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Over the past years, advanced prognostic models and approaches have been developed. Most existing approaches

are tailored to one specific system and cannot adaptively be used on different systems. This can lead to years of

research and expertise being put into implementing prognosticmodelswithout the capacity to predict system failures,

either because of a lack of data or data quality or because failure behavior cannot be captured by data-drivenmodels.

In addition, prognostic models are often evaluated using metrics only related to the correctness of predictions,

preventing meaningful evaluation of operational performance. This paper makes use of a framework that can

automatically choose prognostic settings based on specific system data. It simultaneously optimizes the choice of

methodologies using metrics that capture multiple aspects of prediction quality. We apply this framework to both a

simulated data set and a real aircraft data set to characterize the impact of metrics on the choice of prognostic

methodologies. The results show that the choice of optimization metric greatly impacts the output of the generic

prognostic framework and the overall performance. In addition, a definition for data suitability is provided and

assessed on the aircraft system data sets.

I. Introduction

W ITHIN the framework of condition-based maintenance

(CBM), prognostics enable assessment of equipment health

and prediction of the remaining useful life (RUL) [1]. Using prog-

nostics in such a context requires properly assessing the quality of

predictions [2,3]. An effort to standardize prognostic metrics has

been made by Saxena et al. in [4,5]. The metrics commonly used in

prognostics are highlighted, and several ways to classify them are

presented as ways to interpret and use the metrics. A comprehensive

overview of existing metrics to evaluate prognostic performance is

given by Ochella and Shafiee [6]. A single metric, such as the mean-

squared error (MSE), can arguably not characterize the quality of

RUL predictions sufficiently for a thorough assessment within a

CBM framework [7]. Instead, the design of prognostic metrics has

to be linked to the application and decision-making process [8,9].

In addition, as highlighted in Fig. 1, metrics are needed to define

requirements and thoroughly evaluate prognostic performance [10].
Goebel et al. [11] state that a meaningful prediction has three attrib-

utes, namely, correctness, timeliness, and confidence (see Sec. II.A).

Performanceevaluationofprognosticmethodologies should enhance all

three of those aspects. However, the vastmajority of literature published

in the field of prognostics uses only a single metric, which is often

one linked to the correctness of the method [10]. Still, previous works

on including more advanced metrics or defining more advanced

metrics have been done in the literature. For example, Amigó et al.

[12] introduce a measurement to combine several metrics and indicate

how robust the measured differences are to changes in the relative
weights of the individual metrics. Baptista et al. [13] show that prog-
nostic metrics correlate with a Shapley Additive Explanations (SHAP)
model’s explanation. A performance metric to assess performance,
effectiveness, and efficiency of health monitoring models of complex
engineering systems is suggested by Lewis and Groth [14].
In addition to a suitable prognostic assessment technique, the

question remains of how to translate this toward a prognostic assess-
ment. Such an assessment is andmust be application dependent. This
study focuses on applying prognostics within a CBM framework for
aircraft maintenance. A number of publications have been made on
the topic of integrating prognostic models in aircraft maintenance
planning [15,16]. A framework for aircraft maintenance design
with reliability and cost-efficiency objectives has been provided in
[17]. To use prognostic models as input for maintenance planning,
those models need to be developed, which is time-consuming and
requires expertise. However, what would be desirable was if, instead
of spending months on developing prognostic models, there was a
way to assess system data toward their suitability for prognostics
relatively quickly. One of the main guiding works in the literature on
this topic is perhaps the work by Coble and Wesley Hines [18], in
which prognostic parameters are retrieved from the system data to do
a prognostic assessment before applying actual prognostic method-
ologies. A method to evaluate data quality before the modeling by
clustering the data into different system conditions is suggested in
Ref. [19]. Omri et al. [20] propose a set of data quality requirements,
especially for health assessment and fault detection. They propose a
“detectability” metric to assess the suitability of data for fault detec-
tion. Atamuradov et al. [21] present a hybrid feature evaluationwith a
combined metric. A framework for RUL prediction, including a
physics-informed failuremode recognitionmodel that can be applied
to different systems with different failure modes, is presented first in
Ref. [22] and extended by Xiong et al. [23].
Two challenges arise from the above-presented literature: One,

tuning prognostic algorithms without understanding which metrics
are needed to assess the algorithm is difficult. Similarly, it is tricky to
understand the full impact of choosing prognostic metrics without
considering the prognostic algorithm. Two, while the presented data
suitability methodologies are demonstrated in several case studies,
they are lacking the link toward prognostic algorithms. Furthermore,
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often statistical methodologies and predefined metrics are used to
assess the data quality. This is problematic for several reasons: First,
data suitability for prognostics can only truly be assessed when
attempting to train a model capable of predicting the system’s
RUL. Second, artificial intelligence (AI)-based methodologies are
in some cases able to detect failures even though the underlying data
degradation is not visible or statistically traceable; i.e., statistical
methods might not really give us insight into the data suitability for
prognostics [24]. Third, in order to go beyond a statistic-based data
assessment, prognostic performance metrics should be translated
toward a data suitability assessment.
To address the challenges listed above, we, therefore, in this paper,

