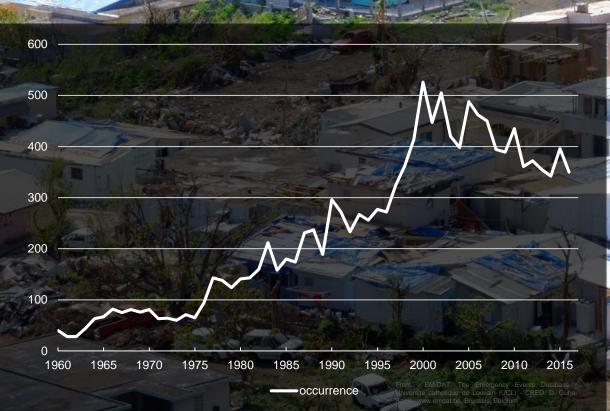
Automated Building Damage Classification through the Use of Remotely Sensed Data Case study: Hurricane Damage on St. Maarten

Daniël Kersbergen 3 July 2018

Source: Netherlands Red Cross (12 Sept. 2017), Cole Bay - Sint Maarten [georeferenced image] used under CC-BY4.0 as part of Open Imagery Network, retrieved from www.openaerialmap.org

AN INITIATIVE OF THE NETHERLANDS RED CROSS



ŤUDelft

Source: Netherlands Red Cross (not publicly available)

Introduction – Theory – Implementation – Results – Conclusions – Recommendations

.1

[1.] Rapid action needs to be taken

[2.] aware of the situation and context

SPHERE SALES

[3.] with a connected overview of the data available

ŤUDelft

Zlatanova, S. and Li, J. (2008). Introduction. In Geospatia Information Technology for Emergency Response, pages Xi –Xii. Taylor - Francis Group

CONTRACTOR OF BACK

Introduction – Theory – Implementation – Results – Conclusions – Recommendations

etherlands Red Cross (14 Sept. 2017), Quilletor Dr.- Sint Maarten [georeferenced image], used under CC-BY#:0)as part of Open Imagery Network

Introduction – Theory – Implementation – Results – Conclusions – Recommendations

and the second second

Source: Globalmedics RescUAV (2017)



Map Information

ŤUDelft

The islands of Sint Maarten, Saba and Sint Eustatius were struck by Hurricane IRMA on 7 September 2017. All three islands were impacted, but Sint Maarten sustained the most damage. The French part of the island was "95% destroyed" and a number of fatalities have been reported. In response the Netherlands has sent marines to St Maarten, and two aid flights.

The present map shows the damage grade assessment in the area of Philipsburg (Sint Marteen (Ned.)). The thematic layer has been derived from post-event satellite image by means of visual interpretation. The estimated geometric accuracy is 5 m CE90 or better, from native positional accuracy of the background satellite image.

Cartographic Information 1-12500 Full color ISO &1, high resolution (305 3rid: WGS 1984 UTM Zone 20N map coordinate sa k marks: WGS 84 geographical coordinate system Man Information arten, Sale and Sint Euslabus were struck by P . All three mande ware impacted, but Sim Man French part of the latent was '89% deal-rood' and a rul The estimated permetric accuracy is 5 m CED0 or 5 **Data Source**

Philipsburg - SINT MAARTEN (NED.)

Wind storm - Situation as of 10/09/2017 Grading Map - MONIT01

Introduction Theory – Implementation – Results – Conclusions – Recommendation

Is the use of **remotely sensed data** a viable option for the **automatic classification** of hurricane inflicted **damage**?

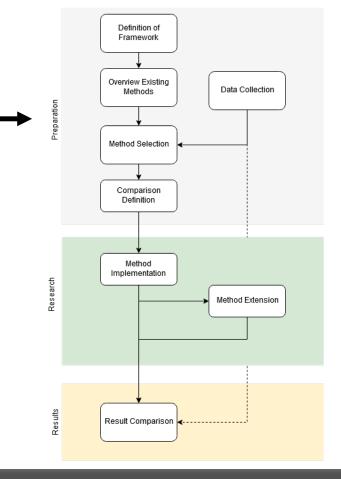
to find a method for the automatic classification of damage inflicted by hurricanes on the island of St. Maarten using remotely sensed data.

