Nevertheless, there is a considerable advan-
tage of TaSPL when the dynamics change and the high level policy is reused, since there is
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(a) Average return in Cartpole environment (b) Average return in MountainCar environment

(c) Average return in Pendulum environment (d) Average return in Acrobot environment

Figure 6-2: Average performance of TaSPL, ILPO and BCO agents in modified environments
(force applied is negative) while following the policy learnt in the original environment
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(a) Average return in Cartpole environment (b) Average return in MountainCar environment

(c) Average return in Pendulum environment (d) Average return in Acrobot environment

Figure 6-3: Average performance of TaSPL, using True FDM, FDM learnt offline following a
random policy and FDM learnt online in modified environments (force applied is negative) while
following the policy learnt in the original environment. Returns of the FDM from random policy
are offset by the number of training samples taken to train the dynamics model (fθ)
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no need to modify the high level policies with further human interventions, while with TIPS
it is still needed the human input as learning in the original environment.

With TaSPL, it is just needed to sample transitions of the environment during 500 time
steps with πrand in the initial phase of the algorithm, in order to capture the new FDM
behavior. Only in the case of the Mountaincar (figure 6-5), the data sampled with πrand is
not representative enough to train a model that describes properly the system, therefore, it
is required to keep collecting transition samples while following the high level policy. That
is why in this problem, with both algorithms, the performance is the lowest possible during
the first episodes of training. Although, in the modified environment, TaSPL started having
successful executions in half the steps required by TIPS to do so, and still without additional
teacher input.

The results of training in the LunarLander environment showed that neither TaSPL nor
TIPS learn an optimal policy to land the spacecraft between the flags, however both obtain
policies that are able to softly land it.

Figure 6-4: Comparison of the average performance of TaSPL and TIPS agents over training
steps with the amount of feedback provided by oracles in the original Cartpole environment and
the modified environment (where the force is negative)
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Figure 6-5: Comparison of the average performance of TaSPL and TIPS agents over training
steps with the amount of feedback provided by oracles in the original MountainCar environment
and the modified environment (where the force is negative)

Figure 6-6: Comparison of the average performance of TaSPL and TIPS agents over training
steps with the amount of feedback provided by oracles in the original Pendulum environment and
the modified environment (where the force is negative)
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Figure 6-7: Comparison of the average performance of TaSPL and TIPS agents over training
steps with the amount of feedback provided by oracles in the original Acrobot environment and
the modified environment (where the force is negative)
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6-2-1 Ablation study

For these studies, the Lunarlander environment is not considered because in the previous
experiments with both evaluated algorithms, the obtained performances were relatively low
and the task was partially fulfilled.

Learning in the original environment

The results of these experiments are depicted in figure 6-8. It could be seen that learning both
the dynamics model and the policy makes the process slower than only needing to learn the
task space policy. In general for most of the cases, the final performance of the learnt FDMs
is at the same level as the actual FDMs, since they allow to follow the desired transitions and
obtain a similar average return with respect to the baseline based on the true FDM.

In the Cartpole problem, we could see that not knowing the FDM could take double
the required time for convergence, with respect to training based on a known FDM. Learning
the FDM online or offline obtains the convergence almost at the same time, although in this
problem, the offline approach has the advantage that the teacher had to participate during
around 40% less time, because the first 500 time steps are dedicated to the initial model
learning phase.

For the problem of the MountainCar, the results are rather different, because learning
offline was not successful. This is because for this problem, the exploratory policy πramd is
not enough to obtain representative samples from the entire environment, i.e., the random
exploration never makes the car to move out of the bottom of the valley, therefore the learnt
model only describes correctly one area of the state space.

The results of the pendulum show a rather fast improvement at the beginning, although
the three cases converged almost at the same time. With the offline approach there is an
steeper improvement (when the interactive phase starts after the first 500 time steps), how-
ever, the online case has a considerable improvement before the 500 steps, which could be
convenient in situations wherein a good but suboptimal policy is acceptable to be rolled out.

From these results, it is observed that learning each of the models has a similar contri-
bution to the time required for the convergence, and none of them represents a big bottleneck
in this regard. Although of course it is always needed the existence of an FDM in order to
be able to train a task space policy, whereas the other way around is not always a limitation,
i.e., it is not always required a task space policy to be able to train a FDM as in the Cartpole
and Pendulum problems, only the task space policy πo was required for learning the FDM
in the MountainCar problem since it helped to obtain better samples of the system that the
exploratory policy πrand.
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(a) Average return in Cartpole environment (b) Average return in Mountain Car environment

(c) Average return in Pendulum environment

Figure 6-8: Average performance of TaSPL, using True FDM, FDM learnt offline following a
random policy and FDM learnt in an online manner

Learning in a modified environment

This study evaluated the remaining case of learning only the FDM. As expected from the
observations of the previous study, the results in figures 6-9 showed that it takes less time to
only learn the FDM that obtains the desired transitions requested by the task space policy.

In general, the online learning approach seems to be more beneficial to have relatively
good performance with few time steps, and reusing the model of the original dynamics for
initializing the new FDM seems to obtain an advantage in the velocity of convergence, since
part of the features extraction is reused from the original model and is not fully learnt from
scratch again.
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(a) Average return in Cartpole environment (b) Average return in Mountain Car environment

(c) Average return in Pendulum environment

Figure 6-9: Average performance of TaSPL, using FDM learnt from different sources explained
in section 5-4-1
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6-3 Robotic Task

6-3-1 Car Balancing task

In this section we provide the final results from experiments on the real system (Figure 5-2).
Since the objective is to validate the application of TaSPL, comparisons with other learning
techniques are not made. To teach the task, the teacher provides corrective feedback in terms
of the desired position and velocity of the car. Based on some initial trials, a correction
magnitude (i.e. error constant e) of 5 centimeters is found to work well for the task. To limit
the angle of tilt in the track, the range of the end effector is limited in the z axis between 15
to 65 cm. To avoid the car rolling off the track, mechanical limits were added on either end
of the track.

Each episode is 50 seconds long, after which the robot is reset. The initial position of
the car is randomized by making the agent learn a state policy over the entire state space.
The agent performance and demonstrator feedback rate over learning episodes can be seen
in Figure 6-10. The agent successfully learns to reliably perform the task after 60 episodes
of training. The amount of feedback provided by the teacher reduces over time as the agent
performs better and only some fine-tuning of the behavior is needed after 50 episodes.

The learnt behavior depends on the strategy used by the demonstrator to perform the
task. In our experiments the demonstrator’s strategy is to tilt the track to a small angle
to get the car moving in the desired direction with a low velocity, and tilt in the opposite
direction to stop the car from moving. This behavior is successfully imitated by the agent.