investigate the impact of metrics on the choice of prognostic method-
ologies. On top of that, we explore how the performance of prog-
nostic methodologies can be translated to an assessment of the
suitability of the system for prognostics. Therefore, the following
novel contributions to state-of-the-art are made:
1) An integrated framework is presented that selects the optimal

prognostic settings, where optimality is assessed in terms of three
selected prognostic metrics, representing correctness, confidence,
and timeliness of predictions.
2) A study on the impact of different metrics on the choice of

prognostic methodologies is conducted.
3) The resulting outcome is used to define the term “system data

suitability” for prognostics such that it not only includes the data
characteristics but also takes into account the data suitability in a
CBM framework.
4) An example of the data suitability assessment for aircraft data

sets of different quality is given.
The remainder of the paper is structured as follows: Section II

explains the generic prognostic framework (GPF) used in this study
and how it can be used to assess the prognostic suitability of system
data. To investigate the impact of prognostic metrics and validate the
presented data suitability assessment, in Sec. III, two case studies are
conducted: one on a simulated turbofan dataset and one on a real
aircraft system. In Sec. IV, the results of the two case studies are

observed and interpreted to understand two points: first, the impact of
metrics on the choice of prognostic methodologies, and, second, how
the output of the GPF can be used as an assessment for system’s
suitability for prognostics. Furthermore, the limitations and direc-
tions for further research are highlighted. Section V concludes the
paper and highlights the main findings.

II. Methodology

To select the optimal set of prognostic methodologies, a GPF as
presented in [25] is used, which contains three steps of prognostics
and according to representative techniques. This means that, in
addition to incorporating different methodologies, the framework
includes a selection step in which the best set of techniques is chosen.
Note that the essence of the work presented in this paper lies in
assessing and optimizing the set of prognostic techniques. The way
we measure and evaluate the chosen techniques defines the prognos-
tic settings and, further consequences, the quality of the predictions.
In order to evaluate the prognostic performances, we, therefore, use
different prognostic metrics to account for different aspects of pre-
diction evaluation. Those metrics integrated into the GPF give us
insight into the quality of predictions and thereby help to choose
appropriate prognostic methods.
The GPF consists of three phases (colored blocks in Fig. 2). In

phase one, which is highlighted in green, a genetic algorithm (GA) is
applied to find the optimal prognostic settings. This is done using
multi-objective optimization based on three different metrics, which
are explained in more detail in Sec. II.A. In phase two, highlighted
in red and further explained in Sec. II.B, a prognostic model is
trained, which then has the capability to output RUL estimates. In
the final step of the framework, phase three, highlighted in blue, a
data suitability assessment is performed. Based on the resulting
accuracies in terms of the selected prognostic metrics, thresholds
are defined to determine if the system data are suitable for prognos-
tics. A detailed explanation is given in Sec. II.C.

A. Generic Prognostic Framework

The framework used in this work is a modified version of the GPF
presented in [25,26]. It differs from the original framework mainly in
optimizing three different prognostic metrics simultaneously. There-
fore, we only give a short overview of the elements and functionalities
of the GPF and refer the reader to the previous work for more details
about the GPF. The GPF consists of three blocks corresponding to
three selected steps in prognostics: data rebalancing, feature engineer-
ing, and the prognostic algorithm itself, as displayed in Fig. 3. Each of
the three blocks contains several representativemethodologies for each
of the selected steps in prognostics. Imbalanced data occur when one
class of data (e.g., faulty behavior) is under-represented when com-
pared to the other class(es) (e.g., healthy behavior). Data rebalancing
methods make use of the concepts of undersampling and oversam-
pling: the former consists in removing majority examples, while the
latter replicates the minority examples [27]. Three data rebalancing
methodologies as introduced in [28] are included: random oversam-
pling (RO), introduction of Gaussian noise (GN), and weighted
relevance-based combination strategy (WERCS).
The feature engineering methodologies in the framework are

principal component analysis (PCA), correlation-based feature,
and importance-based feature selection representing, respectively,
feature extraction, filter-based feature selection, and embedded

Fig. 2 The generic prognostic framework flow.