Sub-goals

- How is damage **determined**?
- What criteria are set for damage classification methods?
- Which methods already **exist**?
- How do these methods **perform**?
- How does the **state of the art** compare to these methods?

Methodology

- Preparation
- Research
- Results



"A disaster is a <u>sudden, calamitous</u> event that seriously <u>disrupts</u> the functioning of a community or <u>society</u> and causes human, material, and economic or environmental **losses** that exceed the community's or society's **ability** to cope using its own resources."

International Federation of Red Cross and Red Crescent Societies (2017)

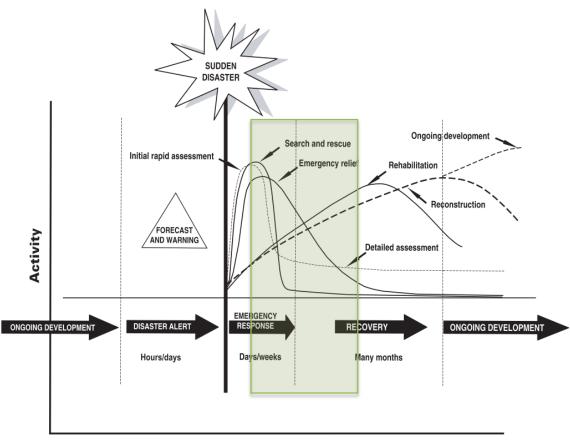
T Pressient

ŤUDelft

Window of opportunity Christopher, D. and Doeglas, A. (2015). Time-Sensitive Remote Sensing.

Introduction – Theory – Implementation – Results – Conclusions – Recommendations

3.000



Time

Damage descriptors

- Damage Detection
- Damage Classification
- Damage Assessment

Damage Detection

159-20

No damage

Damage



on – Theory – Implementation – Results – Conclusions – Recommendations

emeriands Red Cross (12, Sept. 2017), Cole Bay - Sint Maarten (georeferenced image), used under CC-BY4.0 as part of Open Imager, Network, retreved from www.openaerialmap.org

Damage Classification

LES- CONTRACT

BENKERE LEEP

No Damage

Critical Damage

ŤUDelft nds Red Cross (12 Sept. 2013), cole Bay - Sint Maarten (georeferenced image), used under CC-BY4/0 as part of Open imager, yetwork, lotte ad from www.openaertemap.org

Theory mentation - Results - Conclusions - Recommendations

Significant Damage

Minimal Damage

Damage Assessment

BETTER ALL THE

Overal: Critical Damage Roof: Critical Damage Structure: Significant Damage Flooded: No Electricity: No Water: No Drink-Water: No

on - Theory - Implementation - Results - Conclusions - Recommendations

Source: Netherlands Red Cross (12, Sept. 2017), Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4:0 as part of Open Imager, Network, retro ved from www.openaerialmab.org

....

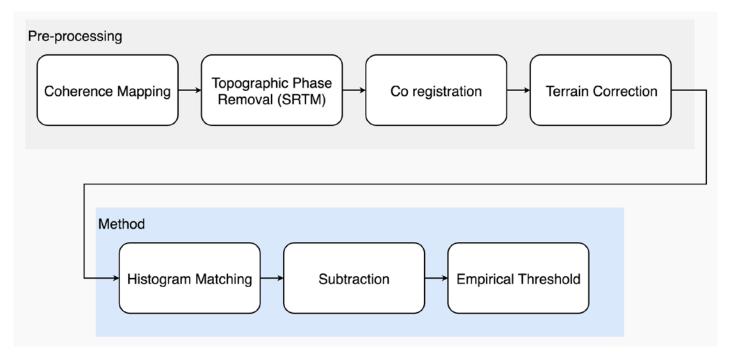
Method Assessment Framework

Requirement	Description
Accuracy	Percentage of building damage classified correctly.
Acquisition time	Period from disaster to acquisition of data, travel time of delegates not included.
Acquisition method	The technique used for the procurement of the data, mostly limited by financial and time restrictions.
Resolution	The resolution of the data and information retrieved from method.

