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ABSTRACT: The development of engineered cell microenvironments for fundamental cell
mechanobiology, in vitro disease modeling, and tissue engineering applications increased
exponentially during the last two decades. In such context, in vitro radiobiology is a field of
research aiming at understanding the effects of ionizing radiation (e.g., X-rays/photons, high-
speed electrons, and high-speed protons) on biological (cancerous) tissues and cells, in
particular in terms of DNA damage leading to cell death. Herein, the perspective provides a
comparative assessment overview of scaffold-free, scaffold-based, and organ-on-a-chip models
for radiobiology, highlighting opportunities, limitations, and future pathways to improve the
currently existing approaches toward personalized cancer medicine.

KEYWORDS: engineered cell microenvironments, cancer, 3D printing, organ-on-a-chip, organoids, radiobiology

1. INTRODUCTION
Radiobiology is a field of research that investigates the effects
of ionizing radiation (e.g., X-rays/photons, high-speed
electrons, and high-speed protons) on biological (cancerous)
tissues and cells, in particular in terms of DNA damage leading
to cell death.1 Systematic studies on the morphological and
functional changes of cancer and healthy surrounding cells
after being exposed to radiation cannot be routinely performed
on animals due to their scarcity and ethical reasons or living
tissues derived from biopsies as well due to their scarcity and
the difficulty in preserving them alive for a long time. Proton,
photon,2 and electron-beam3,4 radiation are the currently
available main radiotherapy techniques for treating cancer.
During the past decade, several clinical studies focused
attention on the comparison between photon (the conven-
tional X-ray radiation treatment) and proton (the more recent)
therapy. Protons have a depth-dependent energy deposition,5

which is very different from that of X-rays. The low deposition
of energy at the entrance of the tissue ensures that this region
is not damaged and the beam retains its energy. At the Bragg
peak, which is targeted at the tumor site, the maximum dose is
deposited. Therefore, theoretically, the damaging effect of
protons can be fundamentally much better targeted at the
tumor, sparing the healthy surrounding tissue. This assumes
particular relevance in light of recent advances concerning
FLASH therapy6 (a technique based on the use of ultrahigh
dose rates, maintaining the anticancer action of conventional
radiation therapy but reducing induced damage to the healthy
surrounding tissue). FLASH and conventional modalities

feature respectively hundreds of gray per second and a few
gray per minute dose rates. Nonetheless, a quantifiable
comparative analysis of these treatments, including also
electron-beam therapy7 or heavy ions,8 across different types
of cancer types requires the creation of physiologically relevant,
reproducible in vitro cancer models. There is therefore an
urgent need for cell-instructive engineered microenvironments
that can be exploited as standardized and biomimetic in vitro
models for understanding how cancer cells’ development and
response to radiotherapy take place in a configuration that
overcomes the limitations of conventional cell monolayers
provided by “petri-dish” approaches.

One of the main targets of these models is to mimic as much
as possible the native tumor microenvironment (TME), in
terms of dimensional, geometric, biochemical, and mechanical
features. In this Perspective, we discuss the advent of
engineered cell microenvironments as a benchmark tool for
radiobiology (Figure 1). In particular, we provide a
comparative overview of the three main categories of available
models, scaffold-free, scaffold-based and organ-on-a-chip,
highlighting the latest developments in the field as well as
advantages and disadvantages of each approach. Finally, we
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provide an outlook about the new pathways that we envision to
further address the current needs to develop models enabling
tangible personalized cancer medicine. Table 1 highlights the
main findings, advantages, and disadvantages of each model
category that are discussed in the following sections.

2. SCAFFOLD-FREE IN VITRO MODELS FOR
RADIOBIOLOGY
2.1. Tissue Culture Plastic (TCP) Models. TCP models

refer to the use of flasks, Petri dishes, and well-plates to culture
and conduct experiments with cells. TCP are usually made of
stiff materials such as polystyrene or polycarbonate (Young’s
modulus E ≈ 2−4 GPa), are sterilizable, and are suitable for
high-throughput analysis. Typically, TCP models employ a
layer of biochemical coating (e.g., laminin, collagen,
fibronectin, and Matrigel with a Young’s modulus ranging
from a few pascal to hundreds of kilopascal) to favor cell
adhesion. Nonetheless, such layers are typically submicro-
metric thick, and cells are known to probe stiffnesses until a
few microns in depth;9,10 therefore, the Young’s modulus of
the Petri dish must be taken into account when considering
cell−substrate interactions. In the context of radiobiological
studies, these flasks are typically used to perform clonogenic
assays.11,12 Clonogenic assays are widely used to determine at
which rate cells exposed to radiation continue to proliferate,
the changes that occur in these subsequent clones, and the
survival percentage of the cells. Even though TCP is
inexpensive and easy to handle, it leads to the formation of
unrealistic two-dimensional (2D) cell monolayers, which
substantially differ from the three-dimensional (3D) spatial
configuration of real cancer tissues. For this reason, in the
context of radiobiology studies, they can provide results that
do not align with in vivo13,14 or other 3D in vitro models,15,16

often resulting in higher DNA damage upon exposure to
treatment.17,18 In experiments involving electron-beam ther-
apy, TCP models also may lead to uneven dose distribution