Figure 6-10: Validation task: Learning curves and demonstrator feedback rates for the Balance
experiment
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Figure 6-11: Cumulative return obtained in different dynamics setups- Original environment,
Pushing in the other end, Change of pivot

When changing the configuration of the environment as described in Section 5-5-1, the
learnt policy was successful to fulfill the objective of the task. It was enough the exploratory
policy for learning the new dynamics in order to reuse the high level policy. It is possible to
see that when the robot has to push (instead of pulling) on the other side of the track, the
performance is rather similar to the one of the policies in the original environment. However,
when the pivot is moved to the end of the track, the task is also accomplished but with a
lower performance, this is due to the fact that in this setup the robot had to execute larger
movements in order to obtain the same changes in the inclination of the track, however, the
velocity of the robot was limited.

6-3-2 Object pulling task

In this task the high level policy was taught in the setup with a short rope for pulling the
object, and later this policy was successfully validated with a longer rope without additional
human input. From the feedback given by the teacher, the agent is has learnt to trace a path
in the XY plane within 20 episodes (fig 6-11). The agent successfully learns to trace a path
with a short string. Further feedback is provided for the agent to learn to avoid the obstacle.
The amount of feedback reduces once the agent has learnt the basic path. Additional feedback
is given to fine-tuned the behavior to avoid obstacles.

Figure 6-13 shows the path traced by the puck and the end effector when using a short
thread and a long thread to attach the puck and the end effector. The path traced by the puck
in both the cases is very similar, however the path traced by the end effector is very different
due to modified dynamics from a longer rope attaching the two. The black dotted line is an
object reference trajectory obtained with teleoperation. In red, it is shown the trajectories
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Figure 6-12: Validation task: Learning curves and demonstrator feedback rates for the Object
Pulling task

obtained in the original environment, and in blue the ones with the modified dynamics (long
rope).

Figure 6-13: Validation task: Path traced by the puck and the end effector when using a short
thread and a long thread
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6-4 Discussion

In this chapter, we provided the results from our experiments for the evaluation of offline
and interactive TaSPL. Through our comparison of Offline TaSPL with ILPO and BCO
techniques, we have shown that agents trained using TaSPL achieve similar performance with
proven baseline IL techniques in both, the original environment and the modified environment.
This illustrates the viability of TaSPL as an Imitation from Observation learning technique
suitable for scenarios where the model dynamics changes and state only demonstrative data
is available.

Through our comparison of Interactive TaSPL with TIPS, we have shown that we can
not only learn a policy from state-space feedback but also a policy independent of the model
dynamics. Both these algorithms achieve the same performance in terms of cumulative return
over time as well as demonstration effort required to learn the task.

TaSPL learns a generalised state space policy π(st+1|st), as opposed to learning a policy
in state-action space π(at|st). This state space policy enables the agent to execute the task
when the environment dynamics is changed from the original environment, without the need
of additional interventions from the human teacher (required in TIPS), therefore, reducing
their workload. Thus, the merits of learning a generalised state-space policy are clear.

In the experiment carried out on the KUKA iiwa robot to learn the balancing and object
pulling task, we have shown that the agent is able to successfully learn a generalised policy
in a reasonable amount of time through state-space feedback (end-effector position). This
policy is validated by executing the task in new modified environments.

We conclude the discussion and this thesis work in the next chapter.

Master of Science Thesis Lalith Keerthan Suresh Kumar



70 Results

Lalith Keerthan Suresh Kumar Master of Science Thesis



Chapter 7

Conclusion

Imitation Learning (IL) methods are an intuitive approach for programming robot behaviors.
For Human teachers, it is much easier to transfer their knowledge through demonstrating
what a robot has to do than articulating it algorithmically. Interactive IL or IL with humans
in the loop methods have recently become popular in the robot learning community, especially
because they overcome the limitations of standard IL approaches. These methods iteratively
keep collecting information from the teachers, while rolling out the current learning policy.

Although interactive IL methods have been demonstrated to obtain more robust policies
than with standard IL, most of them obtain explicit policies mapping from states to actions,
that cannot be reused to fulfill the task objectives when the dynamics of the environment
change, e.g. due to wear of the system, change of the manipulator, the tools, or the objects to
be manipulated. Therefore, whenever the learned policy is not valid anymore, these methods
require again the intervention of the teacher to tune the policy for the new situation, i.e.
requiring a higher workload from the teachers who might not be always available.We propose a
method titled Task Space Policy Learning (TaSPL), a novel technique that learns a generalised
task state space policy π(st+1|st), as opposed to learning a policy in state-action space π(at|st).

The method was tested and compared to other imitation learning methods, for various
control tasks of the OpenAI Gym toolkit in their original environment. Both TaSPL and
TIPS provide a simple binary corrective feedback mechanism (in the form of increase/decrease
signals) in state-space through which demonstrators can train agents as it is more intuitive
for human teachers to teach in terms of change of state than in terms of exact action to be
executed.

This state space policy enables the agent to execute the task when the dynamics of the
environment is changed, without the need for additional interventions from the human teacher,
therefore, reducing their workload. The obtained task space policies were also tested in the
modified environments, showing that this method can be used to learn a generalized policy to
obtain imitation policies with the benefits of interactive IL methods, while also being able to
generalize that knowledge to several varied conditions unseen during the teacher interventions.

TaSPL needs an accurate forward dynamics model to be able to compute actions needs to
execute the desired state transition. TaSPL suffers the same limitations of TIPS i.e. accurate

Master of Science Thesis Lalith Keerthan Suresh Kumar



72 Conclusion

dynamics model learning and action computation in high dimensional or continuous action
spaces. These limitaions can be mitigated if an accurate dynamics model is available or can
be learnt offline from data in a supervised learning manner.

However, there are some considerations that can limit the performance of the TaSPL
algorithm. If the dynamics of the environment changes to a large extent, the agent might have
to follow a different strategy/ trajectory to achieve the objective. The high level policy learnt
may not be optimal to execute the task. Additional feedback may be required to make the
learnt policy optimal in the new environment. In the relatively small dimensional spaces in
our experiments, the action computation is carryout in every step and is inexpensive, however
this does, not hold for higher dimensional spaces where a lot of computational power would
be required, we could solve this by training a state to action policy simultaneously.

In conclusion, we have successfully demonstrated a method that learns a generalised
task state space policy π(st+1|st), from interactive corrections in state space or state only
demonstrations that can be used to execute the task even when the model dynamics changes
without any additional demonstrative effort from the teacher.
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Appendix A

All Plots

A-1 Offline TaSPL

A-1-1 Cartpole Environment Modification

(a) the mass of the pole was halved, mp = 0.5 (b) the mass of the pole was double, mp = 2

(c) the mass of the cart was halved, mc = 0.5 (d) the mass of the cart was double, mc = 2
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74 All Plots

(a) the length of the pole was halved, l = 0.5 (b) the length of the pole was double, l = 2

(c) the force applied on the cart was halved, f = 0.5 (d) the force applied on the cart was double, f = 2

Lalith Keerthan Suresh Kumar Master of Science Thesis



A-1 Offline TaSPL 75

A-1-2 Pendulum Environment Modification

(a) the mass of the pole was reduced, mp = 0.75 (b) the mass of the pole was increased, mp = 1.5

(c) the torque applied on the link was reduced, f = 0.75 (d) the force applied on the cart was increased, f = 1.5
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A-1-3 Acrobot Environment Modification