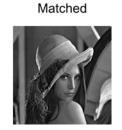
Method Review

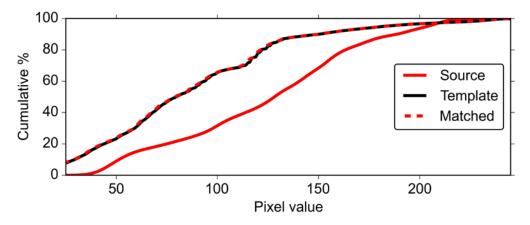
Method	Technique	Resolution	Acq. Time	Accuracy	Info Scale
(Antonietta et al., 2015)	Satellite Optical	0.8x0.8m	6 days	70-80%	В
(Brunner et al., 2010)	Satellite Optical and Satellite SAR	0.6x0.6m 1.1 x 1.0m	6 days	90%	В
(Li et al., 2017)	Satellite Optical	0.6x0.6m	6 days	70%	В
(Martha et al., 2015)	Satellite Optical	0.6x0.6m	6 days	n/a	Ν
(Menderes et al., 2015)	Aerial Optical	0.3x0.3m	Days	90%	BL
(Ozisik, 2004)	UAV Optical	n/a	Hours	70-80%	В
(Samadzadegan and Rastiveisi, 2005)	Satellite Optical	2.44x2.44m	3 Days	74%	В
(Vetrivel et al., 2016b)	UAV Optical	n/a	Hours	80-90%	В
(Yun et al., 2015)	Satellite SAR	2.7x22m	6 days	n/a	BL

- Interferometric Synthetic Aperture Radar
- Based on Coherence
- Classification by threshold



• Histogram matching

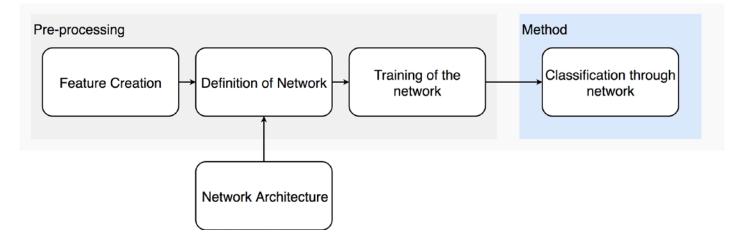




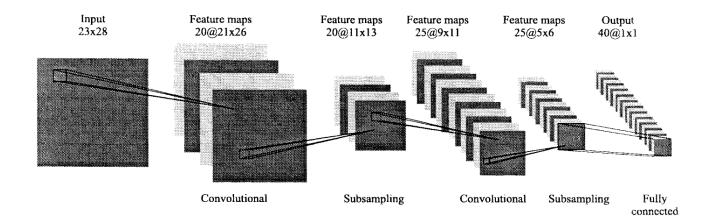
Univariate image differencing

$$Dx_{ij}^{k} = x_{ij}^{k}(t_{2}) - x_{ij}^{k}(t_{1}) + C$$

- Optical Data
- Machine learning Network approach
- Variations



(Convolutional) Neural Network



_

• Architecture

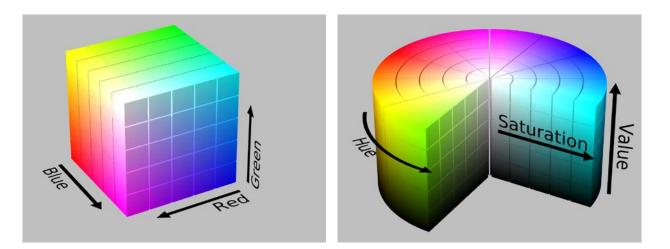
CNN architecture for training from scratch					
Layer number	Layer name	Properties			
1	Input layer	Input image patch size: $100 \times 100 \times 3$			
2	Convolutional	Number of filters: 9; filter size: 11×11			
3	RELU	-			
4	Maxpooling	Pool size 2×2			
5	Convolutional	Number of filters: 21; filter size: 7×7			
6	RELU	-			
7	Maxpooling	Pool size 2×2			
8	Convolutional	Number of filters: 41; filter size: 3×3			
9	RELU	-			
10	Maxpooling	Pool size 2×2			
11	Fully connected	Size: 1 × 256			
12	RELU	-			
13	Dropout	Dropout ratio: 0.5			
14	Fully connected	Size: 1 × 100			
15	Fully connected	Size: 1×2			
16	Softmax	-			

Background information

Colour information - Sensation

- Brightness of a colour, regarding the variance in light
- **Hue** of a colour, the similarity between colour, usually expressed in Red, Green, and Blue (RGB)
- **Colourfulness** of a specific area, the amount of hue in a feature
- **Lightness**, this is a description of brightness referenced to a white area
- Chroma, is the colourfulness referenced to lightness
- Saturation, is the colourfulness relative to the brightness.