Figure 1. Schematic representation of the radiation sources and main
cancer cell culture in vitro models for radiobiology: TCP, scaffold-
based models, scaffold-free models, and organ-on-a-chip models.
Created using Biorender.
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due to the unintended interaction between the radiation and
the plastic.7 Despite these pitfalls, the TCP-based clonogenic
assays are considered the gold standard but still need to be
adapted to 3D cell culture.19,20

The use of 2D TCP cell models can lead to a loss of specific
cell functionalities. Proteins, such as integrins, are responsible
for adhesion of the cells to their surrounding environment.
Studies have shown that the usage of a fibronectin20 coating on
the plastic substrates leads to a higher expression of these
integrins, and subsequently a higher surviving fraction of the
cells. This is a phenomenon called cell-adhesion-mediated
radioresistance.20 This effect is observed in many cancer types
including breast, pancreas, lung, and glioblastoma and shows
that the chemical composition of the extracellular matrix
(ECM), and the use of these materials influences the
radiosensitivity and thus the accuracy of the in vitro
model.20 Cordes et al. exposed a fibronectin-coated 2D
TCP-ECM-based model cultured with either glioblastoma,
pancreatic cancer, lung carcinoma melanoma, normal human
skin, or lung fibroblast cells to 240 kV X-ray radiation in a dose
range of 0−8 Gy. They found that the fibronectin coating leads
to an increase in cell adhesion, which, in turn, results in an
increase in radioresistance compared to cells grown on only
the polystyrene substrate.20 From a mechanobiology point of
view, it is also known how substrate stiffness affects the
morphology, proliferation, and radiosensitivity of cancer cells,
as reported for cervical squamous carcinoma,21 where stiffer
substrates promoted proliferation and increased radioresist-
ance of cervical cancer cells by affecting PI3K/Akt apoptosis
pathways.

The advantages of TCP models should not be under-
estimated, however. They are easy to use and reproducible and
can be employed for a wide variety of biological end points.
TCP models are often functionalized with matrix materials
(such as collagen, laminin, or Matrigel) to promote cell
adhesion20 and/or modulate parameters such as oxygen
concentrations,22 which can play a role for the emulation of
hypoxic environments, distinctive of cancer.23 Further, the
monolayer model enables high-throughput immunofluores-
cence image-based analysis. The study of radiotherapy effects
can often be extensive because numerous replicas are required
for statistically robust results.11 Therefore, TCP models in the
context of radiobiology studies, involving a large variety of
parameters such as the type of radiation source (e.g., X-rays,
protons, electrons, and heavy ions), dose rate (FLASH or
conventional), and delivery method (single dose, fractionation,
and continuous or pulsed delivery), can be helpful at the cost
of lower physiological relevance. A large body of literature,
information, and expertise on the handling of TCP models
already exists, enabling the investigation of different aspects
related to radiotherapy responses such as the effects of
hyperthermia,24 oxygen concentration,25 or radiotherapy-based
alterations of cell migration.26 The standard, inexpensive,
reproducible, and high-throughput approach of TCP models
also allows one to compare radiobiological research25 and
reduce variability related to parametric studies involving
changes in the radiation type, dose, and dose delivery.
2.2. Tumor Spheroid Models. The organization of the

cells and their interaction with the ECM lead to biophysical
changes, which can mediate DNA damage, cell survival,

Figure 2. Examples of scaffold-free models and their responses to radiation. (A) Phase contrast images superimposed with propidium iodide (PI)
fluorescence snapshots from time-lapse imaging of colorectal cancer spheroids irradiated with 20 or 5 Gy at 0 and 20 days after exposure. Scale bar:
500 μm. Adapted from ref 28. Available under CC-By 4.0. Copyright 2020 Springer Nature. (B−I) Human tongue squamous cell carcinoma
spheroids stained using the Fucci method. Adapted from 29. Available under a CC-BY-NC-ND license. Copyright 2017 Cancer Science published
by John Wiley & Sons Australia, Ltd. on behalf of Japanese Cancer Association. (B) Proliferating human tongue squamous cell carcinoma cells on
the rim are stained fluorescent green. (C) Red cells in the quiescent stage are localized in the core of the spheroid. (D) Cell nuclei in the spheroid
are stained with Hoechst. (E) Cells in the S-phase (synthesizing DNA) are marked with EdU in pink (in parts B−E, scale bar = 100 μm). (F)
Overlay of the cells on the periphery and inside the tumor spheroid (scale bar = 200 μm). (G) 53BP1 DNA damage foci number at the indicated
times after 10 Gy of irradiation. The green bar indicates cells on the periphery and the red bar those in the internal regions. (H and I) Growth of
the spheroid over 76 days after being irradiated with 10 Gy. The inner quiescent cells remain in a smaller core, and the outer portion disintegrates
(scale bar = 200 μm). (J) Correlation of rectal tumor organoid model outcomes with patient treatment outcomes. It is observed that if the organoid
shows that any of the three treatments used is effective, then the patient outcomes correlate positively. Reproduced from ref 30. Available under a
CC-BY license. Copyright 2019 Elsevier Inc. (K and L) SOX2 positive cells (green) are negative for cleaved Caspase-3 (red) after being exposed to
3 Gy radiation on a glioblastoma organoid rim. The arrows indicate the apoptotic cells positive for cleaved Caspase-3 (scale bars = 100 μm).
Reproduced from ref 31. Copyright 2016 American Association for Cancer Research.
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proliferation, and even differentiation.20 Tumor spheroids are
3D tissue-like architectures resulting from spontaneous cell
assembly, featuring cell−cell interactions, and reproducing
physiological tumor conditions. Various methods can be
employed to generate tumor spheroids including the
hanging-drop method, bioreactors, rotational flasks, and,
more recently, microfluidics.27 Cell aggregation leads to the
formation of an oxygen gradient and a necrotic cellular core
due to the difficult penetration of cell medium nutrients. This
oxygen gradient allows one to study the effects of hypoxia on
tumor growth kinetics. The hypoxic environment enables, for
instance, the assessment of the differential response of tumor
spheroids to FLASH and conventional radiotherapy by
measuring their changes in mass or size after irradiation. In
their work, Brüningk et al.28 formed monoculture cellular
spheroids with various human cancer cell lines (colorectal
cancer and squamous cell carcinoma) and exposed them to X-
ray radiation doses of up to 20 Gy. As can be observed in
Figure 2A, irradiated spheroids retained a dense structure with
dead cells detaching from the outer cell layers [propidium
iodide (PI) staining, allowing the visualization of dead cells],
resulting in gradual shrinkage from the outside inward. The
necrotic core of the spheroid is more compact in the 5 Gy
spheroid compared to the 20 Gy one, and it is a result of the
varying oxygen concentration between the core and rim of the
spheroid. Samples irradiated with 10 and 20 Gy continuously
shrank, preventing central necrosis and resulting in a decrease
in the PI intensity due its dependence on the spheroid volume
captured in the focal plane upon imaging.28 In this study, the
authors also discuss the importance of 3D models because 2D
models do not represent the physiological geometry of the
tumors and may form an inaccurate basis to calculate the
biologically equivalent dose to which patients are exposed to.
2D models provide an unrealistically uniform flow of oxygen
and nutrients to the cells, which can affect their responses to
the treatment modes being investigated. Furthermore, they
also discuss the lack of a standardized method to quantify the
spheroid response to radiation and that clonogenic analysis of
the spheroid requires disaggregation of the spheroid, which
may lead to nonrepresentative results.