(a) the mass of the links was varied, m1 = 0.8, m2 = 1.2 (b) the mass of the links was varied, m1 = 1.2, m2 = 0.8

(c) the torque applied on the link was reduced, f = 0.75 (d) the force applied on the cart was increased, f = 1.5
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A-2 Interactive TaSPL

A-2-1 Cartpole Environment Modification

(a) the mass of the pole was halved, mp = 0.5 (b) the mass of the pole was double, mp = 2

(c) the mass of the cart was halved, mc = 0.5 (d) the mass of the cart was double, mc = 2
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(a) the length of the pole was halved, l = 0.5 (b) the length of the pole was double, l = 2

(c) the force applied on the cart was halved, f = 0.5 (d) the force applied on the cart was double, f = 2
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A-2-2 Pendulum Environment Modification

(a) the mass of the pole was reduced, mp = 0.75 (b) the mass of the pole was increased, mp = 1.5

(c) the torque applied on the link was reduced, f = 0.75 (d) the force applied on the cart was increased, f = 1.5
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A-2-3 Lunar Lander Environment Modification

(a) the main engine power in was reduced, fMAIN = 10 (b) the main engine power in was increased, fMAIN = 16

(c) the side engine power in was reduced, fSIDE = 0.4 (d) the side engine power in was increased, fSIDE = 0.9
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Paper

A research paper presenting the interactive method proposed in this thesis: "Policy Imitation
Learning with Online Task-space Interactive Non-expert Guidance (PILOTING)", is provided
below.
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Learning task space policy from demonstration

Lalith Keerthan1, Carlos Celemin1, and Jens Kober1

Abstract— In this paper we propose a method titled ”Policy
Imitation Learning with Online Task-space Interactive Non-
expert Guidance (PILOTING)”, a novel technique that uses
interactive corrections in the observation space to learn a
generalised observation space policy π(ot+1|ot), as opposed to
learning a policy in state-action space π(at|st). This observation
space policy enables the agent to execute the task when the en-
vironment dynamics is changed from the original environment,
without the need of additional demonstrative effort from the
human teacher. We achieve this by decoupling the objective
task into two policies. A high level policy, that describes how
the observable states should transition in order to reach the
goal of a task, that is learnt through corrective feedback from
the teacher. And a low level policy, which is responsible for
performing the action that obtains the desired transition. Thus
effectively decoupling the task objective from the dynamics of
the environment. In case the environment dynamics changes,
only the low-level policy has to be relearnt, while the high level
policy can be reused.

The method was tested and compared to other imitation
learning methods, for various control tasks of the OpenAI Gym
toolkit in their original environment. The obtained policies
were also tested in the modified environments, showing that
this method can be used to obtain imitation policies with the
benefits of interactive IL methods, while also being able to
generalize that knowledge to several varied conditions unseen
during the teacher interventions. The method was validated
in two different tasks with a KUKA iiwa robot manipulator,
testing generalization capabilities of the learnt policies.

I. INTRODUCTION

Imitation Learning (IL) methods are an intuitive approach
for programming robot behaviors [1], [2]. For Human teach-
ers, it is much easier to transfer their knowledge through
demonstrating what a robot has to do than articulating it
algorithmically [3]. These machine learning techniques are
convenient for programming autonomous robots in order to
cope with difficulties like the inability of humans to prepro-
gram a robot for every possible scenario, and/or not having
technical skilled users able to modify a complex program
of the robot, for instance, in household environments with
service robots.

For Learning a policy from a set of recorded demonstra-
tions, there are two main approaches in standard IL methods:
i) directly deriving a policy from the data with supervised
learning, known as Behavioral Cloning (BC) [4], [5]; ii)
using Inverse Reinforcement Learning (IRL) to obtain the
objective function of the task which is implicitly described in
the demonstrations, then using that learned objective function
and Reinforcement Learning (RL) to train an imitation policy

1Lalith Keerthan, Carlos Celemin, and Jens Kober are with
the Cognitive Robotics Department, TU Delft, Delft, The
Netherlands L.K.SureshKumar@student.tudelft.nl,
(c.e.celeminpaez, j.kober)@tudelft.nl

[6], [7]. The former family of methods has the advantage
of deriving an explicit policy without the additional com-
putationally expensive/data hunger RL process. However,
the latter, also known as indirect IL, has the advantage of
being able to generalize the obtained knowledge encoded
in the objective function, that could be used to learn an
imitation policy in environments with different dynamics,
or with mismatches between the embodiment of the teacher
and the learner, i.e. without the need to record new teacher
demonstrations in the changed environment.

Directly deriving a policy after collecting demonstrations
has two major limitations: i) the distribution shift, given by
the compound error that occurs when the learned policy shifts
towards states unseen during the demonstration recording,
and it is not able to recover and fulfill the task; ii) the
policy performance is at most as good as the demonstrations,
therefore, the methods only work for teaching tasks that the
teachers are able to perform successfully. Interactive IL or
IL with humans in the loop methods have recently become
popular in the robot learning community [8], especially
because they overcome the mentioned limitations of stan-
dard approaches. These methods iteratively keep collecting
information from the teachers, while rolling out the current
learning policy. These approaches let the teacher to correct
the agent when the policy performs wrong actions and/or
needs to recover actions to move towards desired states.

Although interactive IL methods have been demonstrated
to obtain more robust policies than with standard IL, most of
them obtain explicit policies mapping from states to actions,
that cannot be reused to fulfill the task objectives when
the dynamics of the environment change, e.g. due to wear
of the system, change of the manipulator, the tools, or the
objects to be manipulated. Therefore, whenever the learned
policy is not valid anymore, these methods require again the
intervention of the teacher to tune the policy for the new
situation, i.e. requiring a higher workload from the teachers
who might not be always available.

In this paper, we propose a method titled ”Policy Im-
itation Learning with Online Task-space Interactive Non-
expert Guidance (PILOTING)”, a novel technique that uses
interactive corrections in state space to learn a generalised
state space policy π(st+1|st), as opposed to learning a
policy in state-action space π(at|st). This state space policy
enables the agent to execute the task when the environment
dynamics is changed from the original environment, with-
out the need of additional interventions from the human
teacher, therefore, reducing their workload. The method was
tested and compared to other imitation learning methods, for
various control tasks of the OpenAI Gym toolkit in their



original environment. The obtained policies were also tested
in the modified environments, showing that this method can
be used to obtain imitation policies with the benefits of
interactive IL methods, while also being able to generalize
that knowledge to several varied conditions unseen during
the teacher interventions. The method was also successfully
validated in two different tasks with a KUKA iiwa robot
manipulator, testing generalization capabilities of the learnt
policies.

II. RELATED WORK

The proposed method that learns policies specified only
in the state space is related to both methods of Learning
from Observations (LfO), and Interactive IL based on relative
corrections.

