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SUMMARY

The purpose of the research conducted for this thesis is to contribute to the understanding of solar-sail
bounded motion in the Sun-Earth circular restricted three-body problem with solar radiation pressure and
determine what transfers are possible between invariant objects in the vicinity of Earth and the L5 region.

The Sun-Earth region around the L4 and L5 points is of particular interest for space missions related to
space weather and search for Trojan asteroids. The equilateral Lagrange points are stationary points located
60 degrees ahead and behind Earth. Therefore, they grant observational access to regions of the Sun that are
inaccessible from the L1 point; which has been the destination of all space weather missions to date. A space-
craft in the vicinity of the L5 point could provide earlier predictions of geomagnetic storms and coronal mass
ejections. Furthermore, corotation interaction regions can also be studied from the L5 vicinity. Regarding the
search for Trojan asteroids, it is known that there exist stable regions around the equilateral libration points
and asteroids have been found in orbit around these points in several systems. A mission to the L5 point
could therefore detect asteroids that so far have not been discovered. The scientific interest in the L5 region
is therefore current and broad.

In this thesis, the methodology for the computation of equilibrium points, periodic orbits, quasi-periodic
orbits and invariant manifolds is applied to compute natural and solar-sail invariant objects for a range of
sail performances expressed through the lightness number. The properties of the invariant objects in terms
of existence, shape and stability are also studied as a function of the lightness number. Subsequently, solar-
sail transfers between different invariant objects in the vicinity of Earth and the L5 region are computed and
optimised. First, initial guesses are found with a multi-objective genetic algorithm that obtains near-feasible
transfers. A vector of decision variables defines these initial guesses that leverage the unstable manifolds
from the departure invariant objects in the vicinity of Earth and backwards flow from the arrival ones in the
L5 region. Such near-feasible guesses then converge to fully feasible trajectories through a multiple shooting
differential corrector. Finally, with a continuation strategy, the time of flight for the transfers is optimised
resulting in near time-optimal transfers.

The main conclusions of the work can be summarised as follows. The surfaces of equilibria vary with
the lightness number and after some threshold isolated surfaces merge. While certain families of periodic
orbits present a change in their geometric behaviour with the lightness number, the evolution of their stability
maintains the same trends. Solar-sail families of quasi-periodic orbits exist around periodic orbits with a
central part. Furthermore, the families of Lissajous orbits around vertical and planar Lyapunov orbits around
the collinear equilibrium points in the vicinity of Earth are connected for a range of Jacobi constants. Lastly,
two types of quasi-periodic orbits were observed around the planar Lyapunov orbits in the L5 region while
only one type was found around the vertical Lyapunov orbits.

The transfers considered depart from the collinear equilibrium points in the vicinity of Earth, families of
periodic and quasi-periodic orbits around those equilibrium points as well as from the invariant manifolds
of the periodic orbits. For the arrival conditions, families of periodic and quasi-periodic orbits in the L5 re-
gion were considered. The genetic algorithm in combination with the differential corrector and continuation
produce fast solar-sail transfers ranging from 391 to 1194 days, depending on the case. In general, the type
of invariant object does not have a significant effect on the time of flight of the transfers, but the equilibrium
points the invariant objects are associated to do.

This thesis has provided a deeper insight into the types of solar-sail bounded motion in the Sun-Earth
system and has successfully developed and applied a novel methodology to compute transfers between in-
variant objects that can be used for the preliminary trajectory design of a mission to the L5 region.
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1
INTRODUCTION

1.1. SOLAR SAILING HISTORY
In 1862, radiation pressure was theoretically predicted by James Clerk Maxwell and was experimentally mea-
sured by Peter Levendew in 1900. These results led to the first consideration of solar radiation pressure
(SRP) as the propelling mechanism for spacecraft in the 1920s from the minds of Konstantin Tsiolkovsky
and Fridrickh Tsander. They worked on the idea of spacecraft propelled by light using large mirrors [2]. From
this point on, solar sailing grew to transcend from the theoretical into the real world. It was not until May
2010 that the first solar-sail mission successfully measured the acceleration induced by SRP and performed
attitude control with SRP. JAXA’s Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS), de-
ployed a 14 x 14 m2 square solar sail by centrifugal force. The mission was a technology demonstration for
solar-sail technology as well as for the thin solar cells equipped on the reflecting film. Furthermore, it aimed
at analyzing the solar radiation force attained [3]. Shortly after, NanoSail-D2 from NASA’s Marshall Space
flight Center and Ames Research Center was launched: a three units CubeSat inside the FASTSAT satellite to
test the deployment mechanism of a 10 m2 sail. The CubeSat initially failed to separate from FASTSAT, but
on January 2011 it was ejected and successfully deployed its sail. Its twin brother, NanoSail-D, was designed
for the same purpose and was previously launched in 2008 on a Falcon 1, but the satellite was lost due to a
problem with the launcher [4]. The Planetary Society, following their enthusiasm for solar sails, started a new
project in 2009: LightSail, consisting of another three units CubeSat with two units dedicated to a 5.5 x 5.5
m2 sail. In 2015, the spacecraft was launched into a slightly lower orbit than desired, but the deployment was
successful. Because of the atmospheric drag in the low-altitude Earth orbit, the satellite shortly re-entered
and burned up in the atmosphere [5]. Future solar-sail missions include, for 2019, The Planetary Society’s
follow-up of LightSail, LightSail 2, and NASA’s NEA Scout mission. NEA Scout will use a six units CubeSat with
a nearly 83 m2 sail to explore Near Earth Asteroids [6].

1.2. MISSION TO THE L5 REGION
The Sun-Earth L1 point is an ideal location for solar observation and to monitor space weather and Sun-
Earth interactions. SOHO, ACE and WIND, among others, are in orbit around this point. Furthermore, the
Sun-Earth L2 point offers a cold and stable environment making it ideal for astrophysics research and deep
space observation. For this reason it has been and it will be home to missions like Plank in the past, Gaia today
and the James Webb Space Telescope in the future. The Earth-Moon Lagrange points are also of interest. A
communication satellite at the L2 point would make it possible to keep contact with a future base on the far
side of the Moon.

The Sun-Earth equilateral libration points are very suitable to study space weather. Since they are sta-
tionary 60 degrees ahead and behind Earth, they can observe regions of the Sun inaccessible from Earth or
the L1 point. The satellite ACE at the L1 point allows detecting geomagnetic storms about an hour before
they hit Earth, but spacecraft in orbit around the equilateral points would allow a significant increase in this
warning time [7]. Both equilateral points are suitable to study coronal mass ejections (CME); however, only
the L5 point is useful for studying corotation interaction regions (CIR), as they pass by the L5 point first, then
Earth and then the L4 point [8]. Additionally, a spacecraft at the L4 or L5 point would obtain a side view from
events like solar flares and CMEs which would help in developing a better understanding of these events as
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2 1. INTRODUCTION

well as the magnetic reconnection that triggers them [7]. Another interesting application of orbits around
the equilateral points resides in their stability. The equilateral points are stable [9], which means that bodies
in orbit around these points are likely to have been there for a long time. The study of asteroids in orbits
around these Lagrange points can therefore help in understanding the formation of the Solar System. Such
asteroids are generally called Trojans and they have been found in orbits around the equilateral points in the
Sun-Mars, Sun-Earth, Sun-Jupiter and Sun-Neptune as well as around the equilateral points of Saturn with
some of its moons. At the Sun-Earth L4 point, one Trojan was discovered in 2010 with NASA’s WISE space-
craft [10]. Detecting Trojans from Earth is challenging, as they appear very close to the Sun. It is therefore
necessary to travel to these points to find out if there are other Trojans. The STEREO spacecraft visited both
equilateral points in 2009 without spotting any Trojan and then in 2010, the only one known was discovered.
This fact shows that there could still be other asteroids of small size or low albedo which have so far not been
discovered [10]. Overall, the L5 region is an interesting target for space missions.

In terms of propulsion, an electric low-thrust or chemical approach could be selected, but the use of
a solar sail offers a novel method. Besides, since a solar-sail spacecraft can be propelled during its whole
operational life, missions that would require too much propellant for an electric low-thrust approach could
become possible. Previously, the NASA Sunjammer solar-sail mission was proposed to target an artificial L1

point in the Sun-Earth system displaced towards the Sun to increase the warning time in case of solar events
[11]. Unfortunately, the mission was cancelled. Part of the research contained in this report was conducted
at NASA Marshall Space Flight Center showing that the interest of using solar sails to visit the Lagrange points
goes beyond theory.

1.3. PREVIOUS WORK
The scientific interest in missions to the L5 region has motivated a variety of studies demonstrating the fea-
sibility of such a mission. For instance, transfers departing from a 200 km altitude Earth parking orbit and
arriving to pre-selected orbits around the L5 point have been found which require a ∆V ≈ 4 km/s; depending
on the desired time of flight and the arrival orbit [7, 12]. Solar sails have proven to be excellent means to
achieve a high ∆V [2]; in fact, for such a mission scenario, the use of a solar sail can decrease the total ∆V
required [13]. For the work presented in Ref. [13], the invariant manifolds of planar Lyapunov orbits in the
vicinity of Earth as well as differential correction and optimisation was used. Alternativelly, Ref. [14] used
Poincaré sections to get initial guesses which were optimised for transfers between the collinear equilibrium
points and the regions of practical stability around the L4 and the L5 points.

This thesis generalises the previous work by considering the three-dimensional case and a variety of in-
variant objects for the departure and arrival conditions including equilibrium points, families of periodic and
quasi-periodic orbits as well as the stable manifold of periodic orbits for the mission scenario where the solar-
sail spacecraft is launched as a secondary payload of a primary mission targeting a halo orbit around the L1

point. Previous work have studied solar-sail equilibrium points and families of periodic orbits [1, 2, 13, 15];
however, little work has been done on families of solar-sail quasi-periodic orbits. Poincaré sections over the
center manifold by means of a center manifold reduction has shown the existence of solar-sail quasi-periodic
orbits, but an explicit definition of the orbits is lacking [15].

1.4. RESEARCH OBJECTIVE
In order to study the departure and arrival conditions for an L5 mission as well as the transfer trajectories,
this thesis aims to meet the following research objectives:

A. Improve the understanding of solar-sail bounded motion in the Circular Restricted Three-Body Prob-
lem (CR3BP) with Solar Radiation Pressure (SRP) by surveying and studying the different types of in-
variant objects in the system.

B. Determine what transfers are achievable between invariant objects in the vicinity of Earth and the L5

region by generating a versatile strategy to compute time-optimal transfers.

In order to fulfil the research objectives, a set of research questions has been formulated. The answers to
these research questions intend to provide the necessary information to achieve the research objectives.

I. What kind of invariant objects exist in the CR3BP + SRP and what are their properties regarding exis-
tence, shape and stability?
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II. What is the effect of the lightness number on the properties of the invariant objects found under I.?

III. What approach is capable of computing time-optimal transfers between the invariant objects found
under I.?

IV. What are the departure and arrival invariant objects that result in the fastest transfers to the L5 region?

1.5. REPORT OUTLINE
The scientific research and results of this master thesis are presented in the form of a journal article. The
article first gives the motivation and a brief description of the work, followed by a section describing the
dynamical system used in this study. The next section contains a description on how to compute invariant
objects with consideration for their existence, shape and stability. Then, the strategy adopted for the design of
transfers between different types of invariant objects is described. Finally, the results are presented followed
by the conclusions drawn from the results. This report includes another conclusions section to reflect on
the research objectives and provide recommendations for future work. Lastly, a section on verification and
validation is included to guarantee the validity of the methodology, results and conclusions.
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Solar-Sail Invariant Objects in the Sun-Earth system
and transfers to the L5 region

Alvaro Fernandez Mora

Delft University of Technology

Abstract

The development of solar-sail technology in combination with the rising in-

terest in a mission to the Sun-Earth L5 region for heliophysics and the search for

Trojan asteroids, raises the question of using solar sailing as the primary propul-

sion method to enable such a mission. This study therefore investigates different

invariant objects and their properties in the neighbourhood of Earth and in the

L5 region that could be used as departure and arrival conditions: equilibrium

points, families of periodic orbits and families of invariant tori as well as the

stable manifold of periodic orbits. Then, transfers between these invariant ob-

jects are studied using a hybridisation of different trajectory design techniques.

A multi-objective genetic algorithm is applied to obtain near-feasible initial

guesses, which are transformed into feasible transfers using a differential correc-

tion method. Through a continuation on the fixed time of flight, the differential

corrector is subsequently used to reduce the transfer time. A pseudospectral

optimisation method is finally taken at hand to obtain a smooth, continuous

control profile, to, if possible, further reduce the transfer time. This approach

results in fast solar-sail transfers between 391 and 1194 days, depending on

the departure and arrival configuration and the assumed solar-sail technology.

These results can serve as preliminary design solutions for a mission to the

Sun-Earth L5 region.

Keywords: Solar sails, periodic orbits, quasi-periodic orbits, L5 mission,

Trajectory optimisation
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1. Introduction

The equilateral libration points of the Sun-Earth system are of interest for

space missions related to space weather observations and the search for Trojan

asteroids. Since these points are stationary 60 degrees ahead and behind Earth,

they provide observational access to regions of the Sun that are inaccessible from

Earth or the L1 point. For example, the ACE satellite at the L1 point allows

the detection of geomagnetic storms approximately one hour before they arrive

at Earth. A spacecraft at the equilateral points would enable a much earlier

prediction of such space weather events. Furthermore, both equilateral points

(L4 and L5) are suitable for studying coronal mass ejections (CMEs). However,

only the L5 point is useful for the study of corotating interaction regions as they

pass by the L5 region first, then Earth and lastly the L4 region. Additionally, a

spacecraft at the L4 or L5 points enables a side view of events like solar flares and

CMEs which would help in developing a better understanding of these events

as well as the magnetic reconnection that triggers them [1].

Apart from space weather observation missions, the equilateral points are

also of interest because of the potential presence of Trojan asteroids. Bodies in

orbit around the L4 and L5 points are likely to have been there for a long time

due to the stable character of the orbits. The study of such bodies can therefore

help in understanding the formation of the Solar System. Trojan asteroids have

been found in orbit around the equilateral points of the Sun-Mars, Sun-Earth,

Sun-Jupiter, and Sun-Neptune systems as well as in systems such as Saturn

with some of its moons [2]. In 2010, NASA’s WISE spacecraft detected asteroid

2010TK7 at the Sun-Earth L4 point [2]. The fact that the STEREO spacecraft

visited both equilateral points a year before, in 2009, without spotting asteroid

2010TK7 suggests that there could still be other asteroids of small size or low

albedo which have yet not been discovered [2].

Due to the clear scientific relevance of the L5 point, the literature holds a

range of studies on transfers to the vicinity of this point. For example, studies

have shown the feasibility of transfers departing from 200 km altitude parking

2



orbits around Earth to specific periodic orbits around the L5 point. These trans-

fers require a ∆V of the order of 4 km/s, depending on the targeted periodic

orbit and the desired time of flight [3, 4]. Solar sails are an excellent means to

provide this high ∆V [5]. As an inexhaustible source of low thrust, it can sig-

nificantly decrease, if not completely remove, the need for onboard propellant.

Moreover, Ref. [6] showed how, by using the invariant manifolds of planar Lya-

punov orbits in combination with differential correction and optimisation, the

use of a solar sail decreases the total ∆V for such a mission. Alternatively, Ref.

[7] used Poincaré sections and optimal control to compute solar-sail transfers

between the Sun-Earth collinear equilibrium points in the vicinity of Earth and

the regions of practical stability around the equilateral libration points.