Onozato et al.29 in their work conducted immunofluor-
escence imaging and analysis on spheroids obtained with
human tongue squamous cell carcinoma cell lines (Figure 2B−
I). The spheroids were created using human tongue squamous
cell carcinoma (SAS) cells and exposed to X-ray radiation (130
kV, 0.75 Gy/min). The cells were fluorescently stained using
Fluorescent Ubiquitination-Based Cell Cycle Indicator
(Fucci). In this method, the cells change color from red to
green as they progress through the cell cycle. They then
compared to the radiosensitivity of proliferating cells (located
at the spheroid periphery; green, Figure 2B) and non-
proliferating ones (located in the spheroid core, under mild
hypoxia; red, Figure 2C). Figure 2D shows the nuclei of the
cells stained with Hoechst, and Figure 2E shows the cells that
are synthesizing DNA (S-phase of the cell cycle) stained with
5-ethynyl-2′-deoxyuridine (EdU). These cells are fluorescently
labeled and can be distinguished among each other in Figure
2F. Parts B and E of Figure 2 indicate that the proliferating
cells are mostly localized at the periphery of the spheroid,
while red cells form the quiescent core. Higher radioresistance
was observed in the proliferating cells compared to 2D
monolayers, after irradiation, due to the well-known contact
effect that enhances cell radioresistance by cell−cell

interaction.32 The rim cells showed a higher number of
DNA damage foci compared to inner cells, which can be
attributed to hypoxic conditions in the spheroid’s core. The
bar graphs in Figure 2G highlights this difference in terms of
53BP1 foci formation, which is a protein immediately recruited
by the cell to repair the induced DNA damage.29 Further, after
irradiation, the spheroids were maintained in culture for 76
days, during which the outer proliferating layer is shed from
the spheroid and the inner quiescent core remains intact.
Figure 2H shows the spheroid immediately after irradiation,
and Figure 2I shows the spheroid’s shrinkage after 76 days due
to radiation-induced damage. It is also noteworthy that, when
plated later into a 2D monolayer, the cells started to regrow
and displayed clonogenicity.

Spheroids also present some disadvantages. Even though
they have tissue-like features, they are affected by significant
limitations such as the impossibility to maintain a uniform
size33 and the lack of a vascular system.34 They therefore do
not always represent the most physiologically relevant
approach to study the radiation effects on cells. Generally,
spheroid analysis after radiation necessitates its disaggregation
to generate clonogenic survival assays. This leads to a loss of
the TME, which contributes to the cellular radiation response.
Onozato et al.29 demonstrated the difference between survival
assays of spheroids and monolayers. In particular, they
reported how spheroids at the end of the extended 76-day-
long culture show the presence of a dormant quiescent core
(Figure 2H), which is not observed in the presence of 2D
monolayer clonogenic assays. In addition to this, it is worth
mentioning that there were limitations related to the imaging
of deeper regions of the spheroids (>100 μm from the surface),
appearing dark due to the optical conditions of the employed
confocal scanning microscopy system.29

