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In this paper we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily
high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state
transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain.
We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin-exchange coupling values
of μeV. Furthermore, by building a superadiabatic formalism on top of this protocol, we propose an effective
superadiabatic protocol that retains the minimal control over the spin chain and further improves the fidelity.

DOI: 10.1103/PhysRevA.95.012317

I. INTRODUCTION

The development of a fully functional quantum computer
has been one of the most exciting topics in recent years. An
important ingredient is the implementation of a quantum data
bus that will transport a desired quantum state with high
accuracy. Several types of quantum data buses have been
proposed: phonon modes for trapped ions [1,2], cavity photon
modes for superconducting qubits and spin qubits [3–7],
and spin chains for spin qubits [8–15]. The latter are a
viable candidate for a quantum data bus since the exchange
coupling is native to various solid-state systems based on
confined electrons. However, the effectiveness of a spin
chain as a quantum data bus depends on the availability and
controllability of the spin chain couplings.

In this paper we propose a superadiabatic protocol where
fast quantum state transfer (QST) can be achieved with high
accuracy and minimum control across long spin chains. It
has been theoretically shown that by engineering individual
couplings in a spin chain QST can be achieved [16–21].
Typically, in these scenarios the qubit-bus couplings are much
smaller than the gap between the ground state and the excited
state of the spin bus, and QST can be achieved with high
precision given initial control assumptions [22]. However, the
state transported is time dependent and high values of fidelity
are only found during small time windows. In comparison,
in adiabatic QST the evolution time does not need to be
precisely controlled, and once the state is transferred, the
system stays in a steady state. Adiabatic protocols are also
more viable experimentally because of their robustness against
weak variations of the system.

The superadiabatic formalism, in principle, can transform
the evolution of any time-dependent Hamiltonian into a purely
adiabatic evolution. A recent experiment using this formalism
in a system comprising Bose-Einstein condensates in optical
lattices gave promising results for future applications in other
areas [23,24]. Furthermore, recent work on superadiabatic
quantum driving has been done in different systems, which
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illustrates the broad impact of these protocols [25–29]. Here we
present the first application of superadiabaticity in the context
of QST across a spin chain with minimal control.

II. MODEL

The system we consider consists of a Heisenberg spin chain
with an odd number N of spins, coupled to an additional qubit
at each end (see Fig. 1). We refer to the spin chain as the spin
bus, to the left qubit as the sender, and to the right qubit as the
receiver. We label the sender qubit by L and the receiver qubit
by R. The Hamiltonian of the system is given by

H = JL

(
σx

L ⊗ σx
1 + σ

y

L ⊗ σ
y

1 + σ z
L ⊗ σ z

1

)

+ JSB

N−1∑
n=1

(
σx

n ⊗ σx
n+1 + σy

n ⊗ σ
y

n+1 + σ z
n ⊗ σ z

n+1

)

+ JR

(
σx

N ⊗ σx
R + σ

y

N ⊗ σ
y

R + σ z
N ⊗ σ z

R

)
, (1)

where σx
n ,σ

y
n ,σ z

n are the Pauli matrices for the nth spin in the
bus and Jn are the corresponding exchange coupling energies.

Under the condition that the couplings within the spin
bus are much stronger than those to the sender and receiver
qubits, JSB � JR,JL, we can treat the first two terms of the
Hamiltonian (1) as a perturbation. This allows us to project H

onto the subspace composed of the sender qubit, the receiver
qubit, and the spin bus ground states [9,22]. Adiabatically
eliminating higher-energy states of the spin chain, we find an
effective Hamiltonian given by, to first order in JL and JR ,

Heft = J ′
L

(
σx

L ⊗ σx
SB + σ

y

L ⊗ σ
y

SB + σ z
L ⊗ σ z

SB

)
+ J ′

R

(
σx

SB ⊗ σx
R + σ

y

SB ⊗ σ
y

R + σ z
SB ⊗ σ z

R

)
, (2)

where σx
SB, σ

y

SB, σ z
SB act on the net spin of the spin bus ground

state and the effective couplings are given by the relations

J ′
L = m1JL, J ′

R = mNJR. (3)

In Eq. (3) m1 and mN are the local magnetic moments of the
first and last spin in the spin bus, respectively. Using Heft thus
allows us to describe the N -site spin bus as an (effective)
spin bus consisting of a single site (under the condition
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eff

FIG. 1. (a) Schematic of the Heisenberg spin bus with N = 5
sites [Eq. (1)]. Our goal is to transfer the state of the sender qubit (L)
to the receiver qubit (R). (b) Diagram of the system modeled by the
effective Hamiltonian for an odd size spin bus [Eq. (2)].