Fig. 1 Prognostic metrics are needed to define requirements and evalu-

ate performance [10].
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feature selection techniques. In order to get a first prognostic assess-
ment through the framework, the prognostic algorithms included are a
random forest (RF) regression and a support vector regression (SVM).
The two selected algorithms are well-established and offer potential
advantages in terms of interpretability and explainability [29]. How-
ever, they will generally not offer performance on the level of bespoke,
advanced models developed for specific applications.
TheGPF selects optimal sets ofmethodologies for each of the three

steps in the prognostic framework. Here, “optimal” refers to the best
in terms of the MSE, prognostic horizon (PH), and α − λ score. In
otherwords, we treat the problemof finding the prognostic settings as
a multi-objective optimization problem: The objective function is to
simultaneously minimize theMSE, maximize the PH, and maximize
the α − λ score of the prognostic algorithm together with data reba-
lancing and feature engineering techniques on the preprocessed data
set. To solve the optimization problem, we use a GA. These algo-
rithms are based on the concepts of natural selection and genetics
[30]. Due to their flexibility, GAs can solve global optimization
problems and optimize several criteria at the same time, like in our
case, the simultaneous selection of data rebalancing, feature engi-
neering, and prognostic algorithm techniques [31].
Basically, there are two approaches to multi-objective optimiza-

tion: The first is to create a single optimization objective by combin-
ing the individual objective functions. The second is to move all but
one objective to the constraint set [32]. This approach results in a set
of solutions, each of which satisfies the objectives at an accept-
able level without being dominated by another solution. Due to
the fact that GAs are a population-based approach, they are well-
suited for multi-objective optimization problems. Sets of solutions
are returned in every generation; therefore, multiple solutions can
easily be returned [32]. In fact, a majority of the multi-objective
optimization problems in current literature are solved using evolu-
tionary approaches [33]. Several multi-objective approaches for GAs
have been suggested in the literature, and a comprehensive overview
can be found in [32]. We use the Nondominated Sorting Genetic
Algorithm II (NSGA-II, introduced in [34]). It ranks candidate
solutions with the fast nondominated sorting method and uses a
crowding distance as a diversity mechanism. The algorithm is well-
tested, has been used in many applications, and is efficient, which
makes it a good candidate for this study.
TheNSGA-II, in our case, takes the systemdata as input andoutputs

the set of Pareto dominant solutions. A solution is Pareto dominant if
there does not exist any other feasible solution that dominates it [35]. In
this case, a solution is a combination of a data rebalancing technique, a
feature engineering methodology, and a prognostics algorithm. If the
algorithm identifies that applying no rebalancing or feature engineer-
ing technique results in better prognostic outputs, the GPF returns

“None” for the according to the block. The three different metrics

integrated into the framework are the MSE, PH, and the α − λmetric.

The metrics account for the three attributes of meaningful predictions,

i.e., correctness (MSE), timeliness (PH), and confidence (α − λ met-

ric) [4,10,36].
The MSE at time t is given as

MSE�t� � 1

t

t

i�1

�RULi − ^RULi�2 (1)

whereRULi is the trueRULvalue and ^RULi the predictedRULvalue

at time step i.
The PH is defined as

PH�t; α� � RUL�tiα� (2)

with RUL�tiα� the true RUL at time tiα and iα ≔ minfk ∈ pj∀j ≥ k∶
α−j ≤ ^RUL�tj� ≤ α�j g, where p is the set of all time indices where

predictions are made, ^RUL�tj� is the prediction at time index

j ∈ p, and the bounds are defined as α−j ≔ RUL�tj� − α and α�j ≔
RUL�tj� � α.
The PH is the smallest RUL in which the predicted RUL is still

within the specified α bounds. The best score for the PH is obtained

when the predicted RUL always falls within the specified accuracy

zone, while the worst score is obtained when the predicted RUL is

never within the accuracy zone. The PH indicates whether the pre-

dicted estimates are within the specified limits, especially toward the

end of life (EoL), so that predictions can be considered trustworthy

during a specified time span before the system’s EoL is reached. It

becomes clear that the longer the PH, the more time available to act

based on a prediction. It, therefore, gives an indication of the timeliness

of an algorithm, in the sense that during a time spanbefore the system’s

EoL, the predictions can be used to plan according to actions.Note that

the above definition of the PH is a slightly modified version of the PH

defined in [36]. Instead of being defined as the first time at which the

RUL falls within the specified error bounds, we define it as the first

instance of time from which on all RUL predictions fall within the

specified error bounds. This modification was made because for

safety-critical components and systems predictions toward the EoL

are much more crucial than predictions during earlier component or

system life. Such predictions have to be reliable, especially when used

to, e.g., schedule maintenance actions. In the case studies presented in

Sec. III, we set α � 40 flight cycles, which is the time needed to

schedule maintenance for an aircraft in case it is needed.