A. Learning from Observations

These methods are IL techniques dedicated to learn
policies when the recorded demonstrations are state-only
sequences, instead of state-action pair sequences [9]. This
could be required, for instance, when the demonstrations are
performed by a different embodiment from the one of the
learner. Most of these methods are model-based, since they
require to have a Forward Dynamics Model (FDM) or an
Inverse Dynamics Model (IDM), in order to find what are
the actions that generate the demonstrated state transitions.
Behavioral Cloning from Observations [10] trains an IDM
that is used to find the actions that generate the demonstrated
transitions, such that the state-action pairs are completed and
used for training a policy as with BC. If the environment
dynamics changes, the learnt policy may not be useful, and
the policy may need to be re-learnt.

Learning latent policies has been proposed in order to
learn from observations, and to be able to generalize the
behavior independently of the available actions. Imitating
Latent Policies from Observation (ILPO) [11] is based on
learning simultaneously a latent policy and a latent FDM.
This generalizable latent policy leverages a small amount
of environment interactions for training the mapping from
the latent to the real actions in environments with different
dynamics.

B. Interactive Imitation Learning with relative corrections

Interactive IL methods include the human in the learning
loop with different types of teacher-agent interaction, in
which the teacher could provide other kinds of information
rather than full demonstrations of the task. Users could
teach providing their preferences when comparing different
executions of the policy [12], [13], with evaluations (rewards)
about the executed actions in the visited states [14], [15],
partial demonstrations of the recovery actions [16], relative
corrections over the executed actions [17], or relative cor-
rections over the state transitions [18]. In [19] it is shown
that when teaching with occasional relative corrections of
the executed actions, users can train policies with higher
performance and with less required training time than with
evaluations (human rewards) [14]. In [20] it is shown that

the same approach is more intuitive and could obtain higher
performances than using corrective demonstrations like in
[16]. However, providing relative corrections in the action
domain might not be always intuitive, especially if the
actions are in a high dimensional space.

Teaching Imitative Policies in State-space (TIPS) [18] is
a method that works under the assumption that the action
domain is not always intuitive for the teacher, and therefore,
for those cases, it is simpler to advise relative corrections in a
domain observable by the teacher as it is the state/observation
space, i.e. advising a desired transition, whenever the teacher
consider necessary a correction. Results showed that the
learning process is faster with corrective feedback in the state
space than in the action space, and user studies reported that
the workload was lower for the participants when they used
TIPS.

Hence, in this work we propose an interactive IL algorithm
that provides the same teaching experience from the user’s
perspective as with TIPS, but learning state space policies
that could be generalized to other environments as it is done
in ILPO.

III. PILOTING

In order to interactively teach robust and generalizable
policies with minimum human intervention, we propose a
learning scheme that requires the same kind of teacher
interaction as TIPS. However, the feedback is used to shape
a policy model that predicts the next desired observation
depending on the current one. Such a model decouples the
information of the required actions, and specifies a high level
policy that describes the objective of the task step by step.

A. Policy Representation

In our approach, the objective of the task, and the dy-
namics of the system are decoupled by using two policies.
A high level policy encodes the objective of the task, and
a low level policy is in charge of performing the desired
transitions based on a dynamics model. The high level policy
πo is learned from the human input once in the original
environment, and a low level policy is trained based on
experience sampled from the environment, any time the
environment dynamics is changed. Hence, it is possible to
generalize the obtained knowledge to other environments
without the need of additional human intervention.

1) High Level Policy: We propose to learn policies that
are a high level model that describes how the observable
states should transition in order to reach the goal of a task.
We assume the task to be learnt is defined within a Markov
Decision Process (MDP), wherein the state s ∈ S defines
the full situation of the environment. However, the behavior
to be trained is described in what we call the observation
space or the teacher’s observable state space O, where O ⊂
S and o ∈ O, which is the subset of states in which the
user could provide demonstrations of the task, or shape with
relative corrections the desired trajectory, e.g. the position of
the object to be manipulated could be the observation space,
while the full state needed for control includes its velocities,



the positions and velocities of the manipulator, and some
other context variables.

The unobserved states u ∈ U are the additional variables
of the state s not included in the observations o, the ones
in which the teacher does not provide demonstrations or
feedback, therefore, S = O × U and the current state is
st = [ot ut].

The learning behavior is described by the observations
space policy πo which predicts the next desired observation
odest+1 = πo(ot) where the environment should transition in.
Therefore, πo sets the 1-step prediction of the observation as
a high level policy that a low level module takes as reference
to follow. The way this policy πo is learnt is explained in
Section III-B

2) Low Level Policy: It is based on an IDM that computes
the action required for a specific transition from st to st+1,
such that at = I(st, st+1).

We use the scheme of Indirect Inverse Dynamics Model
(IIDM) proposed in TIPS. This method involves using a
learnt FDM (fθ) to predict the next states (st+1 = fθ(st, a))
while sampling all the possible actions (a ∈ A). It is chosen
the action that predicts the next state that is closest to the
desired state. The computation of the IIDM is performed as:

adest = argmin
a

∥∥sdest+1 − fθ(st, a)
∥∥ (1)

In discrete action spaces, the IIDM queries all possible
actions and in continuous action spaces, the actions are
uniformly sampled from the action-space A. This indirect in-
verse dynamics formulation avoids the problem of evaluating
infeasible transitions, by choosing the action that brings the
agent closest to the desired next state, regardless the desired
state transition is feasible or not. It also avoids the typical
issues of training inverse models due to the lack of bijection.
The success of the policy depends on the accuracy of the
forward dynamics model learnt in that environment.

Unlike TIPS, the proposed approach does not search for
the actions that produce a desired full state transition, but
a desired observation transition. However, the FDM used in
the IIDM scheme is specified in the complete state space,
then, in order to use (1) the desired next observation odest+1

given by πo should be mapped into the state space, i.e. a de-
sired unobserved state vector udest+1 should be computed and
concatenated to obtain a desired state (sdest+1 = [odest+1 u

des
t+1]).

For the desired transition to odest+1 from ot, sometimes there
could be many (infinite) values in U that could be paired
with ot+1des, and still compose a feasible state vector sdest+1.
Nevertheless, some of those values in U might involve some
costs, or even lead to undesirable states due to inconvenient
transitions in the unobserved space, for instance, with the
aforementioned manipulator example, the manipulated object
may follow the desired trajectory, but the robot may be
too close to physical constraints, or may collide with some
obstacles.

In order to limit this problem, we propose to implement a
null-space filter that conditions the selected actions based
on some priors over the unobserved space U . This filter

could be composed by a function n that predicts the desired
unobserved state based on the current state (udest+1 = n(st)).
Depending on the application, this function could aim to
obtain the lowest change in u with udest+1 = ut, e.g. moving
the object (object position in o) to the desired state, while
trying to move the robot the least (robot state in u); or
to try to set a fixed reference for u with udest+1 = udes0 ,
e.g. moving an object while keeping its orientation (object
orientation is in u); or just set it completely variable if
more priors are available. Additionally, the filter includes an
importance weight vector w, that is set in order to prioritize
the dimensions that should be tracked with low margin of
error by this low level controller, in both the observed and
unobserved states. Hence, the IIDM is computed as follows:

adest = argmin
a
‖w · ([πo(ot) n(st)]− fθ(st, a)) ‖ (2)

The forward dynamics model fθ is learnt from state, ac-
tion, state triplets (st, at, st+1), using a feed-forward artificial
neural network trained in a supervised-learning fashion. The
collection of the triplets in a buffer E and the training of
the neural network is carried out in two different ways, i)
following a random exploratory policy (πrand) to collect the
triplets and training the neural network prior to evaluating
the observation space policy (πo); ii) collecting the triplets
whist following the learnt observation space policy (πo) and
training the FDM model fθ in an online manner.