JSB � JR,JL) [22]. By adiabatically evolving this
Hamiltonian from Heft(t = 0) = J ′

R(σx
SB ⊗ σx

R + σ
y

SB ⊗ σ
y

R+ σ z
SB ⊗ σ z

R) to Heft(t = T ) = J ′
L(σx

L ⊗ σx
SB + σ

y

L ⊗ σ
y

SB +
σ z

L ⊗ σ z
SB ) the superposition state of the sender qubit is

transported to the receiver qubit. QST can then be achieved
using a spin bus with an odd number of sites provided that
JSB � JR,JL throughout the evolution [30].

In preparation for the introduction of the superadiabatic
protocol, we first analyze the ordinary adiabatic properties of
the three-spin chain. To this end, we parametrize the spin bus-
receiver qubit coupling as JR(t) = JM − JL(t), where JL(t)
evolves from zero to JM . This parametrization of JR(t) gives
an effective energy gap � = 2JM between the ground state
and the excited state. In particular, we study two different
evolutions of JL(t): a linear evolution given by

JL(t) = t

T
JM (4)

and a trigonometric evolution given by

JL(t) = JM sin2

(
πt

2T

)
. (5)

This means that the ground-state energy is the same at t = 0
and T , with the sender qubit and the receiver qubit decoupled,
respectively. In order for the evolution to be adiabatic, the total
evolution time (T ) is restricted by the condition T � �−1 =
(2JM )−1 [31], which shows that the time it takes to perform
the quantum state transfer can be reduced by increasing JM .

To asses the quality of our QST we calculate the fidelity
F of the receiver qubit, i.e., at the end of the evolution. F is
a measure for how similar the state of the receiver qubit is to
the initial superposition state of the sender qubit and is defined
as [22]

Fφ ≡ 〈φ|TrL,SB(|�(t = T )〉〈�(t = T )|)|φ〉. (6)

Here |�(t)〉 satisfies the time-dependent Schrödinger equation,
H (t)|�(t)〉 = i ∂

∂t
|�(t)〉, with H (t) the Hamiltonian in Eq. (1).

TrL,SB is the trace over the state of the sender qubit and spin
bus and |φ〉 = a|↑〉 + b|↓〉 is the state to be transported. The
initial condition is |�(t = 0)〉 = a|G0〉 + b|G1〉, with |G0〉
and |G1〉 the degenerate ground states of H (t = 0), and we
use a = exp(iπ/4) sin(π/4) and b = cos(π/4) [32].
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FIG. 2. Normal adiabatic QST across a spin bus with N sites using
the linear and trigonometric time evolution of JL(t). (a) Calculation
of the fidelity F [Eq. (6)] vs the total evolution time T (in units
of �−1) for the linear evolution of JL(t) [Eq. (4)]. (b) The linear
evolution of JL(t) induces a linear evolution of JR . (c) Fidelity F vs
the total evolution time T , for the trigonometric evolution of JL(t)
[Eq. (5)]. (d) Time evolution of the couplings used in (c). In these
calculations JM = 1 and JSB = 10. The points from where onwards
fidelity reaches high values (F > 0.99) are denoted by circles.

The results of the (normal adiabatic) QST using both
evolutions are shown in Fig. 2. In Fig. 2(a) we have plotted
the fidelity at the end of the linear protocol for different spin
bus sizes. We observe that QST is achieved with fidelities
F > 0.99 for each spin bus [indicated by circles in Fig. 2(a)].
Larger spin buses require a longer evolution time to achieve
QST since the gap decreases as � ∝ 1

N
[22]. A smaller gap

requires a slower evolution to achieve adiabaticity (T � 1/�).
The linear evolution is smoother and has a smaller derivative

at t = T/2 where the minimum gap (�) between the ground
state and the excited state is found [Figs. 2(a)–2(c)]. The circles
in Fig. 2(c) show that fidelities for trigonometric evolution are
lower than for the linear evolution in Fig. 2(a). Moreover, still
high fidelities can be achieved if the system is let to evolve
slower.