2.3. Tumor Organoid Models. Organoids are 3D cell
culture models in which a functional part of an organ is
(minimalistically) recreated at the microscale in vitro. The
most significant difference between spheroids and organoids is
the use of multicellular models (i.e., embryonic-, adult-,
induced pluripotent stem-cell-derived somatic cells along
with tumor cells) to include a specific organ function or
growth.35,36 Organoids feature also higher-order self-assembly
structures compared to spheroids (which typically organize
into spherical cellular aggregates) because stem cells self-
organize through cell sorting and spatially defined differ-
entiation to resemble organ cell types, structures, and
functions.36,37 In order to foster cell assembly and organization
of the tissue-like structures, synthetic and natural matrices are
employed. Among these, we find Matrigel but also
decellularized hydrogels,38 which feature relatively soft
mechanical properties (Young’s modulus in the pascal to
kilopascal range) playing a critical role in regulatory and
pathological cell behaviors.39 Organoids are a promising model
for radiobiological studies and have been employed to study
the response of tumor and healthy cells to radiation doses for
different types of cancer including glioblastoma,31 rectal,30 and
pancreatic40 cancers. In their studies, Yao et al.30 and Pasch et
al.40 show how rectal tumor organoids can be used to predict
the response of the cancer to chemotherapy and radiation,
where tumors are extracted from different patients requiring
different doses of chemotherapy and radiotherapy in
combination to be effective. Figure 2J shows the correlation
of tumor organoid data to clinical patient outcomes from the
study of Yao et al.30 and reports how a good clinical outcome
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was observed when the organoids were responsive to at least
one of the three treatment components. Hubert et al.,31 on the
other hand, created glioblastoma organoids from tumors
derived from patient resections. The organoid has a unique
feature, which allows the growth of cancer stem cells (CSCs)

and nonstem cells simultaneously. In their work, they exposed
the organoid to 3 Gy of X-rays and were able to observe a
higher radioresistance in the CSCs compared to the nonstem
cells around the organoid rim. The arrows in Figure 2K,L
indicate the apoptotic cells, which were almost exclusively

Table 2. continued
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negative for the CSC marker SOX2. The preservation of such
cellular heterogeneity makes organoids capable of better
recapitulation of the in vivo tumor response to radiation
compared with other 2D models. The formation of organoids
from direct patient sources, in particular, enables the
investigation of differential responses of healthy, tumor, and
cancer stem cells and forms a promising tool for personalized
medicine.41 One of the limitations of the organoid approach is,
on the other hand, that they often require ECM-derived
matrices to support their growth, such as Matrigel,42 which
suffers from batch-to-batch variability and is derived from
animal cancer tissue. This may interfere with mechanistic
studies of cell behavior, making it difficult to distinguish
biological effects caused by controlled experimental variables
from those caused by Matrigel itself.

Spheroid and organoid models thus represent an appealing
methodology to foster the ability of cells to self-assemble and
grow organically. These models can include multiple cell types
cultured together and promote a high degree of cell−cell
interaction. The work of Onozato et al.29 is an example of how
spheroid models can be used to model the edge and core
effects of tumors. Organoids show good correlation with
clinical outcomes.30 The reliability of the experiments depends
also on the reproducibility with which the spheroids can be
created (e.g., similarity in terms of dimensions). One typical
disadvantage of 3D scaffold-free models in general is their
inability to form vascular networks43 and the absence of
perfusion. In such context, the continuous or pulsed flow of
fluid over the cells induces physical stresses that could affect

Table 3. Comparison of Various Manufacturing Methods and Materials Used in Scaffold-Based and Organ-on-a-Chip Models
for Radiobiology
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apoptosis44 and influence the readout of radiotherapy
outcomes.

3. SCAFFOLD-BASED IN VITRO MODELS FOR
RADIOBIOLOGY

The classification term “Scaffolds” refer to engineered
structures and materials (typically polymers or hydrogels45)
designed to reproduce some features of the natural ECM in
order to promote physiological cell morphology, adhesion, and
growth. Such microstructures are typically fabricated by
employing manufacturing techniques,46 including, but not
limited to, stereolithography, bioprinting, fused deposition
modeling, inkjet printing, and two-photon polymerization
(2PP) or other 3D fabrication approaches such as hydrogel
self-assembly, electrospinning, gas foaming, or salt leaching.47

These microenvironments foster a 3D spatial distribution of
cells similar to the natural tissue, overcoming the cell
monolayer configuration of TCP models. The replication of
ECM features such as rigidity, can lead to more in vivo-like
expression of cancer proliferation and metabolism markers.48

Scaffolds also allow the replication of biological features such
as vasculature and porosity at the microscale. Scaffold-based
approaches enable as well better control of the cell density, by
tuning their porosity, compared to spheroids or organoids,
improving imaging (optical, electron, and immunofluorescent
confocal microscopy) of cellular and subcellular components.
Scaffolds’ features are also typically employed to guide cell
network disposition and growth in 3D, which can be crucial for
accurate alignment during radiation studies, especially in
FLASH contexts where the beam spots can be very narrow
in size.