B. Observation Space Policy Learning

The policy πo could be trained in two different approaches,
either in an offline fashion from a dataset of demonstrated
observations as in BCO or ILPO, or interactively with occa-
sional corrections from the teacher on the desired observation
transitions, similar to what is done with the teacher correc-
tions in the action domain with COACH [17]. However, in
this work we focus on the interactive approach since it could
provide higher benefits, as mentioned in Section (I).

The policy πo is shaped while observing it trying to per-
form the task, it could be initialized with prior knowledge or
from scratch. The human teacher advises relative corrections
on the observation space, whenever she or he considers it
necessary. The occasional corrections could be advised either
in some or all of the dimensions of the observation space.
When a correction is advised, the corrective feedback ht
would take one out of three possible values ht ∈ {+1, 0,−1}
for each of the advised observation dimensions, which mean
increase, keep, or decrease the current observation magnitude
respectively. We keep the assumption that the teacher is
a non-expert who does not know exactly how much the
observations should be modified as a consequence of the
actions of the agent, but she/he could estimate the direction
in which the change should be done, then with these vague
corrections, the policy is incrementally shaped.

In order to compute the desired correction of the ob-
servation, the teacher’s feedback ht is multiplied with the
error rate eo, and added to the current observation. The
hyperparameter eo to be tuned before runtime, is a diagonal



matrix defining the step size of the advised corrections in
each dimension of the observation space.

ôdest+1 = ot + ht.eo (3)

Then, the computed desired transition {ot, ôdest+1} is appended
to the experience replay buffer D, which is used to train
the artificial feed-forward neural network that represents the
policy πo, being ot the inputs, and ôdest+1 the output labels.
This high level policy model is updated every T time steps.

C. Policy Imitation Learning with Online Task-space Inter-
active Non-expert Guidance

The complete proposed learning method called PILOTING
is depicted in the Figure 1, where it is shown the agent-
environment interaction, and the human teacher is in the
loop observing the performance of the agent in order to
provide the required corrections. When there is no human
correction (shown as h = 0), the high level policy πo
computes the desired next observation odest+1 = πo(ot), that
goes as reference to the low level control (bottom left of
the diagram), in order to compute the desired action. In any
time step the user recommends a correction, the advised next
desired observation ôdest+1 is computed with (3), in the bottom
right of the diagram, then it is used to update πo, and finally
used as reference for the low level controller that computes
the action at.

Fig. 1: High-level view of the learning framework of Inter-
active.

The interactive learning process of PILOTING is described
in Algorithm 1, which is composed by two phases. The first
phase is intended to train an initial FDM fθ, as explained in
Section III-A.2. The teaching phase is wherein the interactive
process takes place, the state of the environment is observed
(line 3), the human feedback is received (line 4), in case
it is not null (line 5), the high level policy πo is updated
with the given feedback (lines 6-8), otherwise the current
high level policy is computed (line 11). The low level policy
is computed and executed (lines 13-14), the experience for
updating the FDM is stored (line 15), and both models πo
and fθ are updated (lines 16-20). The online update of fθ
could be omitted in simple environments that could be fully
sampled with the random/exploration policy during the initial
phase.

Generalizing high level policies to different environments:
In order to generalize the learnt policies that encode the
teacher’s knowledge, into environments unseen during the
interactive teaching time, the low level policy should be
trained again while collecting transition samples from the
new environment. Initializing the fθ model of the new
environment with the parameters of the one of the original
environment might help to learn the model faster than
learning it from scratch, especially when the change of the
dynamics is relatively small. However, when the change is
considerable, reusing those parameters as starting point could
be also convenient since the features obtained previously
within the network could be still useful, regardless the large
change of the input-output mappings.

Hence, in order to generalize πo, the Algorithm 1 could
be used without considering human inputs or updates to the
πo model, i.e., just executing the lines 3, 11, 13, 14, 15,
20. Only when the change of the dynamics is too large and
relearning the low level policy does not achieve the goal,
it is required tuning the high level strategy, which could be
done following the full algorithm.

Algorithm 1 PILOTING
Initial Model-Learning Phase

1: Generate Ne experience samples (st, at, st+1) by exe-
cuting a random/exploration policy πrand

2: Append samples to experience buffer E
3: Learn forward dynamics model fθ using E

Teaching Phase:
1: for episodes do
2: for t = 0, 1, 2, ...T do
3: Observe state st
4: Get human corrective feedback ht
5: if ht is not 0 then
6: Compute desired observation

ôdest+1 = ot + ht.eo
7: Append (ot, ô

des
t+1) to demo buffer D

8: Update policy πo using pair (ot, ôdest+1)
9: odest+1 = ôdest+1

10: else
11: Predict next desired observation

odest+1 = πo(ot)
12: end if
13: Compute action

adest = argmin
a

∥∥w · ([odest+1 n(st)]− fθ(st, a)
)
‖

14: Execute action at = adest , reach state st+1

15: Append (st, at, st+1) to experience buffer E
16: if mod(t, T ) then
17: Update policy πo using batch sampled

from demo buffer D
18: end if
19: end for
20: Update fθ using samples from buffer E
21: end for



IV. EXPERIMENTAL SETTING

The objective of the experiments is to evaluate PILOTING
and compare it with the baseline TIPS, which is to the best
of our knowledge, the only one method that allows non-
expert teachers to train policies interactively with corrections
in the state space. The comparisons are mainly focused on:
i) convergence and final performance of the agent, and ii)
the ability of the agents to adapt to new conditions on the
environment without further human teacher’s interventions.
Since PILOTING is inspired by TIPS and is intended to
require the same kind of teacher interaction, a user study
is not considered in this experimental procedure, indeed,
the main benefits of PILOTING are experienced when the
knowledge obtained from the teacher could be used in unseen
environments, without actual human interventions. It is not
expected to have an improvement on the user experience
during the interactive teaching with respect to TIPS.

A. Comparative Study

Exhaustive experiments for evaluation and comparison of
agents trained with PILOTING were carried out with sim-
ulated environments from OpenAI gym, namely: CartPole,
MountainCar, Pendulum and LunarLander. For this simulated
problems, we set the observation state equal to the state
ot = st.

With the purpose of exhaustive evaluations of Piloting,
we used oracles based on a closed form policy [21], so that
the experiments are not affected by human factors and thus
providing similar feedback conditions with both algorithms
used in the comparison.

