
Shining a Light on Material Appearance
Mapping NDFs to Heightfields

Casper Struijk1

Supervisor(s): Ricardo Marroquim1, Yang Chen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Casper Struijk
Final project course: CSE3000 Research Project
Thesis committee: Ricardo Marroquim, Yang Chen, Daniël Pelsmaeker

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

This research proposes a new algorithm for map-
ping Normal Distribution Functions to Heightfields
in order to answer its research question: ”Given an
NDF, how can we generate a corresponding Height-
field using simple optimization algorithms?”. This
research is important, as it helps us to gain a better
understanding of how limited statistics-based rep-
resentations of 3D surfaces are. To this end, we
have produced an algorithm using the Simulated
Annealing optimization technique, a technique that
randomly explores possible solutions of a prob-
lem until it finds the optimal solution. The algo-
rithm begins with a flat Heightfield (a 2D represen-
tation of a surface that shows the relative altitude
of a discrete plane of points), iteratively changes
points on the Heightfield and compares its mea-
sured NDF (Normal Distribution Function, a func-
tion to denote the area distribution along a given
direction in a Heightfield) to the target NDF that
we want to map. Once the target NDF is reached,
or once the pre-determined number of iterations
has been reached, the algorithm concludes and the
NDF-to-Heightfield mapping has been completed.
Three different variations are tried, one naı̈ve im-
plementation which changes points on the Height-
field completely at random, another where the an-
gle of the normal vector of a random surround-
ing facet of a chosen point is used as guidance
for randomization, and finally one where this angle
is guided using the relative position of the chosen
point to the centre of the Heightfield. The conclu-
sion the proposed algorithm provides is that, while
possible, the process of mapping NDFs to Height-
fields is a costly and complex operation, and leaves
a lot of room for ambiguity. While the research
cannot provide a case of an exact match of a target
NDF and measured NDF of a Heightfield created
through the algorithm, we do show it is without a
doubt possible given time.

1 Introduction
Over the course of decades, computer graphics technology
has had significant advancements. In this day and age, graph-
ics are no longer limited to 2D, and no longer do 3D graphics
look rough and polygonal. With the introduction of tech-
niques such as photo-realistic rendering, video games and
computer simulations now look more realistic than ever. But
this technology is anything but easy to understand when you
look past its surface. 3D graphic rendering has a lot of com-
plex science hiding within, from photodynamics to complex
mathematical models. As this technology improves and new
rendering techniques are discovered, this science becomes
even more complex, as over time we gain a better understand-
ing of how to simulate reality inside a computer.

This research will focus on two essential aspects of com-
puter graphics. One of these is Heightfields, also referred to

as Heightmaps. Heightfields are 2D representations of sur-
faces of 3D objects or in some cases small portions thereof.
Commonly Heightfields are represented as images, otherwise
known as maps, that represent the differing heights of points
in the map by making use of lighter or darker colours for
higher or lower points respectively. Optionally, these 2D
Heightfields can be mapped into 3D meshes to further help
visualise their representation and make it more understand-
able. Below in Figure 1 is an example of a 2D Heightfield for
reference.

Figure 1: A 2D Heightfield. In this grayscale map, lighter colours
represent higher altitudes of the points in that area, and darker
colours represent lower altitudes.

The other is NDFs or normal distribution functions [5],
not to be confused with the term ”normal distribution” from
statistics theory. NDFs are functions that denote the distri-
bution of the angles of the normal vectors of the facets that
make up the surface. The focus of this research will espe-
cially be on the latter, as we aim to mitigate the flawed nature
of NDF representations of surfaces. Namely, because NDFs
are a statistical representation, the actual appearance of the
surface is often not fully apparent. That is to say, while for
example, one Heightfield will always translate into one and
the same NDF, one NDF may be representative of any num-
ber of Heightfields, some of which may very well vary wildly
from one another.