Figure 3. Examples of scaffold-based approaches to study the radiation response of cancer cells. (A and B) SEM images of PANC-1 cells in sections
of uncoated PU scaffolds. The blue arrows point to cells growing on the scaffold (scale bar = 10 μm). Reproduced from ref 53. Available under CC-
BY 3.0. Copyright 2018 Royal Society of Chemistry. (C) Effect of radiotherapy on PANC-1 cells in PU scaffolds 17 days post-treatment. Higher
doses show a higher proportion of dead cells (scale bar = 100 μm). Reproduced from ref 51. Available under CC-BY 3.0. Copyright 2019 Royal
Society of Chemistry. (D and E) 2PP-fabricated scaffolds cultured with HUVECs and U251 Glioma cell lines. The arrows indicate the
microstructures on the surfaces of the cells that have been quantified. (F and G) 3D confocal images of the GBM cells/HUVECs in 2D and 3D
coculture configurations after a 8 Gy proton irradiation dose. Red shows the Gamma H2AX foci, and green shows vWF used to distinguish
HUVECs from GBM cells (scale bar = 20 μm). (D−G) Reproduced from ref 18. Available under a CC-BY License. Copyright 2023 Advanced
Healthcare Materials published by Wiley-VCH GmbH. (H) Bioprinting of GAF scaffolds with embedded GBM cells. (I) SEM micrograph of the
GAF scaffold without cells. (H and I) Reproduced with permission from ref 54. Copyright 2024 Wiley-VCH GmbH. (J) Decellularized porcine
brain used to create the BdECM bioprinted construct. (K) Schematic of the glioblastoma-on-a-chip model made of BdECM bioinks with HUVECs
and GBM cells used to create a compartmentalized structure. The silicone ink on the outer layer is gas-permeable to allow for the diffusion of gases
to the cells. (L) Formation of a hypoxic core, as indicated by PM in green, and formation of a proliferative rim, as shown by Ki-67 in red (scale bar
= 200 μm). (M) Photograph of a mock glioblastoma-on-a-chip model using the laden HUVECs (magenta) and GBM cells (blue) bioink to show
stratification of the layers (scale bar = 2 cm). (J−M) Reproduced from ref 55. Copyright 2019 Springer Nature Limited, under exclusive license.

ACS Applied Materials & Interfaces www.acsami.org Perspective

https://doi.org/10.1021/acsami.4c20455
ACS Appl. Mater. Interfaces 2025, 17, 5563−5577

5570

https://pubs.acs.org/doi/10.1021/acsami.4c20455?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.4c20455?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.4c20455?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.4c20455?fig=fig3&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.4c20455?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Many different materials and fabrication methods have been
employed to create scaffold-based models for radiobiology.
Each of these methods has their respective advantages and
disadvantages, and the outcome and biological end point
studied serve as guidelines to select the most appropriate
model. A comparative overview between scaffold-based,
scaffold-free, and organ-on-a-chip models for radiobiology is
presented in Table 2, while Table 3 provides an additional
comparison in terms of the manufacturing methods and
materials used in scaffold-based and organ-on-a-chip models.

Polymeric scaffolds are robust from a mechanical point of
view (i.e., typically not prone to substantial swelling or
shrinking in a cell medium) and can be created with a variety
of biocompatible materials that allow their use as a tool for
qualitative or quantitative analysis but also for applications as
tissue grafts. Cojocaru et al.49 showed that the use of a
chitosan-based polymer fabricated by the coprecipitation of
CaCl2 and NaH2PO4 as a graft to replace cavities left behind
after radiotherapy in bone tissue, could not only allow for the
structural stabilization of the bone but also provide an
environment that is not affected by radiation, and could be
used for radioresistant cancer cell treatment using in situ drug
release.

Scaffold-based in vitro models have specific microarchitec-
ture and geometries to mimic real tissue properties and feature
higher reproducibility compared to spheroid and organoid
models, although they are not as inexpensive and high
throughput as TCP models due to the need of costly
fabrication setups and relatively high fabrication time per
sample. On the other hand, scaffold-based models enable long-
term (weeks or months)50 postradiation studies for the
evaluation of realistic treatment responses.51,52 The relative
chemical stability of polymeric scaffold materials such as
chitosan, polylactic acid (PLA), or polyurethane (PU; Figure
3A) makes this possible.

Parts A and B of Figure 3 show the growth of pancreatic
ductal adenocarcinoma (PDAC) cell line PANC-1 on PU
scaffolds.53 The scaffolds support the growth and proliferation
of the PANC-1 cells for 29 days, without the formation of any
necrotic region, and high cell viability with cellular self-
assembly into dense clusters.53 Figure 3C shows the PU
scaffolds to evaluate the radiation response of the PANC-1
cells.51 The relationship between radiation and apoptosis is
directly dependent on the dose, with the higher doses showing
a greater number of dead cells. It was also reported that
radiation-induced cell death for PANC-1 cells is only detected
after 17 days in culture; thus, a platform that allows culture at
such time lines is very informative.51 From a mechanobiology
point of view, even if PLA and PU feature relatively high
Young’s moduli (in the megapascal to gigapascal range), it is
important to mention that the cell effective stiffness or the
effective shear modulus that cells experience while interacting
with 3D micro- or nanostructures depends on the architectural
features of the biomaterial and is significantly softer than the
stiffness of the material that the microstructures are composed
of, as reported for mesenchymal stromal cells56 and neurons.57

These scaffold-based models can be suited to mimic other
specific features of the tissue or cancer microenvironment such
as the porosity of bone tissues,49 pancreatic ductal zone and
compartmentalized architecture,50 or blood-vessel-like archi-
tecture to mimic part of the glioblastoma microenviron-
ment.17,18,58 The use of high-resolution printing methods, such
as 2PP,59,60 and the development of specific biomaterials (e.g.,

