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[1.] Rapid action needs 
to be taken

[2.] aware of the 
situation and context

[3.] with a connected 
overview of the data 
available

Zlatanova, S. and Li, J. (2008). Introduction. In Geospatial
Information Technology for Emergency Response, pages Xi
–Xii. Taylor - Francis Group
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Is the use of remotely sensed data a viable option for the
automatic classification of hurricane inflicted damage?

to find a method for the automatic classification of damage
inflicted by hurricanes on the island of St. Maarten using
remotely sensed data.

Question

Goal
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Sub-goals
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• How is damage determined?
• What criteria are set for damage classification methods?
• Which methods already exist?
• How do these methods perform?
• How does the state of the art compare to these methods?
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Methodology
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• Preparation

• Research

• Results



"A disaster is a sudden, calamitous event that
seriously disrupts the functioning of a
community or society and causes human,
material, and economic or environmental
losses that exceed the community’s or
society’s ability to cope using its own
resources.“
International Federation of Red Cross and Red Crescent Societies (2017)
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Window of opportunity
Christopher, D. and Doeglas, A. (2015). Time-Sensitive Remote Sensing.
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Damage descriptors

• Damage Detection

• Damage Classification

• Damage Assessment
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Damage Detection

No damage

Damage

12
Source: Netherlands Red Cross (12 Sept. 2017), Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as part of Open Imagery Network, retrieved from www.openaerialmap.org
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Damage Classification

Critical Damage

Significant Damage

Minimal Damage

No Damage

Source: Netherlands Red Cross (12 Sept. 2017), Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as part of Open Imagery Network, retrieved from www.openaerialmap.org
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Damage Assessment

Overal: Critical Damage
Roof: Critical Damage
Structure: Significant Damage
Flooded: No
Electricity: No
Water: No
Drink-Water: No
….
….
….

Source: Netherlands Red Cross (12 Sept. 2017), Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as part of Open Imagery Network, retrieved from www.openaerialmap.org
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Requirement Description
Accuracy Percentage of building damage classified correctly.

Acquisition time Period from disaster to acquisition of data, travel 
time of delegates not included.

Acquisition 
method

The technique used for the procurement of the 
data, mostly limited by financial and time 
restrictions.

Resolution The resolution of the data and information 
retrieved from method.
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Method Assessment Framework
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Method Review
Method Technique Resolution Acq. 

Time
Accuracy Info 

Scale

(Antonietta et al., 2015) Satellite Optical 0.8x0.8m 6 days 70-80% B

(Brunner et al., 2010) Satellite Optical and
Satellite SAR

0.6x0.6m
1.1 x 1.0m

6 days 90% B

(Li et al., 2017) Satellite Optical 0.6x0.6m 6 days 70% B

(Martha et al., 2015) Satellite Optical 0.6x0.6m 6 days n/a N

(Menderes et al., 2015) Aerial Optical 0.3x0.3m Days 90% BL

(Ozisik, 2004) UAV Optical n/a Hours 70-80% B

(Samadzadegan and
Rastiveisi, 2005)

Satellite Optical 2.44x2.44m 3 Days 74% B

(Vetrivel et al., 2016b) UAV Optical n/a Hours 80-90% B

(Yun et al., 2015) Satellite SAR 2.7x22m 6 days n/a BL
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Equalisation and Subtraction – Yun et al. (2015)

• Interferometric Synthetic Aperture Radar

• Based on Coherence

• Classification by threshold
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Equalisation and Subtraction – Yun et al. (2015)
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Equalisation and Subtraction – Yun et al. (2015)

Introduction – Theory –Implementation – Results – Conclusions – Recommendations 



20

Equalisation and Subtraction – Yun et al. (2015)

• Histogram matching
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Equalisation and Subtraction – Yun et al. (2015)

• Univariate image differencing
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Convolutional Neural Network– Vetrivel et al. (2016)

• Optical Data

• Machine learning – Network approach

• Variations
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Convolutional Neural Network– Vetrivel et al. (2016)
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Convolutional Neural Network– Vetrivel et al. (2016)

• (Convolutional) Neural Network
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Convolutional Neural Network– Vetrivel et al. (2016)

• Architecture
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Background information

Colour information - Sensation

• Brightness of a colour, regarding the variance in light
• Hue of a colour, the similarity between colour, usually expressed 

in Red, Green, and Blue (RGB)
• Colourfulness of a specific area, the amount of hue in a feature
• Lightness, this is a description of brightness referenced to a 

white area
• Chroma, is the colourfulness referenced to lightness
• Saturation, is the colourfulness relative to the brightness.
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Background information

Colour information - Sensation
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Background information

Inter-rater statistics

• Accuracy

• Cohen Kappa Coefficient

• F1-Score
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Implementation
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Tools

• SNAP

• QGIS

• Python

• Tensorflow
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Implementation

• Equalisation and Subtraction

• InSAR - ESS

• Optical - ESO
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Results

• Equalisation and Subtraction - ESS 
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Implementation

• Equalisation and Subtraction – ESO

• Pre-processing:
• Abstraction to HSV values

• Method as for SAR
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ValueSaturationHue