In order to mitigate the lacking nature of NDF representa-
tion, the aim of this research is to introduce a new algorithm
for mapping NDFs to Heightfields, as Heightfields can help
us gain a better picture of the surface the NDF is meant to
represent. As such, the main research question for this re-
search is as follows: “Given an NDF, how can we generate
a corresponding height field using simple optimization algo-
rithms?” This question will be answered with the help of two
smaller sub-questions, namely: “What optimizations can be
applied to existing algorithms?” and “How should ambiguity
be handled in the algorithm?”

The reason that this research is important, is that this al-
gorithm can provide us with keen insight into the limitations
of statistical graphics models like NDFs, such as the above-
mentioned issue of NDFs mapping to potentially multiple
Heightfields. The algorithm that this research will propose
may also serve as a new technique for rendering surfaces,
which could prove to be useful to the advancement of our



understanding of 3D graphics.
Presumably due to this being a somewhat niche research

topic, not a lot of relevant literature can be found on the rel-
evant topics of this research. However, some research has
already been done on this topic. An example of such is the
paper written by M. Ribardière et al. [6], where they de-
scribe the impact NDFs have on the appearance of objects
and how they can be used to simulate a variety of effects on
surfaces. They also mention, however, that their model for
mapping NDFs to BRDFs (Bi-directional Reflectance Distri-
bution Functions) [4] is incomplete, as it cannot for example
account for energy loss in particularly rough surfaces. An-
other valuable by T. Weyrich et al. [8] shows their implemen-
tation of a statistic graphics model mapping to Heightfields.
However, in their research, they do not use NDFs as their
model but use BRDFs instead.

This report is structured as follows. In Section 2, the re-
search methodology is discussed, including the different opti-
mization techniques that were considered in the making of the
algorithm. Section 3 details all the results obtained through-
out the research, both intermediate results as well as final re-
sults. After this, Section 4 features discussion of the results,
as well as discussion of various other topics such as the limi-
tations of the research and the ethical decisions made during
the research process. A list of references to other material
will be provided at the end.

2 Methodology
In order to come up with a new and efficient algorithm
for NDF to Heightfield mapping, first a base algorithm is
needed to make sure the mapping task can be accomplished.
An algorithm for mapping Heightfields to NDFs has been
provided by the supervisor for this course, Y. Chen. Next,
this provided algorithm must be used in a bigger algorithm
that will synthesize a Heightfield to match a given NDF.
This algorithm takes an NDF that the user provides, and
through an optimization process creates a Heightfield whose
NDF matches the one provided by the user. The algorithm
that is left at the end, taking an NDF and giving back a
Heightfield, will help answer the main question of this
research, by showing that it is indeed possible to map NDFs
into Heightfields. The sub-questions will be answered in the
process, and thoroughly discussed in the later sections of this
paper.

2.1 Simulated Annealing
The optimization technique that is considered is called Sim-
ulated Annealing [1]. Annealing is a term that hails from
metallurgy and refers to the gradual cooling of a hot metal in
order to manipulate its shape. Simulated Annealing (after this
referred to as SA) in the context of computer science refers
to an optimization technique that can be used to solve com-
plex problems, particularly combinatorial problems. An SA
algorithm works by exploring the search space of a problem,
in other words, it explores possible solutions to the problem.
Generally, during every iteration, the algorithm will attempt
to choose a better solution than its current known best so-
lution. However, if an explored solution is worse than the

current best solution, there is a probability that the algorithm
will accept it. This probability gradually becomes smaller as
time goes on, eventually converging on a probability of zero.
The nature of this probability simulates the slow cooling tech-
nique of annealing in metallurgy.

The reason SA is chosen as the optimization method for
the algorithm is its ability to accept “lesser” solutions in pur-
suit of an optimal solution. Many optimization algorithms
tend to get stuck on local optima, in other words, solutions
that may be the maximum within a certain part of the search
space but not the overall optimal solution. SA avoids this by
being able to choose solutions that are worse than its current
optimum, thereby finding the global optimum in most cases.
As NDF mapping is a complex optimization problem, SA is
deemed the most fitting technique to improve the mapping
algorithm. In making this SA implementation, inspiration is
taken from E. Howell’s implementation of SA for the Trav-
elling Salesman problem [3]. However, much of his imple-
mentation has been changed, due to a difference in problem
application. Only the general structure of the code logic re-
mains.

