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Abstract

In baseball, pitchers have a high rate of throwing arm injury, which could lead to disability and
less training time. This paper aims at investigating whether upcoming injuries of youth baseball
pitchers can be detected before the athlete experiences injury symptoms. A total of 118 elite
youth baseball pitchers from the Dutch national baseball team and six Dutch academies were
followed over three years.

Promising variables like Range of Motion, Muscle Force, Ball Speed and Training Time were
included for use in a supervised classification problem. Prediction accuracy performance was
then measured for different algorithms in the form of F1 and F2 scores. Results showed deficient
performance for injury prediction using single-point-in-time measurements for all examined
algorithms, with scores of both F1 and F2 reaching maximums of 0.5. The results, however,
revealed the importance of measuring variables like hip force and hip range of motion for shoulder
injury prediction, and force in the hip and shoulder together with the total rotational motion
(TRM) of the shoulder for elbow injury prediction. Ball speed and training time contributed
less for the tested models.

Higher frequency data is needed for better injury prediction performance. Future studies
are recommended to measure data with a time between measurements of one to two weeks.
This high frequency makes it possible to use time-series analysis to detect slight asymptomatic
pathology developments progressing over time, to help youth baseball pitchers avoid injuries
and keep their performance ready for top-level play.

Keywords: shoulder injury, elbow injury, range of motion, maximum contraction force, ball speed,

training time, decision tree, logistic regression
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1 Introduction

Data analysis is an essential tool for the sports
world, with the primary goal of improving indi-
vidual players’ and teams’ performance. In base-
ball, the statistical analysis of game data even has
a separate name: sabermetrics, which arose in the
1980s from the combination of the acronym SABR
(Society for American Baseball Research) and the
word metrics [1].

The modern development of an increasing
number of easy to use and powerful technologies
has steepened the learning curve both for saber-
metrics as well as for other sports analytics, re-
sulting in a significant benefit for the athletes and
the entire sports community by providing relevant
feedback [2]. It is elementary to say that any type
of sports activity is related to some risk of in-
jury [3]. In elite sports, it is essential to reduce
injury risk to get the most performance out of the
individual athlete’s potential, as injured hours can
best be spent training or merely recovering from
training to improve performance (more about the
influence on training load later in this text).

In the Netherlands, a country populated by 17
million people [4], every year there are 4.5 million
injuries. In 2016 alone, 121.000 people sought
emergency care because of sports injuries. Direct
medical costs for these injuries account for over
5 million euros every single year in the Nether-
lands alone, and experts say half of these injuries
could potentially be prevented through support
and self-management [5]. That makes injuries an
exciting topic to investigate.

Since predicting when an injury might occur can
be of high value, quantifiable ways to study the
pitching motion are considered. Athletes who
repetitively perform pitching motions are exert-
ing significant mechanical stresses on the upper
extremities. Especially the shoulder and elbow
joints are affected by these mechanical, repetitive
stresses, which are known to lead to anatomic
changes in youth athletes [6, 7]. Some studies in-
dicate that overuse stresses on the skeletal struc-
ture even result in asymptomatic pathologies [8].
The term asymptomatic (also referred to as sub-
clinical) indicates that symptoms related to an
injury are not showing, and are thus often not
detected by the affected person. It could mean

that the problematic symptoms are yet to show
up (and thus become a symptomatic pathology),
or that it will resolve itself by the adaptation of
the athlete’s body. It is the case for both the
shoulder and the elbow that injuries occur when
these adaptive changes and asymptomatic pathol-
ogy progress, exceeding the compensation abilities
of the athlete’s body [8]. Due to the occurrence
of asymptomatic deterioration, it is theoretically
possible to detect an upcoming injury before the
athlete presents its symptoms.

Numerous studies are showing how measurable
performance metrics can be related to injury.
Training load quantified as pitch count was found
to correlate with injury. Here, a maximum of
75 pitches per game is advised for youth pitch-
ers to lower risks of pain, one of the symptoms
associated with injury progression [9]. More gen-
erally, the effects of training volume, frequency
and intensity (or load in general) on athletic per-
formance and injury have been researched widely
in the past. It is believed that increases in training
load correspond to improving performance until
a certain threshold, after which injury is more
likely to occur [10–13]. That threshold can lie
at different magnitudes for each athlete and is
related to the athlete’s body ability to compen-
sate [8]. Due to these inter-individual differences,
no general threshold can be given to work for all
athletes. This concept has been illustrated by
Verhagen and Gabbett (Figure 1). They propose
that an athlete’s load and load capacity should
always be seen in relation to one’s context and
environment [14].

Upper arm injuries are one of the primary injuries
in baseball, and they are believed to be mostly
related to the late cocking phase [8, 15]. As can
be observed in Figure 2, cocking is the phase that
takes place right before the acceleration phase of
the arm forward and is identified as the transi-
tion from external to internal shoulder rotation,
concentrating all stresses on the shoulder and the
elbow joints [16]. In the case of the shoulder, this
transition is considered risky because the Caput
Humeri (the humeral head) moves in an abnormal
motion relative to the Glenoid Cavity, causing in-
jury in the superior and posterosuperior Glenoid
Labrum (the glenoid ligament). This injury has
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accordingly been named posterosuperior glenoid
(or internal) impingement [15,17].

Some MRI (magnetic resonance imaging)
studies conclude that 80 % of elite overhead ath-
letes have shoulder abnormalities compared to
healthy subjects [18], and that 40 % of elite over-
head athletes have symptoms related to rotator
cuff muscle tear in the dominant shoulder com-
pared to the non-dominant one [19]. Even though
asymptomatic, the papers refer to these abnor-
malities going together with muscle degradation,
meaning that continuation of training increases
the chance of sustaining an injury on the shoulder
joint [8]. One could argue that the degradation of
the shoulder muscles is reflected by a decrease in
measured joint maximum force.

Figure 1: “An integrated view on load, load capacity,
performance and health in sports. Dotted lines represent
negative relationships and solid lines represent positive re-
lationships.” [14]

Elbow injuries are another one of the most com-
mon causes of disability among throwing athletes
[8, 20, 21]. According to Ciccotti et al. elbow
injuries contribute to over 7 % of the measured
scholastic injury types, and elbow injury is almost
twice as likely to occur in pitchers than in position
players [21].

Research on elbow injury by Olsen et al. in
youth athletes reported injured players throwing
fastballs at a significantly higher speed compared
to healthy subjects, concluding that a relation-
ship exists between increasing ball speed and el-
bow injuries [22]. A recent study by Kurokawa et
al. confirmed these results, showing increases in
pitch velocity are related to both abnormalities of
the medial epicondyle and elbow pain [23]. These

findings are in line with the previously mentioned
studies on training load and their relation to in-
jury, which makes one assume pitch velocity could
be used as a marker for training load.