The oracle is used as a teacher who provides the desired
observation space correction, as a non-expert human teacher
would do. We ran 5 preliminary sets of experiments with
non-expert human participants, the average amount of human
input provided for training the agent to successfully execute
the task was used as reference for the amount of feedback the
oracle should give to mimic human effort put into providing
feedback. The number of episodes where oracle provided
feedback was provided was progressively reduced until the
agent was able to learn the policy with the least amount of
feedback. The amount of feedback given per episode by the
oracle was determined based on average input given by a
human demonstrator over 5 trials.

The total reward obtained by the agent during execu-
tion is used as a performance metric for analysing the
convergence of the algorithms. Additionally, in order to
evaluate the generalization capabilities of the learnt policy,
physical properties (like mass, length, force applied) of the
environments were modified to create new environments with
dynamics unseen during the training of the policy πo. In the
environments with new dynamics, the agent could leverage
the policy learnt from the original environment, without
additional demonstrative effort from the teacher, which is
not possible with the scheme of TIPS. We performed exper-
iments that show the additional teacher interaction experience
that is required with TIPS, for reaching a similar performance
obtained with PILOTING in the new environments. For this,

it is shown the percentage of time steps per episode that the
teacher provides input with each learning method.

B. Ablation study
In order to evaluate the influence of the FDM learning

strategy on the overall performance of the system, we carried
out two ablation studies varying the FDM learning scheme
and including the use of the actual FDM model. The two
ablation studies cover all cases of learning only the high
level policy, only the low level policy, and both.

1) Learning in the original environment: This study in-
volves learning both the high and low level policies in the
original environments. The independent variable of this study
is the strategy to obtain the FDM with the following cases:
(a) Using the actual FDM (not learning it).
(b) Learning the FDM online, without the initial phase of

Algorithm 1.
(c) Learning the FDM offline, with the exploratory policy

πrand in the initial phase.
The first case works as the reference for evaluating how

is the progress of only learning the high level policy, i.e.,
it measures how long does it take to shape the high level
policy since there is no influence of low performance low
level policies. The other two cases show actually how is the
convergence of learning both models either simultaneously
as in the second case, or sequentially as in the third case.

2) Learning in a modified environment: In this study a
learnt high level policy is reused in a modified environment,
without additional training, while learning only the low level
policy. Two independent variables are considered in this
study, one is the initialization of the FDM which could be
either a complete random set of parameters, or the FDM
parameters obtained while learning the policy in the original
environment. The other variable is the sampling/update strat-
egy, which could be either learning offline or online, as in the
previous study. It is also included the use of the actual FDM
as a reference that works for measuring the performance of
the actual high level policy, and in order to know what is the
upper bound performance of the study. Therefore, there are
four possible cases that were considered in this study, along
with the one using the actual FDM, as listed below.
(a) Using the actual FDM (not learning it).
(b) Learning a new FDM from scratch online, without the

initial phase of Algorithm 1.
(c) Learning a new FDM from scratch offline, with the

exploratory policy πrand in the initial phase.
(d) Learning the FDM online, without the initial phase of

Algorithm 1, but initializing it with the learnt FDM of
the original environment.

(e) Learning the FDM offline, with the exploratory policy
πrand in the initial phase, but initializing it with the
learnt FDM of the original environment.

In the first study, it is evaluated the cases of learning only
the high level policy, and learning both together, while in
the second study the remaining case of learning only the
low level policy is evaluated considering the main possible
variants.



C. Validation on a real robot task

The proposed method was validated in two different ma-
nipulation tasks, namely ’car balancing’ and ’object pulling’
with a real robot arm KUKA iiwa. The tasks were performed
using a Cartesian position controller. To teach these tasks,
the teacher uses a joystick as interface, for providing feed-
back in the form of correction of the current observation
(movement of the balanced car, and position of the pulled
object respectively). The low level policy takes the desired
transition and finds the corresponding action that moves the
robot end-effector accordingly.

Fig. 2: Experiment setup for Balance task on the KUKA
robot. The task is to balance the car at the middle of the
track.

1) Car balancing task: In this task (fig 2), a car is placed
on a track which is pivoted at the center, allowing it to
tilt around the axis, and moving the car along the track
depending on its inclination. The robot tilts the track by
pulling a thread attached to one end of it. The objective is to
place the car at the center of the track. The state space of the
environment st = [x ẋ θ θ̇], i.e. the position, and velocity
of the car, and the angle, angular velocity of the track. The
observation space is ot = [x ẋ], thus, the unobserved states
are ut = [θ θ̇].

For this specific problem, we assumed udest+1 = n(st) =
[0 0], since that is the ideal target unobserved state for the
time in which the car is centered, because it prioritizes having
the track leveled and static, i.e., a state that would not move
the car to any side, but at the same time a state that could
produce a movement to any side with just a small change,
thus, it is easy to quickly compensate the car position if
required. The action space of the robot is limited to discrete
actions in the vertical axis.

To evaluate the task, we define a reward function to be
used as a performance metric. The function is inspired from
the MountainCar task and consists of a negative reward at
every time-step until the car is centered on the track with
an almost zero velocity. The learnt observation state space
policy πo is tested in a modified environment, wherein the
robot instead of pulling the track from one end, it pushes
down the other end of the track, as shown in figure 3.

This setting changes the way the manipulator interacts

with the track, the movements of the robot have an opposite
effect on the movement of the track. Another change of the
environment was tested with the change of the pivot to a
point more distant from the end of the track wherein the
robot is attached as shown in figure 4. This requires the
robot to perform larger actions.

Fig. 3: Modified environment to test state space policy:
Balancing the car by pushing the lever on the opposite side.

Fig. 4: Modified environment to test state space policy: The
pivot point is moved to one end of the track, larger actions
are required to move the car on the track.

2) Object pulling task: In this task (fig 5), a puck is tied
to the end-effector by a string. The objective is to move
the end effector in such a way that the puck being pulled
traces a path around some obstacles. The state space of
the environment is st = [xp yp xr yr], i.e., [xr yr] the
coordinates of the puck, and [xr yr] the coordinates of the
robots end-effector. The information of st could be also
represented with the coordinates of the robot being relative
to the puck st = [xp yp xpr ypr], that additionally could
be in polar coordinates st = [xp yp d ϕ], being d and ϕ the
distance between the robot end-effector and the puck, and its
angle, respectively. The observation space is ot = [xp yp],
while the unobserved state space is ut = [d ϕ], this polar
representation is convenient for defining the null-space filter,
since it is preferred to keep the rope as much stretched as
possible, because that is how always a movement of the
robot results in a movement of the puck. Thus, it is desired



to maximize d (constrained by the length of the rope l),
while the angle ϕ is not relevant (best prior about ϕ is to
try avoiding large changes following the current value ϕt).
Hence, for this task it is assumed udest+1 = n(st) = [l ϕt].
The action space of the robot is limited to discrete changes
in the XY plane.

To evaluate the performance of the policies in this task,
it is compared the trajectory of the puck with a reference
trajectory of the object going from the starting to the target
point, while avoiding collisions with some obstacles. The
executed trajectory is compared with the reference trajectory
using the Hausdorff distance [22]. The learnt high level pol-
icy πo is tested in an environment with different dynamics,
by changing the length of the string attaching the end-effector
to the puck. With this change, the robot has to perform
a different and wider trajectory which is not necessarily
proportional to the one executed in the original environment,
rather a nonlinear transformation of it.

