

Delft University of Technology

Effects of natural and thermal oxidation on electronic and optical properties of monolayer WS2: a theoretical study

Tang, Hongyu; Shi, Weigi ; Zhang, Rongjun; Fan, Jiajie; Zhang, Guogi

DOI 10.1109/EuroSimE60745.2024.10491557

Publication date 2024

Document Version Final published version

Published in

Proceedings of the 2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Citation (APA)

Tang, H., Shi, W., Zhang, R., Fan, J., & Zhang, G. (2024). Effects of natural and thermal oxidation on electronic and optical properties of monolayer WS2: a theoretical study. In *Proceedings of the 2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in* Microelectronics and Microsystems (EuroSimE) (2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2024). IEEE. https://doi.org/10.1109/EuroSimE60745.2024.10491557

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

<page-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text>

The absorption energy E_{ads} of an oxygen molecule on a sulfur vacancy of the WS₂ monolayer is defined as follows:

$$E_{\rm ads} = E_{\rm SV} + E_{\rm O2} - E_{\rm SV+O2} \tag{1}$$

where E_{SV+O2} is the energy of the WS₂ adsorb O₂ molecule and E_{O2} is the energy of an isolated O₂ molecule in the gas phase.

In addition, we calculated the imaginary part of the dielectric function (ε_2) of monolayer WS₂ under different oxidation conditions, which relates to its optical properties and is defined as follows,

$$\varepsilon_{2}(\omega) = \frac{8\pi^{2}e^{2}}{L\cdot A\cdot m^{2}\omega^{2}} \sum_{c,\nu} \sum_{K} |\langle \nu, \mathsf{K}| p_{\alpha}|c, \mathsf{K} \rangle|^{2} \delta(E_{c}(\mathsf{K}) - E_{\nu}(\mathsf{K}) - \hbar\omega)$$
(2)

where *c* and *v* represent the conduction and valance states associated with the energies $E_c(K)$ and $E_v(K)$, delta function δ ensures the conversation of energy, *A* is the sheet area, *L* is the vertical height between the sheets in the periodic supercell, \leq is the momentum transition matrix, *e* is the charge of electron, *m* and \hbar are the effective mass and Planck constantly, respectively. The absorption coefficient α can be calculated as:

$$\alpha(\omega) = \sqrt{2}\omega \left[\sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} - \varepsilon_2(\omega) \right]^{1/2}$$
(3)

3. Results and Discussion

3.1 Oxygen adsorption and dissociation

First, the perfect WS₂ monolayer is fully relaxed along with the lattice constants. The calculated 2D lattice constant is 3.242 Å for the WS₂ monolayer, in agreement with the reported values of ref.[11]. To understand the oxygen absorption on the top of perfect and defected WS₂ monolayers, we calculate different adsorption configurations. The most stable adsorption configurations are shown in Figure 1. The E_{ads} of perfect and defected WS_2 monolayers are 40.8 meV and 2.746 eV, respectively. After optimization, no chemical bond was ever formed between O₂ and the perfect WS₂ layer, with the nearest distance between O atom and S atom of about 2.959 Å. Such weak vdW interactions clearly indicate that a perfect WS₂ monolayer cannot be oxidized owing to the chemically inert surface with saturated sulfur ions.

Figure 1: Top views (upper) and side views (lower) of the atomic configurations of (a) perfect WS_2 monolayer, (b) WS_2 monolayer with one SV; (c) WS_2 monolayer with O_2 adsorption on SV; (c) oxidized WS_2 monolayer after O_2 dissociation. The red circle in (a) represents SV.

For WS₂ monolayer with sulfur vacancies (SVs), the adsorbed O2 molecules form covalent bonds at the vacancy sites with three surrounding W atoms. The O-W bond length of the oxidized WS₂ monolayer is 1.496 Å, which is a typical bond length for transition metal oxide covalent bonds. After the adsorption of the O_2 molecule on the WS₂, the O-O bond length is elongated by 0.24 Å. The weakening of O-O bond is caused by the formation of O-W bond, which will affect the electronic and optical properties of WS₂ to a certain extent. The E_{ads} of WS₂ is 2.746 eV, and the positive value indicates that the oxidation of defected WS₂ monolayer is an exothermic process. It corresponds to the weakest interaction between oxygen and the vacancies. According to the ref. [8], when WS_2 is oxidized, an O_2 molecule bonds with unsaturated W atoms at the vacancy sit and obtains electrons from W atom. As the electronegativity of S atoms decreases, more electrons are transferred from W to O, thus forming stronger W-O bonds.

Figure 2: Dissociation process of O_2 on (a) perfect and (b)sulfur SV of an WS₂ monolayer.