As larger JM will increase �, the evolution time necessary
to achieve high fidelities should decrease. On the other
hand, increasing JM will increase the maximum value of the
couplings JL(t) and JR(t) [Eqs. (4) and (5)]. Therefore, to
maintain the condition JSB � JR,JL, we also need to increase
JSB . Defining α ≡ JSB

JM
we now study how F depends on the

(relative) increase of JSB and JM . For large α the system should
approach the effective Hamiltonian behavior.

Figure 3(a) shows a contour plot of F versus JM and α for
the linear evolution with T = 1 �−1 in a N = 3 spin bus. In the
region α > 1 the value of the fidelity no longer depends on JSB

as predicted by the effective Hamiltonian Eq. (2). Moreover
we find that a higher value of JM increases the fidelity of the
QST. In particular, Fig. 3(a) shows that the fidelity increases
from F ≈ 0.53 to 0.999 when JM increases from 1 to 10, given
α > 1.4. The increase in fidelity is a consequence of a larger
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FIG. 3. (a) Contour plot of fidelity F [Eq. (6)] vs JM and α = JSB

JM
.

The region α > 1 can be described by the effective Hamiltonian
[Eq. (2)]. A high-fidelity region appears for α < 1 (see text for
discussion). (b) Contour plot of the energy gap between the ground
state and the first excited state for the same parameters as in (a). A
spin bus with N = 3 and linear time evolution with T = 1 �−1 was
used in both figures (a) and (b).

gap between ground state and excited state as shown in
Fig. 3(b) (� = 2JM ).

In the regime not modeled by the effective Hamiltonian
[α < 1 in Fig. 3(a)] we find an interesting region where
high fidelities can be achieved (F > 0.999). This high-fidelity
region is not a consequence of an increment in the gap between
ground and excited state [Fig. 3(b)]. We suspect that these
high fidelities originate from the fact that the energy of the
first excited state rapidly varies with time for low values of
alpha and becomes time independent when the fidelity is at
its maximum value. The increase of fidelity with JM and the
appearance of a high-fidelity region for α < 1 is also observed
in longer spin buses (N = 5 and 7) and for the trigonometric
time evolution.

III. EFFECTIVE SUPERADIABATIC MODEL

Given a time-dependent Hamiltonian, Heft(t), it is possible
to construct a Hamiltonian Heft,s(t) such that it cancels
the nonadiabatic evolution of Heft(t). Then the evolution of
the so-called superadiabatic Hamiltonian Heft,S(t) = Heft(t) +
Heft,s(t) is ensured to be completely adiabatic. The Hamilto-
nian Heft,s(t) is calculated as [23]

Heft,s(t) = i

2

∑
ψ

[
∂

∂t

(|ψ(t)〉)〈ψ(t)| − |ψ(t)〉 ∂

∂t

(〈ψ(t)|)
]
,

(7)

where |ψ(t)〉 are the eigenstates of the Hamiltonian Heft(t).
We could treat the complete spin bus architecture H

[Eq. (1)] with the superadiabatic formalism, but this has
several drawbacks: the couplings within the spin bus will
become time dependent, the derivation of the superadiabatic
Hamiltonian will be N specific and imaginary matrix elements
will be introduced [Eq. (7)]. Furthermore, these superadiabatic
terms consist of many-body interactions, which increases the

complexity of converting them into experimental knobs as N

increases. Instead, we work with the effective Hamiltonian
and then map the couplings onto the complete Hamiltonian
keeping JSB � JL,JR , which, as we will show, eliminates
every drawback and reduces the number of superadiabatic
many-body interaction terms.