2.2 Basic Implementation
Having selected SA as our optimization strategy to imple-
ment, we want to test different iterations of the algorithm,
which are variations of a basic algorithm. The idea of the ba-
sic algorithm is to work in simple steps. The algorithm starts
with a flat Heightfield, and a target NDF to reach. It then
measures the NDF of the current Heightfield and compares it
to the target NDF. If the current NDF matches the target, then
the surface is correct, and the Heightfield has been completed,
thus terminating the algorithm. If the NDFs do not match,
however, the points of the Heightfield are altered by examin-
ing its neighbouring states. A ”neighbouring state” of a given
Heightfield is considered a Heightfield with a difference of
one and only one point. This one point is randomized with a
new value during the point randomization step. For the newly
generated Heightfield, the NDF is once again measured and
checked against the target. If the target and measured NDF
match, the algorithm terminates, otherwise the iteration con-
tinues.

Generally, we want the algorithm to accept the NDF that
is closest to the target. However, because of how SA works,
there is a probability the algorithm will accept the worse solu-
tion between the measured NDF of the current step and of the
previous step. This probability is determined by a ”tempera-
ture” variable, meant to simulate its counterpart in metallurgy,
that slowly decreases over the iterations of the algorithm. The
lower the temperature, the lower the probability of the algo-
rithm accepting a worse solution to iterate over next. Natu-
rally, the temperature, and thereby the associated probability,
will reduce to zero over time, thus allowing the algorithm to
gradually converge on a globally optimal Heightfield.

At every step, to determine how close a measured NDF is
to the target NDF, the mean squared error is calculated be-
tween the two graphs. The lower the mean squared error, the
closer the graphs are to one another. Using this value, it can
be determined which of two measured NDFs is closer to the
target, namely, the measured NDF with a lower mean squared



error is the better solution.

The algorithm has two conditions for terminating. If dur-
ing any step the measured NDF matches the target perfectly,
in other words, if the mean squared error is 0, the algorithm
stops and the Heightfield created during that iteration is re-
turned as the result of the algorithm. Otherwise, the algorithm
will terminate after a set number of iterations. This number is
a global variable in the program and can easily be customised
to be bigger or smaller.

2.3 Theta implementation

The next iteration of the algorithm builds off the basic im-
plementation and adds the use of theta angles. These are the
angles of the normal vectors of a Heightfield’s facets with the
flat XY plane. A high theta angle means a facet is very flat,
and a low theta angle means a facet is very steep. These an-
gles are used in the point randomization step of the algorithm.

When a new Heightfield is created, the differences between
its values for every possible theta angle are calculated, and
stored in an array we refer to as the ”difference array”. During
the point randomization, a random facet surrounding the cho-
sen point is selected, and the theta angle is calculated. From
the difference array, the theta with the biggest difference is se-
lected and is compared to the theta angle of the normal vector.
If the vector’s angle is lower than the theta in the difference
array, the point is lowered by a random amount to make the
normal vector’s angle more steep. Conversely, if the vector’s
angle is higher, the point is lowered by a random amount to
make the normal vector’s angle flatter. By changing the point
like this, the normal vectors of all the other surrounding facets
change as well.

After the point is changed, the algorithm continues as be-
fore, by calculating the mean squared error of the newly
changed Heightfield’s NDF and the target is calculated, and
the algorithm follows the logic as described in the basic im-
plementation.

2.4 Phi implementation

The final version of the algorithm builds on the theta im-
plementation by making use of another type of angle in the
Heightfield, the phi angle. By looking at the position of the
point chosen during the randomization step on the XY plane
relative to the centre point of the Heightfield, the phi angle
is determined based on their relative position, as shown in
Figure 2.

Figure 2: A visual guide to the calculation of the phi angle. The
green point represents the randomly chosen point, and the red point
in the middle is the centre of the Heightfield.