Colour information - Sensation



Inter-rater statistics

• Accuracy $accuracy = \frac{correctly classified samples}{total classified samples}$

Cohen Kappa Coefficient

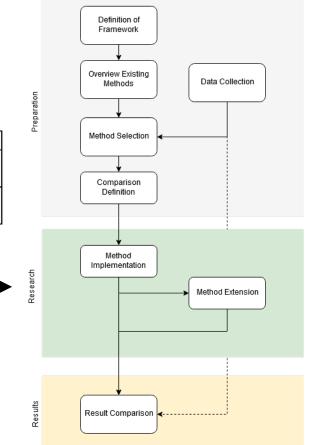
$$\kappa = \frac{P - E}{1 - E}$$

$$F = \frac{2PR}{P+R}$$

• F1-Score

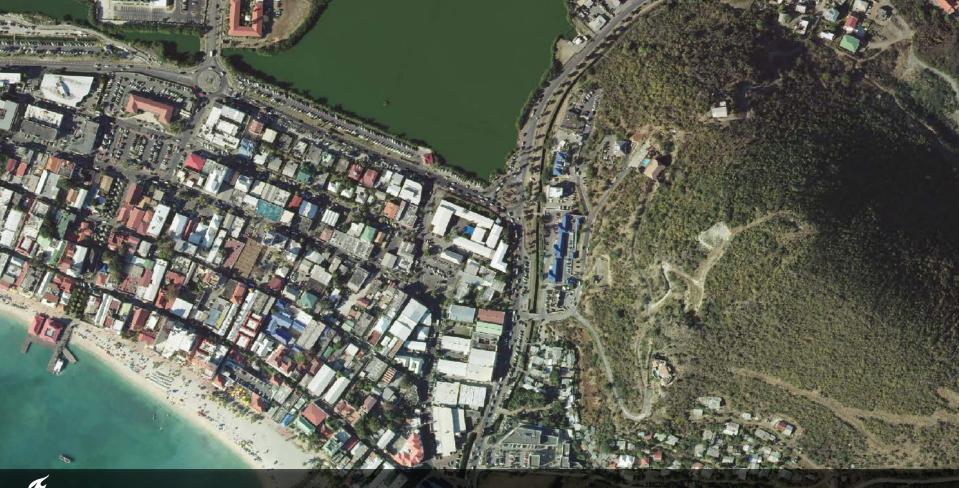
Implementation

	Optical UAV Data	Satellite SAR Data
Equalisation and subtraction	ESO	ESS
Convolutional Neu- ral Network	CNO	CNS