One paper, by Garrison et al., showed that
analysis of elbow injuries could also be per-
formed by investigating the total rotational mo-
tion (TRM) of the shoulder joint, which is the
amount of combined internal and external rotation
of the shoulder at 90◦ abduction. They specifically
focus on players with UCL injuries (Ulnar Collat-
eral Ligament tear), stating they display deficits
in the TRM of the throwing shoulder compared to
healthy players on the same position [24]. Accord-
ing to Fortenbaugh et al., if there is insufficient
shoulder rotation, the throwing arm can get in
an incorrect position and lag behind the elbow.
That leads to compensation forces in both the
shoulder muscles and the elbow, which can cause
further injury [25]. Other than for elbow injury,
a previous study by Wilk et al. also links TRM
to shoulder injury, stating that the TRM of the
dominant shoulder should be within 5◦ of the non-
throwing shoulder’s TRM to decrease the risk of
getting injured [26].

Most research performed on baseball injuries un-
til this day has been set up as a cross-sectional
study, meaning it focuses on linking measurements
to documented injury by investigating a single mo-
ment in time. In order to research cause and ef-
fect relationships, examining a single point in time
does not take into account what might be happen-
ing before or after a specific moment. Data involv-
ing repeated observations in time of the same sam-
ple is called longitudinal data, and homonymously
a study involving this type of data is called a lon-
gitudinal study.

A longitudinal study can be set up in two
ways, namely as a retrospective or as a prospective
study. The difference is that the former analyses
historical data of a group that may or may not
have sustained an injury, while the latter follows
a selected sample group for some time. The need
for a longitudinal prospective study to link me-
chanical patterns to the incidence of shoulder and
elbow injuries has been proclaimed by Agresta et
al. in a review paper investigating risk factors for
arm injuries among baseball players [27]. Longitu-
dinal study design can be used to study patterns
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Figure 2: Phases of a pitch from Start to Finish (adapted from [8]).

over time and possibly link measurements of one
single mo to injury in the next.

This study aims at investigating whether an indi-
cation of upcoming shoulder or elbow injuries can
be given to an athlete prior to injury symptoms
showing up in youth pitchers. It is hypothesised
that injuries can be predicted by the inclusion of
measurements of Range of Motion, Muscle Force,
Ball Speed and Training Time, which, according
to literature, are the most promising.

2 Methods

2.1 Study Population

The KNBSB (the Royal Dutch baseball feder-
ation) recruited participants from the national
baseball team and the six baseball academies
throughout the Netherlands. Inclusion criteria
were being male baseball pitchers participating in
the elite youth class. No selection was performed
on the dominant arm, and no criteria on injury
epidemiology were specified for inclusion. A pop-
ulation of 125 athletes satisfied the inclusion crite-
ria throughout the data collection time, of which
118 participated in the study.

The setup of the paper is of exploratory re-
search using existing longitudinal data of obser-
vational nature, meaning the conditions of the
observed athletes are not altered for the study

purposes. The data collection procedures were
consistent with the Helsinki Declaration, and the
local ethics committee approved them. Partici-
pants and their parents signed an informed con-
sent for participation before the start of the mea-
surements.

2.2 Data Collection

The dataset used has been initially captured for
a study done by the KNBSB on the develop-
ment of pitching speed, called the Fastball project.
The complete set of data includes several vari-
ables; throwing speed, arguably the primary per-
formance variable typically used in baseball, to-
gether with passive anatomic measurements of the
athletes and self-reported questionnaire data can
be found.

Measurements were performed twice a year:
one at the end of March/start of April, and the
other one at the end of September/start of Octo-
ber. The measurements started in the spring of
2014 over the total span of three years, resulting
in six sessions (named trials A-F) each six months
apart. Each trial, a variety of parameters were
asked/measured. A little overview of each cate-
gory of variables (a feature set) is made, together
with the methodology of data collection.

General Data on the subject’s name, age,
length, weight and dominant arm was collected.
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This feature set also contains information gained
by questionnaire data about the level of play,
which academy of training and the thrown types
of pitch, together with the number of days and
amount of hours played every week on average.

Self-reported questionnaires DASH, KJOC
and WOSI questionnaires were reported by the
athletes for each trial. These questionnaires were
only filled in when a player reports being injured,
and assess the level of injury. DASH is a disability
index, KJOC is a measure of injury and perfor-
mance, whereas WOSI is an instability index for
the arm. These are commonly used questionnaires
to assess upper-body injuries.

Injury Self-reported injury data was collected
reporting general injury at the moment of data
collection and injury in the six months prior to
the trial. The latter was also asked more specific,
where a player could indicate injury more specifi-
cally at the shoulder or the elbow joints.

In this paper, these variables are considered to
be target features for the learning algorithm (more
detailed in section 2.3.1).

Ball Speed Each player had to throw ten fast-
balls within one measurement, the speeds of which
were measured in mph using a handheld speed
gun. Sometimes more than ten measurements
were done, in which case they are not considered
for analysis.

Range of Motion (RoM) Range of Motion
was measured in degrees using a goniometer and
consists of measurements at the hip, the shoulder
and the trunk. For both the hip and the shoul-
der, measurements were done on both the left and
the right sides, measuring the joint’s endo- and
exo-rotation. The trunk’s RoM is an axial mea-
surement and was measured clockwise and coun-
terclockwise.

Maximum Static Force (Force) Force mea-
surements of the shoulder and the hip were mea-
sured in Newton (using a MicroFET R© dynamome-
ter, by Hoggan Scientific) doing three measure-
ments of maximum contraction and averaging the
three to obtain a single measurement. At the

hip, they can be distinguished between hip abduc-
tion and hip adduction for both the left and the
right side. At the shoulder joints abduction, exo-
and endo- contractions were measured, and also
measurements of the lower trapezius (LT), middle
trapezius (MT) and serratus anterior (SA) were
captured.

Laxity Laxity is a measure of looseness of a
joint and can be the result of an injury. Measure-
ments were done for the pinky, thumb, elbow and
knees, together with a single measurement for the
trunk. It is indicated as a binary measurement,
indicating positive or negative looseness.

A year after the start of the data capturing (trial
C), some changes to the measurement’s protocol
were made to specify the location of the injury
and streamline the data collection protocol. The
decision was, therefore, taken to limit the data
processing to include only trials C to F.

A list of abbreviations explaining the name
buildup of all the features can be found in ap-
pendix A.1.

2.3 Data Processing

The data is used to train machine-learning models
to predict future injuries before they occur. Data
analysis was performed in a classic cross-sectional
study design first. The cross-sectional analysis
was used to assess the quality of the dataset before
using it for longitudinal prediction purposes.

The experimental procedure contained the fol-
lowing phases:

• Data extraction. All data was received in
a raw format (.xlsx files) and had to be ex-
tracted and named consistently.

• Data pre-processing. The raw data was
cleaned from null values by removal of some
feature sets and imputing methods. It was
then discretised using encoding methods.
More about the data pre-processing phase
can be found in appendix A.3.

• Feature selection. Features were selected
as raw readings, and some were engineered
with the help of past literature knowledge.
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• Learning phase. In this phase, the model
was fit on a learning set (60 % of the
dataset).

• Test phase. Here the models were tested on
their prediction performance.

All data was processed with Python (v3.8 [28]).
Pre-processing was mostly done using the Pan-
das library [29], the SciKit-learn package [30] and
some custom functions. Because of the unbalance
between dominant left (L) and right (R) armed
athletes, the data is corrected by simplifying it
into Dominant side (Ds) and non-Dominant side (
nD). This way, more data can be used for categori-
sation.