This paper builds on, and generalises, previous work on solar-sail transfers

to the Sun-Earth L5 region. In particular, a versatile approach is adopted

to obtain solar-sail transfers departing from a range of natural and solar-sail

invariant objects in the neighbourhood of Earth to entire families of periodic

and quasi-periodic orbits in the L5 region. The invariant objects considered

are equilibrium points and families of periodic and quasi-periodic orbits. While

previous work mostly focused on the planar, two-dimensional case and targeted

specific initial and final conditions (e.g., a specific Earth parking orbit or a

specific L5 point orbit), this paper considers the three-dimensional case as well

as entire families of periodic and quasi-periodic orbits for both the initial and

final conditions.

2. Dynamical system

In order to model the motion of the solar-sail propelled spacecraft (hereafter

in short referred to as “solar sail”), we consider the Circular Restricted Three-

Body Problem (CR3BP) perturbed with Solar Radiation Pressure (SRP). In

such a model, the Sun and the Earth (primary bodies) move in circular or-

bits around their common barycenter exclusively attracting each other. The

solar-sail (third body) motion is governed by the vector field induced by the
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gravitational pull of the primaries and the SRP. The primaries are assumed to

be point masses and the solar sail is assumed to be massless.

The units of mass, distance and time are normalised such that the total

mass of the system is 1, the Sun-Earth distance is 1 and the orbital period of

the Earth around the Sun is 2π. With these normalised units, the gravitational

parameter of Earth is µ = 3.0034806 · 10−6 and the gravitational parameter of

the Sun is 1− µ.

We consider a synodic reference frame to study the system, where the origin

is at the Sun-Earth barycenter, the x−axis is defined along the Sun-Earth line

pointing from the Sun to the Earth, the z−axis is defined in the direction of

the angular momentum vector of the primaries and the y−axis completes the

orthogonal right-handed reference frame, see Fig. 1. In this frame, the equations

of motion can be obtained by including the inertial and non-inertial accelerations

as:

ẍ− 2ẏ =
∂Ω

∂x
+ ax, (1)

ÿ + 2ẋ =
∂Ω

∂y
+ ay, (2)

z̈ =
∂Ω

∂z
+ az, (3)

with Ω = 1
2

(
x2 + y2

)
+ 1−µ

rsb
+ µ

reb
, rsb =

√
(x+ µ)2 + y2 + z2 and reb =

√
(x+ µ− 1)2 + y2 + z2. Note that rsb and reb are the norms of the Sun-

body vector, rsb = [x + µ y z]T , and of the Earth-body vector, reb =

[x + µ − 1 y z]T , respectively. The acceleration generated by the solar sail

is defined as the vector a = [ax ay az]
T and is produced by the transfer of

momentum when solar photons are reflected by the sail. In this process, the

properties of the sail and the solar flux determine how the force is produced. For

the initial analyses in this work, we assume a perfectly reflecting flat sail and

a uniformly radiating Sun. Note that more complex models exist that account

for the non-specular optical properties of the sail and geometry effects [5, 8, 9],

but these are not considered in this work. For an ideal sail, the SRP acceler-

ation acts along the direction of the sail normal and is conveniently expressed
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as a function of the lightness number β. This parameter is defined as the ratio

between the SRP and solar-gravitational accelerations [5]. Note that near-term

values for this lightness number are β ≤ 0.04 [10]. The SRP acceleration can

then be described in dimensionless units as:

a = β
1− µ
r2sb
〈r̂sb,n〉2n, (4)

where r̂sb = rsb

rsb
and n is the sail normal unit vector, see Fig. 1.

x

yz

− µ

−µ
rsb reb

n

Sail

Sun

Earth

Figure 1: Sketch of the synodic reference frame.

In order to describe the attitude of the sail in the synodic frame, we follow

Ref. [11] and define an orthonormal reference frame with its origin at the solar

sail and basis {r̂sb,p, q}, where p = r̂sb×k
|r̂sb×k| and q = p×r̂sb

|p×r̂sb| . The vector k

denotes the unit vector along the z-axis. The sail normal can then be described

in the orthonormal frame by two angles, known in the literature as the cone angle

α and the clock angle δ, as n = cosαr̂sb + sinα sin δp + sinα cos δq. Figure

2 shows the orthonormal reference frame centred at the solar-sail propelled

spacecraft as well as the definition of the cone and clock angles.

The equations of motion can then be expressed as:

ẍ− 2ẏ =
∂Ω̃

∂x
+ a

(
− (x+ µ)z

rsbrp
sinα cos δ +

y

rp
sinα sin δ

)
, (5)

ÿ + 2ẋ =
∂Ω̃

∂y
+ a

(
− yz

rsbrp
sinα cos δ − x+ µ

rp
sinα sin δ

)
, (6)

z̈ =
∂Ω̃

∂z
+ a

(
rp
rsb

sinα cos δ

)
, (7)

5



α
δ

r̂sb

k

p

q

n

Figure 2: Sketch of the local frame used to define the cone angle α and the clock angle δ.

where rp =
√

(x+ µ)2 + y2, Ω̃ = 1
2

(
x2 + y2

)
+
(
1− β cos3 α

)
1−µ
rsb

+ µ
reb

and

a = β 1−µ
r2sb

cos2 α. The right-hand side of Eqs. 5-7 consist of terms of two dif-

ferent nature, where the terms associated with Ω̃ accept the form of a potential

function. While the CR3BP is Hamiltonian, the SRP perturbation breaks this

property of the system, although a few exceptions exist. For the cases where

the non-potential terms on the right-hand side of Eqs. 5-7 vanish, the system

remains Hamiltonian. This happens when the sail normal is aligned with the

direction of the Sun-sail line (α = 0) and when the sail normal is perpendicular

to the Sun-sail line (α = ±π/2). For these cases, the existence of periodic and

quasi-periodic motion around the equilibrium points is guaranteed [11]; there-

fore, they are of particular interest. Another important aspect of the dynamical

system when the Hamiltonian structure is preserved is the existence of a first

integral Jc = ẋ2 + ẏ2 + ż2 − 2Ω̃, known as the Jacobi constant [11]. This con-

stant of motion has important implications for the characterisation of regions

of possible motion and energy levels of periodic and quasi-periodic orbits.

3. Invariant objects

Let us express Eqs. 5-7 as a system of first order differential equations given

by:

ẋ = f(x, α, δ), (8)

where x ∈ R6 belongs to the phase space of the configuration system, α ∈
[−π/2, π/2] and δ ∈ [0, π]. Let us also define the flow induced by f as φt(x, α, δ)
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with t ∈ R. A set S ⊂ R6 is invariant under the flow if for any element

x ∈ S, φt(x, α, δ) ∈ S for any t [12]. When the angles α and δ are constant,

they act simply as parameters of the dynamics for which invariant sets can be

defined. A wide variety of invariant objects exist in both the natural CR3BP and

CR3BP-SRP including equilibrium points, periodic orbits, invariant manifolds

and invariant tori. Regarding periodic orbits, this article focuses on the planar

and vertical Lyapunov families as well as the halo families.

3.1. Equilibrium points

It is well know that the CR3BP exhibits five equilibrium points known as

the Lagrange points. The linear dynamics of the collinear equilibrium points are

of type saddle×centre×centre, whereas for the equilateral Lagrange points they

are of type centre×centre×centre. Therefore, the collinear Lagrange points are

linearly unstable because of the saddle and the equilateral points are linearly

stable. In the CR3BP-SRP, 3-dimensional equilibrium surfaces exist [5, 11].

The surfaces of these so-called displaced equilibrium points are given by the

following problem [5]:

−∇Ω = β
1− µ
r2sb
〈r̂sb,n〉2n, (9)

〈r̂sb,n〉 ≥ 0. (10)

Note that, when the sail normal is perpendicular to the Sun-sail line, which

would be equivalent to β = 0, the displaced equilibrium points reduce to the five

Lagrange points. On the other hand, when the sail normal is oriented parallel

to the Sun-sail line, five displaced counterparts of the Lagrange points exist.

These equilibrium points are referred to as SLi with i ∈ {1, 2, .., 5}. Sections

of the surface of equilibria can be obtained with a continuation of the solutions

from the already known equilibrium points, i.e., the (displaced) Lagrange points.

Note that for each of the equilibrium points forming the surfaces of equilibria

the cone and clock angle are fixed.
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The stability of the displaced equilibrium points can also be studied by

examining the linearised dynamics. Following Ref. [11], we distinguish three

types of equilibrium points according to their linear stability:

• T1: Equilibrium points with eigenvalues λ1 > 0, λ2 < 0, λ3,4 = u1 ±
iv1, λ5,6 = u2 ± iv2. Additionally |u1,2| < |λ1,2|. This type represents

unstable equilibria where the instability comes mainly from the saddle.

• T2: Equilibrium points with all eigenvalues complex λ1−6 = u1,2,3 ± v1,2,3
and |ui| > 0.001 for some i ∈ {1, 2, 3}. This type represents unstable

equilibria where the instability comes from a complex saddle.

• T3: Equilibrium points with all eigenvalues complex λ1−6 = u1,2,3 ± v1,2,3
and |ui| < 0.001 for i ∈ {1, 2, 3}. This type represents stable (ui = 0)

and almost stable (|ui| ∈ (0, 0.001]) behaviour given by centres and weak

complex saddles, respectively.

Figure 3 shows the intersection of the surfaces of equilibria with the ecliptic

plane for β ∈ {0.01, 0.02, ..., 0.05} and their stability classification. For β ∈
{0.01, 0.02}, there are three surfaces; two isolated around L1 and L2 and another

one containing L3,4,5. For β > 0.02, the surface around L1 and the surface

containing L3,4,5 merge into one torus-like surface while the surface around

L2 remains. For a more detailed analysis on the behaviour of the surface of

equilibria with β, the reader can consult Ref. [11]. Regarding stability, the

equilibrium points around the collinear Lagrange points are of type T1, i.e.,

unstable. In the neighbourhood of Earth, there are regions of equilibrium points

of type T2 and therefore unstable because of the complex saddle. Lastly, part of

the torus-like surface containing the triangular Lagrange points is of type T3 and

therefore, stable and almost stable. The lightness number alters the surfaces

of equilibria, but the stability classification of the equilibrium points does not

show much of a change.
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Figure 3: Sections of the surfaces of equilibria in the ecliptic plane and their stability classifi-

cation for β ∈ {0.01, 0.02, ..., 0.05} (top) and close-up in the neighbourhood of Earth (bottom).

3.2. Periodic orbits

When the dynamical system is Hamiltonian, both periodic and quasi-periodic

motion around the equilibrium points exist. In fact, these types of orbits gen-

erally appear in continuous families. Numerous studies have used symmetric

properties of the system to compute such families of periodic orbits in the nat-

ural system, e.g., [13, 14], and the SRP-perturbed system, e.g., [15, 16]. We,

however, do not exploit orbit symmetry to find periodic orbits. A very general

way to impose periodic motion is given by the definition of the map G : R7 → R6

as [17]

G(x, T ) = φT (x, α, δ)− x. (11)

Note that the sail attitude is constant for each family of periodic orbits and

therefore α and δ are fixed parameters of the map G. The search for periodic

orbits is then transformed into finding {x, T} that solve G(x, T ) = 0. Such

solutions can be found with a Newton method given a good initial guess.

9



Let us assume {x̂, T̂} is a guess for a solution. This guess can be corrected

by linearising the periodicity equation and solving the linear system, i.e.,

−G(x̂, T̂ ) = JG(x̂, T̂ )


δx
δT


 , (12)

where JG denotes the Jacobian of G and δx and δT denote the updates to the

initial guess. The derivative of φT (x, α, δ) with respect to the initial point x

can be obtained with the state transition matrix (STM) evaluated at time T

denoted by Φ(x, T, α, δ), which is referred to as the monodromy matrix, yielding

JG =
[
Φ(x, T, α, δ)− I6×6 f(φT (x, α, δ), α, δ)

]
, (13)

where I6×6 denotes the identity matrix. The matrix JG is of size 6 × 7 and is

therefore not invertible. However, it is convenient to fix one of the components,

xi, of x to have control in the continuation of the families of periodic orbits. To

do so, it is enough to set its variation δxi to zero in Eq. 12, which is equivalent

to eliminating δxi from the updates vector and eliminating column i from JG,

yielding the reduced Jacobian J̃G. The system can then be solved by inverting

J̃G.

3.2.1. Continuation of the families of periodic orbits

Let us define the reduced vector x̃ as the vector x without the xi component.

Then, the map G(x, T ) can be rewritten as G(x̃, T, xi). Let us also assume

{x̃∗, T ∗, x∗i } is a solution. The implicit function theorem guarantees that as

long as det
(
∂G(x̃∗,T∗,x∗

i )
∂x̃,T

)
6= 0, there exists a neighbourhood around the solution

where the functions x̃(xi) and T (xi) exist and G(x̃(xi), T (xi), xi) = 0 in that

neighbourhood. By implicit differentiation of G with respect to xi, it is possible

to obtain the unit tangent direction for a family of periodic orbits, t̄, as the

unit Ker(JG(x∗, T ∗)). The initial guess for the next orbit in the family is then

obtained as [18]: 
x̂
T̂


 =


x
∗

T ∗


+ δSt̄, (14)
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where δS is the step size in the continuation and the next solution is computed

at the fixed value of xi = x∗i + δSt̄i.

In order to implement this method for the generation of families of periodic

orbits, initial guesses for the first orbits in the families are required. We obtained

these guesses from the oscillatory modes of the linearised flow at the equilibrium

points.

3.2.2. Orbit stability

An important feature of periodic orbits is their stability, which can be as-

sessed from the eigenvalues of the monodromy matrix. Since we will only gen-

erate periodic orbits for the Hamiltonian case (α = 0 or α = ±π/2), the mon-

odromy matrix is symplectic. It can be shown that the characteristic polynomial

of any symplectic matrix is reciprocal and consequently, the roots come in re-

ciprocal pairs. Therefore, if λ is an eigenvalue, λ−1 is also an eigenvalue. It

can also be shown that for periodic orbits in autonomous Hamiltonian systems,

one of the eigenvalues is equal to 1 with an associated eigenvector tangent to

the orbit. Since the eigenvalues come in reciprocal pairs, the spectra of the

monodromy matrix has the form [19]:

spec(M) = {1, 1, λ1, λ−11 , λ2, λ
−1
2 }. (15)

The stability indices are then defined as si = |λi + λ−1i |. With such definition,

a periodic orbit can be described as [20]:

• Hyperbolic: si > 2.

• Elliptic: si ≤ 2. When si = 2 it is also said to be parabolic.

• Complex unstable: if λi ∈ C\R and |λi| 6= 1

A periodic orbit is said to be stable if si ≤ 2 for i ∈ {1, 2} [20].

In this paper we consider only the planar Lyapunov, vertical Lyapunov and

halo families, but several other exist [21]. In order to study the evolution of the

stability of the orbits within each family and the effect of the lightness number,
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we compare the stability indices in logarithmic scale against a normalised Jacobi

constant jc for each orbit within the families. The normalised Jacobi constant

is defined as the Jacobi constant divided by the maximum absolute value of the

Jacobi constant encountered in each family. The use of the normalised Jacobi

constant is convenient for comparing the stability indices of families at different

lightness number since it is a variable with the same bounds for all β; therefore,

all stability curves can be represented together in a clear way. Generally, for

the families considered in this study, the Jacobi constant (and also jc) increase

throughout the continuation; therefore, the lowest value of jc is found for the

orbits close to the equilibrium point, i.e., the orbits at the start of the families,

and as the families are continued, they increase in jc. This general rule applies

for the planar and vertical Lyapunov families around the (displaced) L1 and L2

points and for the halo families around the (displaced) L1 point.