The main change this version of the algorithm makes is
during the randomization step, once the random point has
been chosen, a random surrounding facet has been chosen,
and the theta angle of the normal vector has been calculated.
Rather than determining the theta with the maximum differ-
ence in the entire difference array, instead the theta with the
maximum difference that has the same phi angle as the chosen
point is determined. This is done to make the randomization
process smarter and to try to match the target NDF faster. Be-
yond this change, the algorithm remains the same as the theta
implementation.

3 Results
This section of the paper presents all the results of the re-
search, both intermediate results and final results. Where ap-
plicable, graphics will be provided.

3.1 Process
Before implementing the SA algorithm, some initial testing
is done on the algorithm to map Heightfields to NDFs that
is provided by Y. Chen. This is an integral component of
the SA algorithm, as it would need to calculate the NDFs of
a Heightfield at every iteration. Some simple Heightfields
are picked as candidates, and all yield clearly defined NDFs.
Figure 3 is an example of one of the NDFs that is produced
from this initial testing progress.

Having figured out how the Heightfield-to-NDF conversion
works, one Heightfield is chosen to take an NDF from. The
Heightfield in question is a small 8x8 Heightfield, specifically
chosen for its small size to reduce the amount of computation
needed during tests and to make the tests faster as a result.
The NDF of this Heightfield is the target NDF for all remain-
ing tests described in this paper.

First, the basic implementation is tested. Several runs of
the algorithm are done, as the outcome is highly random due



Figure 3: An NDF measured from a Heightfield. On the x-axis are
the angles between the normal vectors and the level plane, and on
the y-axis are the relative frequencies of the angles.

to the nature of the optimization technique. For all of these
runs, the maximum cap in iterations was set to 1000, the tem-
perature variable set to start at 1000, and the gamma factor set
to 0.99. This means that for each of the 1000 iterations, the
temperature is multiplied by 0.99 to slowly lower it. All of
the resulting NDFs are quite distant from the target, as the ac-
tual optimization that the algorithm performs is quite random.
One of the resulting NDFs is shown in Figure 4.

(a) Target NDF. (b) Measured NDF.

Figure 4: A resulting NDF of the basic implementation. On the left
is the target NDF, and on the right is the measured NDF. The x-axis
denotes the theta angles of the normal vectors, and the y-axis denotes
the relative frequencies of these angles.

As can be clearly seen, the measured NDF is flat, likely
due to this version of the algorithm not properly altering the
Heightfield and thereby causing the Heightfield-to-NDF al-
gorithm to give junk data as a result.

After this test, the next tests performed are the tests on the
theta version of the algorithm. Once again the same target
NDF is used, but now the theta angles of the Heightfield are
taken into account during the point randomization step of the
algorithm. The number of iterations, the temperature, and the
gamma factor are still kept the same from the previous round
of testing. This version is more computationally expensive,

as such the performance of this algorithm turns out to be sig-
nificantly slower than the basic version. The results of these
tests are shown below in Figure 5.

(a) Target NDF. (b) Measured NDF.

Figure 5: A resulting NDF of the theta version. On the left is the
target NDF, and on the right is the measured NDF. The x-axis de-
notes the theta angles of the normal vectors, and the y-axis denotes
the relative frequencies of these angles.

Comparing this measured NDF to the one shown in Fig-
ure 4b shows that this algorithm is a significant improvement.
However, these NDFs clearly do not match yet, so this imple-
mentation is still incomplete.

For the third round of tests, the phi version of the algo-
rithm is examined. Most of the variables are kept the same,
but this time the gamma factor is upped to 0.999. In the
past two rounds of tests, the mean squared error score of the
measured NDF converged rather quickly, which theoretically
could withhold the algorithm from finding a better optimal
solution. As such, by upping the gamma factor, this conver-
gence is much slower. Once again, a few tests are run to
mitigate the randomness, and a sample solution is selected,
which is listed in Figure 6.