2.3.1 Feature Selection

In machine learning, a feature is either a single
measurable property or a mathematically com-
puted property using one or more available vari-
ables. This paper uses supervised learning meth-
ods, which means data is labelled, and models can
be assessed on their performance of prediction of
these labels. The distinction can thus be made be-
tween predictor and target features. More specif-
ically, predictors are used as the input of a model
that predicts a target feature.

Predictor Features Some information about
the engineered features is given. The rest of the
features were all taken directly from the raw data.

- RoM The ratio of the endo- over the exo-
rotation of the hip and shoulder joints was calcu-
lated. The total rotational motion (TRM) of the
shoulder joint was found by summing up the two
(endo + exo). An extra feature was identified as
the difference in shoulder TRM between the dom-
inant side and the non-dominant side.

- Ball Speed For each trial, the minimum,
maximum, average and the standard deviation of
the throws was calculated.

To investigate which features to select the corre-
lations between the targets and the various fea-
tures were first explored. Therefore, two different
correlation techniques, the Pearson and Spearman

correlation coefficients were used. Correlation is
limited to measuring strength and direction of the
relationship between two variables that is either
linear (measured with the Pearson correlation co-
efficient) or monotonic, i.e. the relation is either
entirely increasing or decreasing but not in a con-
stant way (measured with the Spearman correla-
tion coefficient).

Target Features The target variables were all
extracted from the self-reported injury data, and
are specified in more detail here.

N.B. The reported questions/answers have
been translated from the Dutch language.

- Injury Shoulder : Q: “Do you suffer from
an injury at the [...] shoulder?”, asked for both the
left and the right side. Response possibilities are
ordinal categories:

• No

• Yes, occasionally

• Yes, regularly

• Yes, long-lasting

- Injury Elbow : Q: “Do you suffer from
an injury at the [...] elbow?”, asked for both the
left and the right side. Response possibilities are
the same as for the shoulder injury.

As previously mentioned, during pre-processing, it
was chosen to rename left/right indicating which
is the Dominant side (Ds) and which side is non-
Dominant (nD).

The distribution of the target variables’ possi-
ble answers for injured vs non-injured items was
examined by reporting them on a table. After ex-
amination, it was decided to transform the target
features into binary ones (moreover can be found
in the results, section 3).

2.3.2 Learning Phase

The learning phase is the phase in which a learn-
ing model is chosen and is fitted to the train-
ing data. With training data the amount of the
data used for training is meant; the rest is called
test data and, as the name suggests, is used in
the next phase of data processing (see section
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2.3.3). Splitting the dataset was investigated us-
ing the train test split function from SciKit-
learn, and it was concluded a test split higher
than 30 % and smaller than 40 % would be ideal.
More about this choice of is elaborated in ap-
pendix A.3.4.

Various algorithms were selected for compari-
son of their predictive powers. The choice of these
algorithms was made according to the wide adop-
tion of the learning methods they employ. For su-
pervised learning classification problems like this
one, the most used models are Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM) and Naive Bayes
(NB) [31]. All algorithms were obtained by the
open-source SciKit-learn package [30].

All models were fitted for both the cross-
sectional as well as the longitudinal datasets (see
appendix A.3.3 for information about the prepara-
tion of the two datasets). This way, a model could
be selected to perform the rest of the analysis.

After model selection, various combinations of
features (feature set) were fed to the algorithm.
This way, the feature sets were fed separately as
well as together to test the change in predictive
power with each feature set.

2.3.3 Test Phase

During the test phase, the models were evaluated
on the test split of the data. Metrics for evalu-
ation of this type of classification problem were
thoroughly analysed by Sokolova et al. in a paper
on classification metrics [32], and an explanation
of the most important ones can be found in ap-
pendix A.4. The evaluation of the classifier’s per-
formance was done by analysing two scores: the
Cross-Validated F1 and F2 Score.

In general, the F-β Score is used to leverage
the power of the Prediction (P) and Recall (R)
scores to diminish both Type I and Type II errors
by taking a harmonic mean of the two scores. For
β = 1 (F1 Score) the P and R are given the same
weight, whereas increasing β puts more weight on
R. More information about these scores can be
found in appendix A.4.

By making use of the F2 Score, this paper pri-
oritises Recall, as False Negative cases (FN: pre-
dicted False, but actually injured) are the ones
that are the least favourable to have.

Because of the relatively small amount of data,
splitting the data could make for results slightly
changing each time. For completeness, therefore,
evaluation of the F1 and F2 Score was performed
with the use of Stratified K-fold Cross-Validation
(SCV with K = 3), which is cross-validation used
for large imbalances of the target variables. Here
the data is divided into K folds (chunks of data)
which have the same percentage of each class of
the target variable. The model is trained on K−1
folds and is then evaluated (tested on) the remain-
ing fold. This evaluation is done for K folds and
taking the mean score of these folds then gives the
average F-β Score of that model. The choice of
K = 3 comes forth from the investigated test split
value as can be found in appendix A.3.4, result-
ing in a 1/3 test split (≈ 33%) and a 2/3 training
split. The mean values of the models’ performance
were consequently reported, together with their
standard deviation.

Next to the model’s performance metrics, also the
fundamental value of the contribution of the indi-
vidual features is sketched. For this purpose, the
SHAP value is introduced using the shap pack-
age for Python [33]. SHAP values (or SHapley
Additive exPlanations) are based on a value in
game theory called Shapley value, which identifies
the contribution of each “player” to the “game”.
What SHAP does is to quantify the contribution
of each feature to the model. It, therefore, does
not provide causality, rather the interpretability
of a model [34].

It is important to note that the SHAP value is
computed at a single observation and is, therefore,
a local interpretation of the predictive model [34].

3 Results

Study population The study population con-
sisted of 118 elite youth male pitchers with mean
age of 15.4 (SD 1.5, range 11 to 19). Mean
body height was 179.3 cm (SD 10.3, range 148.5
to 204.8) and mean body weight was 69.9 kg (SD
13.9, range 35.1 to 111.2). Of the 118 players,
18 were left-handed and none were ambidextrous.
The average ballspeed thrown per athlete has a
mean of 69.6 mph (SD 6.0, range 53.7 to 81.2), or
112.0 km h−1 (SD 9.7, range 86.4 to 130.7).
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Included features A first examination of the
Person and Spearmann correlations showed weak
correlations of the predictor features with the in-
jury measurements (the highest of which were in
the range of 0.10 to 0.18). The greatest corre-
lations were achieved for the Range of Motion
(RoM) and the Maximum Static Force feature
sets, resulting in these being selected for initial
model training. Moreover, from literature also
Ball Speed and Training Time resulted promising
metrics for measuring training load and were thus
selected as well.

The distribution of the target variables’ possible
answers for injured vs non-injured items can be
found in Table 1. As can be expected from injury
variables, the distribution is quite imbalanced and
the injured categories have far too few items to be
able to train a machine learning model accurately.
Furthermore, the answer possibilities containing
“Yes” can be distinguished by the frequency of in-
jury (’Yes, occasionally’ and ’Yes, regularly’) and
the duration of it (’Yes, long-lasting’). The an-
swers can, therefore, be regarded as subjective,
which makes them difficult to be interpreted by an
algorithm. To correct for imbalance, lack of data
and subjectivity, the ordinal categories were quan-
tified into simple binary ones before the learning
phase started. That means that ’No’ was trans-
formed to a value of 0, and the rest (’Yes’) all take
on a value of 1.