3.2.3. Planar Lyapunov families in the vicinity of Earth

In order to detect changes in the shape of the families with the lightness

number, we consider different geometric comparisons specific to each family.

We first study the planar Lyapunov families around the (displaced) L1 and L2

points for which the following sections are defined [20]:

Λ1 = {y = 0, ẏ > 0} (16)

Λ2 = {y = 0, ẏ < 0}. (17)

For the planar Lyapunov families around the (displaced) L1 point, we compute

the maximum y value, ymax for each orbit within the family and plot it against

the difference d(SL1) between the intersection with Λ1 and the (displaced) L1

point. For the planar Lyapunov families around the (displaced) L2 point, we

proceed in the same way but using the section Λ2. Figure 4 shows the inter-

sections with Λ1 and Λ2 for a orbit around SL1 as well as the variables d(SL1)

and ymax.

As an example, Fig. 5 shows the planar Lyapunov families around the

SL1 point (left) and the SL2 point (right) for β = 0.04. The drift of the
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Figure 4: Intersections with Λ1 and Λ2 for a planar Lyapunov orbit around SL1 as well as

variables d(SL1) and ymax.

intersection with Λ1 and Λ2 for both families can clearly be appreciated, where

the intersection moves towards the Sun for the family around the SL1 point,

whereas for the family around SL2 it first moves away from Earth and then

towards.

Figure 5: Planar Lyapunov families around the SL1 point (left) and the SL2 point (right) for

β = 0.04.

Figure 6 shows the results for the geometric comparison for the families

around the (displaced) L1 point (left) and the (displaced) L2 point (right) for
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β ∈ {0, 0.01, ..., 0.05}. Note that the orientation of the orbits that belong to

these families is clockwise when seen from z > 0. It can be seen that for

the orbits around the (displaced) L1 point, the intersection with Λ1 moves

towards the Sun for all lightness numbers and the orbits increase ymax within

a family. Furthermore, the larger β, the smaller the maximum y value for the

same d(SL1). Therefore, the orbits become closer to y = 0 for increasing β.

The planar Lyapunov families around the (displaced) L2 point experiences a

change in behaviour with β. For β ≤ 0.01, the intersection always occurs for

positive d(SL2), whereas for β ≥ 0.03 it first occurs for positive d(SL2) and

then negative. Lastly, for β = 0.02 the intersection with Λ2 alternates between

positive and negative d(SL2). Furthermore, for β ≤ 0.03, the orbits always

increase ymax along a single family, while for β ≥ 0.04, it starts decreasing at

some point in the family.

Figure 6: Planar Lyapunov families around the (displaced) L1 and L2 points: ymax against

d(SL1) for the families around the (displaced) L1 (left) and against d(SL2) for the families

around the (displaced) L2 (right) for β ∈ {0, 0.01, ..., 0.05}.

Regarding the stability of the planar Lyapunov families, Fig. 7 shows both

stability indices for the families around the (displaced) L1 and L2 points against

jc. The figure shows that s1 > 2 for both families and they are therefore unstable

for the lightness numbers considered. The orbits at the smallest values for jc,

which exist at the start of the family, have a central part, i.e., s2 = 2. When the

orbits increase their Jacobi constant, sets of orbits that do not posses a centre

manifold emerge where s2 6= 2.
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Figure 7: Planar Lyapunov families around the (displaced) L1 and L2 points: Stability indices

s1 and s2 in logarithmic scale for the families around the (displaced) L1 point (left) and the

(displaced) L2 point (right) for β ∈ {0, 0.01, ..., 0.05}.

3.2.4. Vertical Lyapunov families in the vicinity of Earth

The vertical Lyapunov family is the second type of orbits that originate from

the collinear equilibrium points. For the geometric comparison of the families

with β, we compute the maximum z value, zmax, of the orbits and plot zmax

against the maximum y value, ymax. As an example, Fig. 8 shows the vertical

Lyapunov families around the SL1 point (left) and around the SL2 point (right)

for β = 0.04. It can be seen that for the vertical Lyapunov orbits around the

SL1 point, the orbits increase zmax along the family. Furthermore, some orbits

that present an extra loop appear, but such extra loop is subsequently lost.

One such orbit is depicted in black in Fig. 8 (left). For the family around the

SL2 point, a range of orbits where the maximum altitude with respect to the

ecliptic decreases with increasing ymax to then start increasing again can be

appreciated.

Figure 9 shows the results obtained for the geometric comparison. The

families around the (displaced) L1 point all follow the same trend; the larger

ymax the further they extend out of the ecliptic. Furthermore, increasing the

lightness number pushes the orbits towards y = 0. For the families around the

(displaced) L2 point, when β ≤ 0.03, the orbits increase zmax with increasing

ymax, whereas for β > 0.03 there is a change in this trend. For β = 0.04, a
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Figure 8: Vertical Lyapunov families around the SL1 point (left) and around the SL2 point

(right) for β = 0.04.

range of orbits exists that decreases their maximum altitude above the ecliptic

for increasing ymax. For β = 0.05 the orbits even bifurcate to planar orbits.

Figure 9: Vertical Lyapunov families around the (displaced) L1 and L2 points: zmax against

ymax for the families around the (displaced) L1 point (left) and the (displaced) L2 point

(right) for β ∈ {0, 0.01, ..., 0.05}.

The stability indices for these families are shown in Fig. 10. The families

around both the (displaced) L1 and L2 points are unstable since no orbit exists

with si = 2 for i = 1, 2. Note that for the family around SL2 and β = 0.05, when

s1 = 2, s2 6= 2. In fact, such a case corresponds to the bifurcation point where

the vertical Lyapunov orbits become planar. The orbits around the (displaced)
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L1,2 points at the start of the families, where jc ≈ −1, have a central part that

is eventually lost when the Jacobi constant increases where s2 6= 2.

Figure 10: Vertical Lyapunov families around the (displaced) L1 and L2 points: stability

indices s1 and s2 in logarithmic scale for the families around the (displaced) L1 point (left)

and the (displaced) L2 point (right) for β ∈ {0, 0.01, ..., 0.05}.

3.2.5. Halo families in the vicinity of Earth

When the non-linear effects become important, a new family known as the

halo family bifurcates from the planar Lyapunov families around the collinear

equilibrium points [22]. Such a family presents two branches: the northern and

the southern halos. These branches are symetric with respect to the z = 0

plane. In this study we consider only the northern branch. In order to make a

geometric comparison of the northern halo families around the (displaced) L1

and L2 points, we compute zmax and plot it against d(SL1) or d(SL2), which in

this case denotes the difference between the x value where zmax is reached and

the x value of the associated equilibrium point of the family. As an example,

Fig. 11 shows the northern halo families around the SL1 point (left) and the

SL2 point (right) for β = 0.04. The change in the shape with respect to the

natural halo family around SL1 can clearly be seen as the family collapses onto

the ecliptic instead of finishing in near rectilinear halo orbits.

Figure 12 shows the results obtained for the geometric comparison for β ∈
{0, 0.01, ..., 0.05}. For the families around the (displaced) L1 point, it can be

seen that a change in behaviour takes place for β > 0.03. For β ≤ 0.01, the point
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Figure 11: Northern halo families around the SL1 point (left) and around the SL2 point

(right) for β = 0.04.

of maximum z value drifts in the direction of positive d(SL1) and further from

the ecliptic plane throughout the families. For β = 0.02, it first moves in the

direction of negative d(SL1) and then positive, but towards larger z values. For

β = 0.03, the point of largest z value alternates between positive and negative

d(SL1) and increasing and decreasing zmax. Lastly, for β ≥ 0.04, the highest

point always drifts towards the Sun, but zmax first increases and then decreases

until the orbits become planar. It is known that, during the continuation of the

halo family around SL1 with β, there is a bifurcation at β ≈ 0.387 which explains

the change in behaviour between β = 0.03 and β = 0.04 [22]. In general, changes

in the geometric behaviour of orbits within a type of family appear to occur for a

lightness number somewhere between 0.03 and 0.04. This suggests that there is a

lightness number β∗ ∈ (0.03, 0.04) for which the dynamics change qualitatively,

at least in the vicinity of Earth. For the family around the (displaced) L2 point,

the highest point always drifts towards the Earth and zmax first increases and

then decreases. Similar results were already observed for the halo families in

Ref. [23].

Regarding stability, Fig. 13 shows the stability indices for the northern halo

families around the (displaced) L1 point (left) and the (displaced) L2 point

(right) for β ∈ {0, 0.01, ..., 0.05}. The northern halo families around the (dis-
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Figure 12: Northern halo families around the (displaced) L1 and L2 points: zmax against

d(SL1) for the families around the (displaced) L1 point (left) and against d(SL2) for the

families around the (displaced) L2 point (right) for β ∈ {0, 0.01, ..., 0.05}.

placed) L2 point, as opposed to the planar and vertical Lyapunov families and

the halo families around the (displaced) L1 point, are families where the Jacobi

constant first increases and then decreases. In fact, the smallest values of the

Jacobi constant are reached for the orbits at the end of the families for β ≥ 0.01.

Therefore, the families for such lightness numbers end at jc = −1. For β = 0,

the smallest Jacobi constant is reached at the start of the family; thus, the

family starts at jc = −1. There are stable northern halo orbits around both the

(displaced) L1 and L2 points as there are orbits with s1 = 2 and s2 = 2. For

the families around the (displaced) L2 point, these stable halo orbits emerge

when the families approach near rectilinear halo orbits at the end of the fami-

lies. Also, note that the orbits in the families around the (displaced) L2 point

always have a central part as s2 = 2 for all β. Figure 13 also shows ranges of

orbits with similar values of jc where the stability indices intersect with si = 2

more than once, suggesting an interesting behaviour worth analysing in future

work.

3.2.6. Lypunov families in the L5 region

Lastly, two orbit families originate from the (displaced) L4 and L5 points:

the planar and vertical Lyapunov families. For these two families, there is

no notable change with the lightness number in the geometric behaviour so a
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Figure 13: Northern halo families around the (displaced) L1 and L2 points: stability indices

s1 and s2 in logarithmic scale for the families around the (displaced) L1 point (left) and the

(displaced) L2 point (right) for β ∈ {0, 0.01, ..., 0.05}.

geometric comparison is not presented. Figure 14 shows the planar orbit (left)

and the vertical orbit (right) around the SL5 point for β = 0.04. These families

are stable for all β since the orbits are always elliptic, i.e., s1 = 2 and s2 = 2.

Figure 14: Planar (left) and vertical (right) Lyapunov families around the SL5 point for

β = 0.04.

3.3. Invariant Tori

A first integral can be seen as a functional F that is invariant under the flow.

It can be shown that a first integral can also be described in terms of a Poisson
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bracket. The Poisson bracket of two functions h1 and h2 is defined as [19]:

{h1, h2} = ∇hT1 J∇h2 (18)

where

J =


 0 I

−I 0


 . (19)

For a Hamiltonian dynamical system, let us denote the Hamiltonian by H.

Then, a first integral is a functional h that satisfies {H,h} = 0. If two functions

satisfy such condition, they are said to be in involution [24]. An important

result, known as the Arnold-Liouville theorem, proves that for a system with a

2n-dimensional phase space, if n independent first integrals Fi with i ∈ {1, 2, ..n}
exist, the system is integrable. Furthermore, let us define the set

Mf = {x : Fi(x) = Ci, i ∈ {1, 2, ...n}}, (20)

where Ci are constants. Assuming Fi are all independent on Mf , then Mf is

a smooth manifold invariant under the flow with Hamiltonian H. Additionally,

if Mf is compact and connected, it is diffeomorphic to the n-dimensional torus

[24]. A corollary of the Arnold-Liouville theorem is that for an integrable system,

bounded trajectories lie on a torus where both periodic and quasi-periodic orbits

may exist. Neither the CR3BP nor the CR3BP + SRP are integrable, so the

Arnold-Liuville theorem does not apply. Nevertheless, KAM theory shows that

quasi-periodic motion does exist in these systems [25].

We explore 2-dimensional tori for the case where the dynamical system is

Hamiltonian. Therefore, we are interested in a parameterisation ψ : T2 → R6

such that [26]

ψ(θ + ωt) = φt(ψ(θ), α, δ), (21)

where θ = [θ1 θ2]T ∈ R2 parameterises the torus and ω = [ω1 ω2]T ∈ R2 is

the vector of frequencies. Figure 15 depicts the torus domain together with a

possible choice for θ1 and θ2 that is mapped to the quasi-periodic orbits under

ψ. Instead of looking for a paramaterisation of the full torus, it is possible to

reduce the dimension of the problem by looking for a paramaterisation of an
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Figure 15: Representation of a torus and the variables θ1 and θ2.

invariant curve ϕ : T1 → R6 under a stroboscopic map φT2 , where T2 is the

period associated with the frequency ω2. The invariance condition for the curve

under the map can be expressed as

ϕ(ξ + ρ) = φT2
(ϕ(ξ), α, δ), (22)

where ρ is the rotation number and ξ is the parameter that parameterises ϕ.

Note that the rotation number and T2 are related as ρ = ω1T2 [26].

A paramaterisation of the invariant curve can be obtained with complex

truncated Fourier series as

ϕ(ξ) =
∑

k∈K
cke

ikξ, (23)

where K is an index set [27] and ck are the complex Fourier coefficients. By

discretising ξ into N values ξj with j ∈ {1, 2, ..., N}, it is possible to discretise

the invariant curve into N points ϕ(ξj). Consequently, by means of the dis-

crete Fourier transform (DFT), there is a linear relation between the complex

coefficients ck of the Fourier series and the discretised invariant curve. Express-

ing the coefficients and the discretised curve as the column vectors c and u,

respectively, yields the relation [27]

c = Du, (24)

where D is the linear operator for the DFT. In this study we use N = 35; there-

fore, the invariant curves are discretised into 35 points and expressed in Fourier
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series up to degree 35. In order to meet the invariance condition expressed in

Eq. 22, a rotation operator R is used to rotate the mapped curve under the

stroboscopic map for an angle −ρ, i.e.,

R(−ρ) ◦ φT2
(ϕ(ξ), α, δ)− ϕ(ξ) = 0. (25)

The rotation can be performed by first obtaining the Fourier coefficients of

the mapped discretised curve, then transforming each coefficient with another

operator Q(−ρ) : ck → cke
−ikρ and finally obtaining the states in the rotated

curve. Consequently, R(−ρ) = D−1Q(−ρ)D [27].

To ensure that the invariant curve defines a quasi-periodic orbit, it is nec-

essary that all points of the curve have the same Jacobi value. Therefore, each

point of the invariant curve is constrained to

Jc(ϕ(ξj)) = Jfixedc . (26)

Given a good initial guess, the invariance condition from Eq. 25 together with

the Jacobi constraint from Eq. 26 can be used in a Newton method to obtain

invariant curves together with the rotation number ρ and the period T2. Figure

16 shows a discretised guess ϕ̂(ξ) for an invariant curve and its image under the

stroboscopic map (left) and the converged solution and its image (right) for a

tolerance of 10−10 after three iterations. From the converged solution, it can be

appreciated how the flow comes back to the same curve.