(a) Target NDF. (b) Measured NDF.

Figure 6: A resulting NDF of the phi version. On the left is the target
NDF, and on the right is the measured NDF. The x-axis denotes the
theta angles of the normal vectors, and the y-axis denotes the relative
frequencies of these angles.

This implementation’s results confusingly seem to drift
further away from the theta implementation again, as the NDF
looks less similar to the target than the NDF shown in Fig-
ure 5b, despite this iteration of the algorithm more cleverly
making use of the Heightfield’s data to correct its exploration
of the search space. To obtain more information on what is



causing this difference, the Heightfield that is produced by
the algorithm for the above-shown NDF is examined. This
Heightfield is shown in Figure 7.

Figure 7: The output Heightfield, rasterised and mapped in 3D for
better visibility. In this figure, green hues represent low altitude
points, and red hues represent high altitude points.

Something that immediately jumps out while looking at
this Heightfield is the oddly straight edges on the left and
at the top. This is likely due to the algorithm somehow not
reaching these points with its randomization, thereby also
preventing the algorithm from reaching a matching NDF.
With this in mind, a change is made to how the point ran-
domization is done by altering the range of points that can be
randomized. This leads to the test described in Section 3.2.

3.2 Final results

To do the final round of tests, some tweaks are made to the phi
implementation. The maximum cap on iterations is increased
to 5000 to allow the algorithm to further optimize the Height-
field it creates. The temperature is raised as well to 1500, to
compensate for the higher iteration count. The gamma factor
is kept at 0.999 still. The last, and possibly most important
change, is the number by which a point can be changed per
step from the interval [0, 0.5] to the interval [0, 0.1]. This
allows the algorithm more precise steps and reduces the risk
of overcompensating a point and accidentally increasing the
mean squared error score. After again running this algorithm
a small number of times, the best solution is picked and is
shown here in Figure 8.

(a) Target NDF. (b) Measured NDF.

Figure 8: A resulting NDF of the final algorithm version. On the
left is the target NDF, and on the right is the measured NDF. The
x-axis denotes the theta angles of the normal vectors, and the y-axis
denotes the relative frequencies of these angles.

Once again, for this version, the rasterized Heightfield is
also examined and compared to the Heightfield that the target
NDF is based on. These are shown below in Figure 9.

(a) Target Heightfield. (b) Produced Heightfield.

Figure 9: The original Heightfield and the output Heightfield, ras-
terised and mapped in 3D for better visibility. In this figure, green
hues represent low altitude points, and red hues represent high alti-
tude points.

As can be seen, these Heightfields don’t differ a lot, and
the NDFs are quite similar as well, though they aren’t quite
the same either. While due to time constraints, it is not possi-
ble to show in this paper, theoretically if this algorithm would
run for much longer, perhaps say 300000 iterations, then the
mean squared error between the target and measured NDF
would eventually converge on 0. For the above example, the
mean squared error started at 1454, and ended on its last it-
eration at 1.55, with its lowest mean squared error at 0.65.
This means that while slow and computationally expensive,
the algorithm does in fact work.

4 Discussion and conclusions
This section discusses the results of the research and presents
the conclusion to the research question. First, the limits of
the research will be discussed, both in terms of time and ma-
terial. In discussing the results, possible improvements to the
current research and future research ideas will be described,
as well as how the results align with expectations. Further-
more, it will be discussed how this research improved on the
existing material. There will also be discussion on the ethics



of the research performed. Finally, a summary of the research
will be given and the research questions will be answered.

4.1 Limitations and improvements
A major limitation of this research is the complexity of im-
plementing optimizations into NDF mapping algorithms. A
lot of existing NDF mapping algorithms, such as the algo-
rithm proposed by M. Ribardière [6], are highly complex,
and adding an algorithmic optimization to this is a very com-
plicated process. Even further, once the algorithm has been
implemented, it is very difficult to debug or properly test its
functionality, as you have to rely solely on the data you re-
ceive from running different versions of your algorithm. As
such, a lot of the implementation for this research proves to
be quite time-consuming, thus leading to only being able to
implement an SA optimization in this algorithm, rather than
being able to test multiple different techniques. This way, the
results of the SA algorithm end up being much greater simply
because it has more time invested in it.