Table 1: Distribution of injury responses at the dominant
side for trials C to F, before transforming them to binary
features (’No’ and ’Yes’ only). Values shown are divided
for the shoulder and the elbow joints.

Shoulder Elbow

No 170 168
Yes, occasionally 57 61

Yes, regularly 24 22
Yes, long-lasting 11 11

Moreover, the average time lost from sport due
to injury over six months was examined. It was
found that 65 % of injured athletes reported time
lost from practices or games to be ’1 to 7 days’,
and 10 % reporting 14 or more days.

Models performance comparison The pre-
diction accuracy of the five chosen models is ex-
plored in the form of Stratified K-fold Cross-

Validated (SCV) F-β scores (with β = 1 and β =
2). Results are shown separately for the Cross-
Sectional and the Longitudinal analysis. The dif-
ference between the two comes forth from the way
the data for these was prepared (see appendix
A.3.3). The models used are Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM) and Naive Bayes
(NB).

It can be seen how the model’s performance
stays below scores of 0.5 for all combinations of
type of analysis (cross-sectional vs longitudinal),
the model used (LR, DT, RF, SVM, NB) and in-
jury classification (shoulder vs elbow). It can also
be noted how some standard deviation (SD) val-
ues are of 0.1 or higher, indicating the spread of
the scores obtained.

In the cross-sectional analysis (Figure 3A), the
highest performing models for the shoulder are
LR, DT, RF and NB with similar magnitudes,
while SVM performs the worse. For the elbow,
LR and NB perform similarly, succeeded by DT,
RF and SVM. In this graph (Figure 3B), the mod-
els generally score higher for the elbow joint com-
pared to the shoulder joint.

In the longitudinal analysis, the highest per-
forming models are DT, LR and NB for the shoul-
der (Figure 4A), and DT, LR and RF for the el-
bow joint (Figure 4B). Both for the shoulder and
the elbow it can be observed how the RF model
performs worse than the DT one, which is es-
pecially noticeable for the shoulder. Also, SVM
scores worse in both classifications compared to
the other models, with scores always under 0.4.

Furthermore, no significant difference in pre-
diction accuracy scores was observed between the
cross-sectional (Figure 3) and the longitudinal
analysis (Figure 4).

Input feature set performance The perfor-
mance was then further analysed for longitudinal
predictions. The effect of training the model on
different feature sets is shown using the best per-
forming models (DT and LR). Six sets were ex-
amined:

1. RoM only

2. Force only

3. Ball Speed only
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Figure 3: Stratified K-fold Cross-Validated F1 and F2 Score mean value (bar height) and SD (line) for different classi-
fication algorithms, plotted in a barplot format for the cross-sectional analysis. (A) shows values for injuries in the
dominant shoulder, while (B) focuses on injuries for the dominant elbow. Models are Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF), Support Vector Machine (SVM) and Naive Bayes (NB).

Figure 4: Stratified K-fold Cross-Validated F1 and F2 Score mean value (bar height) and SD (line) for different clas-
sification algorithms, plotted in a barplot format for the longitudinal analysis. (A) shows values for injuries in the
dominant shoulder, while (B) focuses on injuries for the dominant elbow. Models are Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF), Support Vector Machine (SVM) and Naive Bayes (NB).
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4. Training Time only

5. RoM and Force

6. RoM, Force, Ball Speed and Training Time

The results for the DT model were analysed first.
For the shoulder (Figure 5A), the feature sets 1
to 3 performed similarly. Set 4 shows the lowest
performance, whereas the combinations shown by
5 and 6 scored the highest. For the elbow predic-
tions (Figure 5B), the best performing feature set
is number 3 with a mean score of approximately
0.5, while set 4 scores the lowest at around 0.2.

Figure 5: Stratified K-fold Cross-Validated F1 and F2
Score mean value (bar height) and SD (line) for different
feature sets inputted in the DecisionTree model for longi-
tudinal prediction. Options include: (1) RoM; (2) Force;
(3) Ball Speed; (4) Training Time; (5) RoM and Force; (6)
RoM, Force, Ball Speed and Training Time. (A) shows val-
ues for injuries in the dominant shoulder, while (B) focuses
on injuries for the dominant elbow.

Figure 6: Stratified K-fold Cross-Validated F1 and F2
Score mean value (bar height) and SD (line) for different
feature sets inputted in the LogisticRegression model for
longitudinal prediction. Options include: (1) RoM; (2)
Force; (3) Ball Speed; (4) Training Time; (5) RoM and
Force; (6) RoM, Force, Ball Speed and Training Time. (A)
shows values for injuries in the dominant shoulder, while
(B) focuses on injuries for the dominant elbow.

Interestingly, set 2 has an SD of almost 0.2, indi-
cating a big spread in score results for the model
training on the Force set only.

The results for the LR model are then shown.
For the shoulder (Figure 6A), all feature sets re-
ported mean scores of 0.4 or higher, with set 3 and
4 performing somewhat higher at a mean score of
0.5. Notably, the SD of set 4 is very large com-
pared to the rest of the sets. For the elbow (Fig-
ure 6B), it is shown how the sets all report a mean
score just lower than 0.4, with an exception for set
3 performing worse (≈ 0.3) and set 2 reporting a
higher mean score at around 0.5.
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Individual feature contribution In order to
identify the contribution of the individual fea-
tures, the SHAP values for the two best perform-
ing models (DT and LR) were analysed. The
models were trained using all four of the selected
feature sets (RoM, Force, Ball Speed and Train-
ing Time), and the SHAP values for only the top
twenty contributing individual features were plot-
ted. A list of abbreviations explaining the name
buildup of all the features can be found in ap-
pendix A.1.

The average impact on the output for the
DT model, for the shoulder and elbow, is shown
first. For the shoulder (Figure 7A), the hip’s
Exo RoM at the dominant side (RoM hip exo Ds)
is shown to be of most notable importance
compared to the other features. For the el-
bow (Figure 7B) the biggest contribution was
found to be given by the difference in shoul-
der’s TRM between dominant and non-dominant
sides (RoM sh trm change), the amount of hours
trained per week (train hours week) and the Exo
RoM of the shoulder at the non-dominant side
(RoM sh exo nD) respectively.

The results for the shoulder and elbow joints
using the LR model are then shown. The most
important difference between the results in this
plot and the regular SHAP plots of Figure 7
is that Figure 8 shows the relationship between
the target’s magnitude and positive or negative
SHAP. Positive values show the model putting a
greater weight towards the formation of an in-
jury, and negative values indicate the model learn-
ing an injury is not forming. Figure 8A shows
the results for the shoulder, with the hip force at
both the dominant and non-dominant sides scor-
ing high (Force hip ab nD, Force hip ab Ds and
Force hip ad Ds). It is worth noticing how the
magnitudes for abduction (Force hip ab Ds) and
adduction (Force hip ad Ds) have an opposite ef-
fect on the SHAP value. Figure 8B shows the
results for the elbow, and here it is valuable to
see how the hip strength (Force hip) features are
valued highest, after which numerous features of
shoulder strength (Force sh) are ranked high.