Given a periodic orbit defined by a phase space point xp and a period T ,

if such an orbit is elliptic, i.e., at least one of its stability indices si = 2, then

the eigenplane passing through xp associated with the eigenvalues λi and λ−1i

contains invariant curves of the linearisation around xp of a stroboscopic map

with stroboscopic time T2 = T , i.e., the monodromy matrix. Some of these

invariant curves subsist in the full system, giving rise to invariant tori around

the periodic orbits [26]. Therefore, given λi an eigenvalue within the unit circle,

and the associated complex eigenvector y, the initial guess can be obtained as

[27]

ϕ̂(ξ) = xp + ρε[cos(ξ)Re(y)− sin(ξ)Im(y)], (27)
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Figure 16: Guess for an invariant curve and its image under the stroboscopic map (left) and

the converged solution and its image after three iterations (right).

where ρε is the radius of the initial guess for the invariant curve taken as 10−7

dimensionless units. For the rotation number, it can be shown that the phase

of λi can be used as an initial guess [27].

3.3.1. Continuation of the families of invariant tori

Once a solution has been found, it is possible to continue the families of in-

variant tori. Unlike for the families of periodic orbits, which are one-parameter

families, invariant tori belong to two-parameter families [27]. Therefore, for

consistency, it is necessary to fix one parameter within the family. Common

choices include the rotation number and the Jacobi constant [27]. We com-

pute the families of invariant tori at fixed Jacobi constants. Apart from this

constraint, additional ones are necessary for the consistent continuation of the

solutions. Note that if ψ(θ) is an invariant torus, ψ(θ+θ0), with θ0 ∈ R2 would

be a solution of the problem but not a different torus, i.e., the invariant curve

would simply be phased in any of the two angles of the torus. Therefore, two

phase constraints are included. Additionally, the pseudo-arclength constraint is

used to ensure the next solution is at a certain distance from the previous one. In

this study the tangent direction is obtained simply as the normalised difference

between two already known solutions. For more details on these constraints,
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the reader can consult Ref. [27].

The methodology described for computing families of quasi-periodic orbits

is not the only approach available in the literature. Nevertheless, it has been

shown that it is one of the most accurate and efficient methods [28].

3.3.2. Families of invariant tori in the vicinity of Earth

We start by studying quasi-periodic motion in the neighbourhood of the (dis-

placed) L1 point. Figure 7 showed that for all lightness numbers considered, the

planar Lyapunov orbits around the (displaced) L1 point have a centre manifold

at the start of the families. Then, there is a pitchfork bifurcation, where the

orbits stop being elliptic, giving rise to the halo families and the linear dynamics

of the orbits become of type saddle×saddle [29]. Since invariant tori only exist

around the planar orbits that have a central part, the planar Lyapunov orbits

have quasi-periodic motion around them before they bifurcate into the halo

family and later on when they regain their central part. Nevertheless, invariant

tori still exist around both the vertical Lyapunov and halo orbits, see Fig. 10

and Fig. 13. In order to obtain the general picture, we compute the families

of invariant tori around planar and vertical Lyapunov orbits as well as around

halo orbits for β = 0.02 for different Jacobi values close to the bifurcation of the

planar Lyapunov family into the halo family. For visualisation, the intersection

of the families of tori with the ecliptic plane is plotted in Fig. 17, where the

intersections for the planar and vertical Lyapunov as well as the halo orbits of

the same Jacobi constant are represented in black and using black markers.

The figure shows that the quasi-periodic motion is bounded by the planar

Lyapunov orbit. The quasi-periodic orbits around the planar and vertical Lya-

punov orbits are referred to as Lissajous orbits, whereas the quasi-periodic ones

around the halo orbits are referred to as quasi-halo orbits. For Jacobi constant

values before the pitchfork bifurcation, the families of tori around the planar

and vertical Lyapunov orbits are connected and all the quasi-periodic motion

within the planar Lyapunov orbit presents the same structure. By connected it

is meant that both families are actually the same and therefore it is possible to
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Figure 17: Intersections between Lissajous and quasi-halo families around SL1 with the eclip-

tic plane for β = 0.02 at different Jacobi constants.

continue from a planar to a vertical Lyapunov orbit through a family of quasi-

periodic orbits. Such connection was already shown for the CR3BP [26], but it

persists when a solar-sail acceleration is included in the dynamics. When the

Jacobi constant is increased, the planar Lyapunov orbits are no longer elliptic

and no quasi-periodic motion exist around them until the orbits regain their

central part. Furthermore, families of quasi-halos start to emerge, see top-right

plot in Fig. 17, and they increase in size with increasing Jacobi constant. Figure

18 shows how the quasi-periodic orbits evolve throughout the Lissajous family

around a vertical Lyapunov orbit around SL1 for β = 0.02 and Jc = −2.9604.

It is then clear how, first, the quasi-periodic orbits originate around the vertical

Lyapunov orbit to later become a planar Lyapunov orbit.

The general picture for quasi-periodic motion around the (displaced) L2

point is very similar to that around the (displaced) L1 point. As it was shown

in Fig. 7, the stability indices for the planar Lyapunov families around the (dis-
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Figure 18: Evolution of the Lissajous quasi-periodic orbits around a vertical Lyapunov orbit

around SL1 for β = 0.02 and Jc = −2.9604.

placed) L2 point generally behave like in the CR3BP for all lightness numbers

considered. The orbits at the start of the planar Lyapunov families present a

centre manifold, i.e., s2 = 2. When the orbits grow in size, and increase their

Jacobi constant, a bifurcation takes place where the orbits become hyperbolic

and they lose their central part. Such point is where the families of halo orbits

around the (displaced) L2 point come into existence. The planar Lyapunov or-

bits then regain their central part when s2 = 2. Regarding invariant tori around

the vertical Lyapunov orbits around the (displaced) L2 point, the vertical orbits

have a centre manifold for a wide range of Jacobi constants as was shown in

Fig. 10. Therefore, families of Lissajous orbits exist around such orbits. Lastly,

for all lightness numbers, the halo orbits around the (displaced) L2 have quasi-

periodic motion around them, since, as Fig. 13 shows, s2 = 2 for all orbits.

Figure 19 depicts the intersection between the families of tori and the ecliptic

around the SL2 point for β = 0.02. Like for the quasi-periodic motion around
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the SL1 point, the families of invariant tori around vertical and planar Lya-

punov orbits are connected when the Jacobi constant is smaller than the value

at the bifurcation into the halo family. The connection between the families

can be seen in the section in Fig. 19 for Jc = −2.9612, where all bounded

motion within the planar Lyapunov orbit presents again the same structure.

The planar family then bifurcates into the halo family and the planar orbits

lose their centre manifold, breaking the connection with the Lissajous family

around the vertical Lyapunov orbits. This is clear from the Poincaré sections

for Jc > −2.9612. The quasi-halo families then start growing in size with the

Jacobi constant. The evolution of the Lissajous families around the SL2 point

for β = 0.02 and Jc = −2.9612, where the families of tori around the planar

and vertical Lyapunov orbits are connected, is shown in Fig. 20. It can be seen

that the connection is very similar to the joined families around the SL1 point

shown in Fig. 18.

Figure 19: Intersections between Lissajous and quasi-halo families around SL2 with the eclip-

tic plane for β = 0.02 at different Jacobi constants.
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Figure 20: Evolution of the Lissajous quasi-periodic orbits around a vertical Lyapunov orbit

around SL2 for β = 0.02 and Jc = −2.9612.

It was shown that for the planar Lyapunov families around the (displaced)

L1 and L2 points, the orbits regain their central part and families of invariant

tori again start to exist around them. These orbits are no longer connected to

the quasi-periodic orbits that exist around the vertical Lyapunov orbits that

were shown in Figs. 18 and 20. Figure 21 depicts, around the SL1 point, for

β = 0.02 and Jc = −2.96 (see Fig. 7 (left) for jc = −0.9985), quasi-periodic

motion around planar and vertical Lyapunov and halo orbits. Similar results

can be obtained around the (displaced) L2 point.

3.3.3. Families of invariant tori in the L5 region

Regarding the invariant tori that exist in the L5 region, the linear dynamics

around the planar and vertical Lyapunov orbits is of type centre×centre; there-
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Figure 21: Examples of quasi-periodic orbits around a planar Lyapunov (blue) a vertical

Lyapunov (magenta) and a halo (red) orbits around SL1 for β = 0.02 and Jc = −2.96.

fore, it is possible to initiate the computation of invariant tori from such orbits

with two initial guesses given by the two eigenvectors associated with the two

eigenvalues within the unit circle. The initial guesses that can be constructed

for invariant curves around the planar family result in two different families

of invariant tori. However, for the quasi-periodic motion around the vertical

orbits, both of the initial guesses that can be constructed result in the same

family. As an example, we compute the families around a planar and a verti-

cal Lyapunov orbits around the SL5 point for β = 0.02 and Jacobi constant

Jc = −2.958 and plot one member of each family in Fig. 22. The figure shows

how for the quasi-periodic motion around planar orbits in the L5 region, one of

the families corresponds to in-plane quasi-periodic orbits (left) and the second

family corresponds to out-of-plane quasi-periodic orbits (middle).

3.4. Invariant Manifolds

Equilibrium points, periodic orbits and quasi-periodic orbits can have differ-

ent types of invariant manifolds which are very useful for mission design. This

section describes how to compute them and justifies their importance.
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Figure 22: In-plane (left) and out-of-plane (middle) quasi-periodic orbits around a planar

Lyapunov orbit and quasi-periodic orbit around a vertical Lyapunov orbit (right) around SL5

for β = 0.02 and Jc = −2.958.

3.4.1. Invariant manifolds of equilibrium points

Let us assume xe is a fixed (equilibrium) point of the non-linear system

given by Eq. 8. Let us denote the matrix of the linearised system as Df . If

Df has k eigenvalues with negative real part, j eigenvalues with positive real

part and m = 6 − k − j eigenvalues with zero real part, there exist a stable

manifold W s, an unstable manifold Wu and a centre manifold W c; all of which

are invariant under the flow. Such manifolds are tangent at xe to the stable,

unstable and centre subspaces given by the stable, unstable and centre directions

of Df at xe. Furthermore, the stable and unstable manifolds are positively and

negatively invariant respectively, satisfying [12]:

lim
t→∞

φt(v, α, δ) = xe for all v ∈W s, (28)

lim
t→−∞

φt(v, α, δ) = xe for all v ∈Wu. (29)

Numerically, the stable and unstable manifolds associated with the equilibrium

point xe can be computed as

W s = {x : φt(xe ± εus, α, δ)− x = 0 for t ∈ R≤0}, (30)

Wu = {x : φt(xe ± εuu, α, δ)− x = 0 for t ∈ R≥0}, (31)

where ε is the magnitude of the perturbation, taken as 10−5, us is the unit

eigenvector of Df associated with the stable direction and uu is the unit eigen-

vector of Df associated with the unstable direction [30]. The relevance of these
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topological spaces for mission design is clear as a spacecraft travelling along the

stable manifold of an equilibrium point will eventually reach it, whereas along

the unstable manifold, the spacecraft will divert from the equilibrium point.

Figure 23 depicts the stable and unstable manifolds of the collinear equilib-

rium points for β ∈ {0, 0.01, ..., 0.05}. For the analysis in §4 it is important to

note that, as the figure shows, it is not possible to reach the L5 region along

the unstable manifold from the natural L1 point (β = 0). Furthermore, for

β = 0.01, a transfer along the unstable manifold associated with the SL1 point

gets entangled around Earth before escaping towards the L5 region [7]. These

cases will therefore require additional considerations for the mission design that

will be discussed later on.

Figure 23: Stable and unstable manifolds of the (displaced) L1 and L2 points for β ∈
{0, 0.01, ..., 0.05}.

3.4.2. Invariant manifolds of periodic orbits

Regarding the invariant manifolds of periodic orbits, let us first assume xp

defines a periodic orbit with period T and sail attitude α and δ. We can define

the cycle of a periodic orbit as the set

Γ = {x : φt(xp, α, δ)− x = 0 for t ∈ [0, T )}. (32)

If k of the eigenvalues of the monodromy matrix of Γ are outside the unit

circle centred at the origin of C, j are inside and m = 6 − k − j are on the
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boundary, there exist a stable manifold W s, an unstable manifold Wu and

a centre manifold W c; all invariant under the flow. Furthermore, the stable

manifold W s, the unstable manifold Wu and the centre manifold W c intersect

transversally in Γ. Additionally, the stable and unstable manifolds are positively

and negatively invariant under the flow and satisfy [12]:

lim
t→∞

φt(v, α, δ) ∈ Γ for all v ∈W s (33)

lim
t→−∞

φt(v, α, δ) ∈ Γ for all v ∈Wu. (34)

Numerically, the stable and unstable manifolds associated with the periodic

orbit can be computed as [30]

W s = {x : φt(z ± εys(z), α, δ)− x = 0 for z ∈ Γ, t ∈ R≤0}, (35)

Wu = {x : φt(z ± εyu(z), α, δ)− x = 0 for z ∈ Γ, t ∈ R≥0}, (36)

where ys(z) and yu(z) are the stable and unstable eigenvectors at z ∈ Γ. If

yi, with i = s, u, are eigenvectors of the monodromy matrix at xp, they can be

translated anywhere along Γ as yi(z) = Φ(t,xp, α, δ)yi, where z = φt(xp, α, δ)

[30]. As an example, Fig. 24 shows the stable and unstable manifolds of a

solar-sail halo orbit around the displaced L1 point for β = 0.02. The figure

shows that a spacecraft could escape Earth along the unstable manifold of the

halo orbit; therefore, the invariant manifolds of periodic orbits can once again

be very useful for mission design, see §4.

Figure 24: Stable (blue) and unstable (red) manifolds of a halo orbit around SL1 for β = 0.02.
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3.4.3. Invariant manifolds of quasi-periodic orbits

A matrix analogous to the monodromy matrix exists for quasi-periodic orbits

from which stability information and the associated invariant manifolds can

be obtained. We follow Ref. [27] and asses the stability of a quasi-periodic

orbit through the variation of the rotated mapped invariant curve under the

stroboscopic map with respect to the invariant curve, i.e.,

d

dϕ
(R(−ρ) ◦ φT2

(ϕ(ξ), α, δ)) . (37)

Such a matrix appears in the computation of quasi-periodic orbits. The com-

putation of their associated invariant manifolds therefore requires little extra

effort. The matrix in Eq. 37 is nothing else than the linearisation of the strobo-

scopic map, but removing the rotation to asses the stability of the curve ϕ(ξ) as

opposed to that of the mapped curve ϕ(ξ+ ρ) [27]. The eigenvectors associated

with the real eigenvalues of the stability matrix then correspond to the stable

and unstable directions of the invariant manifolds at each point of the discre-

tised invariant curve at some reference value for the angular coordinate θ2 = θ02

[27]. In order to compute the invariant manifolds anywhere on the torus, i.e.,

θ2 = θ02 + ω2t, the eigenvectors of the stability matrix at the invariant curve

need to be translated along θ2. Let us assume Y is the (un)stable eigenvector

of ϕ(ξ) at θ2 = θ02. Then, the (un)stable directions along the torus Y (θ2) are

given by [27]

Y (θ2) = Φ(ϕ(ξ), t, α, δ))Y . (38)

As an example, Fig. 25 shows the stable and unstable directions of a quasi-halo

orbit around the displaced L2 point for β = 0.02.