Fig. 3 The elements of the generic prognostic framework.
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And finally, the α − λ metric is, as in [37], defined as

α − λ ≔
1; if f1 − α�λ� ≤ λp ≤ �1� α�λ�
0; otherwise

(3)

with λ� � RUL�tλ� the ground truth, λp � RUL�tλp� the prediction,
and α an arbitrary chosen accuracy. The two input parameters for the
metrics are α, which determines the required level of confidence for
the predictions, and λ, which represents a fraction of time between the
point when the algorithm starts predicting (tP) and the actual failure
or EoL.
The α − λ metric, therefore, measures the prediction quality by

determining whether the prediction falls within specified limits at
particular times, which—as mentioned above—are presented as a
percentage of the total ailing life of the system. To be more precise,
the question it seeks to answer is whether the prediction accuracy of
the RUL model is within α ⋅ 100% of the actual RUL at a specified
time instance tλ (depending on λ). The output is binary (true or false),
stating if the desired condition [Eq. (3)] is met at the specific time
instance. It is more stringent than the PH because it requires the
predictions to stay within a cone of accuracy, i.e., bounds that shrink
as time passes.
The α − λ metric can be evaluated and averaged over the whole

trajectory with N time steps (i.e., for the entire interval �tP; EoL�),
arriving at α − λ, which lies between 0 and 1. It, therefore, returns the
confidence that the predictions fall into the α bounds over the entire
period of time. This is why it is a good candidate to represent
prediction confidence.

B. Training Phase

The output of the GA is the “best individual,” i.e., the set of
methodologies and hyperparameter settings that lead to the best
performance on the dataset. Note that, in order to save computational
power and arrive at a solution more quickly, the GPF only takes a
reduced dataset as an input for the optimization [25]. In this step, the
prognostic model is trained on the full dataset using the optimal
settings returned by the GPF. Therefore, the output of this step is a
trained prognostic model, which takes as input system data and
outputs the RUL.

C. Determining if a System Is Suitable for Prognostics

Once the GPF has identified a set of optimal prognostic models in
terms of MSE, PH, and α − λ score and outputs the according scores,
phase three (indicated in blue in Fig. 2) starts. Based on the output
models, this phase aims to identify whether the system data are
suitable for prognostics. Of course, the question of whether it makes
sense to apply prognostic approaches for given data highly depends
on the user, the application, and the underlying requirements. As
highlighted in Sec. I we aim to assess data suitability in a prognostic
context. Thismeans that we go beyond a simple statistical assessment
and instead translate prognostic metrics of basic prognostic machine-
learning models trained on the underlying system data into a data
suitability assessment. The definition of “system data suitability for
prognostics” depends on user inputs, which can be adapted accord-
ingly. The user needs to set bounds for each of the criteria measured:
1) in terms of correctness,MSEmax, the upper MSE limit; 2) in terms
of timeliness, PHmin�a�, the minimum number of time steps before
failure at which the failure needs to be known to take according to
actions, which is based on a, the maximum value (measured in time
steps) that the prediction is allowed to deviate from the true value;

3) and in terms of confidence, �α − λ�min, where 0 < �α − λ�min < 1,
the minimum ratio of predictions within the α bounds.
System data are defined to be suitable for prognostics if

MSE�t � end of life� ≤ MSEmax (4)

∧ PH�tj� ≥ PHmin�a� ∀ j ∈ p and specified a (5)

∧ α − λ ≥ �α − λ�min (6)

Only when all three of the conditions are met for a given prognostic
model does that model satisfies the data suitability criteria. This can
be applied to each model in the set of optimal models returned by the
GPF. If a single prognostic model is found that fulfills the above
requirements [Eqs. (4–6)], then the system data are assumed to be
suitable for prognostics.

III. Results

There are two main aims of the conducted study: First, we want to
understand the impact of prognostic metrics on the methodology
selection in the different steps of the prognostic framework. Second,
an example evaluation is performed for different input system data
to understand if the systems are suitable for prognostics. For this
purpose, two case studies were conducted: The first case study in
Sec. III.A is conducted on a simulated turbofan dataset commonly
used in literature and known to be suitable for prognostics. The
second case study in Sec. III.B uses a real-world aircraft dataset.

A. Case Study: Simulated Turbofan Dataset

The Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) data set contains simulated run-to-failure data for turbo-
fan engines [38]. Using this tool, four data sets were created [39]. The
data sets differ mainly in the number of fault modes and operational
conditions simulated in the experiments. An overview is given in
Table 1. For our purpose, we use two of the four datasets: First,
dataset FD001 is considered the simplest one as it only contains one
fault mode and operating condition. The second dataset FD002 is
considered to be more complex due to the different operating con-
ditions. Each engine is considered to be from a fleet of engines of the
same type, and each time series, also often referred to as trajectory, is
from a single unit. The engines are operated until failure; i.e., the time
series captures the operations of each unit until it fails. In the test set,
the time series ends at some point before the failure, and the objective
is to estimate the RUL, or, in other words, the number of remaining
operational cycles before failure. There are 21 sensor measurements,
and each row in the data set contains the measurements correspond-
ing to operations during a one-time cycle for a certain unit.
The framework is applied to both datasets and in the following, the

according results are presented.We compare the resulting prognostic
models to baseline models, namely, using only RF and SVM, respec-
tively, without any data rebalancing or feature engineering. In all
cases, we run the GA for 20 generations with a population of 30
individuals.