Mind that all these SHAP results show the
model’s weights for a single run. It is noted
that, during runtime, the top-performing (highest
SHAP values) features for the DT model were not
consistently the same, as each run made the tree

model learn different relations. The presented val-
ues are, therefore, to be interpreted with caution.
Overall, for both shoulder and elbow, the Force
features with higher SHAP values scored consis-
tently higher compared to the other features when
using the LR model.

4 Discussion

This study sought to explore if longitudinal data
of elite youth pitchers can be used to predict in-
jury before symptomatic pathology develops. In
order to do so, the data was analysed first cross-
sectionally and then longitudinally. The cross-
sectional analysis was used to assess the quality
of the dataset before using it for prediction pur-
poses. The longitudinal analysis then more specif-
ically focuses on the predictive power of the fea-
tures toward future injury. After identifying which
models performed best on longitudinal prediction,
these models were trained to identify the contri-
bution of the individual feature sets by selectively
using them as predictors, and then by studying
the SHAP values of the best performing models.

Cross-sectional analysis First, the cross-
sectional results of the five selected models are
analysed. The first thing that can be observed
is the bad prediction score for all models used. It
is concluded that combining the data of all ath-
letes into a single model simplifies the problem
too much. This way of structuring the data was
necessary due to the scarcity of the data, and it
does not take into account the individual differ-
ences between athletes. Limpisvasti et al. already
concluded that injury forms when asymptomatic
pathology is seen to exceed the individual’s abil-
ity to compensate [8]. Verhagen and Gabbett also
stressed using an individualised approach, saying
performance and load measures have to be seen in
relation to health, context and environment [14].

It is, therefore, thought that personalised in-
jury prediction power lies not in a single point
in time measurement, but in the development of
one’s pathology over time. Using an algorithm for
time-series analysis of multiple points in time is
believed to increase the ability to spot deteriora-
tion and thus predict future injury.

It is also worth mentioning that the cross-

10



Figure 7: SHAP values reported for the DecisionTree model trained with the RoM, Force, Ball Speed and Training
Hours feature sets. Greater values show the model putting a greater weight towards a correct prediction. Color differ-
ences represent the class it tends to predict more often using this weight (with a binary target these are equally sized).
(A) shows values for injuries in the dominant shoulder, while (B) focuses on injuries for the dominant elbow. A list of
abbreviations explaining the name buildup of all the features can be found in appendix A.1.

Figure 8: SHAP values reported for the LogisticRegression model trained with the RoM, Force, Ball Speed and
Training Hours feature sets. Positive values show the model putting a greater weight towards the formation of an injury,
and negative values indicate the model learning an injury is not forming. Color differences indicate changes in magnitude
of the feature from low (blue) to high (red). (A) shows values for injuries in the dominant shoulder, while (B) focuses
on injuries for the dominant elbow. A list of abbreviations explaining the name buildup of all the features can be found
in appendix A.1.
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sectional analysis did not yield better results com-
pared to the longitudinal analysis, which should
be the case given that the feature sets used are
considered to be promising by many [8,9, 22–26].

The cross-sectional results for the elbow joint
show slightly better scores than those for the
shoulder joint. That is thought to be because of
the differences between the elbow joint and the
shoulder joint. The elbow joint is a hinge joint,
able to perform only movements of flexion and
extension, whereas the shoulder’s ball-and-socket
joint allows for multiaxial movement [35]. It is
therefore believed that the shoulder joint’s com-
plexity could be a relevant factor when predicting
injury and that the less complicated elbow joint
injuries are therefore more easily identifiable by
these simplistic algorithms.

Model selection The prediction performance
of the five selected algorithms trained on the lon-
gitudinal data is then analysed. The goal of this
analysis was to select the best performing algo-
rithm for further examination of the contribution
of the individual feature sets.

It is unusual to see RF perform worse than
DT (particularly noticeable in the shoulder joint),
as the former should be an improved algorithm
of the latter, making predictions by averaging the
prediction of individual subtrees. The low predic-
tion scores are related to RF algorithms having
difficulties dealing with unbalanced classes, as the
classification bias found in the subtrees is empha-
sised [36]. The results also illustrate how SVM
performs poorly on predictions of both joints’ in-
juries. The SVM results in this paper have been
obtained using a linear kernel, which is not a flex-
ible method because of its use of linear separation
lines. However, using higher-dimensional kernels,
the model performed even worse, as higher dimen-
sionality is related to overfitting on noisy data. It
is therefore thought to be an optimisation issue.

According to the scores for longitudinal injury
prediction, the two best-performing algorithms
are DT and LR for both the shoulder and the el-
bow injuries. The analysis of the importance of
the individual feature sets is, therefore, performed
with both the DT and LR models for both joints.

Optimisations By analysing the deficient pre-
diction performance of the results, it was deter-
mined that prediction of injury in the shoulder or
the elbow joints is quite a challenging endeavour
when using simplified approaches. Multiple rea-
sons can be thought of to explain the low accuracy
of the trained models, the main of which is related
to the frequency of data collection, which is a lim-
itation further elaborated upon later in this text.
Error in the real-life data is always present, and it
can be attributed to the detail of the data, noise in
the measurements or the stochastic nature of the
algorithms used for modelling [31]. Some improve-
ments were considered during the data processing
phase.

An improvement considered has been the care-
ful optimisation of each single machine learning
algorithm’s parameter. Given the range of results
that were outputted in preliminary tests, optimi-
sation was, at last, not regarded as an option as it
mostly yielded only marginal improvements over
default parameters. Bittencourt et al. investi-
gated ways of improving injury predictions and
stated that injuries should be investigated as com-
plex systems, by studying the interaction of mul-
tiple facets in relation to each other [37]. Based
on their findings this paper also tested a complex
systems approach with a sequential Artificial Neu-
ral Network (ANN), which resulted in a 5% to 8%
increase in cross-validated F1 Score for the longi-
tudinal dataset alone. That is due to the nature
of ANNs, taking into account complex interactions
between variables. However, these results indicate
that some other causes should be identified, one of
which is the used dataset. Improvements on data
collection are highlighted in the future recommen-
dations paragraph.

Important features This paper also sought
to identify the most determining features by us-
ing different input feature sets and studying the
SHAP values for the DT and the LR models
trained on longitudinal predictions. The reader
is reminded that no intervention was performed
during data collection, as this is a strictly obser-
vational study.

In order to understand the features in relation
to the pitching motion and injury due to pitch-
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ing, the concept of the kinetic chain is introduced.
The kinetic chain is a coordinated sequence of
segments, in which the lower extremities and the
trunk act as the force generators, the shoulder
then funnels this force to the arm, which acts as
a force delivery mechanism [38]. During a pitch,
there is an ideal proximal to distal sequence by
which greater ball speeds can be achieved, and a
reduction in throwing arm injury is observed [25].