We find that Heft,S contains time-dependent interactions,
coupling the states |↑↑↓〉 and |↓↑↑〉, and |↑↓↓〉 and |↓↓↑〉.
These correspond to an interaction proportional to σx

L ⊗ σx
R +

σ
y

L ⊗ σ
y

R + σ z
L ⊗ σ z

R , which appears in the second-order term
of the effective Hamiltonian and is JSB dependent [9,22].
Since we want JSB to be time independent in order to
allow for minimal control we neglect these matrix elements.
As a result, the evolution will not be completely adiabatic.
Nevertheless we expect to improve the QST fidelity due
to the other superadiabatic matrix elements retained that
improve adiabaticity. We call this Hamiltonian “effective
superadiabatic” and denote it by Heft,ES. Since the matrix
elements in Heft,ES originating from Heft,s [Eq. (7)] are
imaginary, we apply a unitary transformation U such that
H ′

eft,ES = UHeft,ESU
† has only real matrix elements that we

can then rewrite as spin-exchange interactions. In particular,
we choose the unitary transformation

U (t) = exp

[
− i

2
θL(t)σ z

Lσ z
SB − i

2
θR(t)σ z

SBσ z
R

]
, (8)

which corresponds to a rotated frame with correlated phases
between the central spin and the sender and receiver qubits. U
is determined so that H ′

eft,ES has the same form as Heft [Eq. (2)].
This imposes the following conditions on θL(t) and θR(t):

tan θL = JM
∂JL

∂t

4(2JM − 2JL)
(
3J 2

L + J 2
M − 3JMJL

) , (9)

tan θR = −JM
∂JL

∂t

8JL

(
3J 2

L + J 2
M − 3JMJL

) . (10)

The new transformed state |ψ ′(t)〉 = U (t)|ψ(t)〉 obeys the
Schrödinger equation with the Hamiltonian:

H̃eft,ES(t) = J̃L

(
σx

L ⊗ σx
SB + σ

y

L ⊗ σ
y

SB + σ z
L ⊗ σ z

SB

)
+ J̃R

(
σx

SB ⊗ σx
R + σ

y

SB ⊗ σ
y

R + σ z
SB ⊗ σ z

R

)
, (11)

where

J̃L(t) =
(

JL sec θR,JL sec θR,JL + 1

2

∂θL

∂t

)
,

J̃R(t) =
(

JR sec θL,JR sec θL,JR + 1

2

∂θR

∂t

)
. (12)

The Hamiltonian to apply in the laboratory frame is the original
Hamiltonian H from Eq. (1), using the new edge couplings
from Eq. (12) and keeping JSB > JM . The initial values of J̃L

for the linear and trigonometric evolution are equal to

J̃L,lin(0) =
(

1

8T
,

1

8T
,
4JM (3JMT + 1)

1 + (8JMT )2

)
, (13)

J̃L,trig(0) =
(

0,0,
π2

32JMT 2

)
. (14)

For both evolutions at least one of the components is unbound
for decreasing T ; we then do not expect to find high fidelities

012317-3



AGUNDEZ, HILL, HOLLENBERG, ROGGE, AND BLAAUBOER PHYSICAL REVIEW A 95, 012317 (2017)

2 4 6

0.6

0.8

1

Total Evolution Time T

F
id

el
ity

 F

LINEAR J
L
(t)

 

H
H

PS

2 4 6

0.6

0.8

1

Total Evolution Time T

F
id

el
ity

F
R

TRIGONOMATRIC J
L
(t)

 

H
H

PS

2 4 6

0.6

0.8

1

Total Evolution Time T

F
id

el
ity

 F

H
H

PS

2 4 6

0.6

0.8

1

Total Evolution Time T

F
id

el
ity

F
R

H
H

PS

2 4 6

0.6

0.8

1

Total Evolution Time T

F
id

el
ity

 F

H
H

PS

2 4 6

0.6

0.8

1

Total Evolution Time T

F
id

el
ity

F
R

H
H

PS

N = 1 N = 1

N = 3N = 3

N = N5  = 5

(a) (b)

(d)(c)

(e) (f)