1. Results on Dataset FD001

First, we present the output of the GA, i.e., the Pareto front for
dataset FD001. Table 2 contains the set of individuals in the Pareto
front, with their respective choices of methodologies for the data
rebalancing, feature engineering and prognostic algorithm. In addition,

Table 1 Characteristics of the four turbofan engine data sets [40]

Data
set

No. of
fault modes

No. of
conditions

No. of
train units

No. of
test units

Relative no.
of train units, %

Relative no.
of test units, %

1 1 1 100 100 0.485 0.485
2 1 6 260 259 0.484 0.762
3 2 1 100 100 0.405 0.603
4 2 6 249 248 0.407 0.602
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the according metrics (MSE, PH, and alpha-lambda score) for the
trained prognostic models are given.
The results in Table 2 show that most of the Pareto optimal

solutions use SVM as a prognostic algorithm. Note that the SVM-
based solutions outperform RF-based solutions when using feature
engineering or rebalancing techniques together with SVM. At the
same time, the RF performs well without using any data rebalancing
or feature engineering methodologies. The term “outperforms” here
refers to in the sense of a lower α − λ score in terms of best MSE and
PH; using only RF proves to be the optimal technique for FD001.

Furthermore, the α − λ scores are all very close to each other. Finally,
it can be seen that increasing the performance in terms ofMSEalso, in
most cases, increases the performance in terms of PH,while it usually

results in lower α − λ scores.
Figure 4 shows a two-dimensional representation of both individ-

uals in the Pareto front and dominated individuals. The following are
observed:
1) In Fig. 4a, it can be seen that a good score in terms of MSE can

be reached without decreasing the performance in terms of alpha-
lambda score too much (only from around 0.54 to 0.42).
2) Figure 4b shows that this comes at the cost of reducing the PH to

almost 0.
3) Therefore, in Table 2, only individuals with an MSE of around

1750 are in the Pareto front.
4) In this case, when using only the MSE as an optimization

metric it would result in models with a poor score in terms of
timeliness.
Figure 5 shows, for six randomly selected trajectories in the

test set, the true RUL and the predicted values for the individuals
in the Pareto front and the baseline models (using purely RF
and SVM). For the selected trajectories of dataset FD001, the
resulting prognostic models seemingly all perform very well, as
do the baseline models. This is especially true for trajectories 5
(Fig. 5a), 24 (Fig. 5c), 46 (Fig. 5e), and 92 (Fig. 5f). Only in
Fig. 5a, for trajectory 5, it can clearly be seen that the GPF-
based models outperform the baseline algorithms, especially
toward the EoL.

2. Results on Dataset FD002

Similarly, the results for the runs on data set FD002 are shown in
Table 3, which contains both the choice of methodologies and the
scores in terms of the selected metrics. What can clearly be seen is
that the Pareto front containsmore individuals than the one for FD001
(10 respectively, 5 individuals). Again, similarly to dataset FD001, in
most cases, SVM results in better solutions than RF. While adding a
resampling or feature engineering step can improve the predictions in
single metrics, the Pareto front contains both the baseline scenarios,
using purely RF and SVM.
Figure 6 shows a two-dimensional representation of both individ-

uals in the Pareto front and dominated individuals. In the figure, it can
clearly be seen that increasing the performance in terms of MSE
(decreasing theMSE) results in a better lambda-alpha score (Fig. 6a),
but a lower PH (Fig. 6b), which can also be observed in Table 3.
Figure 7 shows six randomly selected trajectories in the test set, the

true RUL, and the predicted values for the individuals in the Pareto
front and the baseline models. Here, as opposed to in FD001, the
quality of results varies much more between the different selected
trajectories. For trajectories 5 (Fig. 7a), 46 (Fig. 7e), and 92 (Fig. 7f),
the models predict the RUL quite accurately, especially toward the
EoL. This is not true for trajectories 18 (Fig. 7b) and 28 (Fig. 7d), for
which the prognostic models are not able to accurately predict RUL.
Note that the baseline algorithms (only RF and only SVM) are
contained in the Pareto front. Therefore, it is no surprise that their
predictions’ quality is relatively high compared to the other chosen
settings of Pareto front individuals.