Fig. 5: Experiment setup for rope drawing task on the KUKA
robot. The task is to move the end effector in such a way
that the puck traces a path around obstacles

V. RESULTS

The carried out experiments lead to the results presented
below.

A. Comparative Study

The comparisons of teaching a policy interactively with
PILOTING and TIPS are plotted in the figures 6-9, wherein
the learning curves are showing the return obtained by the
current policy throughout the time steps of the learning pro-
cess. For each problem, it is shown the learning curves in the
original environment (in the left), and the curves of learning
in one of the multiple tested modified environments (in the
right), which is the case of the environment with actions
being multiplied by -1, that we call ‘Negative Dynamics’.

In general, when learning the policies in the original
environment, both algorithms show a very similar conver-
gence, and similar human input. The cases of Cartpole,
and Lunarlander required slightly more human input with
PILOTING. Nevertheless, there is a considerable advantage
of PILOTING when the dynamics change and the high level
policy is reused, since there is no need to modify the high
level policies with further human interventions, while with
TIPS it is still needed the human input as when learning in
the original environment.

With Piloting, it is just needed to sample transitions
of the environment during 500 time steps with πrand in
the initial phase of the algorithm, in order to capture the
new FDM behavior. Only in the case of the Mountaincar
(figure 7), the data sampled with πrand is not representative
enough to train a model that describes properly the system,
therefore, it is required to keep collecting transition samples
while following the high level policy. That is why in this
problem, with both algorithms, the performance is the lowest
possible during the first episodes of training. Although, in the
modified environment, PILOTING started having successful
executions in half the steps required by TIPS to do so, and
still without additional teacher input.

The results of training in the LunarLander environment
showed that neither PILOTING nor TIPS learn an optimal
policy to land the spacecraft between the flags, however both
obtain policies that are able to softly land it.

Table I, gives a summary of the various modifications done
to several OpenAI gym environments to test the high-level
policy learnt. The table shows the average return obtained
by the agents in the modified environment and the number
of steps they take to archive the average return. It can be
seen that for small changes to the environment dynamics,
the agent following Piloting does not require any additional
steps to be able to perform the task in the modified envi-
ronment, where as agent following TIPS requires additional
demonstrative feedback to be able to execute the task.

B. Ablation Study

For these studies, the Lunarlander environment is not
considered because in the previous experiments with both
evaluated algorithms, the obtained performances were rela-
tively low and the task was partially fulfilled.

1) Learning in the original environment: The results of
this experiments are depicted in figure 10-12. It could be
seen that learning both policies makes the process slower
than only needing to learn the high level one. In general for
most of the cases, the final performance of the learnt FDMs
is in the same level as the actual FDMs, since they allow to
follow the desired transitions and obtain a similar average
return with respect to the baseline based on the true FDM.

In the Cartpole problem, we could see that not knowing
the FDM could take the double of the required time for con-
vergence, with respect to training based on a known FDM.
Learning the FDM online or offline obtains the convergence
almost at the same time, although in this problem, the offline
approach has the advantage that the teacher had to participate



TABLE I: Average return for various changes in the environments

Evironment Modification to environement PILOTING TIPS
average return

obtained
steps to achieve
average return

average return
obtained

steps to achieve
average return

CartPole-v1

No modification 500 600 500 550
the mass of the pole was halved, mp = 0.5 497.2 0 500 50
the mass of the pole was double, mp = 2 500 0 500 50
the mass of the cart was halved, mc = 0.5 495.8 0 500 150
the mass of the cart was double, mc = 2 493 50 497 150
the length of the pole was halved, l = 0.5 496 0 500 100
the length of the pole was double, l = 2 476.9 50 500 500
the force applied on the cart was halved, f = 0.5 498.2 50 500 200
the force applied on the cart was double, f = 2 500 0 500 0
the force applied on the cart was negative, f = −1 500 0 500 700

MountainCar-v0 No modification -124.26 1250 -128.17 1200
the force applied on the cart was negative, f = −1 -129.31 500 -123.02 1150

Pendulum-v0

No modification -86.63 400 -82.23 350
the mass of the pole was reduced, mp = 0.75 -61.66 0 -52.25 0
the mass of the pole was increased, mp = 1.5 -121.88 0 -124.04 100
the torque applied on the link was reduced, f = 0.75 -149.86 0 -152.37 150
the force applied on the cart was increased, f = 1.5 -74.12 0 -79.12 0
the force applied on the cart was negative, f = −1 -85.78 0 -83.77 300

LunarLander-v2

No modification -164.9 750 -134.69 750
the main engine power in was reduced, fMAIN = 10 -189.31 0 -179.75 250
the main engine power in was increased, fMAIN = 16 -179.45 0 -199.2 0
the side engine power in was reduced, fSIDE = 0.4 -168.21 50 -183.8 150
the side engine power in was increased, fSIDE = 0.9 -169.77 50 -164.77 200
the side engine power in was negative, fSIDE = −0.6 -164.32 0 -154.43 800

during around 40% less time, because the first 500 time steps
are dedicated to the initial model learning phase.

For the problem of the MountainCar, the results are rather
different, because learning offline was not successful. This
is because for this problem, the exploratory policy πramd is
not enough to obtain representative samples from the entire
environment, i.e., the random exploration never makes the
car to move out of the bottom of the valley, therefore the
learnt model only describes correctly one area of the state
space.

The results of the pendulum show a rather fast improve-
ment at the beginning, although the three cases converged
almost at the same time. With the offline approach there is
an steeper improvement (when the interactive phase starts
after the first 500 time steps), however, the online case has a
considerable improvement before the 500 steps, which could
be convenient in situations wherein a good but suboptimal
policy is acceptable to be rolled out.

From these results, it is observed that learning each of
the models has a similar contribution to the time required
for the convergence, and none of them represents a big
bottleneck in this regard. Although of course it is always
needed the existence of an FDM in order to be able to train
a high level policy, whereas the other way around is not
always a limitation, i.e., it is not always required a high
level policy to be able to train a FDM as in the Cartpole
and Pendulum problems, only the high level policy πo was
required for learning the FDM in the MountainCar problem
since it helped to obtain better samples of the system that
the exploratory policy πrand.

2) Learning in a modified environment: This study eval-
uated the remaining case of learning only the FDM. As
expected from the observations of the previous study, the

results in figures 13-15 showed that it takes less time to only
learn the FDM that obtains the desired transitions requested
by a known high level policy.

In general, the online learning approach seems to be more
beneficial to have relatively good performance with few time
steps, and reusing the model of the original dynamics for
initializing the new FDM seems to obtain an advantage in the
velocity of convergence, since part of the features extraction
is reused from the original model and is not fully learnt from
scratch again.

C. Validation
1) Car balancing task: In the figure 16 it is shown the

learning curve of this task along with the percentage of
human input. It could be seen that around the episode 20
the policy becomes able to achieve the objective with a low
performance, but with continuous improvement. After the
episode 26 the amount of feedback given is reduced consid-
erably, however the trend of improvement in the return keeps
relatively constant, meaning that there are less corrections
which are still meaningful and relevant for the task execution.