4. Trajectory design between invariant objects

In this study, we consider transfers between the collinear equilibrium points

in the vicinity of Earth and families of periodic orbits in the L5 region, trans-

fers between families of periodic orbits and transfers between families of quasi-

periodic orbits. In order to find these transfers, we first use a multi-objective
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Figure 25: Stable (black) and unstable (red) directions along a quasi-halo orbit around the

SL2 point for β = 0.02.

genetic algorithm to find initial guesses that are refined and optimised with a

multiple-shooting differential corrector and a continuation of the solutions with

the time of flight. Finally, the optimality of the transfers is checked by compar-

ing the results with those obtained with the optimal control solver PSOPT.

4.1. Genetic algorithm

A genetic algorithm (implemented using the MATLAB R© function gamulti-

obj.m) is taken at hand to solve a multi-objective optimisation problem in which

a set of decision variables defines a guess for the transfer. The quality of that

guess is assessed in terms of the two objectives: the infeasibility, εI , and the

time of flight (TOF). Since the decision variables vary for each case, i.e., the

type of invariant objects used for the departure and arrival conditions, each case

will be discussed separately below.

4.1.1. Transfers between the collinear equilibrium points and families of periodic

orbits in the L5 region

The initial guesses are obtained as the union of two segments: one starting

at the collinear equilibrium point and another one coming from the L5 region.

The unstable manifolds originating from the displaced equilibrium points are
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used for the first segment and they are integrated over a five year time frame,

forwards in time. However, note that the unstable manifold of the L1 and L2

points enters a complex region around Earth as was shown in Fig. 23. This

can cause issues in the adopted approach. Therefore, in those cases, we use

manifold-like trajectories that start from the L1 and L2 points perturbed in

the direction of the unstable manifold but including a solar-sail acceleration

where the solar sail is pitched at a fixed, zero degree angle with respect to the

incoming solar radiation. Figure 26 depicts these stable and unstable manifold-

like trajectories W̃ s and W̃u departing from L1 and L2. The figure shows that

for β = 0.01 the unstable manifold-like trajectory loops around Earth but still

manages to escape from it. For β > 0.01, the solar sail successfully escapes

without revolving around Earth. Note that for β = 0, the manifold and the

manifold-like trajectories are the same as no solar-sail acceleration is included;

therefore, the trajectories still enter the complex region around Earth.

Figure 26: Stable and unstable manifolds-like trajectories of the L1 and L2 points for β ∈
{0, 0.01, ..., 0.05}.

The target periodic orbit, insertion conditions and the segment reaching the

L5 region are determined with a vector of decision variables, x, defined as:

x = [df τf αf ]. (39)

Given a family of periodic orbits around the (displaced) L5 point, the first vari-

36



able, df , determines the dimensionless size of the periodic orbit as the largest

distance from the periodic orbit to its associated equilibrium point. This vari-

able allows transfers that target entire families of periodic orbits, as opposed to

works that target one particular periodic orbit [4, 6]. The second variable, τf ,

determines the insertion point into the periodic orbit. Such a point is obtained

from propagating the flow over a time τfT , where T is the periodic orbit period,

starting from some reference point. Finally, the third variable, αf , determines

the constant cone angle of the sail which is used in the backwards integration

from the insertion point over a five year time frame. Figure 27 depicts how the

vector of decision variables defines the target periodic orbit around the (dis-

placed) L5 point, the insertion point and the segment of the trajectory reaching

the L5 region. Note that since this is a planar problem, δ = π/2.

Figure 27: Schematic of genetic algorithm decision variables.

The initial guess for the transfer is then given by the union of the unstable

manifold or the unstable manifold-like trajectory of the equilibrium point and

the backwards flow from the periodic orbit at the point of minimum Euclidean

norm in dimensionless phase space. This value is used as the infeasibility objec-

tive, εI . Together with the corresponding time of flight, the genetic algorithm

creates a Pareto front that gives a range of potential initial guesses that vary in

feasibility and time of flight. Ideally, the initial guess selected for the next steps

of the trajectory design is the guess which is sufficiently feasible and has the
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smallest time of flight, where, by sufficiently feasible, it is meant that the initial

guess can converge to a feasible solution with the multiple shooting differential

corrector approach, see §4.2.

As an example, Fig. 28 (left) shows the Pareto front obtained for transfers

from the natural L1 point to the solar-sail planar Lyapunov family around the

SL5 point for β = 0.02. An initial guess, highlighted in red in the Pareto front,

is depicted in Fig. 28 (right). In terms of objective values, this initial guess

achieves a feasibility of εI = 0.0344, which corresponds to an error in position

of 2.15 · 106 km and an error in synodic velocity of 0.9292 km/s. The time of

flight equals TOF = 738 days, while the values for the decision variables are:

x = [df τf αf ] = [0.1858 0.3227 28.89], where αf is given in degrees.

Figure 28: Examples of the Pareto front obtained with the genetic algorithm (left) and of an

initial guess (right) for transfers from the natural L1 point to the solar-sail planar Lyapunov

family around the SL5 point for β = 0.02.

4.1.2. Transfers between families of periodic orbits

When the departure invariant object is a periodic orbit within an orbit family

around the L1, L2, SL1 or SL2 points, the decision vector in Eq. 39 is expanded

to:

x = [d0 τ0 df τf αf δf ]. (40)

Equation 40 now also includes decision variables to select the best size of the

departing orbit, d0, and the best departure condition along that orbit, τ0. Fur-

thermore, if the departing periodic orbit is a three-dimensional orbit, the angle
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δf considers a solar-sail attitude component in the out-of-plane direction in the

backwards propagation from the L5 region.

Similar to the approach in §4.1.1, the departure conditions are propagated

along the unstable manifold, only now of the periodic orbit, for a five year time

frame. The initial guess is then again obtained as the union of the trajectory

along the unstable manifold of the periodic orbit and the backwards flow from

the periodic orbit around L5 or SL5 at the point of minimum Euclidean norm

in dimensionless phase space.

The unstable manifolds of the natural periodic orbits around L1 and L2 do

not present the complex region around Earth that the manifolds associated with

the natural collinear equilibrium points do. Nevertheless, the initial guesses ben-

efit, in terms of TOF, from using the sail at a zero degree angle with respect

to the incoming solar flux. Therefore, the approach described for the unstable

manifolds of the collinear Lagrange points is also adopted for the unstable man-

ifolds of natural periodic orbits. When departing from solar-sail periodic orbits,

their associated unstable manifolds already have a sail attitude aligned with the

incoming flux. Therefore the true unstable manifolds are used.

4.1.3. Transfers between families of quasi-periodic orbits

In order to explore trajectories between families of quasi-periodic orbits, we

use three new variables. The first is a variable that determines the invariant

curve that defines the quasi-periodic orbit for the arrival or departure conditions,

see Fig. 29 (left) for the initial conditions. This variable is defined as the

maximum distance from the invariant curve to the periodic orbit and denoted

by %i with i = 0, f , where the subscript 0 denotes departure and the subscript

f denotes arrival conditions. Note that the point of the periodic orbit used to

define this variable is the point of the periodic orbit from where the invariant

curves originate. To determine the position within the quasi-periodic orbit

where the spacecraft departs or arrives, two variables are needed as invariant

tori are 2-dimensional surfaces. Therefore, the second new variable is θ1i, with

i = 0, f , that parameterises the invariant curve, defining the point ψ(θ), with
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θ = [θ1i θ2i]
T , where θ2i is the reference value for the angular variable θ2 of the

torus where the invariant curve is located, see Fig. 29. The third parameter, ζi,

allows to explore the torus in the variable θ2 by propagating the point from the

invariant curve defined by %i and θ1i for a time ζiT2i, where T2i is the period

associated with the motion in θ2 within the departure or arrival quasi-periodic

orbit.

Figure 29: Initial conditions for departure from a natural Lissajous orbit around L1 on the

invariant curve (left) and on the quasi-periodic orbit (right).

The defined variables fully determine the departing and arriving conditions

in the quasi-periodic orbits. Such conditions can be mathematically expressed

as

φζ0T20
(ϕ0(θ10), α, δ), (41)

φζfT2f
(ϕf (θ1f ), α, δ), (42)

where, ϕ0 and ϕf are the invariant curves for the departure and arrival quasi-

periodic orbits. The initial guess can then be obtained, similarly as for the cases

in §4.1.1 and §4.1.2, as the union of two segments coming from the departure

and arrival quasi-periodic orbits. The departing quasi-periodic orbits around

the (displaced) L1 and L2 points have unstable manifolds; therefore, for the

first segment of the transfer, the departure conditions are propagated along the

unstable manifold of the quasi-periodic orbit for a five year time frame. In order
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for the initial guesses, departing from natural quasi-periodic orbits, to benefit

from the sail, the same manifolds-like trajectories previously described are used.

The quasi-periodic orbits in the L5 region are stable and therefore the second

segment is obtained as the backwards flow from the arrival conditions with some

sail attitude given by the variables αf and δf . The initial guess is then defined

by

x = [%0 θ10 ζ0 %f θ1f ζf αf δf ]. (43)

4.2. Multiple shooting differential corrector

The transfers obtained with the genetic algorithm will not be feasible nor

time-optimal. We therefore use a multiple shooting differential corrector to first

turn the genetic algorithm guesses into feasible trajectories and then reduce the

time of flight.

First, the guesses are discretised on n = 30 nodes. The decision vector at

each node contains a point in phase space, a cone angle, a clock angle and a

temporal variable. They can be expressed as:

Xi =




xi

αi

δi

ti




for i ∈ {1, 2, ...n} (44)

A feasible trajectory for a given TOF, T0, with constraints g0 and gf on the

initial and final nodes is obtained as the solution to the following problem:

g0(X1) = 0 (45)

φti(xi, αi, δi)− xi+1 = 0 for i ∈ {1, 2, ..., n− 1} (46)

gf (Xn) = 0 (47)

n−1∑

i=1

ti − T0 = 0 (48)

The constraints g0 and gf depend on the departure and arrival conditions se-

lected. We can rewrite Eqs. 45-48 as S (X) = 0, with X = [XT
1 ,X

T
2 , ...X

T
n ]T .
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Then, an initial guess X̂ can be corrected by solving the linear system:

−S(X̂) = JS(X̂)δX, (49)

where JS(X) =




Jg0(X1) 0 · · · · · · · · · · · · 0

Φ̃1 f1 −E 0 · · · · · · 0

0 Φ̃2 f2 −E 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · Φ̃n−2 fn−2 −E 0

0 · · · · · · · · · Φ̃n−1 fn−1 −E
0 · · · · · · · · · · · · · · · Jgf (Xn)

u · · · · · · · · · · · · u 0




, (50)

where fi = f(φti(xi, αi, δi), αi, δi) with i ∈ {1, 2, ..., n − 1}, E = [I6×6 06×3],

u = [01×8 1] and Φ̃i = Φ̃(xi, ti, αi, δi) with i ∈ {1, 2, ..., n − 1}. The 6 × 8

matrix Φ̃ is an expanded STM that includes the variation of φti(xi, αi, δi) with

respect to αi and δi, i.e., Φ̃ = [Φ ∂φt

∂α
∂φt

∂δ ] [6].

For some cases, the decision vectors for the initial and/or final node, as

they appear in Eq. 44, need to be changed in order to impose the boundary

constraints on them. Then, due to the addition or elimination of variables for

the outer nodes the Jacobian of S(X), as it appears in Eq. 50, needs to be

slightly modified to account for the variables used. Nevertheless, the general

structure of JS(X) is maintained.

4.2.1. Transfers between the collinear equilibrium points and families of periodic

orbits in the L5 region

This case is equivalent to fixing x1 to the desired departure collinear equi-

librium point, xfixed, and imposing the constraint given by Eq. 11 to Xn. The

decision vector for the first node can then be expressed as in Eq. 44, whereas

for the last node it is defined only by point in phase space and the period of the
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orbit it belongs to, Tn. Therefore,

X1 =




x1

α1

δ1

t1



, Xn =


xn
Tn


 . (51)

The constraints on the outer nodes are then defined as:

g0(X1) = x1 − xfixed, (52)

gf (Xn) = G(xn, Tn) = φTn
(xn, α, δ)− xn. (53)

If Xn defines a periodic orbit from an specific family, the constraint given by

Eq. 53 will generally set the last node to an orbit belonging to that family,

unless the periodic orbit of the initial guess is close to a bifurcation point.

4.2.2. Transfers between families of periodic orbits

If the initial point, x1, is constrained to be on a family of periodic orbits, the

variables for the initial node, X1, as they appear in Eq. 44, are not sufficient

to define a departure periodic orbit. It would be possible to expand X1 with

an extra variable, T1, to define the period of the departure periodic orbit and

impose Eq. 11 to the initial node in a similar way as was done for the last node

in Eq. 53. However, this does not work well in practice because the departing

periodic orbits are unstable for which the differential corrector has difficulties

converging to fast transfers. Therefore, in order to be able to let the initial node

belong to a family of unstable periodic orbits around the collinear equilibrium

points, a more robust periodicity constraint is explored.

Let us consider a set defined by a point xp, a parameter T and fixed cone

and clock angles α and δ respectively. The complete set can be expressed as

Γ = {x : φt(xp, α, δ)− x = 0 for t ∈ [0, T )}. (54)

Then, the set Γ defines a periodic orbit if for any x ∈ Γ, G(x, T ) = 0. This can

be expressed as:

G̃(x, T, t) = φT (φt(x, α, δ), α, δ)− φt(x, α, δ) = 0, (55)

43



with t ∈ [0, T ). Equation 55 is a more robust periodicity constraint as it allows

to impose periodicity not at x but at φt(x, α, δ). By the theorem of existence

and uniqueness of differential equations [12], if φt(x, α, δ) belongs to a periodic

orbit, so will x. Note, that G̃ can also be used to compute exclusively periodic

orbits.

For this case, the decision vectors for the initial and final nodes are expressed

as:

X1 =




x1

α1

δ1

t1

T1

t̃1




, Xn =




xn

Tn

t̃n


 , (56)

where t̃1 and t̃n are used for the variable t in G̃ in Eq. 55. The constraints on

the initial and final node are then:

g0(X1) = G̃(x1, T1, t̃1) = φT1
(φt̃1(x1, α, δ), α, δ)− φt̃1(x1, α, δ), (57)

gf (Xn) = G̃(xn, Tn, t̃n) = φTn
(φt̃n(xn, α, δ), α, δ)− φt̃n(xn, α, δ). (58)

To include the new periodicity constraints, the Jacobian of G̃ is needed for

inclusion in Eq. 50 and can be expressed as:

JG̃ = [
∂G̃

∂x

∂G̃

∂T

∂G̃

∂t
]

= [(Φ(φt(x, α, δ), T, α, δ)− I6×6)Φ(x, t, α, δ) f(φT (φt(x, α, δ), α, δ))

(Φ(φt(x, α, δ), T, α, δ)− I6×6)f(φt(x, α, δ), α, δ)].