For the DT model trained on the shoulder, we
observed particular importance given to the exter-
nal rotation RoM at the hip’s dominant side. This
relation is in line with a previous paper by Oliver
and Weimar, indicating a positive relationship ex-
ists between the external hip rotation and the
scapular external rotation [39]. That is because
dominant hip external rotation is crucial for op-
timal foot placement to allow for the preparation
of the shoulder’s maximum external rotation dur-
ing pitching [40]. The link to injury was explored
by Sher et al., who did not find an association
with the hip’s external rotation directly. How-
ever, they did show a positive relationship exists
between dominant hip extension and shoulder in-
jury, with injury occurring for higher values of ex-
ternal shoulder rotation [41]. The paper concludes
recommending training to improve hip flexibility
(non-dominant internal hip rotation and dominant
hip extension) to prevent injury [41]. It is there-
fore concluded that maximising external shoulder
rotation is the feature more likely to cause injury,
especially when the hip does not allow for optimal
foot placement by having a limited external range
of motion.

Looking at the most promising variables on
shoulder injury from the LR model, we can ob-
serve how hip force features score relatively high
at both sides (dominant and non-dominant). That
confirms previous longitudinal research on the
maximum contraction force in the hip by Zep-
pieri et al., who found a significant decrease in
hip strength from preseason to postseason mea-
surements. They argue that the reduction in hip
strength (especially abduction) may result in an
improper sequencing of force production which
may put an increased load on the upper extrem-
ities [42]. It is thought that alterations in the
normal kinetic chain motion would mostly be felt
by the shoulder joint, as it has a low capacity of

force-generation and primarily depends on proper
positioning and muscle activation to control joint
translations [38].

As already mentioned, a decrease in the effi-
cient force sequencing results in injury and in a
decreased distal velocity [25,38], which means de-
creased pitching speed. Results for the LR model
trained on Ball Speed only showed moderate im-
provements in performance scores compared to
other feature sets. The average Ball Speed fea-
ture was found to be a slight contributor in the
DT model but did not show up in the top twenty
contributors for the LR model. Research done on
the development of force during a throw (i.e. not
maximum contraction force) did find lower energy
transfer (i.e. a lower Ball Speed) for time varia-
tions between segments and argue that increases
in Ball Speed can not be related to reductions in
injury [43]. The paper argues that there may be an
optimum timing between the forces acting on the
shoulder (known to increase injury likelihood [38])
and the elbow to produce sufficiently high Ball
Speeds [43], with offsets aiding injury progression
over ball speed [25, 38]. Although promising in
literature, these results can not be used to draw
a conclusion confirming a direct relationship be-
tween shoulder injury and ball speed exists, limit-
ing the usefulness of Ball Speed in regression mod-
els.

The findings on elbow injury were quite incon-
sistent when considering Ball Speed only, with the
DT model showing an increased prediction score
when considering it the only input set, whereas
the LR model did show a decrease in performance
compared to other feature sets. Unlike the find-
ings for shoulder injuries, for the elbow joint it is
known that higher pitch velocity is related to el-
bow injuries [22, 23]. It is thought that the LR
model does not show high scoring for predictions
of elbow injury using the Ball Speed feature be-
cause of the same reason as for the shoulder. That
is, Ball Speed measurements do show an optimum
timing between shoulder and elbow, making it a
feature not appreciated by regression analysis but
detected by a tree algorithm like DT.

The results for the DT features (on elbow in-
jury) showed a pronounced contribution given by
the reported amount of training hours per week.
Training Time was included as the closest indi-
cation of the experienced training load available
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in the dataset. A previous study by Olsen et al.
showed elbow injury being significantly related to
fatigue and pitch count [22], both being variables
arguably related to training load. Although the
Training Time feature was found to be an impor-
tant one for DT prediction of elbow injuries, us-
ing it as the only predictor feature did show lower
performance compared to other feature sets. It
is therefore concluded that the measured Training
Time was not a good predictor for injury overall
and that more consistent ways of measuring train-
ing load should be used for injury prediction.

Results indicated that the difference between
the shoulder’s TRM at the dominant side and the
non-dominant side has a big contribution on pre-
diction performance of elbow injury using the DT
model. This is in line with conclusions by Garrison
et al., indicating measurements of the shoulder’s
TRM are related to elbow injury, with a lower
TRM indicating a higher chance on UCL injury
[24]. It is believed that a low TRM makes for in-
correct shoulder rotation during a pitching motion
[25], disrupting the kinetic motion and increasing
compensation load by the elbow joint. The high-
est contributing variables for the LR model also
confirm this: the hip and shoulder force features
(strength). According to Zeppieri et al., a reduc-
tion in hip strength increases compensation load
further down the sequential chain [42]. The same
reasoning can be applied to explain the shoulder
strength feature. It is known that, during a throw-
ing motion, shoulder muscles generate a significant
load forward which, coupled to adduction of the
humerus and rapid elbow extension, generate the
high propulsive distal velocities [44]. If shoulder
strength results to be lacking, the elbow is thought
to compensate, increasing the load on the elbow
joint and thus increasing the chance of injury.

Strengths Although low prediction perfor-
mance was achieved, this paper also comes with
some strengths. First of all, pitchers are mostly
trained on their pitching motion, which makes
that the effects found in this dataset are most
likely attributable to pitching in contrast to slid-
ings, falling or colliding with other players. Fur-
thermore, according to Agresta et al., a prospec-
tive study investigating injuries was missing in the
research community [27]. This paper, although of

relatively small size, is a good starting point to fill
the need for this type of study.

The most exciting aspect of this study is that it
compares classification methods in direct link with
pitching mechanics and values used in the baseball
world. Using a systematic approach of modelling
and establishing results, this paper builds up to-
ward more robust and more informative datasets
in the future, intending to make the real-world
application of prediction algorithms for injury de-
tection possible in the near future.

Limitations and future recommendations
Some limitations exist for this paper. These
should be carefully considered for improvements
in future studies.

The range of answer possibilities given to the par-
ticipants in order to determine the seriousness of
an injury was not clear enough, with answers al-
ternating frequency and duration of injury. It is
hence thought that the answers were somewhat
subjective, making it difficult to establish proper
cause-effect relations.

The definition of what injury is should be clear,
specific and measurable. It is, therefore, recom-
mended that a physician certifies injury for data
labelling.

The dataset used in this work is regarded as hav-
ing a scarce size for a machine learning model to
perform adequately on. At first, this data was in-
tended for a study on the performance of youth
athletes. When using the same dataset for in-
jury prediction, the frequency of the collection mo-
ments is regarded to be too low, resulting both
in loss of information (richness) and data scarcity
(amount).

For one, the low frequency makes for difficult
detection of an injury, as injury length is mea-
sured as the time lost from practice or games.
The dataset showed most time lost due to injury
to be between 1 to 7 days, which is in line with
findings by Garrick et al., who reported 27 % of
high school baseball players lost at least five days
per injury [45]. A study on the epidemiology of
collegiate baseball players yielded similar results,
reporting that almost 3/4 of injuries resulted in
less than 7 days lost from sport and 1/4 of in-
juries resulting in more than 21 days lost per in-
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jury [46]. No special mention about pitchers was
found in the studies above, making it difficult to
make a one-on-one comparison possible. The av-
erage time lost to injury is hence multiple times
smaller than the precision that can be measured
with a frequency of measurement of once in six
months. It could, therefore, be possible that one
can recover from an injury and sustain a new one
all between one measurement and the next one.
The data would not be able to distinguish between
two separate injuries.