E

FIG. 4. Fidelity F for the linear and trigonometric evolution
of JL(t) as a function of T (in units of �−1) for spin bus
sizes N = 1,3,5. Values of JM = 1 and JSB = 10 were used. The
black solid lines correspond to a normal adiabatic QST using the
Hamiltonian (1); the magenta dashed lines are for the effective
superadiabatic Hamiltonian (11). In every case higher fidelities can
be seen using the effective superadiabatic quantum state transfer.

for short evolution times. The x and y components of the
couplings at t = 0 and T are proportional to ∂J

∂t
, while the

z component has a contribution from ∂2J
∂t2 . Hence having

both derivatives equal to zero at these times is desirable for
achieving high fidelities and fast QST. This is why the linear
evolution produces couplings with large x and y components
and a small z component, while the trigonometric evolution
produces x and y components equal to zero and a large z

component for small T . From Eqs. (13) and (14) we also
notice that T not only affects the adiabaticity requirement
(T � �−1) but also the QST protocol itself.

The results from QST calculations for spin buses with N =
1,3,5 are shown in Fig. 4. We show a comparison between
the quantum state transfer using the original Hamiltonian
H [Eq. (1)] and the effective superadiabatic Hamiltonian
HES [Eq. (1) with JL = J̃L and JR = J̃R]. We observe that
higher fidelities are achieved using the effective superadiabatic
protocol for most QST durations T . Using the trigonometric
evolution of JL(t) the fidelity is lower for T → 0, because
the coupling scales as ∝ 1

T 2 [Eq. (14)] in contrast with the
linear evolution that scales as ∝ 1

T
[Eq. (13)]. We see that

the effective superadiabatic trigonometric evolution achieves
an improvement for any evolution time T in long spin buses.
Comparing F for different spin bus sizes suggests that the
improvement increases with spin bus size.

Both protocols did not improve the fidelity anywhere in the
region α = JSB/JM < 1 (as expected, since our derivations are
only applicable for α > 1). To quantify the improvement of the
effective superadiabatic protocol we introduce the following

FIG. 5. Surf plot of the improvement of fidelity due to the
effective superadiabatic Hamiltonian for the trigonometric evolution
of JL(t) and the region α > 1 described by the effective Hamiltonian.
In this calculation N = 5 and T = 1 �−1.

quantity:

�F = FES − F

1 − F
× 100%. (15)

�F measures the fidelity improvement by the effective
superadiabatic protocol using HES [Eq. (11)] as a percentage
of the difference between the fidelity of perfect QST (F = 1)
and the fidelity of the normal adiabatic QST protocol using H

[Eq. (1)]. Here FES denotes the fidelity that is obtained by using
the effective superadiabatic protocol. A value of �F = 100%
corresponds to the case where the effective superadiabatic
protocol improves the fidelity up to unity. Figure 5 shows
�F for a spin bus consisting of five sites and trigonometric
evolution of JL(t). We notice that the improvement can reach
up to 25%; unfortunately this occurs in a region where fidelities
are not very high [Fig. 3(a)]. In the high-fidelity region
(JM > 7) �F ∼ 10–15%. Although this may not seem such
a big difference, it is a significant improvement when keeping
in mind that the effective superadiabatic protocol is achieving
an improvement of a QST with already very high fidelities
(F > 0.99). Taking into account that � ≈ 1 μeV ns, for values
of JM = 1 μeV (well within reach for, e.g., coupled donors in
silicon and electron spins in quantum dots [15,33]) we predict
a QST duration of a few nanoseconds.

IV. CONCLUSION

In this paper we develop a high-fidelity superadiabatic
quantum state transfer protocol for a spin bus architecture
with an odd number of spins. The proposed protocol can be
implemented with minimal control of the nearest-neighbor
exchange couplings along the chain: only the coupling JL(t)
between the sender qubit and the first spin at one end of the
chain, and the coupling JR(t) between the last spin and the
receiver qubit at the other end, need to be controlled. We apply
this protocol via an effective transformation and consider two
types of evolution of JL(t) and JR(t), linear and trigonometric,
and find that for both the superadiabatic protocol leads to a
significant relative increase, quantified by �F in Eq. (15), in
the fidelity of QST of up to 25% compared to normal adiabatic
evolution. Comparing fidelities for different spin chain lengths
suggests that this improvement increases with spin bus size.
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