(59)

Note that both the constraints in Eq. 11 and 55 can be used to constrain

a node to a family of periodic orbits. However, it might be of interest to ac-

tually fix the departure and/or arrival orbits in the scenario where the mission

requirements constrain the departure and/or arrival orbits. Then, let us assume

we want to fix a point x to lie on a specific periodic orbit. Such a periodic orbit
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can be described by a phase space point xp, a period T and cone and clock

angles α and δ. Then the point x needs to satisfy:

G̊(x, t) = φt(xp, α, δ)− x = 0, (60)

for some t ∈ [0, T ). Lastly, the Jacobian of G̊ needed for inclusion in Eq. 50

can be obtained as:

JG̊ = [−I6×6 f(φt(xp, α, δ), α, δ)]. (61)

4.2.3. Transfers between quasi-periodic orbits

Let us assume we want to depart from a quasi-periodic orbit defined by

the invariant curve ϕ0(ξ). Let us also assume we would like to arrive to a

quasi-periodic orbit in the L5 region defined by the invariant curve ϕf (ξ). The

genetic algorithm will obtain the departure and arrival quasi-periodic orbits at

the conditions expressed in Eqs. 41 and 42. Then, we can constrain the initial

and final nodes of the transfers to be within the selected quasi-periodic orbits

by rotating the conditions ϕi(θ1i) with i = 0, f by some rotation number δρi

and propagate the flow from such conditions along the quasi-periodic orbit for

some time ζiT2i. The constraint to fix a node to quasi-periodic orbits can then

be expressed as

Ḡ(x, δρ, ζ) = φζT2
(R(δρ) ◦ ϕ(ξref ), α, δ)− x = 0, (62)

where R is the rotation operator defined in §3.3 that rotates points within

invariant curves and ξref defines a reference point in the invariant curve taken

as ξref = θ10 for the departure torus and as ξref = θ1f for the arrival one.

To impose the quasi-periodic orbit constraint to the outer nodes it is nec-

essary to include the parameters δρi and ζi to the decision vectors which can

45



then be expressed as

X1 =




x1

α1

δ1

δρ0

ζ0




, Xn =




xn

δρf

ζf


 . (63)

The constraints on the initial and final nodes then become

g0(X1) = Ḡ(x1, δρ0, ζ0) = φζ0T20(R(δρ0) ◦ ϕ(θ0), α, δ)− x1, (64)

gf (Xn) = Ḡ(xn, δρf , ζf ) = φζfT2f
(R(δρf ) ◦ ϕ(θf ), α, δ)− xn. (65)

Lastly, the Jacobian of Eq. 62 can be computed as

JḠ = [
∂Ḡ

∂x

∂Ḡ

∂δρ

∂Ḡ

∂ζ
]

= [−I6×6 Φ(R(δρ) ◦ ϕ(ξref ), ζT2, α, δ)
dR(δρ)

dδρ
◦ ϕ(ξref )

f(φζT2(R(δρ) ◦ ϕ(ξref ), α, δ), α, δ)].

(66)

4.3. Optimisation with the multiple shooting differential corrector

So far, the differential corrector described computes transfers for a fixed

TOF: the initial guess given by the genetic algorithm is used to seed the differ-

ential corrector and find a feasible trajectory with the TOF, T0, of the initial

guess. To optimise the transfer with respect to the time of flight, this solution

is then used to compute a new solution for a time of flight κT0, with κ < 1.

This process is iterated until the differential corrector does not converge. Then,

the factor κ is increased to allow smaller steps in the continuation. We use

κ ∈ {0.95, 0.98, 0.99, 0.999, 0.9995}.

4.4. Additional case

The cases described for both the genetic algorithm and the multiple shooting

differential corrector can be combined and slightly modified to build new cases

without much difficulty. For instance, we consider the case where a primary
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mission is launched into the stable manifold of a natural halo orbit around the L1

point. At some point along the stable manifold, a secondary spacecraft equipped

with a solar sail is separated from the primary spacecraft to begin its trajectory

to the planar Lyapunov family around the L5 point. We are interested in finding

and optimising a trajectory departing from the stable manifold of a particular

halo orbit and arriving to the family of natural planar Lyapunov orbits in the

L5 region. For the trajectory of the primary spacecraft, we compute the stable

manifold of an assumed halo orbit and take a trajectory along the manifold that

passes by Earth at an altitude of 200 km.

For the genetic algorithm, the vector of decision variables can be expressed

as

x = [τp α0 δ0 df τf αf δf ], (67)

where τp determines the departing conditions along the primary spacecraft tra-

jectory; more specifically, if Tp is the transfer time for the primary spacecraft

along the stable manifold, the solar sail is deployed at τpTp. The variables α0

and δ0 are the cone and clock angle for the segment departing from the stable

manifold of the periodic orbit which is again propagated for five years. The

remaining variables are analogous to the ones described in §4.1.1 and §4.1.2.

For the multiple shooting differential corrector, the constraint G̊ in Eq. 60

can be used as the constraint on the initial node. However, the point x0 that

defined the fixed periodic orbit now corresponds to the departure point at 200

km altitude of the primary spacecraft trajectory. Furthermore, The angles α

and δ used with G̊ are the cone and clock angles for the selected halo orbit of

the primary mission. For the constraint on the final node, both G (Eq. 11)

and G̃ (Eq. 55) can be used; we choose the stronger periodicity constraint G̃.

Therefore, the decision vectors for the initial and final nodes can be expressed
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as:

X1 =




x1

α1

δ1

t1

τp




, Xn =




xn

Tn

t̃n


 (68)

and the constraints are defined as:

g0(X1) = G̊(x1, τp) = φτp(x0, α, δ)− x1, (69)

gf (Xn) = G̃(xn, Tn, t̃n) = φTn(φt̃n(xn, α, δ), α, δ)− φt̃n(xn, α, δ). (70)

5. Mission design results

This section describes the results obtained with the genetic algorithm in

combination with the multiple shooting differential corrector and continuation

for the cases considered.

5.1. Transfers between the collinear equilibrium points and families of periodic

orbits in the L5 region

We first apply the methodology described for transfers between the (dis-

placed) collinear Lagrange points in the vicinity of Earth and natural and solar-

sail families of planar Lyapunov orbits (PLOs) in the L5 region. To check the

quality of the solutions, we take the arrival orbits obtained with the differential

corrector + continuation and we compute time-optimal transfers to such or-

bits using the optimal control solver PSOPT, which is a C++ implementation

of the direct Legendre pseudospectral method [31]. As initial guess, we take

the solution given by the differential corrector. Note that the problem solved

with PSOPT is different from the problem solved with the differential corrector:

the arrival conditions are no longer constrained to a family of periodic orbits

but to a specific orbit. The TOF for the transfers obtained with the differen-

tial corrector + continuation (DC) and with PSOPT are given in Table 1 for

β ∈ {0.01, 0.02, ..., 0.05}.
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Table 1: TOF in days for transfers from the (displaced) L1 and L2 points to families of planar

Lyapunov orbits in the L5 region. The fastest cases for each lightness number departing from

the (displaced) L1 and L2 points are given in bold.

β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

Method DC PSOPT DC PSOPT DC PSOPT DC PSOPT DC PSOPT

L1 → natural PLOs 943 962 612 613 486 486 434 435 402 418

L1 → solar-sail PLOs 1094 1061 729 727 575 574 512 513 478 524

SL1 → natural PLOs 1094 1019 685 686 563 570 512 525 481 496

SL1 → solar-sail PLOs 1194 1136 801 803 651 664 589 605 555 611

L2 → natural PLOs 846 846 599 598 481 480 429 428 396 396

L2 → solar-sail PLOs 941 940 712 711 571 570 508 508 474 477

SL2 → natural PLOs 920 919 672 671 551 550 494 493 458 457

SL2 → solar-sail PLOs 1015 1014 784 783 642 647 575 574 509 494

When comparing the results obtained with the differential corrector and

with PSOPT, PSOPT sometimes converges to slightly different TOF values for

transfers starting from the natural or displaced L1 points. The differences are

most noticeable for β = 0.01 due to the fact that the initial guesses include

multi-revolution spirals around Earth, which introduces convergence difficulties

for both methods. For β = 0.05 and departure from the L1 and SL1 points,

the differences are also significant; however, in this case PSOPT converges to

slower transfers. On the other hand, when the transfers depart from the natural

or displaced L2 points, both PSOPT and the differential corrector converge to

practically the same solution. Generally, the optimised transfers with PSOPT

are very close to the ones obtained with the differential corrector + continua-

tion, indicating that PSOPT is not capable of further reducing the TOF beyond

that obtained with the differential correction + continuation. Even though the

differential corrector explores entire families of periodic orbits, the solution it

produces is very close to the time-optimal solution for a transfer to a fixed

arrival orbit. It is therefore concluded that the differential corrector in combi-

nation with the continuation method is an efficient tool to optimise the transfers.

Consequently, from this point on, only the differential corrector will be used to

produce time-optimal trajectories.

Figure 30 shows the fastest results for each case and lightness number from

Table 1 in a bar plot. It is then clear how, for every lightness number, the fastest
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Figure 30: Fastest results from Table 1 in a bar plot.

transfers are obtained for departure from the L1 and L2 points and arriving at

the family of natural planar Lyapunov orbits around the L5 point. We include

in Fig. 31 the fastest transfers and the control profiles for β = 0.02 (cases in

bold in Table 1 for β = 0.02). The sail normal and the control profile show

that, despite the constant stepwise control used for the differential corrector,

the sail normal along the transfer and the control profiles are generally smooth.

However, in the neighbourhood of Earth, the controls are more discontinuous,

see top plot in Fig. 31. Note that in the zoomed plots, the Earth is represented

as a blue dot and the sphere of influence of Earth is included as a blue dotted

circle.

5.2. Transfers between families of periodic orbits

We apply the methodology described in §4.2.2 to compute transfers depart-

ing from the families of planar Lyapunov and halo orbits around the collinear

equilibrium points in the vicinity of Earth and arriving at families of natural

and solar-sail planar Lyapunov orbits in the L5 region. It was seen that for

some cases the differential corrector converged to trajectories with a large TOF.

Therefore, we do a robustness analysis and compare the results with those ob-

tained with the method described in §4.2.1 but applied to transfers between
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Figure 31: Transfers for β = 0.02 departing from L1 (top) and from L2 (bottom) to natural

PLOs around L5. Close-ups in the vicinity of Earth and the controls are included on the

right.

periodic orbits. We refer to the approach followed in §4.2.2, as method DC1.

For the second method, referred to as DC2, the genetic algorithm explores the

departure families of periodic orbits and defines the departure conditions which

are then kept fixed. Table 2 shows the results obtained for transfers departing

from families of planar Lyapunov orbits and Table 3 for transfers departing from

families of halo orbits (HO).

The results show that for almost all cases contained in Tables 2 and 3, the

DC2 method converges to faster transfers. However, in some cases the DC1

produces better results, showing a reduction in the TOF by over 100 days with

respect to the transfers obtained with the DC2 method. One such example is for

the solar-sail PLOs around SL1 → natural PLOs case for β = 0.01, where the

gain is of 115 days. Since the departure periodic orbits are unstable, it seems

that when the initial conditions are allowed to vary, the differential corrector is

less robust than the version described in §4.2.1.
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Table 2: TOF in days for transfers between families of planar Lyapunov orbits around the

(displaced) L1 and L2 points and families of planar Lyapunov orbits in the L5 region. The

fastest cases for each lightness number departing from the families around the (displaced) L1

and L2 points are given in bold.
β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

Method DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2

Natural PLOs around L1 → natural PLOs 901 858 622 609 492 490 431 430 404 400

Natural PLOs around L1 → solar-sail PLOs 978 957 732 725 584 572 526 509 485 478

Solar-sail PLOs around SL1 → natural PLOs 870 985 1175 688 497 567 473 513 401 479

Solar-sail PLOs around SL1 → solar-sail PLOs 1061 1036 1053 805 1409 657 533 589 793 555

Natural PLOs around L2 → natural PLOs 813 818 611 574 488 467 447 420 405 392

Natural PLOs around L2 → solar-sail PLOs 913 907 718 692 573 550 519 497 491 472

Solar-sail PLOs around SL2 → natural PLOs 923 921 696 689 568 553 500 488 463 454

Solar-sail PLOs around SL2 → solar-sail PLOs 1048 1002 791 761 658 624 599 579 537 518

Table 3: TOF in days for transfers between families of halo orbits around the (displaced) L1

and L2 points and families of planar Lyapunov orbits in the L5 region. The fastest cases for

each lightness number departing from the families around the (displaced) L1 and L2 points

are given in bold.
β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

Method DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2 DC1 DC2

Natural HOs around L1 → natural PLOs 927 874 630 607 523 493 476 433 428 404

Natural HOs around L1 → solar-sail PLOs 1190 962 744 733 601 573 524 516 510 483

Solar-sail HOs around SL1 → natural PLOs 1111 972 865 703 702 558 436 519 461 476

Solar-sail HOs around SL1 → solar-sail PLOs 1203 1086 930 810 805 671 497 594 549 554

Natural HOs around L2 → natural PLOs 852 827 600 583 481 468 440 420 419 391

Natural HOs around L2 → solar-sail PLOs 952 920 715 701 581 556 509 498 480 474

Solar-sail HOs around SL2 → natural PLOs 934 925 706 698 553 553 560 486 470 453

Solar-sail HOs around SL2 → solar-sail PLOs 1059 1033 820 778 651 648 586 543 545 529

Let us define the sets of invariant objects Iβp as the sets of invariant objects

with lightness number β associated with the equilibrium point p. So, for exam-

ple, I0L1
contains the L1 point, the families of planar and vertical Lyapunov and

halo orbits around L1, their invariant manifolds and the families of invariant

tori associated with these families of periodic orbits. On the other hand, the set

I0L5
contains the L5 point, the families of planar and vertical Lyapunov orbits

around L5 and the families of invariant tori associated with these families of

periodic orbits. We can then express the transfers using the sets of departure

invariant objects Dβp and the sets of arrival invariant objects Aβp . So far, we

have only explored transfers departing from subsets of Dβ
p and arriving to sub-

sets of Aβp . For the departure conditions, we explored the subsets D̃βp ⊂ Dβp
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with p ∈ {L1, SL1, L2, SL2}, which contain the equilibrium point p, families of

planar Lypaunov and families of halo orbits associated with p. The arrival con-

ditions explored are elements of the subsets Ãβp ⊂ Aβp with p ∈ {L5, SL5}, which

contain the family of planar Lyapunov orbits associated with p. Tables 2 and 3

show that it is always faster to travel between families of natural periodic orbits.

Furthermore, when comparing the TOFs in Tables 2 and 3 with those in Table

1, the results show that, with the exception of D̃0.01
L1,SL1

, the time of flight for

the transfers from elements of D̃βp1 , with p1 ∈ {L1, SL1, L2, SL2}, to elements of

Ãβp2 , with p2 ∈ {L5, SL5}, does not vary much with the elements of D̃βp1 but it

does with p1 and p2, i.e., the time of flight of the transfers is mainly affected by

the equilibrium point the departure and arrival invariant objects are associated

with. When the departure conditions are elements of D̃0.01
L1,SL1

, departing from

a family of periodic orbits was faster than departing from the L1 or SL1 points

as for such trajectories, no revolutions around Earth are needed to reach the L5

region. For a better visualisation of the results from Tables 2 and 3, we plot in

Fig. 32 the time of flight of the transfers as a function of the lightness number

for the cases departing from the invariant objects associated with the L1 (top)

and the L2 (bottom) points and arriving to natural (left) and solar-sail (right)

planar Lyapunov families in the L5 region. It is clear how, for departure from

the L1 point and β = 0.01, departing from a family of periodic orbits is faster,

whereas for β > 0.01 or departure from objects associated with the L2 point,

it does not make much of a difference. Instead, the arrival conditions have a

much larger effect on the time of flight, as it can be seen that, for all departure

conditions represented, arriving at solar-sail planar Lyapunov orbits in the L5

region is considerably slower than arriving at their natural counterparts.

In order to visualise the transfers from the families of planar Lyapunov and

halo orbits, we show in Figs. 33 and 34 the two fastest cases, including the

control profile, for β = 0.02 (cases in bold in Tables 2 and 3 for β = 0.02).