By studying the thermodynamic stability of perfect and defected WS₂ monolayers during oxygen adsorption, we further clarified the oxidation mechanism and identified the kinetic barriers associated with the dissociative adsorption process of O₂ molecule through the climbing-image nudged elastic band (cNEB) method. The initial and final configurations vary with the barrier energy, as shown in Figure 2. The kinetic barrier is approximately 1.57 eV, which is relatively high, indicating that the WS₂ surface maintains chemical stability under low temperatures in the atmosphere. However, when SVs are present on the surface, the kinetic barrier for oxygen adsorption and subsequent dissociation is halved (approximately 0.97 eV), suggesting that SVs can be easily passivated by O2 molecule. Also, an oxygen atom at the vacancy position replaces the original missing sulfur, while the other one

at the top of the adjacent sulfur atom bonds with a sulfur atom perpendicular to the monolayer sheet. This observation illustrates the ease with which oxygen can saturate sulfur-deficient WS_2 surfaces upon exposure to atmospheric conditions.

The dissociation of an O₂ molecule at a sulfur vacancy is found to be an exothermic reaction with a reaction energy of 2.70 eV. After the dissociated O₂ molecule adsorbs on the defected WS₂ monolayer, one O atom remains at the original vacancy position to saturate the dangling bonds, while the other O atom may stay or move to nearby regions of the WS₂ monolayer. Overall, the perfect WS₂ monolayer is difficult to oxidize in air, while oxidation occurs easier for the defected WS₂. Since the oxidation process is exothermic, heating can provide an external driving force for the oxidation, resulting in several SVs on the WS2 monolayer. Experimental evidence from Ref. [8] suggested that natural oxidation makes oxygen atoms replace part of sulfur atoms, while the thermal oxidation process not only creates oxygen substitution but also produces oxygen vacancies. Accordingly, we analyze the oxidation effects on the electronic and optical properties of the WS₂ monolayer.

3.2 Oxidation effect on electronic band structures

We first investigate the impact of oxygen substitution (OS) and adsorption (O_{ads}) complex processes on the electronic structure of WS₂ monolayers. Figure 3a depicts the atomic structure of WS₂ with substituted O atoms and adsorbed O atoms. At low oxygen concentrations, these defects minimally affect the electronic properties as evidenced by the density of states (DOS) shown in Figure 3b. When the concentration of these substituted and adsorbed species is high, the evolution of SOx compounds on the surface can cause damage to WS₂ due to surface reactions. The oxygen atoms adsorbed on the sulfur sites do not exhibit a noticeable interaction with the oxygen atoms used to passivate S vacancies; only minor changes in the DOS can be observed, leading to the superposition of the DOS.

Next, we discuss the electronic properties of WS₂ monolayers including pristine sheets, naturally oxidized WS₂ with oxygen-substitution, and thermally oxidized WS2 with SV, and analyze models of oxidation at different levels. As shown in Figure 4a, the perfect WS₂ monolayer is an indirect-gap semiconductor with a bandgap of 1.976 eV, which aligns well with the theoretical values from previous studies[12]. As depicted in Figures 4b-e, oxidation leads to narrowing of the WS₂ bandgap. At lower concentrations, OS does not significantly alter the electronic properties. These results suggest that defect sites on the surface exhibit higher reactivity. Vacancy sites are responsible for the catalytic activity and chemical adsorption of oxygen on WS₂ because W sites are partially or fully exposed to the atmosphere due to sulfur vacancies, depending on the defect concentration. The greater the number of substitution sites, the more substantial the change in the bandgap. The thermal oxidation induced SVs resulting in the significant bandgap change. For defected WS_2 monolayers, SVs introduce impurity states within the bandgap. The SVs interfere with the top of the valence band, transforming the defected WS_2 monolayer into a deep p-type doped semiconductor. Notably, the SVinduced impurity states in the gap are completely removed under the adsorption of an oxygen molecule, due to the saturation effect caused by the formation of a W-O bond at the vacancy site.

Figure 3: (a) Atomic positions of substitutional and adsorbed O atoms on WS₂ monolayer as indicated by arrows, and (b) local DOS of selected atoms (Os, O_{ads}, bulk S and bulk W atoms).

Figure 4: Band structures of (a) perfect WS_2 , (b) one and (c) two S atom substitutes S of WS_2 monolayer, WS_2 monolayer with (d) one and (e) two SVs.

3.3 Oxidation effect on optical properties

Since the dielectric function and absorption coefficient play a crucial role in characterizing 2D

materials and their optical applications, we discussed the optical properties of WS₂ monolayers, including pristine sheets, naturally and thermally oxidized WS₂. calculated imaginary part (ε_2) of the dielectric function and adsorption coefficient (α) of the WS₂ monolayer are similar to the calculated result of Wei *et al.*,[13], indicating that our calculations are reasonable.

Figure 5: Imaginary part of the dielectric function (ε_2) of perfect WS₂, one and two S atom substitutes S of WS₂ monolayer, WS₂ monolayer with one and two SVs.