Tools

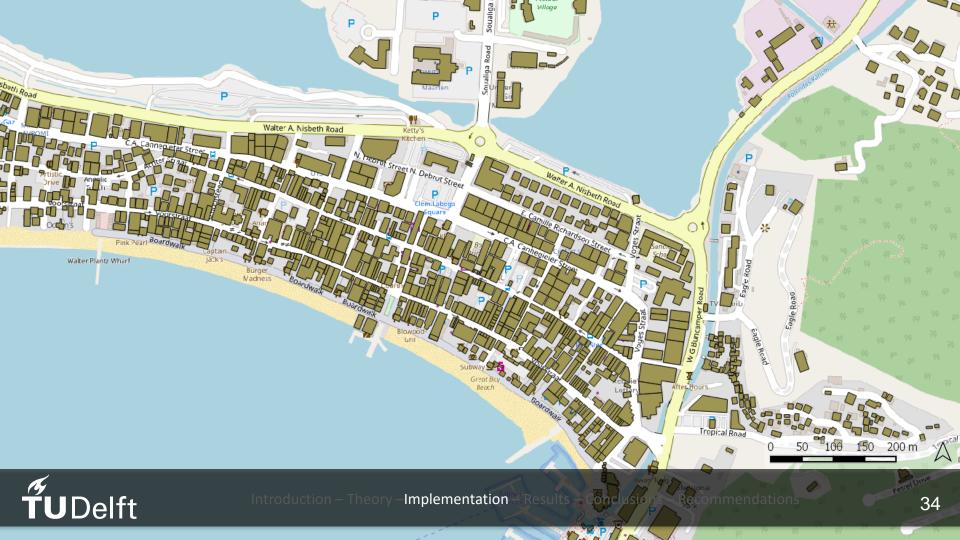
- SNAP
- QGIS
- Python
- Tensorflow



TUDelft

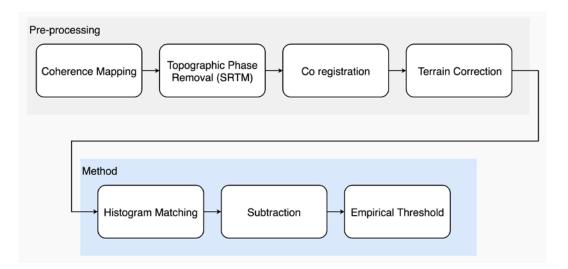
-

Introduction – Theory – Implementation – Results – Conclusions – Recommendations



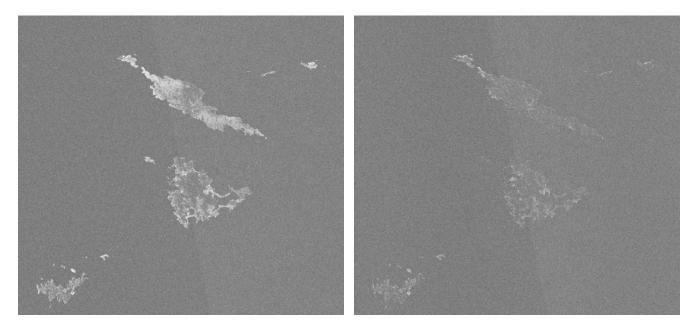
Implementation

- Equalisation and Subtraction
- InSAR ESS
- Optical ESO



Results

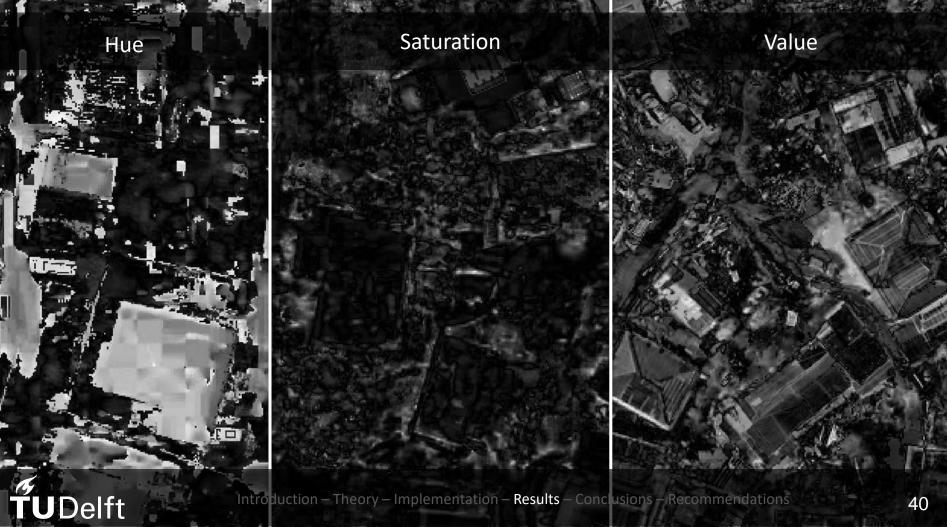
• Equalisation and Subtraction - ESS





Implementation

- Equalisation and Subtraction ESO
- Pre-processing:
 - Abstraction to HSV values
- Method as for SAR