IP-Visio) featuring low intrinsic autofluorescence are, in
particular, very promising for mechanobiology, in vitro disease
modeling, and treatment. 3D microvessel-like scaffolds printed
with IP-Visio and colonized by glioblastoma cells and human
umbilical vein endothelial cells (HUVECs) are depicted in the
micrographs of Figure 3D,E. The engineered glioblastoma
(GBM) microenvironments reported by our group showed
how 3D GBM models display an amount of DNA damage foci,
upon exposure to conventional proton radiation, lower than
2D GBM models (in line with the comparison between natural
GBM tissue versus 2D models) and that endothelial cells have
a direct effect on GBM radioresistance.18 The difference in
terms of amount of DNA damage foci between 2D and 3D
coculture models can be qualitatively seen in Figure 3F,G and
has been quantitively assessed as well. This fabrication method
has broad applications due to its versatility in terms of feature
resolution and a high degree of design control. The employed
photo-cross-linkable materials are stable in cell medium, are
compatible with multiple cell types, and remain stable upon
exposure to radiation. The same microfabrication technique
(2PP) was employed to show how microscaffolds, featuring
different Young’s moduli and stiffness gradients, enable cancer
cell invasion in the presence of softer architectures, while the
introduction of 3D stiffness “weak spots” boosts the rate at
which cancer cells invade the scaffolds.61 Scaffold-based
approaches were also used in specific systems to create an
oxygen and lactate gradient in the cell medium through a
perforated acrylic plate, as demonstrated by Simon et al. in
their work.62 Their model was compatible with fluorescent
microscopy, and they were able to infer that the O2 gradient,
lactate gradient, and cell density can affect how the cells
respond to radiation, showing that decreasing levels of oxygen
can reduce cellular proliferation of nonsmall cell lung cancers
and increase their radioresistance.

In the presence of 2D TCP models, the effectiveness of
radiation response is measured often by the “gold standard”
clonogenic assays in which the radiation lethality is defined as
the reduced reproductive capacity of the cells. For 3D-
engineered microenvironments, however, this standard does
not exist yet.63 In particular, there are challenges associated
with the lysis of cells adhering only on 3D scaffolds, the
extraction of the cell lysate, and the establishment of standard
protocols to compare the outcomes of different radiation
modalities, energies, materials, design, and fabrication param-
eters.63 An alternative is reported in other recent works, which
employed confocal immunofluorescence imaging instead and
extensive morphological analysis and characterization.18,64

To further study the mechanisms of radiation responses of
cancer, 3D bioprinting provides another appealing alternative.
Bioprinting is a process by which live cells are encapsulated
within a biomaterial and then printed into a desired geometry.
Liu et al.54 in their work report the use of a gelatin alginate−
fibrinogen (GAF) hydrogel system as a 3D material in which
GBM cells are embedded and printed into woodpile scaffolds,
as depicted in Figure 3H. Figure 3I shows a magnified
micrograph of the microstructure of the material. These
matrices foster cellular−biomaterial interaction with a highly
controlled spatial distribution of the cells in the material. The
authors showed that encapsulation of the cells in the bioink
does not significantly affect the cell viability.54 The use of this
method allows one to create a scaffold featuring a 3.2 kPa
Young’s modulus, which is comparable to the brain ECM,
ranging between 0.1 and 1 kPa.65 After the bioprinted
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constructs were exposed to X-ray radiation doses of 0, 2, 4, 6,
and 8 Gy, it was reported that the 3D models featured
increased radioresistance and higher cell survival than the
corresponding 2D models. In another example, Yi et al.55

employed a decellularized porcine brain matrix (BdECM;
Figure 3J) to create a bioprinted architecture. The design, as
shown in Figure 3K, employs the BdECM gel to culture
glioblastoma cells and HUVECs in concentric rings to mimic
the cross section of the tumor with a gas-permeable silicone
outer ring and allow gas exchange. They observed, as reported
in Figure 3L, the formation of a hypoxic core [indicated by
pimonidazole (PM)] and a highly proliferative index on the
rim of the construct (indicated by Ki-67). Figure 3M is a
photograph of a mock glioblastoma-on-a-chip model showing
the concentric rings printed with the BdCEM bioink. The
design of the model featuring a central bioprinted GBM core
creates an oxygen gradient from the rim to the center,
facilitated by the presence of the gas-permeable silicone layer.
The formation of such an oxygen gradient and the cellular
heterogeneity in the model is highly representative of the in
vivo tumor model, and the use of materials extracted from
biological sources promotes cell−cell and cell−matrix inter-
actions. The bioprinted glioblastoma-on-a-chip models were
then subjected to chemoradiotherapy by following the
treatment protocols of the patients from whom the cells
were derived. The cells were exposed to γ radiation, and a

positive correlation between the outcomes of the patients and
the cell survival outcomes of the on-chip models was observed.