B. Case Study: Aircraft System Data

In the second case study, the GPF is applied to an aircraft pump
package installed close to the landing gear. The pumppackage consists
of two redundant pumps: pump1 andpump2.The assumption ismade
that pump 1 and pump 2 failures are independent. Failures happen on
the two power boards, presumably due to short circuits.
On each of the pumps, sensors have been installed thatmeasure the

following properties: the motor current, the motor speed, the motor
temperature, the reservoir fluid level, and the junction temperature
(of the liquid).
Next to those sensors, the static air temperature (sat) and the

calibrated airspeed (cas) reported on the aircraft level are used as
input. The sensor measurements are made every second. The per-
second data are aggregated per flight phase by mean, maximum, and
minimum to remove noise from the raw sensor data. A flight consists
of 12 flight phases, from taxi-out until taxi-in. The aggregated data set
contains around 35,000 flight phases in total. Of those data, 10% are
maintained in the test set, and the rest forms the train set.
The results for the runs on thePumpdata set are presented inTable4.

It contains both the choices of methodologies for the three selected

Fig. 4 A 2D representation of scores for the individuals when running the MOGA GPF with 30 individuals for FD001.

Table 2 Resulting prognostic settings and metrics when

running the MOGA GPF with 30 individuals for FD001

Rebalancing
Feature

engineering
Prognostic
algorithm MSE PH α − λ

None None RF 1647.10 144.34 0.524206
GN PCA SVM 1774.21 129.47 0.536729
None PCA SVM 1759.08 132.25 0.536652
RO None SVM 1757.86 132.68 0.529704
WERCS None SVM 1755.32 130.92 0.531689
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steps in prognostics and the according scores. Again, in this case, the

Pareto front contains more individuals than the one of FD001. With

its 11 individuals, the size is comparable to that of dataset FD002.

Asopposed to the simulated aircraft turbofan dataset, in this case, using

RF results in better solutions than SVMs. In fact, no SVM solution is
contained in the Pareto front. For the RF, almost every combination of

rebalancing, feature engineering, and the prognostic algorithm is con-

tained, resulting in very similar scores in terms of MSE. However,
differences can be seen in terms of the other metrics. The PH ranges

from 10.48 when using WERCS, correlation-based feature selection,

and RF to 223.75 when using no rebalancing, importance-based
feature selection, and RF. The α − λ ranges from 0.0523 when using

the previous settings to 0.2104when usingWERCS, correlation-based
feature selection, and RF.
Figure 8 shows a two-dimensional representation of individuals in

the Pareto front and their according scores in relation to each other. In
Fig. 8a, it can be seen that optimizing toward a low MSE simulta-

neously results in a lower PH but increases the α − λ score. Figure 8b
shows the link between the α − λ score and PH in a clearer way:

Increasing the PH at the same time decreases theα − λ score. This can
also be observed in Table 4: The highest scoring solution in terms of

PH is also the lowest scoring in terms of α − λ score.

Table 3 Prognostic settings and metrics when running

the MOGA GPF with 30 individuals for FD002

Rebalancing
Feature

engineering
Prognostic
algorithm MSE PH α − λ

None None RF 1873.40 117.11 0.463387
RO None RF 1865.68 116.50 0.460887
WERCS None RF 1872.08 118.64 0.462034
GN Correlation SVM 2241.46 122.10 0.439204
None Importance SVM 2262.72 124.53 0.430084
None None SVM 2152.96 120.97 0.452355
RO Importance SVM 2557.72 134.95 0.400665
RO None SVM 2188.97 122.18 0.438469
WERCS Importance SVM 2510.06 132.32 0.404166
WERCS None SVM 2189.37 122.00 0.442205

Fig. 5 Predictions of best-found settings vs the two baseline scenarios on example trajectories on FD001.

Fig. 6 A 2D representation of scores for the individuals when running the MOGA GPF with 30 individuals for FD002.
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IV. Discussion

The aim of the conducted case studies was to explore the twomain
research questions introduced in Sec. I:
1) What impact do metrics have on the choice of methodologies?
2) How can the performance of prognostic methodologies be trans-

lated to an assessment of the system’s suitability for prognostics?
Section IV.A analyzes the impact of metrics on the choice of

prognostic methodologies. In Sec. IV.B, the system data of the two
conducted case studies are analyzed using the definition of data suit-
ability given in Sec. II.C. Finally, in Sec. IV.C addresses the limitations
of the presented study, and directions for further research are given.

A. Impact of Metrics on the Choice of Prognostic Methodologies

The results of applying the GPF to the simulated turbofan datasets
FD001 and FD002 are presented in Sec. III.A. When trying to

Table 4 Prognostic settings and metrics when running the

MOGA GPF with 30 individuals for the aircraft pump dataset

Rebalancing
Feature

engineering
Prognostic
algorithm MSE PH α − λ

GN None RF 4.64E+07 29.94 0.1417
GN Correlation RF 4.59E+07 11.25 0.1606
None None RF 4.63E+07 16.64 0.1507
None PCA RF 6.24E+07 191.610.0556
None Correlation RF 4.56E+07 10.23 0.1725
None Importance RF 5.46E+07 223.750.0523
RO None RF 4.85E+07 32.00 0.1985
WERCS None RF 4.82E+07 22.17 0.2147
WERCS PCA RF 6.52E+07 58.33 0.1253
WERCS Correlation RF 4.66E+07 10.48 0.2104
WERCS Importance RF 6.20E+07 57.88 0.0893

Fig. 7 Predictions of best-found settings vs the two baseline scenarios on example trajectories on data set FD002.