の日本

40

Stor States IV

Implementation

- Convolutional Neural Network (CNO)
- **Feature Creation** • 7181225 0 PERMOT 0 232175625 0 261174078-0 Training ٠ 43822541.0 Detection ۰ 362822326-0 13 362549471-0 Dropout Schertly Dropout ratio: 0.5 362056360 0 0.0205050363.0 Size: 1 × 100 14 Fully connected 15 Fully connected Size: 1×2 16 Softmax

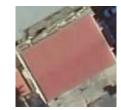
Implementation

• Convolutional Neural Network – CNS

Convolutional Neural Network – CNO

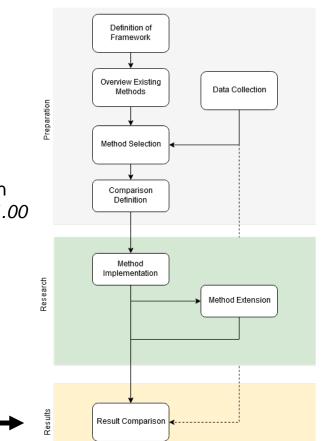
raining Step: 4059 tota	loss: 0.52611 time: 293.533s
Adam epoch: 034 loss:).52611 - acc: 0.7810 val_loss: 0.54905 - val_acc: 0.7619 iter: 6336/7662
raining Step: 4080 tota	loss: 0.56647 time: 420.401s
Adam epoch: 034 loss:	0.56647 - acc: 0.7474 val_loss: 0.54894 - val_acc: 0.7619 iter: 7662/7662
raining Step: 4158 tota	loss: 0.54208 time: 247.685s
Adam epoch: 035 loss:	0.54208 - acc: 0.7678 val_loss: 0.54896 - val_acc: 0.7619 iter: 4992/7662
raining Step: 4200 tota	loss: 0.54314 time: 421.486s
Adam epoch: 035 loss:	0.54314 - acc: 0.7669 val_loss: 0.54891 - val_acc: 0.7619 iter: 7662/7662

Convolutional Neural Network - CNO



	Optical UAV Data	Satellite SAR Data
Equalisation and subtraction	ESO	ESS
Convolutional Neu- ral Network	CNO	CNS

- Comparison
- Equalisation and Subtraction Based on empircal threshold for damage detection *Tested values, all values between 0.01 and 1.00* Highest Kappa Scores Represented
- Convolutional Neural Network
 Based on detection by algorithm
- State of the art Classification by Copernicus



- Comparison
- State of the art Classification by Copernicus

Copernicus	Damage Detection
Not affected	No Damage
Negligible to slight Damage	
Moderately Damaged	Damage
Highly Damaged	
Completely Destroyed	

• Comparison

Technique	Threshold	Kappa Score	Avg. F1 Score		
Equalisation and Subtraction					
Interferometry – ESS	0.30	0.059	0.54		
Hue – ESO	0.11	0.070	0.47		
Saturation – ESO	0.07	0.429	0.71		
Value – ESO	0.21	0.389	0.69		
Convolutional Neural Network					
Classification – CNO	n/a	0.000	0.21		
Copernicus					
Classification	n/a	0.093	0.45		

- Extention
- Equalisation and Subtraction
 Based on empircal threshold for damage detection
 Tested values, all values between 0.02 and 1.00 e.g. No< 0.02 <Minimal> 0.10 <Significant> 0.30 > Destroyed Highest Kappa Scores Represented
- Convolutional Neural Network
 Based on detection by algorithm
- State of the art Classification by Copernicus

- Extention
- Convolutional Neural Network
 Based on detection by algorithm

Training Step: 4059 tota Adam epoch: 034 loss:	loss: 1.13057 time: 297.569s 1.13057 - acc: 0.5585 val_loss: 1.14385 - val_acc:	0.5569 iter: 6336/7662
Training Step: 4080 tota Adam epoch: 034 loss:	loss: 1.12229 time: 427.004s 1.12229 - acc: 0.5760 val_loss: 1.14372 - val_acc:	0.5569 iter: 7662/7662
Training Step: 4158 tota Adam epoch: 035 loss:	loss: 1.13377 time: 252.872s 1.13377 - acc: 0.5608 val_loss: 1.14377 - val_acc:	0.5569 iter: 4992/7662
Training Step: 4200 tota Adam epoch: 035 loss: 	loss: 1.15621 time: 428.278s 1.15621 - acc: 0.5435 val_loss: 1.14375 - val_acc:	0.5569 iter: 7662/7662