3D scaffold-based models overcome a significant problem of
organoid and spheroid models (3D scaffold-free models),
which is reproducibility. These models can use a larger variety
of cell types because they can be designed and fabricated to the
dimensional requirements of the cells, are mechanically robust,
and can be employed for the use of coculture.18 While they do
not have fluid-flow features, such models can be integrated
within organs-on-chips or a pump system. Optimizing the
parameters of fabrication to successfully integrate these models
within flow would require expertise and insights from
engineering and materials sciences but can lead to reproducible
cellular models. Furthermore, these models can be optimized
for the assays in which they will be employed, by incorporating
specific features such as transparency and nonautofluorescence
for immunofluorescence-based assays, as well as surface
treatments for protein-, DNA-, and RNA-based analysis. An
important aspect to consider is that these models typically
require specialized microfabrication equipment (depending on
the technique) and expertise from cross-domain collaborations.
Finally, even though the use of synthetic polymers in the
models can have advantages in terms of mechanical robustness
and reproducibility, additional efforts are needed to further
develop semisynthetic or natural hydrogel materials better
mimicking the ECM with which cells interact in vivo.

Figure 4. Examples of OOC models used for the cancer radiation response. (A) Schematic diagram of a microfluidic culture set up for the study of
the HNSCC response to radiation. A syringe pump is connected to the microfluidic device, which provides continuous flow. (B−E) Representative
images of serially sectioned lymph node tissue containing tumor metastases incubated in the microfluidic device, visualized at 400× magnification
24 h after being exposed to 5 Gy radiation treatment. (B and C) TUNEL assay and (D and E) immunohistochemistry staining of γH2AX and Ki-67
of HNSCC cells exposed to 6 MV X-rays (scale bar = 60 μm). (A−E) Reproduced with permission from ref 69. Copyright 2017 Spandidos
publications. (F) Schematic showing an OOC with the top section housing intestinal epithelial cells showing villi-like formations and the lower
chamber with a hollow lumen, made of endothelial cells, that allows fluid flow. (G) Representative immunofluorescence confocal 3D reconstruction
visualizing a cross section of the gut-on-a-chip device (scale bar = 100 μm). (H) Cross-sectional 3D view of the endothelium−epithelium layers
(scale bar = 100 μm). (I) Shortening of the villi by radiation-induced damage (scale bar = 100 μm). (J) SEM micrograph images of the formed villi
structures [scale bar = 1 μm (inset) and 10 μm (low magnification)]. (K) Villi structures smoothed out after irradiation (scale bar = 1 μm (inset)
and 10 μm (low magnification)]. (F−K) Reproduced with permission from ref 70. Available under a CC-BY license. Copyright 2018 Springer
Nature.
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4. ORGAN-ON-A-CHIP IN VITRO MODELS FOR
RADIOBIOLOGY

Among all of the models that we have discussed so far, either
2D, 3D, scaffold-based, or scaffold-free, a major limitation is
the inability to model blood or fluid flow around the cells.
These “dynamic” features contribute, among other things, to
mechanical stress both on the extra cellular environment and
on the cells themselves. Microfluidic flows also allow the
perfusion of biochemical cues, oxygen, and nutrients within the
cells. Organ-on-a-chip (OOC) models66 can overcome this
limitation. They typically involve a 2D or 3D cell culture
configuration and a fluid flow featuring biologically relevant
flow rates and pressures. Poly(dimethylsiloxane) (PDMS)67 is
a widely used material for the fabrication of these chips due to
its flexibility, transparency, biocompatibility, and relatively low
Young’s modulus.

While not extensively employed for the response of cancer
cells to radiation, the OOC models hold great promise for
radiobiology studies. Carr et al. in their work68 used head and
neck squamous cell carcinoma (HNSCC) tissue biopsies from
patients in a OOC model. The microfluidic device was
manufactured between two layers of glass thermally bonded
together. The tissue is added to the central well and sealed.
The use of a syringe pump created a flow of 2 μL min−1 to
maintain tissue viability. They then exposed the model to 6
MV photon radiation at clinically relevant doses of 2 and 40
Gy and a fractionated course of 5 × 2 Gy. They demonstrated
that such a model could be used to study radiation responses
in HNSCC cells over a period of days after irradiation.68 They
also found that the cells used in the OOC model showed
increased levels of lactate dehydrogenase (LDH), which leads
to cell death. The LDH levels were measured from the effluent
medium from the chip. Cheah et al. used a similar model with
6 MV X-rays to study different end points for HNSCC such as
DNA damage and apoptosis assays69 (Figure 4A). Their
outcomes showed a dose-dependent increase in the Gamma
H2AX expression in the cells undergoing radiation and a
decrease in the expression of proliferation indicated by Ki-67.
They also observed an increase in the TUNEL (apoptosis)
expression (Figure 4B,C).

Representative images of Gamma H2AX and Ki-67
histological staining are shown in Figure 4D,E and correlate
to in vivo and patient data, thus providing a viable alternative
to using xenograft models for such studies, which can take up
to 6 months to generate.69 Jalili-Firoozinezhad et al.70 in their
work modeled a gut-on-a-chip using PDMS (Figure 4F−K)
and reproduced an endothelium−epithelium interface of the
intestinal tissue. The use of an OOC allowed for the creation
of a functional “blood vessel” enabling the flow of nutrients
through its lumen, required by the cells, along with peristaltic
cycling that is essential in a gut model. Upon exposure of the
model to 4−8 Gy of γ radiation, they were able to observe
disruption caused by the radiation exposure on gut cells and, in
particular, on the endothelium, as depicted in Figure 4H,I,
where the characteristic villi of the intestinal cells are flattened
due to radiation damage. The scanning electron microscopy
(SEM) micrographs in Figure 4J,K clearly show this flattening,
which in the human gut would reduce the absorption of
nutrients from food. OOCs have also been used to create
functional models of very complex regions of the brain such as
the blood−brain barrier (BBB) and to study the response of

the BBB to glioma cells,71 thus representing an interesting tool
to study the in vitro radiation response of the BBB.