Fig. 8 A 2D representation of scores for the individuals when running the MOGA GPF for the Pump data set.
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understand the impact of the metrics on the choice of prognostic

methodologies, it is of interest to take a closer look at both Tables 2

and 3, listing the chosen methodologies in the Pareto front, and

Figs. 4 and 6, showing the links between the different metrics.

It can be seen that using a different optimization metric can have

an impact as big as a different choice of the prognostic algorithm

used. For example, for FD001 in Table 2 we see that optimizing

toward confidence results in using SVM for the prognostic model,

while optimizing toward correctness results in using RF for this

purpose. In FD002 the dynamics are a bit different. Still, the under-

lying outcome is the same: When optimizing toward confidence, the

GPF chooses RF as the optimal prognostic algorithm while optimiz-

ing toward timeliness results in the GPF choosing SVM. Those

dynamics are visualized in Figs. 9 and 10. This can also be observed

in the aircraft Pump data case study: In Table 4, we see that instead of

in the choice of prognostic algorithm, the impact metrics have on the

selection of techniques is reflected in the rebalancing and feature

engineering settings.An example of this effect is given in the example

in Sec. III.B for the selection the GPF makes to reach the highest PH

or highest α − λ score.
Therefore, increasing the performance in terms of a single metric

comes at the cost of decreasing the performance in terms of another

metric; i.e., themetrics do have an influence on the chosen prognostic
settings. With the term “prognostic settings,” we refer to the combi-
nation of data rebalancing, feature engineering, and prognostic algo-
rithm that is used to arrive at a prognostic model. This means that,
when making choices for prognostic methodologies, it is important
to consider which metric to use for evaluation. To summarize, the
following main points are raised:
1) The choice of the optimalmetric depends on the underlying data

set and objective of prognostics, e.g., in what context they are used.
2) A single metric is often not enough to make fully informed

choices regarding which prognostic methodology to use.
3) Optimizing toward different prediction attributes, i.e., correct-

ness, timeliness, or confidence, results in different prognostic models
and is often a tradeoff.

B. Evaluation of the Systems Suitability for Prognostics

In this section, we answer the question of how to assess data
suitability for prognostics using the GPF. This is achieved by apply-
ing in Sec. II.C the introduced definition andmethodology in both the
case studies to assess the according systems data suitability. Be aware
that, in the following, we provide a suggestion of how to set the
boundaries, which is tailored to this case study. We put the focus on

Fig. 9 Comparison of the alpha-lambda score vs MSE of the Pareto points for datasets FD001 and FD002.

Fig. 10 Comparison of the alpha-lambda score vs PH of the Pareto points for datasets FD001 and FD002.
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aircraft and look at it from the perspective of anMaintenance, Repair
and Overhaul/airline/aircraft maintenance provider. Such a stake-
holder uses the output of the prognostic models to plan and schedule
maintenance tasks. Furthermore, we assume that the airline operates
short-haul flights mainly with an average aircraft usage of 4 flight
cycles (FC) per day. As mentioned in Sec. II.A, the assumption is
made that a failure needs to be known at least 40 FC in advance (for
the case studies on simulated turbofan engine data, we assume that
FCs correspond to time cycles) in order to schedule maintenance.
Based on this assumption, we set the following bounds for the criteria
specified in Sec. II.C:
1) The upper MSE limit: MSEmax � 2000 FC.
2) The minimum number of time steps before failure at which

the failure needs to be known to take according to actions,
PHmin�a� � 40 FC, which corresponds to 10 days of operation,
with a � 40 FC.
3) It is assumed that for this case it is sufficient that 45% of the

predictions lie within the α bounds. Therefore, the minimum ratio of

predictions within the α bounds, �α − λ�min � 0.45.
Based on the definition introduced in Sec. II.C, we observe that for

all solutions contained in the Pareto front for dataset FD001, the three
conditions [Eqs. (8) and (9)] hold; i.e.,

MSE�t � end of life� ≤ 2000 (7)

∧ PH�tj� ≥ 40 ∀ j ∈ p and a � 40 (8)

∧ α − λ ≥ 0.45 (9)