Also, it is a possibility that, due to a long
time between measurements, an athlete could sus-
tain damages resulting in injury some time (e.g.
a month) before the next measurement. In that
case, the injury could be reported, whereas the
pathology which can predict the injury was not
measured, making it impossible to find cause-
effect relations. A higher data collection frequency
would solve this problem.

Furthermore, one more advantage of improv-
ing the frequency (and thus the amount) of col-
lected data is for the use of time-series data, i.e.
series of data progressing in time. This is in
line with the previous reporting in the paragraph
on cross-sectional analysis, indicating time-series
data can be used to spot an individual’s deterio-
ration and thus predict future injury.

The most significant improvement that could
thus be made is related to collecting data with
a higher frequency. It is recommended to collect
data with a frequency of one to two weeks, having
the benefit of both more data being available, and
of richer details being available to establish the
relationship of cause-effect.

One more limitation was not being able to use
the self-reported questionnaires for prediction pur-
poses, as they were only asked when the injury
was already perceived (i.e. already symptomatic).
This makes for the dataset not showing the differ-
ence in answers between asymptomatic and symp-
tomatic pathologies. Another effect is that be-
cause of this option to skip the questionnaires (if
not injured) athletes could be psychologically in-
centivised not to report an injury at all, further
skewing the results. It is recommended to con-
sider not providing a skip option in future data
collection.
If new data is collected to build upon this research,

next to taking into account this paper’s limita-
tions, it could be viable also to explore the follow-
ing options.

As previously mentioned, using a complex sys-
tems approach to data analysis could yield im-
proved performance results. It is therefore rec-
ommended to investigate ways to implement this
into future studies. This could be in the form of a
sequential Artificial Neural Network, but further
research on the topic is needed to reveal the best
methods for the analysis of such data.

Analysis of the usefulness of the predictor fea-
tures already showed the importance of the solid
execution of the kinetic chain. According to
Fleisig et al. and Scarborough et al. the pattern
in kinematic sequence during a pitch can be asso-
ciated with high torque production in the shoul-
der and the elbow [15,47]. Papers by Burkhart et
al. and Fortenbaugh et al. noted that compensa-
tion occurs when errors are made in the sequence,
resulting in injuries [25, 38]. It could, thus, be
especially exciting to look at the incidence of in-
juries in relation to kinematic data of a throw, to
locate potential missteps in the throwing motion
and longitudinally link these to future injury.

5 Conclusion

This study explored if longitudinal data of stati-
cally measured features can be used for injury pre-
diction before symptomatic pathology develops.
The prediction accuracy for the models on both
the elbow and the shoulder injuries did not give
significant results. Future recommendations pro-
pose three main improvements: higher frequency
of measurements, the inclusion of kinematic data
and the use of complex models for analysis.

It is concluded that scarce and low-frequency data
yields bad results when predicting injury of the
shoulder and the elbow. It was also found that
measurements reflecting a single point-in-time are
not capable of giving the data richness needed for
analysis of the development of someone’s pathol-
ogy, which can become an injury with time.

Findings also backed previous literature, show-
ing relations indicating that proper development
of kinetic chain motion is crucial to avoid injury.
Measurements of hip range of motion and hip
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strength are found to be good predictors of shoul-
der injury. Total rotational motion (TRM) of the
shoulder, as well as muscle strength in the hip
and the shoulder, are thought to be of importance
for the detection of elbow injury. Also, ball speed
measurements could aid in the prediction of elbow
injuries when using models not employing regres-
sion learning. Last, training time measurements
used as an indication of training load did not pro-
vide the expected prediction results.

To summarise, more frequent data collection
and the addition of kinetic chain analysis data
could help state-of-the-art algorithms with upper
extremity injury prediction. Examining the data
as time-series developments would advance analy-
sis of cause-effect relationships in the future, help-
ing elite youth baseball pitchers avoid injuries and
keep their performance ready for top-level play.
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A Appendix

A.1 List of Abbreviations

Here the abbreviated names for the presented variables are found. Combinations of the different parts
can be found in a feature, where the parts are separated by an underscore ( ). e.g. Force hip ad Ds

indicates it is a Maximum Static Force (Force) measurement on the hip joint (hip) during an adduction
movement (ad) at the dominant side of the athlete (Ds).

Table 2: List of Abbreviations

Code Variable Computation
Ds Dominant side of body
nD non Dominant side of body
RoM Range of Motion
Force Maximum Static Force
el elbow joint
sh shoulder joint
tr trunk
hip hip joint
CW clockwise rotation
CCW counter-clockwise rotation
exo external rotation
endo internal rotation
ratio ratio of exo over endo RoM exo / endo

trm total rotational motion of a joint exo + endo

trm change difference of total rotational motion trm Ds - trm nD

ax axial
ab abduction
ad adduction
lt lower trapezius
mt middle trapezius
sa serratus anterior
BS Ball Speed
avg average average(BS1 to BS10)

min minimum minimum(BS1 to BS10)

max maximum maximum(BS1 to BS10)

train hours week amount of hours trained per week
train days week amount of days of training per week
shap SHapley Additive exPlanations

A.2 Data Exploration

Exploration of the dataset was done to analyse the distribution of data.
The data used in this study is longitudinal with equally spaced observations. It contains an

unequal amount of measurements for each participant, as not all participants performed all 6 tests. A
distribution of the amount of trials attended by each athlete can be seen in Figure 9.

The figure clearly shows how the measurements were not attended regularly, with just 16 athletes
having attended all six trials. It is also noticeable that the attended trials were not always of con-
secutive measurements in time (e.g. an athlete having attended two trials could have attenden trials
A and D, thus having missed B and C). Players dropped out for various reasons, like outgrowing the
dataset’s target age or simply because of voluntary drop-out from the measurements or from the sport.
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Figure 9: Distribution of amount of trials registered per athlete. The graph shows how many athletes fall in each
category (1 to 6 measurements attended).

A.3 Data Pre-Processing

A.3.1 Removing Nulls

A first step taken in order to clean the dataframe was to remove trials without any content, Null
values.

Also, outliers in ball speeds, length and weight were removed for values outside of the range of 3
standard deviations from the mean.

A first plot of the missing data (Figure 10) shows all the extracted data on the horizontal axis and
all the data rows on the vertical axis. The available points are shown in purple, whereas with yellow
the missing data is indicated.

Figure 10: Nulls in the raw extracted dataset. The rows (items) and columns respectively are the Y and X axis. Purple
blocks show valid data, whereas yellow blocks show missing data (i.e. Null values).

When further analysing the data one could see how most null rows are simply missed measurement
trials. The next bigger contribution to null values could be found in the self-reported questionnaire
data feature set, as the DASH questionnaire data was removed from the measurement protocol from
trial C onward, and the other questionnaires were only proposed when injury was already present.

The rest of the missing values in the data can now be filled with imputing methods, further covered
in the next section.
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Figure 11: Nulls in dataset, after removal of empty rows and the questionnaire data. The rows (names) and columns
respectively are the Y and X axis. Purple blocks show valid data, whereas yellow blocks show missing data (i.e. Null
values).