When changing the configuration of the environment as
described in Section IV-C.1, the learnt policy was successful
to fulfill the objective of the task. It was enough the ex-
ploratory policy for learning the new dynamics in order to
reuse the high level policy. It is possible to see that when
the robot has to push (instead of pulling) in the other side of
the track, the performance is rather similar to the one of the
policy in the original environment. However, when the pivot
is moved to the end of the track, the task is also accomplished
but with a lower performance, this is due to the fact that in
this setup the robot had to execute larger movements in order
to obtain the same changes in the inclination of the track,
however, the velocity of the robot was limited.



Fig. 6: Average return in Cartpole environment in with
original dynamic and modified dynamics (Right)

Fig. 7: Average return in MountainCar environment in with
original dynamic and modified dynamics (Right)

Fig. 8: Average return in Pendulum environment in with
original dynamic and modified dynamics (Right)

Fig. 9: Average return in LunarLander environment in with
original dynamic and modified dynamics (Right)

Fig. 10: Average return in Cartpole environment

Fig. 11: Average return in Mountain Car environment

Fig. 12: Average return in Pendulum environment



Fig. 13: Average return in Cartpole environment

Fig. 14: Average return in MountainCar environment

Fig. 15: Average return in Pendulum environment

Fig. 16: Validation task: Learning curves and demonstrator
feedback rates for the Balance experiment

2) Object pulling task: In this task the high level policy
was taught in the setup with a short rope for pulling the
object, and later this policy was successfully validated with
a longer rope without additional human input. From the
feedback given by the teacher, the agent is has learnt to
trace a path in the XY plane within 20 episodes (fig 17).
The agent successfully learns to trace a path with a short
string. Further feedback is provided for the agent to learn to
avoid the obstacle. The amount of feedback reduces once the
agent has learnt the basic path. Additional feedback is given
to fine-tuned the behavior to avoid obstacles.

As it is depicted in the figure 18, with dotted lines it
is shown the trajectories followed by the object and with
the solid lines the trajectories executed by the the robot
end-effector. The black dotted line is an object reference
trajectory obtained with teleoperation. In red, it is shown
the trajectories obtained in the original environment, and in
blue the ones with the modified dynamics (long rope).

Fig. 17: Validation task: Learning curves and demonstrator
feedback rates for the Object Pulling task

The high level policy was successful at executing the task,
avoiding the obstacles seen in figure 5, while the low level
policy had to execute a rather different path in order to make
the object to follow the desired trajectory without collisions.



Fig. 18: Validation task: Path traced by the puck and the end
effector when using a short thread and a long thread

VI. CONCLUSION

In this work we have introduced a policy learning method
that offers the advantages of interactive imitation learning,
which offers: i) a strategy to collect better samples in order
to train more robust policies, avoiding the distribution shift
issues: ii) a reduction on the effort of the human teacher
giving the possibility of correcting only when considered
necessary, instead of every time step; iii) another reduction
on the teacher load because the interventions are given with
corrections on the observed state space that could be simpler
than correcting the executed actions, as tested before by TIPS
[18]; iv) a decoupling of the dynamics of the environment
with the split of the policy learning into the high and
low level policies, a strategy that allows to generalize the
knowledge transferred by the teacher to unseen conditions of
the dynamics of the environment, without additional teacher
intervention.

The method was tested exhaustively in simulations, and
compared to TIPS, showing that PILOTING could be equiv-
alent to TIPS when the observed space is the full state
space. However, the results showed that PILOTING learns
general policies that could be applied to varied changes
of the environment without any additional guidance of the
teacher, because it manages to extract and represent better
the relevant knowledge from the teacher interventions. This
policy representation characteristic of PILOTING provides
an advantage over TIPS, which learns a standard state to
action policy that cannot be reused successfully in the new
environments.

The ablation studies showed that the proposed policy
structure composed of the high and low level policies could
work more data efficiently whenever one of them is known,
and that in general each of them contributes to around half
of the experience load required during learning, i.e., when
one of the policies is known, it is only needed half of the
time to learn the other one with respect to the situation

of learning both policies together. The experiments showed
that learning the forward dynamics model online is the
alternative that worked for all the situations, since it creates
the loop in which the improvement of the policy helps to
obtain better transition samples that work for improving the
forward dynamics model, which again benefits the policy
improvement, as the learning loop present in some of the
Model Learning RL methods like PILCO [23].

The validation of PILOTING in the real robot tasks,
wherein the change of environment was more evident,
showed that the method is successful at learning policies
that capture the high level intention of the teacher.

However, there are some considerations that can limit the
performance of the proposed algorithm. If the dynamics of
the environment changes to a large extent, the agent might
have to follow a different strategy/ trajectory to achieve the
objective. The high level policy learnt may not be optimal
to execute the task. Additional feedback may ne required to
make the learnt policy optimal in the new environment. In
the relatively small dimensional spaces in our experiments,
the action computation is carryout in every step and is
inexpensive, however this does, not hold for higher dimen-
sional spaces where a lot of computational power would be
required, we could solve this by training a state to action
policy simultaneously,

We explained the learning framework used for learning
a policy in observation space and how learning the policy
in an observation space allows the agent to execute the
task even if the environment dynamics changes. Learning
the policy in observation space allows the agent to execute
the task in the new environment by reusing the policy from
the old environment and knowledge of the agent’s dynamic
model in the new environment. The dynamics model can be
either provided or can be learnt from interaction with the
environment.

However, there are some considerations that can limit the
performance of the proposed algorithm. Firstly, PILOTING
queries the dynamics model in each step for computing the
action that produces the desired state transition. The perfor-
mance of our algorithm is dependent on the quality of the
learnt state space policy and the dynamics model. Learning a
dynamics model through random exploration can be difficult
in many environments and typically requires a significant
number of environment interactions. The proposed algorithm
computes action by sampling random actions in a given state,
followed by execution of the chosen action. Secondly the
proposed algorithm suffers same the limitations of IIDM
outlined in TIPS, computing actions from IIDM would not be
scalable in high dimensional continuous action spaces, such
computation would require more computational resources
and affecting the real time execution.

One solution to avoid the querying the FDM in each
step is to learn state action policy in the new environment,
without the need for additional human teacher interventions.
The state space policy learnt in the original environment can
be used to train or retrain a state-action policy in the new
environment. The above proposed method was implemented



as modification to TIPS, where the state action policy learnt
in the original environment is retrained using the state space
policy learnt in the original environment. The state space
policy is learnt simultaneously in an online manner while
the demonstrator trains the state action policy. In the new
environment, no additional demonstrative effort is required
for training the state action policy. The advantage of such a
method is that the agent can be trained in a human intuitive
environment, but the agent is able to perform the same task in
a new environment where the dynamics of the environment
may not be intuitive. However, the quality of the new state
action policy learnt is dependent on the quality of the state
space policy (πo) and the forward dynamics model fθ learnt.
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