The transfers are very similar to those departing from the collinear equilibrium

points. Again, the sail normal along the transfers and the control profile are

generally smooth with the exception of when the departing conditions are in
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Figure 32: Time of flight as a function of the lightness number for transfers departing from

objects associated with the L1 (top) and L2 (bottom) points and arriving to the families of

natural (left) and solar-sail (right) planar Lyapunov orbits in the L5 region.

the vicinity of the L1 point and the spacecraft flies by Earth. Note that for the

transfers departing from halo orbits δ 6= π/2.

5.3. Transfers between families of quasi-periodic orbits

We now explore whether a gain in terms of TOF can be obtained when

the departure and arrival invariant objects are families of quasi-periodic orbits.

Therefore, we explore transfers between families of quasi-periodic orbits with

the same Jacobi constant as the orbits that the differential corrector converged

to in the previous section. Note that we only intend to determine whether

transfers between families of quasi-periodic orbits are faster than the results

obtained in §5.1 and §5.2 as opposed to providing the whole picture; therefore,

we restrict the study to transfers between natural Lissajous families around

the L1 point to natural families of quasi-periodic orbits around the L5 point for

β ∈ {0.01, 0.02, ..., 0.05}. For the arrival conditions, we consider both the planar

and out-of-plane families of quasi-periodic orbits (QPO) that exist around the

planar Lyapunov orbits around the L5 point. The results are given in Table
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Figure 33: Transfers for β = 0.02 departing from natural PLOs around L1 (top) and L2

(bottom) to natural PLOs around L5. Close-ups in the vicinity of Earth and the controls are

included on the right.

4, where the TOF for the transfers between families of natural PLOs around

L1 and PLOs around L5 is also included for comparison. The table shows that

targeting a planar or an out-of-plane quasi-periodic orbit around L5 results

in similar TOF values. Furthermore, when comparing the TOF with those for

transfers between periodic orbits, the switch to quasi-periodic orbits only results

in a decrease in TOF of a few days. It might seem reasonable to expect the

transfers to be faster when travelling between quasi-periodic orbits because of

the increased freedom for the arrival conditions; however, this is not the case. So

far the results have suggested that when the departure conditions are elements

of D̃β
p with β > 0.01 and p ∈ {L1, SL1, L2, SL2} the TOF does not change

much with the elements of D̃β
p and is mainly affected by the arrival conditions.

The number of degrees of freedom for the last node constrained to a family of

periodic orbits and to a quasi-periodic orbit is the same: for a quasi-periodic

orbit they are two, given by the 2-dimensional invariant torus, while for a family
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Figure 34: Transfers for β = 0.02 departing from natural HOs around L1 (top) and L2

(bottom) to natural PLOs around L5. Close-ups in the vicinity of Earth and the controls are

included on the right.

of periodic orbits, one degree of freedom is given by the 1-dimensional periodic

orbit and another one by the family. The fact that for all scenarios the arrival

conditions have two degrees of freedom might explain why the TOF does not

change much when travelling to a quasi-periodic instead of a family of periodic

orbits.

Table 4: TOF in days for transfers between families of natural Lissajous orbits around vertical

Lyapunov orbits around L1 and families of natural planar and out-of-plane quasi-periodic

orbits around PLOs around L5. The TOF for transfers between families of natural PLOs

around L1 and families of natural PLOs around L5 is also included.

β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

Lissajous around L1 → planar QPO 857 605 481 431 397

Lissajous around L1 → out-of-plane QPO 859 609 484 435 402

Natural PLOs around L1 → natural PLOs 858 609 490 430 400

As an example, Fig. 35 presents the transfer, controls and a close-up in the

vicinity of Earth and the L5 region for the transfer to a planar quasi-periodic
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orbit for β = 0.02. The figure shows how, again, the control profile is generally

smooth but with more prominent discontinuities when the spacecraft is close to

Earth.

Figure 35: Transfer for β = 0.02 departing from a natural Lissajous orbit around L1 (top

left) and controls (top right). Close-ups in the vicinity of Earth (bottom left) and L5 (bottom

right) are also included.

5.4. Additional case

The last case considered is the case where the solar sail is launched as a

secondary payload and the primary mission is travelling along the stable man-

ifold of a natural halo orbit around the L1 point. After separation from the

primary spacecraft, the solar sail, with a sail performance of β = 0.02, starts

its trajectory towards the family of natural planar Lyapunov orbits around the

L5 point. The assumed trajectory of the primary mission departs from Earth

at a 200 km altitude and takes 206 days to reach its target halo orbit. The

combination of the genetic algorithm and the differential corrector results in a

solar-sail transfer with a TOF of 618 days. Note that the transfer takes longer
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than when the solar sail departs from the family of natural halo orbits around

L1 for which a TOF of 607 days was obtained, see Table 3. This is not sur-

prising, since for the case where the spacecraft departs from the family of halo

orbits, the departure orbit was optimised to reduce the TOF. Nevertheless, the

TOF is also very close to those where the departure conditions are elements of

D̃0.02
L1

and also for the case where the spacecraft travels between quasi-periodic

orbits. Figure 36 depicts the transfer, the controls and close-ups in the vicinity

of Earth and the L5 point. The figure in the bottom left shows how, at some

point along the primary spacecraft trajectory (depicted in blue) the solar sail

starts its transfer to the L5 region. Again, the sail normal and the control profile

are generally smooth being more discontinuous in the vicinity of Earth.

Figure 36: Transfer for β = 0.02 departing from the stable manifold of a natural halo orbit

around L1 (top left) and controls (top right). Close-ups in the vicinity of Earth (bottom left)

and L5 (bottom right) are also included.
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6. Conclusions

This paper investigated solar-sail invariant objects in the vicinity of Earth

and the L5 region and transfers between them.

From geometric comparisons between families of planar Lyapunov orbits

around the (displaced) L2 point, vertical Lyapunov orbits around the (displaced)

L2 point and halo orbits around the (displaced) L1 point it was concluded that

a change in behaviour occurs for a lightness number β∗ ∈ (0.03, 0.04). This

suggests that there is a qualitative change in the dynamics in the vicinity of

Earth for β∗. No changes in the trends of the stability parameters were detected.

Families of solar-sail invariant tori were successfully computed by searching

for invariant curves under a stroboscopic map. It was shown that quasi-periodic

orbits exist also in the circular restricted three-body problem when solar radi-

ation pressure is included around the elliptic, planar and vertical Lyapunov

orbits as well as halo orbits. Furthermore, for Jacobi constant values smaller

than that at the bifurcation of the planar Lyapunov family into the halo family,

the families of quasi-periodic orbits around the vertical and planar Lyapunov

orbits are connected.

For the mission design between invariant objects in the vicinity of Earth

and the L5 region, a novel methodology was proposed. Such approach allows

to consider, as boundary conditions, equilibrium points, fixed periodic orbits,

full families of periodic and quasi-periodic orbits and invariant manifolds, show-

ing the versatility of the method. The proposed multiple shooting differential

corrector in combination with a continuation method converged to feasible tra-

jectories from the initial guesses that were generated with a genetic algorithm

and allowed to reduce the time of flight (TOF) of the transfers. Furthermore,

it was concluded that the method is a versatile tool capable of obtaining close

to time-optimal transfers.

For the transfers between periodic orbits, a constraint was proposed which

can, in itself, be used to compute periodic orbits. Such constraint improved

the convergence of the differential corrector; however, with a few exceptions,
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faster transfers were produced when the initial conditions were fixed instead of

using the proposed constraint. Except for the cases with a lightness number

of β = 0.01, the choice for the departure conditions, i.e., equilibrium points

or invariant objects associated to them, does not significantly affect the time

of flight. For β = 0.01, some revolutions around Earth are necessary to reach

the L5 region from the L1 and SL1 points, which make these transfers slow.

While the departure invariant object do not generally have a large effect on

the time of flight, the equilibrium point these invariant object are associated

with does matter. When arriving to the same invariant object, departing from

objects associated to the natural L1 or L2 points is faster. For the arrival

conditions, it was also concluded that the equilibrium point the invariant objects

are associated with affect significantly the time of flight. In fact, targeting

families of natural planar Lyapunov orbits (associated with L5) was considerably

faster than targeting their solar-sail counterparts (associated with SL5).

The TOF for transfers between quasi-periodic orbits were only a few days

faster than for the other cases considered.

Fast solar-sail transfers taking between 391 and 1194 days, depending on

the sail performance and the case, were shown to be feasible, where the fastest

transfers were always between natural invariant objects.
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3
CONCLUSIONS AND RECOMMENDATIONS

3.1. CONCLUSIONS
This thesis aimed to improve the understanding of solar-sail bounded motion in the circular restricted three-
body problem (CR3BP) by studying the different invariant objects in the system when solar radiation pressure
(SRP) is included and determining what transfers are possible between invariant objects in the vicinity of
Earth and the L5 region with a versatile approach. A set of research questions was formulated in §1.4 that can
be answered now and allow the research objectives to be fulfilled.

I. What kind of invariant objects exist in the CR3BP + SRP and what are their properties regarding exis-
tence, shape and stability?

Surfaces of equilibria, families of periodic and quasi-periodic orbits and their invariant manifolds exist
when SRP is included in the CR3BP. The surfaces of equilibria contain the five Lagrange points and can
merge for some range of the lightness number β. The equilibrium points in the ecliptic plane close
to the L1 and the L2 points are unstable because of a saddle, whereas such points are surrounded by
unstable equilibrium points due to a complex saddle. Regions of stable and almost stable equilibrium
points exist, containing the triangular Lagrange points, and reach the neighbourhood of Earth. Lastly,
a large region containing the L3 point contains unstable equilibrium points also due to a saddle.

Families of natural and solar-sail planar and vertical Lyapunov orbits as well as families of halo orbits
around the collinear equilibrium points in the vicinity of Earth exist. Additionally, families of planar
and vertical Lyapunov orbits also exist around the natural and displaced L5 points. The geometric be-
haviour of the families changes with the lightness number for the planar Lyapunov family around the
displaced L2 (SL2), the vertical Lyapunov family around SL2 and the halo family around the displaced
L1 (SL1). Regarding stability, the planar and vertical Lyapunov families in the vicinity of Earth are un-
stable. For the halo families, ranges of stable and unstable orbits exist. Lastly, the planar and vertical
Lyapunov families in the L5 region are always stable.

For all the natural and solar-sail families considered, there exist orbits with a central part and therefore,
such orbits are surrounded by families of quasi-periodic orbits. The families of invariant tori around
planar and vertical Lyapunov orbits in the vicinity of Earth for values of the Jacobi constant smaller
than that at the bifurcation of the planar Lyapunov family into the halo family, are connected, i.e., they
are essentially the same family. For larger values of the Jacobi constant, close to those at the bifurcation
point, quasi-periodic motion around planar Lyapunov orbits does not exist but it does around vertical
Lyapunov and halo orbits. For even larger values of the Jacobi constant, the planar Lyapunov orbits
regain their central part and quasi-periodic motion exists around the planar and vertical Lyapunov
and halo orbits. Regarding invariant tori in the L5 region, the planar and vertical Lyapunov orbits are
always surrounded by families of quasi-periodic orbits. Two different types of families of quasi-periodic
orbits were found around the planar Lyapunov orbits, whereas one type was found around the vertical
Lyapunov orbits. A matrix that is a by-product for the computation of quasi-periodic orbits contains
stability information of the quasi-periodic orbits. The quasi-periodic orbits in the vicinity of Earth have
stable and unstable manifolds which can be used in the mission design. However, a detailed study on
the stability of the quasi-periodic orbits was beyond the scope of the thesis and it is left for future work.
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The equilibrium points, periodic and quasi-periodic orbits in the vicinity of Earth have associated in-
variant manifolds which can be used to escape or be captured by these invariant objects. The objects
in the L5 region are stable and therefore do not have associated stable or unstable invariant manifolds.

II. What is the effect of the lightness number on the properties of the invariant objects found under I.?

Regarding the surfaces of equilibria, for β ∈ {0.01,0.02}, there exist three surfaces: one containing L1,
one containing L2 and a last one containing the L3, L4 and L5 points. For larger lightness numbers,
the surface containing L3 and the triangular Lagrange points merges with the surface containing L1.
The general trends of the stability of the equilibrium points does not seem to change much with the
lightness number; for the cases considered, the regions of unstable, almost stable and stable points are
very similar.

Geometric comparisons for the families of periodic orbits showed that the orbits of the planar Lyapunov
families around the SL2 point start shifting their intersection with Λ2 = {y = 0, ẏ < 0} towards Earth for
β ∈ (0.03,0.04). For a lightness number in the same range, the orbits of the vertical Lyapunov family
around the SL2 point get closer to the ecliptic plane until they collapse to planar orbits. Lastly, the
orbits at the end of the halo family around SL1 also collapse to the ecliptic plane instead of becoming
near rectilinear halo orbits. The changes in the geometric behaviour of these families suggests a quali-
tative change in the dynamics, at least in the vicinity of Earth, for a lightness number β∗ ∈ (0.03,0.04).
Regarding the stability of the periodic orbits, the stability parameters presented some variation with
the lightness number, but they generally preserved the same trends for all β.

The study of the effect of the lightness number on invariant tori is not straightforward. The families of
invariant tori are 2-parameter families and they originate from each of the elliptic orbits of the families
of periodic orbits. A study on the effect of the lightness number on quasi-periodic orbits would have to
compare 2-parameter families of quasi-periodic orbits around different orbits at different β which was
considered out of the scope of this thesis.

The invariant manifolds of the (displaced) L1 and L2 points can be used to escape from the vicinity of
Earth and reach the L5 region. However, trajectories along the unstable manifold of the L1 point get
entangled around Earth and do not reach the L5 region. Manifold-like trajectories from L1 that include
a solar sail acceleration along the Sun-spacecraft line do successfully escape from Earth.

III. What approach is capable of computing time-optimal transfers between the invariant objects found
under I.?

A multi-objective genetic algorithm in combination with a multiple shooting differential corrector and
continuation proved to be an approach capable of computing near-time-optimal transfers consider-
ing a wide range of cases. Equilibrium points, fixed periodic orbits, families of periodic orbits, their
invariant manifolds and families of quasi-periodic orbits could be considered as boundary conditions.
Through a comparison with direct pseudospectral method, the transfers were shown to be close to
time-optimal for the cases where the spacecraft departed from the collinear equilibrium points in the
vicinity of Earth. Furthermore, the control profile for the transfers was quite smooth in spite of the
constant step-wise control law adopted.

The approach is not restricted to the computation of transfers to the L5 region; with only a few changes
transfers reaching invariant objects in the L4 region or even transfers between invariant objects associ-
ated with the collinear equilibrium points can be computed. Furthermore, the whole approach can be
automatised.

IV. What are the departure and arrival invariant objects that result in the fastest transfers to the L5 region?

The results showed that generally, the choice of departure conditions, i.e., departing from either of
the collinear equilibrium points in the vicinity of Earth or the families of planar Lyapunov or halo or-
bits associated with the equilibrium points, did not have much of an effect on the time of flight of the
transfers. What did have an effect on the time of flight was the equilibrium point associated with the
departure and arrival invariant objects. Travelling between invariant objects associated with the L2 and
the L5 points was fastest, followed by transfers between invariant objects associated with the L1 and the
L5 points. Therefore, the results suggest that the fastest transfers between the vicinity of Earth and the
L5 region are those departing from and arriving to natural invariant objects. For β= 0.01, the transfers
departing from the L1 and SL1 points took longer than the transfers departing from families of periodic
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orbits associated with these points. For those cases, revolutions around Earth were necessary to reach
the L5 region, which were not required when the spacecraft departed from a family of periodic orbits.