And since all the conditions are fulfilled, according to the definition
given in Sec. II.C, dataset FD001 proves to be suitable for prognos-
tics. Figure 5 underlines this visually as it can be seen that the
predicted value of almost all the models is close to the true RUL.
For dataset FD002, Table 3 shows that there are three individuals in
the Pareto front, satisfying all three above criteria [Eqs. (8) and (9)].
Those three individuals are the ones using RF as a prognostic
algorithm, together with no rebalancing and feature engineering,
together with random oversampling as a rebalancing methodology,
and together with WERCS as a rebalancing technique respectively.
The definition of data suitability in Sec. II.C states that only a single
solution in the Pareto front is required to fulfill the conditions in order
for the system data to be suitable for prognostics. As a result, also
dataset FD002 turns out to be suitable for prognostics. Visually an
indication of this can be seen in Fig. 7.
For the aircraft pumpdataset, however, both theMSE and the α − λ

score are too high, respectively, too low for all solutions in the Pareto
front. Therefore, the pump dataset is not suitable for prognostics
according to the here presented definition.

C. Limitations and Further Research

The presented definition of data suitability is only dependent on
prognostic metrics, meaning that the assessment of suitability is based
merely on the quality of the prognostic model. Of course, as a stake-
holder, one could be interested in metrics not just linked to the
prognostic model itself. Therefore, a possible direction for further
research would be to extend the data suitability assessment toward a
more thorough assessment based on stakeholder needs. This could,
e.g., be to include a calculation of costs associated with wrong pre-
dictions. Depending on how “wrong” the predictions are (in terms of
selected prognosticmetrics), this can then further be reflected in setting
the thresholds for the data suitability assessment presented in Sec. II.C.
In addition, the GPF only includes a limited set of methodologies

and steps integrated into prognostics. Of course, thosewere carefully
chosen to represent the most important groups of methodologies and
be relatively simple, while still powerful. The framework could be
extended to include more advanced methodologies, such as deep
learning techniques or even diagnostic approaches. The metrics used
in the multi-objective optimization are all evaluated over the entire
training data, i.e., component life span.Anext step could be to instead
of averaging over the entire time use moving averages to evaluate

model performance. Another possibility is to include methods rec-
ognizing and separating health stages (e.g., healthy or degrading) and
evaluating model performance during each of those.
The PH used in the data suitability assessment depends on the

parameter a, whichwe treat as a user constraint in this study and set to
40 FC, representing the time needed to schedule and plan mainte-
nance. In a further study, a range of values for a could be tested to see
the effect on the prognostic model assessment. Such a sensitivity
analysis could be conducted taking scheduling approaches into
account, i.e., assessing a range of parameters and their effect on
prognostic performance not only in terms of prognostic algorithms
but also in terms of, e.g., costs for reschedulingmaintenance. Such an
analysis would produce amore thorough assessment of the according
values, model qualities, and implications for subsequent CBM use.
Finally, the user is required to specify boundaries for each metric.

This can be a challenging task. Away to overcome this could be to
implement, asmentioned above, amore thorough assessment, e.g., in
terms of costs. Having said that, the approach presented here still goes
beyondwhat has been done in literature so far, adding a novelty here.
So far, as highlighted in Sec. I, most studies regarding data suitability
focused merely on the system data and their structure and statistical
properties. However,when usingmachine learning approaches, it can
be the case that even without trends being visible in the system data,
the models can detect or even predict anomalies [41]. The approach
presented here does not only provide an integrated way of assessing
data suitability by taking into account prognostic machine learning
algorithms. It also integrates metrics to capture the three aspects of
prognostics namely correctness, timeliness, and confidence and
thereby enables a more thorough assessment of the model quality.

V. Conclusions

The objective of the presented study is twofold: The first aim is to
investigate the impactmetrics have on prognostics. The second aim is
to provide themeans for a data suitability assessment for prognostics.
To account not only for different prognostic algorithms but also for
other steps involved in prognostics, such as data rebalancing and
feature engineering, we use a GPF that chooses the optimal settings
for the three steps of data rebalancing, feature engineering, and
prognostic algorithm. A multi-objective optimization is conducted
to reflect a selection of metrics, which account for all the aspects of
prediction evaluation, including correctness (MSE), timeliness (PH),
and confidence (α − λ score). The results show the following: First,
the choice of optimizationmetric has a big impact on the output of the
GPF. This means that depending on the objective and motivation of
using prognostics, a suitablemetric should be carefully chosen. It can
also make sense to use a combination of metrics to reflect multiple
prediction evaluation aspects. Especially the PH can play an impor-
tant role for airlines that want to schedule maintenance time and are
dependent on predictions arriving early enough to schedule a correc-
tive action. Therefore this should be taken into consideration when
developing and evaluating prognostic methodologies. Second, the
framework presented can be used together with a definition we
provided to assess a system’s suitability for prognostic based on
the system data. All in all, this study both highlights the importance
of choosing proper prognostic metrics and their impact on the prog-
nostic outputs and gives directions for practitioners as to whether or
not it makes sense to invest time and money in the development of
prognostic systems based on the available system data.
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