- Extention
- State of the art
 Classification by Copernicus

Copernicus	Damage Detection	
Not affected	No Damage	
Negligible to slight Damage		
Moderately Damaged	Partial Damage	
Highly Damaged	Significant Damage	
Completely Destroyed	Destroyed	

Comparison

Technique	Thresholds	Kappa Score	Avg. F1 Score		
Equalisation and Subtraction					
Interferometry – ESS	0.23 - 0.31 – 0.34	0.051	0.30		
Hue – ESO	0.08 - 0.11 - 0.88	0.054	0.23		
Saturation – ESO	0.08 - 0.08 - 0.31	0.250	0.37		
Value - ESO	0.13 - 0.18 - 0.26	0.188	0.40		
Convolutional Neural Network					
Classification – CNO	n/a	0.000	0.21		
Copernicus					
Classification	n/a	0.078	0.24		

• Comparison

Requirement	Description
Accuracy	Percentage of building damage classified correctly.
Acquisition time	Period from disaster to acquisition of data, travel time of delegates not included.
Acquisition method	The technique used for the procurement of the data, mostly limited by financial and time restrictions.
Resolution	The resolution of the data and information retrieved from method.

- How is damage **determined**?
- What criteria are set for damage classification methods?
- Which methods already **exist**?
- How do these methods **perform**?
- How does the **state of the art** compare to these methods?

Is the use of **remotely sensed data** a viable option for the **automatic classification** of hurricane inflicted **damage**?

• How is damage determined?

• What criteria are set for damage classification methods?

Requirement	Description
Accuracy	Percentage of building damage classified correctly.
Acquisition time	Period from disaster to acquisition of data, travel time of delegates not included.
Acquisition method	The technique used for the procurement of the data, mostly limited by financial and time restrictions.
Resolution	The resolution of the data and information retrieved from method.

• Which methods already exist?

Method	Technique	Resolution	Acq. Time	Accuracy	Info Scale
(Antonietta et al., 2015)	Satellite Optical	0.8x0.8m	6 days	70-80%	В
(Brunner et al., 2010)	Satellite Optical and Satellite SAR	0.6x0.6m 1.1 x 1.0m	6 days	90%	В
(Li et al., 2017)	Satellite Optical	0.6x0.6m	6 days	70%	В
(Martha et al., 2015)	Satellite Optical	0.6x0.6m	6 days	n/a	Ν
(Menderes et al., 2015)	Aerial Optical	0.3x0.3m	Days	90%	BL
(Ozisik, 2004)	UAV Optical	n/a	Hours	70-80%	В
(Samadzadegan and Rastiveisi, 2005)	Satellite Optical	2.44x2.44m	3 Days	74%	В
(Vetrivel et al., 2016b)	UAV Optical	n/a	Hours	80-90%	В
(Yun et al., 2015)	Satellite SAR	2.7x22m	6 days	n/a	BL

- How do these methods **perform**?
- How does the **state of the art** compare to these methods?

- Varying results
- Derivative of Yun et. al (2015) for optical workable results
- State of the art, usable in first phase

Is the use of **remotely sensed data** a viable option for the **automatic classification** of hurricane inflicted **damage**?

Yes, however:

- Detection has higher accuracy
- Technical knowledge required

Recommendations

- Optical Data
 - Cohesion
 - Layer combination
 - Geo-referencing
- SAR data
 - Aggregation
 - Higher Resolution
- Combination of Data
- Disaster Specific Damage Patterns
- Assessment Framework
- Inter-rater statistics

Thank you

Mentors: Company: Co-reader:

Dr. Jorge Lopes Gil Dr. Stef Lhermitte 510 – Netherlands Red Cross Dr. Stefania Giodini Agung Indrajit MSc.

Exam com.: Luc Willekens

Source: Netherlands Red Cross (12 Sept. 2017), Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as part of Open Imagery Network, retrieved from www.openaerialmap.org

AN INITIATIVE OF THE NETHERLANDS RED CROSS