Introduction – Theory – Implementation – Results – Conclusions – Recommendations 



41

Implementation

• Convolutional Neural Network – (CNO)

• Feature Creation

• Training

• Detection
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Implementation

• Convolutional Neural Network – CNS
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Results

• Convolutional Neural Network – CNO
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Results

• Convolutional Neural Network - CNO
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Results
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Results

• Comparison

• Equalisation and Subtraction
Based on empircal threshold for damage detection

Tested values, all values between 0.01 and 1.00
Highest Kappa Scores Represented

• Convolutional Neural Network
Based on detection by algorithm

• State of the art
Classification by Copernicus
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Results

• Comparison

• State of the art
Classification by Copernicus

Copernicus Damage Detection

Not affected No Damage

Negligible to slight Damage

Moderately Damaged Damage

Highly Damaged

Completely Destroyed
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Results

• Comparison
Technique Threshold Kappa Score Avg. F1 Score

Equalisation and Subtraction
Interferometry – ESS 0.30 0.059 0.54

Hue – ESO 0.11 0.070 0.47

Saturation – ESO 0.07 0.429 0.71

Value – ESO 0.21 0.389 0.69

Convolutional Neural Network
Classification – CNO n/a 0.000 0.21

Copernicus
Classification n/a 0.093 0.45
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Results

• Extention

• Equalisation and Subtraction
Based on empircal threshold for damage detection

Tested values, all values between 0.02 and 1.00
e.g. No< 0.02 <Minimal> 0.10 <Significant> 0.30 > Destroyed

Highest Kappa Scores Represented

• Convolutional Neural Network
Based on detection by algorithm

• State of the art
Classification by Copernicus
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Results

• Extention

• Convolutional Neural Network
Based on detection by algorithm
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Results
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• Extention

• State of the art
Classification by Copernicus

Copernicus Damage Detection

Not affected No Damage

Negligible to slight Damage

Moderately Damaged Partial Damage

Highly Damaged Significant Damage

Completely Destroyed Destroyed
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Results

• Comparison
Technique Thresholds Kappa Score Avg. F1 Score

Equalisation and Subtraction
Interferometry – ESS 0.23 - 0.31 – 0.34 0.051 0.30

Hue – ESO 0.08 – 0.11 – 0.88 0.054 0.23

Saturation – ESO 0.08 – 0.08 – 0.31 0.250 0.37

Value - ESO 0.13 – 0.18 – 0.26 0.188 0.40

Convolutional Neural Network
Classification – CNO n/a 0.000 0.21

Copernicus
Classification n/a 0.078 0.24
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Results

• Comparison
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Requirement Description
Accuracy Percentage of building damage classified correctly.

Acquisition time Period from disaster to acquisition of data, travel 
time of delegates not included.

Acquisition 
method

The technique used for the procurement of the 
data, mostly limited by financial and time 
restrictions.

Resolution The resolution of the data and information 
retrieved from method.
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Conclusions
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• How is damage determined?
• What criteria are set for damage classification methods?
• Which methods already exist?
• How do these methods perform?
• How does the state of the art compare to these methods?

Is the use of remotely sensed data a viable option for the
automatic classification of hurricane inflicted damage?
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Conclusions
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• How is damage determined?
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Conclusions
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• What criteria are set for damage classification methods?

Requirement Description
Accuracy Percentage of building damage classified correctly.

Acquisition time Period from disaster to acquisition of data, travel 
time of delegates not included.

Acquisition 
method

The technique used for the procurement of the 
data, mostly limited by financial and time 
restrictions.

Resolution The resolution of the data and information 
retrieved from method.
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• Which methods already exist?
Method Technique Resolution Acq. 

Time
Accuracy Info 

Scale

(Antonietta et al., 2015) Satellite Optical 0.8x0.8m 6 days 70-80% B

(Brunner et al., 2010) Satellite Optical and
Satellite SAR

0.6x0.6m
1.1 x 1.0m

6 days 90% B

(Li et al., 2017) Satellite Optical 0.6x0.6m 6 days 70% B

(Martha et al., 2015) Satellite Optical 0.6x0.6m 6 days n/a N

(Menderes et al., 2015) Aerial Optical 0.3x0.3m Days 90% BL

(Ozisik, 2004) UAV Optical n/a Hours 70-80% B

(Samadzadegan and
Rastiveisi, 2005)

Satellite Optical 2.44x2.44m 3 Days 74% B

(Vetrivel et al., 2016b) UAV Optical n/a Hours 80-90% B

(Yun et al., 2015) Satellite SAR 2.7x22m 6 days n/a BL



58

Conclusions
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• How do these methods perform?
• How does the state of the art compare to these methods?

• Varying results
• Derivative of Yun et. al (2015) for optical workable results
• State of the art, usable in first phase
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Conclusions
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Is the use of remotely sensed data a viable option for the
automatic classification of hurricane inflicted damage?

Yes, however:
• Detection has higher accuracy
• Technical knowledge required
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Recommendations
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• Optical Data
• Cohesion
• Layer combination
• Geo-referencing

• SAR data
• Aggregation
• Higher Resolution

• Combination of Data
• Disaster Specific Damage Patterns
• Assessment Framework
• Inter-rater statistics
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