It was also explored whether travelling between quasi-periodic orbits was faster than the previous
cases. Transfers between natural Lissajous orbits around the vertical Lyapunov orbits around the L1

point and natural planar and out-of-plane quasi-periodic orbits around planar Lyapunov orbits in the
L5 region were considered. The transfers had a very similar time of flight to those transfers departing
from the L1 point and the natural planar Lyapunov and halo families associated with L1 and arriving to
the family of natural planar Lyapunov orbits around L5.

The answers to the research questions provide the necessary information to meet the research objec-
tives to a great extent. Therefore, the goal of this thesis has been fulfilled.

3.2. RECOMMENDATIONS
in order to advance and further improve the contributions of this thesis, this section includes recommenda-
tions that were considered and thought of during the development of the scientific content but could not be
implemented due to time constraints.

• Improve the computation of invariant tori at large values of the Jacobi constant.

The method used for the computation of families of quasi-periodic orbits could successfully obtain the
entire families at small values of the Jacobi constant. At large values, quasi-periodic orbits could still
be computed, but the algorithm stopped converging before the entire families were computed. It is
thought that the invariant curves need a larger number of harmonics when expressed in their Fourier
series at larger energies. The method used implements a fixed number of points in the discretised
curves and the same number of harmonics. Therefore, a method capable of increasing the number of
harmonics or points of the invariant curves with the continuation of the families could work. In fact, a
similar approach was implemented in Ref. [16]. The methodology used in this thesis was tested with a
similar approach to vary the number of harmonics but there was no improvement. A multiple-shooting
approach might also improve the method. Perhaps the implementation of both multiple shooting and
variable harmonics number is necessary.

• Study the practical use of quasi-periodic orbits.

Quasi-periodic orbits might provide better coverage of regions of the Sun or the Moon or be more stable
than periodic orbits. Furthermore, quasi-periodic orbits might require less station-keeping for real
missions. It is then worth to consider these objects and study for what practical use they might be
better suited than periodic orbits.

• Study other constraints to target the families of unstable periodic orbits around the collinear equilib-
rium points.

In order to constrain a node to a family of unstable periodic orbits, it was seen that a stronger period-
icity constraint was necessary. A new constraint was proposed and the differential corrector improved.
However, only for a few cases did it result in faster transfers than leaving the first node fixed, at least
for the step size considered for the continuation. At smaller step sizes, it might improve at the cost
of increasing the computational time. Studying other constraints to set a node to a family of unstable
periodic orbits might allow faster transfers.

• Set inequality constraints on the multiple shooting differential corrector.

Equality constraints are easy to implement on the multiple shooting differential corrector. However,
inequality constraints are more challenging. Implementing inequality constraints in an efficient man-
ner might allow the differential corrector to converge to faster transfers and consider more cases. For
instance, inequality constraints for the controls, or the size of the departure or arrival orbits could be of
interest.

• Improve the continuation of the solutions with the multiple shooting differential corrector.

In this thesis, the solutions are continued using as initial guess the previous solution but reducing the
imposed time of flight. This type of continuation is referred to as natural parameter continuation and
it is one of the simplest methods. Using an improved predictor corrector method could improve the



74 3. CONCLUSIONS AND RECOMMENDATIONS

differential corrector. Studying the kernel of the system or implementing a pseudo-arclength method
could be a place to start.

• Target families of quasi-periodic orbits in the multiple shooting differential corrector.

In this thesis, the departure and arrival quasi-periodic orbits for the optimisation with the multiple
shooting differential corrector were fixed. Implementing the computation of invariant tori with the
optimisation of the trajectory would allow to set the outer nodes to families of quasi-periodic orbits
and the transfers could perhaps be further optimised.

• Use a higher fidelity model.

The CR3BP in combination with the solar radiation pressure can be used for the preliminary design of
space missions. However, for a more advanced stage in the mission design, it would be necessary to
improve the dynamics including third-body perturbations and also use a more realistic sail model.



A
APPENDIX

A.1. VERIFICATION
In order to guarantee that the model and methods used and developed in this thesis are implemented cor-
rectly, a section on verification is included.

A.1.1. DYNAMICAL SYSTEM MODEL
The dynamical system can be modelled with a system of first order differential equations as

ẋ = f (x) (A.1)

In order to verify such model, the intersection of the surfaces of equilibria with the ecliptic plane for β ∈
{0.01,0.02, ...,0.05} are computed and checked with the results from Ref. [1]. Furthermore, using the conven-
tion from Ref. [1], sections of the surfaces of equilibria according to their stability are represented. Figure A.1
includes the results, whereas Fig. A.2 shows the sections obtained in Ref. [1]. Note that in Fig. A.1 the x-axis
is reversed as in Ref. [1] the x-axis is the -x-axis used in the thesis. Since they are in good agreement with the
literature, the dynamical model including the solar-sail acceleration is verified.

Figure A.1: Sections of the surfaces of equilibria with the ecliptic plane and their stability classification for β ∈ {0.01,0.02, ...,0.05} (top)
and close up in the neighbourhood of Earth (bottom).
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Figure A.2: Sections of the surfaces of equilibria with the ecliptic plane and their stability classification for β ∈ {0.01,0.02, ...,0.05} (top)
and close up in the neighbourhood of Earth (bottom) from Ref. [1].

A.1.2. PERIODIC ORBIT GENERATION
To verify the generation of periodic orbits is implemented correctly, it is enough to check for a family of
periodic orbits whether the orbits are closed. Therefore, we take the family of solar-sail planar Lyapunov
orbits around the SL1 point for β = 0.02 and compute the norm of the difference between the first and the
last point of the orbit. Figure A.3 shows the error for each orbit of the family. Since the error is of the order of
10−9, the generation of periodic orbits is verified.

Figure A.3: Error for the solar-sail planar Lyapunov orbits around the SL1 point for β= 0.02.

A.1.3. INVARIANT TORI GENERATION
To verify the computation of periodic orbits, we simply checked that the flow comes back to the same point
after the period of the orbit. For quasi-periodic orbits, we can proceed in a similar way and check whether the
flow comes back to the same curve. Note that this is in fact the property that is used for their computation.
Therefore, we take a curve that is presumably invariant under the flow and compute the flow from each point
of the curve for the period associated with the second frequency of the quasi-periodic orbit, i.e., the strobo-
scopic time of the stroboscopic map. If the initial curve is indeed invariant under the flow, the image under
the stroboscopic map needs to define the same curve. Therefore, we use spline interpolation for the invariant
curve and the mapped curve, evaluate them at the same points and compute their difference. If they are the
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same curve, then their difference should be of the order of the tolerance used for their computation. We will
verify the computation of quasi-periodic orbits using a quasi-halo orbit around the SL1 point forβ= 0.02 and
Jacobi constant Jc =−2.9603.

The invariant curves were discretised in N = 35 points, so for the spline interpolation it is desirable to
have a larger number of points. The discretised curves, both the invariant curve and its image under the
stroboscopic map, define continuous curves through the Fourier coefficients that can be obtained from the
discrete data. We can therefore use the series to obtain any number of points in those curves by means of
trigonometric interpolation. In fact, any curve ϕ expressed in Fourier series by its complex coefficients, can
be written as

ϕ(ξ) = ∑
k∈K

c k e i kξ, (A.2)

where K is an index set. Then, by expanding the index set with respect to that of the original discretised
curve, the number of points of the curves can be increased. We extrapolate the 35 nodes to 500 and then use
spline interpolation and compute the difference between both interpolated curves evaluated at the same 500
points. Note that the spline interpolation is necessary to compute the curves at the same points since, in their
Fourier representations, they are not necessarily parameterised by the same parameter. Figure A.4 shows the
interpolation of the invariant curve (left) and the error between the interpolated invariant curve and its image
under the stroboscopic map at each of the 500 points of the curves. Since the error is of the order of 10−11,
it can be concluded that both the invariant curve and its image define the same curve. Consequently, the
generation of quasi-periodic orbits is verified.

Figure A.4: Interpolated invariant curve (left) and error between the interpolated invariant and mapped curves (right).

A.1.4. INVARIANT MANIFOLDS GENERATION
The invariant manifolds associated with the equilibrium points are given by the eigenvectors of the lineari-
sation of the dynamics at an equilibrium point, i.e., the Jacobian of f given in Eq. A.1. In order to verify the
invariant manifolds associated with equilibrium points, it is sufficient to verify the Jacobian of f since the
eigenvectors are computed with MATLAB® and are therefore assumed to be verified.

The dynamics were written in Mathematica® and then translated into MATLAB® code. Since the dy-
namics have already been verified, the dynamics written in Mathematica® and the translation function to
MATLAB® code are also verified. The Jacobian of f was then computed with Mathematica® and since this is
a reliable piece of software, the Jacobian of f is verified. Therefore, the invariant manifolds associated with
equilibrium points are verified.

The invariant manifolds associated with periodic orbits are given by the eigenvectors of the monodromy
matrix propagated along the orbit with the state transition matrix (STM). Note that the monodromy matrix is
the STM evaluated after the period of the periodic orbit. Therefore, in order to verify the computation of the
invariant manifolds of periodic orbits, it is sufficient to verify the STM or the monodromy matrix.

When the system is Hamiltonian, the monodromy matrix eigenvalues come in reciprocal pairs and two
of them are unitary. We use the family of solar-sail planar Lyapunov orbits around the SL1 point for β= 0.02
computed for the thesis and check whether the monodromy matrix satisfies the two unit eigenvalues and
the reciprocity conditions. We compute the eigenvalues and select λa and λb that are the closest to 1. Then,
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we plot Real (λi )−1, Imag (λi ) and |λi |−1, with i = a,b, for each orbit and check how close these eigenval-
ues are to one. Figure A.5 depicts the results. The figure shows that the real part has an error of the order
of 10−9, whereas the imaginary part has an error of the order of 10−5. The norm of the unit eigenvalues has
the smallest error and is of the order of 10−13. Furthermore, both λa and λb have the same real part and
the same magnitude, but with opposite imaginary part. Since the errors are quite small, it can be concluded
that the monodromy matrix has two unit eigenvalues. To check the reciprocity condition, we simply com-

Figure A.5: Error in the unit eigenvalues of the monodromy matrix for the family of solar-sail planar Lyapunov orbits around the SL1
point for β= 0.02.

pute the eigenvalues and compute |λi −1/λ j | of those pairs {i , j }, with the exception of the unity ones, that
seem reciprocal, i.e., pairs that satisfy |λi −1/λ j | ≈ 0. Figure A.6 shows how for both pairs of eigenvalues, the
reciprocity condition is met with an error in the order of 10−13 for the first pair and of the order of 10−14 for
the second. Therefore, the mondromy matrix eigenvalues come in reciprocal pairs. Since the monodromy

Figure A.6: Error on reciprocity of the eigenvalues of the monodromy matrix for the family of solar-sail planar Lyapunov orbits around
the SL1 point for β= 0.02.

matrix implemented has two unit eigenvalues and its eigenvalues come in reciprocal pairs, it is assumed to
be verified, which verifies the invariant manifolds associated with periodic orbits.

For the invariant manifolds of quasi-periodic orbits, we followed Ref. [17] and obtained the stable and un-
stable directions required for the computation of the invariant manifolds from the eigenvectors of a stability
matrix which is a by-product of the computation of quasi-periodic orbits. We assume the theory presented
in Ref. [17] is validated; consequently, since the code for generating quasi-periodic orbits is verified, so is the
computation of invariant manifolds of quasi-periodic orbits.

A.1.5. MULTIPLE SHOOTING DIFFERENTIAL CORRECTOR

In order to verify the multiple shooting differential corrector, we integrate the initial conditions of the solu-
tions with the control profile obtained and check whether the constraints on the initial and final nodes are
met for the scenarios considered.
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For the case departing from the collinear equilibrium points and arriving at a family of periodic orbits
in the L5 region, we take the case where the solar sail departs from the L1 point and arrives to the family of
natural planar Lyapunov orbits around the L5 point with β = 0.02. The norm of the difference between the
first point of the transfer and the L1 point is of the order of 10−13. The last point of the transfer is integrated for
the period of the periodic orbit it converged to and the norm of the difference between the first and last point
was computed. The error in the constraint for the last node is of the order of 10−11. Therefore, the multiple
shooting differential corrector for the case where the solar sail departs from an equilibrium point and arrives
at a family of periodic orbits in the L5 region is verified.

For the multiple shooting differential corrector used for transfers between families of periodic orbits, i.e.,
implementing the stronger periodicity constraint, we check whether the outer nodes belong to periodic orbits
for the case where the solar sail departs from the family of natural halo orbits around the L2 point and it
arrives to the family of natural planar Lyapunov orbits around the L5 point for β= 0.02. The error on the first
node is of the order of 10−12 and the error on the last node is of the order of 10−11. Therefore, the multiple
shooting differential corrector for transfers between families of periodic orbits that implements the stronger
periodicity constraint is verified.

To verify the case where the outer nodes are constrained to quasi-periodic orbits, we will check whether
the initial and final nodes belong to invariant curves of quasi-periodic orbits. We will do the check with the
transfer between a natural Lissajous orbit around a vertical Lyapunov orbit around the L1 point and a natural
planar quasi-periodic orbit around a planar Lyapunov orbit around the L5 point for β= 0.02. The constraint
imposed on the outer nodes was that these nodes where equal to the flow from some point within an invariant
curve ϕ(ξ) after some time ζT2, where T2 is the period associated with the second frequency of the quasi-
periodic orbit. Note that if ϕ(ξ) is an invariant curve, φt (ϕ(ξ),α,δ) is also. Since the differential corrector
finds a solution for ζ, we compute φζT2 (ϕ(ξ),α,δ) and check whether the outer nodes belong to the curve.
To perform that check, we proceed in a similar way as was done to verify the generation of quasi-periodic
orbits. We use trigonometric interpolation with the Fourier series to obtain the curves φζT2 (ϕ(ξ),α,δ)) with
500 points. We then use a 6-dimensional spline to compute the point in the curve where the outer nodes are
supposed to be and we compute the norm of the difference with the actual outer nodes. Figure A.7 depicts
the original invariant curve, its image under φζT2 , the interpolated curve with the Fourier series, the periodic
orbit and the initial point of the transfer. It is apparent that the node does belong to the propagated curve
and is therefore constrained to a quasi-periodic orbit. In fact, the error of the first node is of the order of
10−11, whereas for the last node the error is of the order of 10−12. Therefore, the multiple shooting differential
corrector for transfers between quasi-periodic orbits is verified.

Figure A.7: Curves for the verification of the multiple shooting differential corrector for transfers between quasi-periodic orbits.

A.2. VALIDATION
In this section the dynamical system model is validated to guarantee the conclusions and results obtained are
valid. Furthermore, the genetic algorithm is also validated to check that it does indeed obtain near-feasible
initial guesses for the transfers.
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A.2.1. DYNAMICAL SYSTEM MODEL
The dynamical system used in this study has been used in the literature extensively [1, 14, 15]. Therefore, it is
assumed that the model is validated.

A.2.2. GENETIC ALGORITHM
The multi-objective genetic algorithm implemented for the computation of initial guesses presumably com-
putes near-feasible trajectories for the cases considered that converge to feasible transfers with the multiple
shooting differential corrector. The genetic algorithm is validated since the initial guesses that it produces do
indeed converge as it was seen during the verification of the multiple shooting differential corrector.
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