Another limitation on specifically an algorithm optimizing
using SA is the nature of its randomness in conjunction with
the size of the search space of this particular problem. The
amount of different states that even a low-resolution Height-
field can have is nigh uncountable, due to the height values
of the points on the Heightfield not being discrete integers,
but rather real numbers. Theoretically, if this SA algorithm
was allowed to run not for 1000 iterations, but for example
100000 iterations, the probability of finding a true global op-
timum would be much greater. However, this would be in-
credibly costly in terms of time. On an 8x8 resolution Height-
field, 1000 iteration tests could sometimes take up to 2 min-
utes to complete. This number would increase exponentially
the higher the Heightfield’s resolution due to more calcula-
tions needing to be done at every single step. Therefore, these
longer tests were not performed in this research due to time
constraints.

Lastly, one limitation pertaining to the conversion from an
NDF to a Heightfield, as briefly mentioned in Section 1, is its
ambiguous nature. One NDF can map to theoretically infi-
nite Heightfields. As the points of a Heightfield do not have
discrete integer values for their heights, but can have any real
number as a value, there are an infinite number of Height-
fields that can map to one NDF. As such, a proper NDF-to-
Heightfield mapping algorithm will still return random results
using an optimization technique such as SA. And in a realistic
context, where one would have their 3D surface before they
had their NDF, it would be unlikely that the Heightfield pro-
duced by an NDF-to-Heightfield mapping algorithm would
match the surface the user already has.

4.2 Future work
The SA implementation of this NDF-to-Heightfield mapping
algorithm is, as it currently stands, quite slow at its calcu-
lations. As mentioned above, 100000+ iteration tests could
take several hours with its current implementation even on
low-resolution Heightfields. Therefore, a good improvement
on this algorithm would be to improve its efficiency.

SA is of course not the only optimization strategy that is
applicable to this NDF-to-Heightfield mapping problem. In

the course of studying for this research, more optimizations
were found that could be theoretically used in a mapping al-
gorithm. A prime example of this is the Branch and Bound
algorithm [2]. This algorithm is a spin on the Divide and Con-
quer algorithm paradigm [7]. Splitting a problem into differ-
ent possible sub-problems and using its ability to discard sub-
sets of problems if they are not likely enough to produce satis-
factory results could well lead to a much faster algorithm, its
supposed downside being that it does not have the resilience
to getting stuck local optima that SA has. Despite the latter
comment, I believe this is a worthwhile topic to research.

4.3 Expectations versus reality

After having chosen SA for optimizing NDF-to-Heightfield
mapping, it was expected it would perform quite strongly in
this task. The nature of NDF mapping, namely a complex
combinatorial problem with potentially many local optima,
makes SA a perfect candidate to optimize our algorithm, due
to its ability to avoid getting stuck on local optima and search
beyond them to find a global optimum. However, the results
are not as positive as I hoped. My expectation that the algo-
rithm would provide data was somewhat naı̈ve, as I did not
initially realise how computationally expensive this problem
is.

Talking more about the inner workings of the algorithm,
initially when SA was chosen as a candidate algorithm, a
specific implementation idea was drafted for how the algo-
rithm would function. In this draft, the initial Heightfield
would be a random set of points, rather than a flat Height-
field, and the algorithm would then make random changes to
the Heightfield and record the effect it has on the measured
NDF, whether or not a change would cause it to be more or
less accurate. However, while this was the initially expected
implementation, the reality ended up quite a bit different due
to some information provided by Y. Chen. The random start-
ing Heightfield was scrapped in favour of the flat Heightfield,
and the iterative step was adjusted to be more in line with SA
paradigms.