OOC models can recreate physiologically relevant flow, cell
interactions, and regions within the chip in which cells can
perform specific functions. Gas permeability, the creation of
oxygen gradients within the chips, nutrient flow, and
mechanical stimuli are typical features in such models that
can involve various cell types, as well as their interactions with
each other and the ECM, simultaneously. On the other hand,
OOC models can require a long period of design and
development to successfully include all of the above-mentioned
features. OOC models can also be difficult to handle and to be
kept sterile due to their many parts, pumps, and tubing, thus
increasing the required considerations for radiation experi-
ments.43,72 Finally, even though these types of models feature
high fidelity and biological relevance, they are also affected by a
significantly lower throughput73 compared to TCP approaches,
for instance.

5. CONCLUSIONS AND FUTURE FOCUS
Cancer is one of the first causes of death worldwide.74 Among
cancer types, some of them, such as glioblastoma (the most
aggressive brain cancer) or pancreatic cancer, do not yet have a
cure and/or have a low survival rate. This means that current
treatments for these cancers, typically involving surgery,
chemotherapy, and/or radiotherapy, are still ineffective. One
of the main reasons behind the ineffectiveness of such
treatments is the huge gap between in vitro cancer models
and the in vivo cancer tissue configuration, which unavoidably
leads to possible mismatches between what is observed in
preclinical studies and clinical ones. TCP models and their
associated assays have formed the foundational understanding
of cellular radiation response, but a key question is whether
such cell survival in vitro models can represent clinical tissue
outcomes.43 The persistent failure to translate promising drug/
treatment candidates from laboratory to clinical use highlights
the limited relevance of the current state-of-the-art.73 There is
also a large body of evidence, as we describe here and
elsewhere, about the discrepancy between the expected and
actual radiotherapy outcomes, which can be partially attributed
to the transition from a “2D setting” to a “3D tissue
environment”. 3D environments have been shown to impact
cell growth, proliferation, cell fate, and increased radio-
resistance.43,75 Radiotherapy studies within 3D models is
currently under-researched, and because of the aforementioned
impact, the expansion toward more 3D ECM-like micro-
environments is an urgent need for the development of
physiologically relevant, reproducible, patient-derived models.
Our current knowledge indicates that 3D models feature
increased radioresistance through (i) increased stemness
expressions, preserving the abilities of cancer cells to
regenerate, (ii) the TME and mechanobiological cues
contributing to the radioprotection of the cells, (iii) the
presence of noncancer cells (such as stromal cells) around the
tumor cells that lead to the activation of cellular pathways,
making cancer cells more robust to radiation. These are points
of attention that currently have a preliminary body of evidence
and that need to become avenues for further research in the
field. In this Perspective, we highlight recent efforts in the
development of engineered models employed in the field of
radiobiology and compare their pros and cons. In order to
improve the biofidelity of such models, it is imperative in our
opinion to further propel the development of hybrid
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approaches exploiting the best features of scaffold-free,
scaffold-based, and organ-on-a-chip models. Indeed, while
scaffold-based models provide precise topographic and
biomechanical cues, they often lead to the formation of
relatively small (monoculture) cell networks, which do not
recapitulate the complexity of the TME. To overcome this
limitation, we envision that, with the continuous improvement
of 3D (bio)printing techniques, future scaffold-based models
shall be merged with scaffold-free ones, by combining scaffold
technology with organoid technology. In this way, it will be
possible to integrate co-, tri-, or multiculture models (involving
cancer, healthy, and immune cells), favor cell−cell interaction,
and enable the development of controlled, reproducible tissue-
like culture. Further, to fully mimic the natural tissue, it will be
of paramount importance also to add “dynamic” features by
building these hybrid constructs within microfluidic organ-on-
a-chip devices in order to control the perfusion of nutrients
and oxygen. The inclusion of perfusion and multicellular tissue
models is challenging because of the varied approaches and
lack of standardization. The research must thus not only focus
on the development of these models but also consider
comparability and validation of the models. In such a context,
researchers should develop systematic ways of defining
standard criteria to facilitate the definition and development
of disease-relevant assays to screen out irrelevant cell-based
models, following the example of Horvath et al.73 Finally, it will
also be imperative to adapt the current DNA damage,
apoptosis, proliferation, and clonogenic assays (compatible
nowadays mostly with TCP models) to this new class of
engineered microenvironments in order to deliver tangible
radiobiology benchmark tools that can pave the way toward
personalized cancer medicine. One way to employ the
described models for personalized therapy could involve the
use of minimally invasive biopsies from a patient’s cancerous
tissue. Upon mechanical and enzymatic dissociation, the cells
could be then cultured within the specific engineered
microenvironments to foster the formation of reproducible
cell-scale or tissue-scale networks, expose them to a set of
different radiation doses, and evaluate the amount of DNA
damage response as well as clonogenicity, which could guide
the choice of the most appropriate personalized (radio)-
treatment. In summary, 3D-designed and -engineered models
are one arm of a larger cohesive effort to create precise,
accurate, clinically relevant and reliable translational meth-
ods.73
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