A.3.2 Imputing and Encoding

Imputing is the process of filling up missing data. Imputing was done using a linear fashion for the
length and weight parameters wherever they were missing, as these are seen to have an approximately
linear progression over time in youth athletes. Other variables were imputed with the mean value of
each variable using the SimpleImputer, to make sure not to change the variables’ distribution.

Encoding is the process of assigning a unique number to each category in categorical variables in
order for the algorithm to make sense out of the various categories. The impute and preprocessing
modules of the SciKit-learn package [30] were used in this step. This is a ready-to-use package for
both data pre-processing (encoding, imputing and scaling) as well as predicting. The encoders used
are the LabelEncoder and the OneHotEncoder. The difference between the two is that the former is
used for labelling multi-category within the same feature, whereas the latter encodes a separate binary
feature (0 or 1) for each single category.

A.3.3 Making the Cross-sectional and Longitudinal Datasets

The data used for the analyses consists of two datasets, depending on whether it is used for cross-
sectional or longitudinal analysis. The cross-sectional dataset simply consists of all data with the
exception for the first trials (trials A and B), because they do not contain measurements of the target
features.

The longitudinal dataset is made such that the model is fitted with predictor features of the
present trial n and the target features of trial n + 1. As the target features are present from trial C
on, predictors of trial B were therefore included. The predictors of trial F however, are excluded for
the same reason. It is essential to state that this process had to be performed on each athlete’s data
individually and that this data was later combined again into a single dataframe for computation.

A.3.4 Train/Test Dataset Split

Splitting the dataset was done using the train test split function from SciKit-learn [30]. This
function takes on the entire dataset and the testing size (0 to 1: 0% to 100% of data used for testing),
and then splits the data completely randomly. When choosing the portion of data allocated for testing,
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one has to take into account two main factors. It is favorable to have a testing size that is as small as
possible, such that training is done on more data, which improves the accuracy of the model. One has
also to make sure that the testing set is representative of the dataset in such a way that the categories
that are to be predicted can be subjected to accuracy measurements. As a practical example, if no
cases of injury are reported in the test set the model can not be valuated in accuracy.

Having this in mind, Figure 12 shows how the Logistic Regression algorithm performed by showing
the F1 Score on the Y axis and splits from 0.1 to 0.5 on the X axis. Because of the small amount
of data the way the data was split could make for results slightly changing each time, therefore 100
repetitions were done and consequently plotted. The goal was to identify a testing size in which no
scores of 0 were achieved, and to use the same testing size on both the shoulder and the elbow joints.
The final decision was thus made to use a test size higher than 0.3 and smaller than 0.4 (i.e. 30 % to
40 % of the total).

Figure 12: F1 Score for various amounts of testing size and 100 repetitions for each.

A.3.5 Scaler Selection

Scaling is a process done to the data to make sure the model does take inputs which are normally
distributed. This is especially important when using algorithms which calculate the euclidean distance
between parameters, as bigger parameters will then have a bigger weight. Scaling can be done with
a variety of scalers. A short description of the scalers taken into account from the SciKit-learn
package [30] follows:

• MinMaxScaler: for small standard deviations and non-gaussian distributions, MinMax is rather
sensitive to outliers in the dataset. It scales the feature to a value in the range of 0 to 1.
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• StandardScaler: as the name suggests it is a widely used scaler to distribute the data with
mean of zero and SD of one.

• MaxAbsScaler: scales each feature individually to a maximum absolute of one. i.e. in a range
between −1 and 1.

• RobustScaler: the name already indicates it, this scaler is very robust to outliers and keeps
linear relationships when scaling.

• QuantileTransformer: scales values according to their quantile distribution. Although very
robust, often linear relationships are lost with this scaler.

• PowerTransformer: used for modelling issues related to varying variability of features.

Even though there is quite some information about the way these scalers work, it is still very much
recommended to make the scaling a Trial and Error process as real-world data is not always perfect.
The F1 Score of a Logistic Regression algorithm for longitudinal predictions of injury with the different
scalers can be found in Figure 13. Here one can see how the MinMaxScaler, the MaxAbsScaler and
the QuantileTransformer perform worst. From the rest of the scalers eventually the choice for usage
was made by looking at the best mean F1 Score, making the StandardScaler the scaler used for all
other results in this paper, for both the shoulder and the elbow.

Figure 13: Raw F1 Score for various scalers applied on the data before being used to predict longitudinal injuries with
a Logistic Regression algorithm.
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A.4 Classification Performance Metrics

In classification problems, the concept of a Confusion Matrix (also known as an Error Matrix) is used
to describe the performance of a model. Figure 14 shows such a matrix. The number of correct and
incorrect predictions made by the model is summarised into it, and broken down into classes which
show how confused the model is when making predictions. As shown in the example of Figure 14 the
classes are a mix of the actual values and the prediction values both able to take a 1 (“is positive”
observation) or a 0 (“is negative” or “is not positive” observation) value. Classes correctly predicted
are called either True Positives (TP, prediction=1, actual=1) or True Negatives (TN, prediction=0,
actual=0), whereas falsely predicted values are given different error classes. This way, we can dis-
tinguish between False Positives (FP, prediction=1, actual=0), also called Type I error, and False
Negatives (FN, prediction=0, actual=1), also called Type II error [48].

Using a combination of these 4 classes (TP, TN, FP, FN), various metrics can be used to assess
model performance. Because of the imbalance between positive and negative injury counts, the decision
was made to use the F-β Score as a score of an algorithm’s prediction accuracy. Below first the Precision
and Recall metrics are explained as introduction to the F-β Score.

Figure 14: A Confusion (or Error) Matrix with classes of True Positives, True Negatives, False Positives (Type I error)
and False Negatives (Type I error). Figure taken from [48].

Precision (P) and Recall (R): Precision is the value of how many of the items predicted positive
are actually positive; Recall is the value of how many positive items are predicted correctly, and is also
referred to as Sensitivity. So, if we want to minimise FNs recall has to get as close to 100% as possible,
whereas to minimise FPs precision should go to 100% [48]. Precision and Recall are calculated with the
formulas of equations 1 and 2 respectively. Taking a look at Figure 14 when examining the formulas
helps the reader with understanding.

Precision =
TP

TP + FP
(1)

Recall/Sensitivity =
TP

TP + FN
(2)

F-β Score: is an accuracy measure that takes into account the balance between P and R, and
calculates the harmonic mean of the two. It, thus, takes into account imbalance between classes and
is therefore used when data is heavily skewed towards one class. This score attains a value between 0
and 1, where 1 stands for a perfect prediction score. The three most common values of β are 0.5, 1
and 2. When β is equal to 1 the score (called an F1 Score) balances the weight of the P and the R
and is used to harmonically diminish FP (Type I error) and FN (Type II error) simultaneously. For
a β value of 0.5 the score puts more weight on P and less on R. The opposite is true for a β = 2,
which means R is favored. Using this score one has to consider that it does not take into account the
TNs. [48].

F-β Score =
(β2 + 1)PR

β2P +R
(3)
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