As shown in Figure 5, the $\varepsilon_2(\omega)$ spectrum of the WS₂ monolayer is nearly zero below 1.2 eV due to the prohibition of transitions between the valence band maximum (VBM) and the conduction band minimum (CBM). The first peak is located around 2.9 eV and extends to 1.5 eV, suggesting that WS₂ can absorb visible light. Moreover, there are two prominent peaks beyond the ultraviolet range at >3 eV. Upon exposure to natural oxidation, oxygen substitution causes the ε_2 to shift towards the ultraviolet region, and the ε_2 (ω) spectrum below 1.2 eV remains close to zero. However, after thermal oxidation that creates oxygen vacancies, the spectrum shifts towards the infrared, and the transition between the valence and conduction bands becomes active. Following oxidation, the main peaks of all materials are near 2.9 eV, confirming their ability to absorb visible light. Nevertheless, after oxidation, the main peaks all exhibit a blue shift, with the shift due to oxygen vacancies being greater than that from oxygen substitution. Additionally, Additionally, when oxygen vacancies are pronounced, a secondary peak appears at 1.55 eV. Moreover, the ε_2 values of oxidized models are higher than that of WS2 monolayer, showing remarkably enhanced absorption of photons.

Importantly, oxidized WS_2 exhibits a broad photoresponse spectrum ranging from visible to deep ultraviolet light. It is evident that natural oxidation leads to weakened light absorption and a blue shift relative to the pristine WS_2 , whereas thermal oxidation boosts light absorption and induces a red shift. Consequently, meticulous control over the oxidation environment can effectively modulate the optoelectronic properties, offering substantial potential for applications in optical communication and photoelectric technologies.

Figure 6: The adsorption coefficient of perfect WS₂, one and two S atom substitutes S of WS₂ monolayer, WS₂ monolayer with one and two SVs.

4. Conclusions

This study employs DFT to explore the effects of natural and thermal oxidation on the optical and electronic properties of WS₂ monolayer. Using the cNEB method, the study analyzes the transition states and potential barriers involved in the oxidation process. It reveals that the WS₂ monolayer with SVs possesses significantly lower kinetic barrier, indicating that the oxidation process is both thermodynamically and kinetically favorable, leading to structural and electronic passivation of the WS2 surface. Band structure analysis indicates that both natural and thermal oxidizations both contribute to narrowing the bandgap of the WS₂ with thermal oxidation inducing SVs and causing a substantial change in the bandgap. Furthermore, the optical properties of pristine and oxidized WS2 monolayer under various oxidation conditions are compared. It shows that natural oxidation results in weaker light absorption and a blue shift in the absorption spectrum relative to the unoxidized WS₂. Conversely, thermal oxidation enhances light absorption and causes a red shift. In conclusion, controlling the oxidation conditions can effectively fine-tune the electronic and optical properties of the WS₂ monolayer. This finding is particularly significant for enhancing the performance of WS₂-based devices and for customizing their attributes for sensor applications.

Acknowledgments

This study was supported by Shanghai Research Center for Silicon Carbide Power Devices Engineering & Technology Project [Grant No. 19DZ2253400].

References

[1] Manzeli, S., *et al.*: '2D transition metal dichalcogenides', Nat Rev Mater, 2017, 2, (8)

[2] Yang, R.J., *et al.*: '2D Transition Metal Dichalcogenides for Photocatalysis', Angew Chem Int Edit, 2023

[3] Li, Q., *et al.*: 'Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies', J Mater Chem A, 2019, 7, (9), pp. 4291-4312

[4] Adigilli, H.K., *et al.*: 'Oxidation of 2D-WS₂ nanosheets for generation of 2D-WS₂/WO₃ heterostructure and 2D and nanospherical WO₃', Phys Chem Chem Phys, 2019, 21, (45), pp. 25139-25147

[5] Lan, C.Y., *et al.*: '2D WS₂: From Vapor Phase Synthesis to Device Applications', Adv Electron Mater, 2021, 7, (7)

[6] Zhang, Q.H., *et al.*: 'Reliable Synthesis of Large-Area Monolayer WS₂ Single Crystals, Films, and Heterostructures with Extraordinary Photoluminescence Induced by Water Intercalation', Adv Opt Mater, 2018, 6, (12)

[7] Kotsakidis, J.C., *et al.*: 'Oxidation of Monolayer WS_2 in Ambient Is a Photoinduced Process', Nano Letters, 2019, 19, (8), pp. 5205-5215

[8] Peto, J., *et al.*: 'Spontaneous doping of the basal plane of MoS_2 single layers through oxygen substitution under ambient conditions', Nat Chem, 2018, 10, (12), pp. 1246-1251

[9] Kang, M., *et al.*: 'Oxidation of WS₂ and WSe₂ monolayers by ultraviolet-ozone treatment', J Phys D Appl Phys, 2019, 52, (50)

[10] Lu, C.H., *et al.*: 'Effect of surface oxidation on nonlinear optical absorption in WS_2 nanosheets', Applied Surface Science, 2020, 532

[11] Zhang, F.Q., *et al.*: 'Recent progress in threeterminal artificial synapses based on 2D materials: from mechanisms to applications', Microsyst Nanoeng, 2023, 9, (1)

[12] Santosh, K.C., *et al.*: 'Surface oxidation energetics and kinetics on MoS_2 monolayer', J Appl Phys, 2015, 117, (13)

[13] Wei, J.-w., et al.: 'Electronic and optical properties of vacancy-doped WS_2 monolayers', AIP Advances, 2012, 2, (4), pp. 042141