4.4 Research contribution

This research has managed to provide in two distinct ways.
For one, it has proposed a new algorithm for mapping NDFs
to Heightfields that, while not flawless, with some improve-
ment can prove to be very effective in its application. Beyond
that, this research provides evidence for the claim that statis-
tical models for 3D surface representation such as NDFs are
unreliable when it comes to effectively representing surfaces.

By looking at the results in Section 3, you can see that the
algorithm does not quite manage to create a Heightfield with
a perfectly matched NDF as its target, given that this problem
is incredibly complex and computationally intensive. Also
taking into as well account that an NDF on its own does not
tell us much about the actual look of our surface, given we
do not know where the normal vectors it denotes lie on the
surface, it is clear that this statistical model is lacking in its
expressiveness and robustness.



4.5 Responsible research
In the course of this research, ethics was constantly consid-
ered. In all cases where code made by other people was used,
proper credit was given, and an explanation was provided as
to precisely what had been taken from their implementations.
Likewise, any and all references to other literature over the
course of writing this paper have been carefully compiled.
The code for this research is available online, thus the re-
search is both reproducible and extensible by anyone that
wishes to continue or improve the project this research has
begun.

4.6 Summary and conclusion
To answer the research questions, starting with the sub-
questions: The answer to the sub-question ”What optimiza-
tions can be applied to existing algorithms?” is, in short, a
number of different optimization techniques. This research
has only implemented Simulated Annealing and has posited
Branch and Bound as another option, but there are many
theoretical options beyond these two. For the second sub-
question, ”How should ambiguity be handled in the algo-
rithm?”, the answer is that ambiguity is an unfortunate but in-
evitable reality. Because NDFs and Heightfields do not have
a 1-to-1 relationship, there is no guarantee that an NDF-to-
Heightfield mapping algorithm will always produce the same
result, thus leaving room for ambiguity.

To answer the main research question, ”Given an NDF,
how can we generate a corresponding height field using sim-
ple optimization algorithms?”: Theoretically, yes. If you
would let the above-described algorithm run for long enough,
it should be able to produce a Heightfield that has an NDF
perfectly matching its original target. However, while this
is theoretically possible, this research has unfortunately not
definitely proven it as fact.

To conclude, this research set out to propose a new algo-
rithm for mapping NDFs to Heightfields, and to show that
statistically-based 3D surface representation models such as
NDFs are ambiguous and unreliable methods for represent-
ing 3D surfaces. The algorithm the research provides, while
not wholly perfect, provides a working implementation to ac-
complish the task the research question set out to accomplish,
and at the same time provides a stepping stone for further re-
search to improve the algorithm’s efficiency.

References
[1] E. H. L. Aarts and P. J. M. Laarhoven. Simulated anneal-

ing: An introduction - aarts - 1989 - statistica ... Wiley
Online Library, 1989.

[2] J. Clausen. Branch and bound algorithms - principles and
examples. Janders EECG, Mar 1999.

[3] E. Howell. How to solve travelling salesman problem
with simulated annealing. Medium, Apr 2023.

[4] S. R. Marschner, S. H. Westin, E. P. F. Lafortune, and
K. E. Torrance. Image-based bidirectional reflectance
distribution function measurement. Applied Optics, Jun
2000.

[5] M. Olano and M. North. Normal distribution mapping.
CSEE UMBC, 1997.

[6] M. Ribardière, B. Bringier, L. Simonot, and D. Mene-
veaux. Microfacet bsdfs generated from ndfs and explicit
microgeometry. ACM Digital Library, Jun 2019.

[7] D. R. Smith. The design of divide and conquer algo-
rithms. Science Direct, Mar 2003.

[8] T. Weyrich, P. Peers, W. Matusik, and S. Rusinkiewicz.
Fabricating microgeometry for custom surface re-
flectance. ACM Digital Library, Jul 2009.


	Introduction
	Methodology
	Simulated Annealing
	Basic Implementation
	Theta implementation
	Phi implementation

	Results
	Process
	Final results

	Discussion and conclusions
	Limitations and improvements
	Future work
	Expectations versus reality
	Research contribution
	Responsible research
	Summary and conclusion


