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The paper solves the problem of optimal portfolio choice when the parameters of the asset returns
distribution, for example the mean vector and the covariance matrix, are unknown and have to be
estimated by using historical data on asset returns. Our new approach employs the Bayesian poste-
rior predictive distribution which is the distribution of future realizations of asset returns given the
observable sample. The parameters of posterior predictive distributions are functions of the observed
data values and, consequently, the solution of the optimization problem is expressed in terms of data
only and does not depend on unknown quantities. By contrast, the optimization problem of the tradi-
tional approach is based on unknown quantities which are estimated in the second step, and lead to a
suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive
distribution whose application not only gives the solution of the considered optimization problem,
but also provides the posterior predictive distribution of the optimal portfolio return which can be
used to construct a prediction interval. A Bayesian efficient frontier, the set of optimal portfolios
obtained by employing the posterior predictive distribution, is constructed as well. Theoretically
and using real data we show that the Bayesian efficient frontier outperforms the sample efficient
frontier, a common estimator of the set of optimal portfolios which is known to be overoptimistic.

Keywords: Optimal portfolio; Posterior predictive distribution; Parameter uncertainty; Efficient

frontier; Stochastic representation; Black—Litterman model

JEL Classification: C11, C13, C44, C58, C63

1. Introduction

The fundamental goal of portfolio theory is to allocate opti-
mally investments between different assets. Mean—variance
optimization is a quantitative tool which allows one to make
this allocation by considering the trade-off between the risk
of a portfolio and its return. The basic concepts of modern
portfolio theory were developed by Markowitz (1952) who
introduced a mean—variance portfolio optimization procedure
in which investors incorporate their preferences towards the
risk and the expected return to seek the best allocation of
wealth. This is attained by selecting portfolios that maximize
expected portfolio return subject to achieving a prespecified
level of risk or, equivalently, that minimize the variance sub-
ject to achieving a prespecified level of expected return. The

*Corresponding author. Email: n.parolya@tudelft.nl

mean—variance analysis of Markowitz is an important tool for
both practitioners and researchers in the financial sector today.

The classical problems and pitfalls of mean—variance anal-
ysis are mainly related to extreme weights that often occur
when the sample efficient portfolio is constructed. This point
was discussed in detail by Merton (1980) who presented an
estimator of the instantaneous expected return on the mar-
ket in a log-normal diffusion price model and showed its
slow convergence. Moreover, it was proved that the esti-
mates of the variances and covariances of the asset returns
are more accurate than the estimates of the means. Best and
Grauer (1991) argued that optimal portfolios are very sen-
sitive to the level of expected returns. Therefore, improving
the technique of mean estimation has recently become a key
issue of the portfolio optimization problem. The same chal-
lenge is also present when the covariance matrix needs to be
estimated. To this end, Broadie (1993) showed that the esti-
mated efficient frontier, the set of all mean—variance optimal
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portfolios, overestimates the expected returns of portfolios for
different levels of estimation error. A similar conclusion has
also been drawn in more recent studies by Basak et al. (2005),
Siegel and Woodgate (2007) and Bodnar and Bodnar (2010).

An alternative approach to deal with the parameter uncer-
tainty in portfolio analysis is to employ the methods of
Bayesian statistics (cf. Barry 1974, Brown 1976, Klein
and Bawa 1976, Frost and Savarino 1986, Aguilar and
West 2000, Rachev et al. 2008, Avramov and Zhou 2010, Sek-
erke 2015, Bodnar et al. 2017, Bauder et al. 2018, 2019).
It is remarkable that the Bayesian approach is potentially
more attractive since: (i) it uses prior information about quan-
tities of interest; (ii) it facilitates the use of fast, intuitive,
and easily implementable numerical algorithms in order to
simulate complex economic quantities; (iii) it accounts for
estimation risk and model uncertainty in the portfolio choice
problem. First applications of Bayesian statistics to portfolio
analysis during the 1970s were completely based on nonin-
formative or data-based priors. Bawa et al. (1979) provided
an excellent early survey of such applications. The Bayesian
approaches based on the diffusion prior are usually com-
parable with the classical methods of portfolio selection.
However, if some of the risky assets have longer histories
than others, then the Bayesian approaches under the dif-
fuse prior lead to different results (see Stambaugh 1997).
Jorion (1986) introduced the hyperparameter prior approach
in the spirit of the Bayes—Stein shrinkage prior, whereas
Black and Litterman (1992) defended an informal Bayesian
analysis with economic arguments and equilibrium relations.
They derived the Black-Litterman model which leads to more
stable and more diversified portfolios than simple mean—
variance optimization. Unfortunately, the application of this
model requires a broad variety of data, some of which may
be hard to find. Recent studies by Pastor (2000) and Pas-
tor and Stambaugh (2000) centred prior beliefs around val-
ues implied by asset pricing theories. In particular, Péastor
and Stambaugh (2000) investigated the portfolio choices of
mean—variance—optimizing investors who use sample evi-
dence to update prior beliefs centred on either the risk-based
or characteristic-based pricing models. Tu and Zhou (2010)
argued that the investment objective provides a useful prior
for portfolio selection and proposed an optimal combination
of the naive equally weighted portfolio rule with one of the
four sophisticated strategies—the Markowitz (1952) rule, the
Jorion (1986) rule, the MacKinlay and Péstor (2000) rule, or
the Kan and Zhou (2007) rule—as a way to improve perfor-
mance. Finally, Kacperczyk and Damien (2011) and Kacper-
czyk et al. (2013) discussed the application of Bayesian
semi-parametric models, while Brandt and Santa-Clara (2006)
considered the Bayesian approach in the multi-period optimal
portfolio choice problem.

We contribute to the existing literature on optimal portfo-
lio selection by formulating an optimization problem in terms
of the posterior predictive distribution and solving it. Using
the available information about the development of asset
returns which is present in their historical observations, the
aim is to construct an optimal portfolio by taking into account
investor’s preferences. The conventional approach consists of
two steps: (i) first, the optimization problem is solved with
the solution depending on the unknown parameters of the
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asset return distribution; (ii) second, the optimal portfolio
weights, which are the solutions of the optimization problem,
are estimated by applying the historical observations of the
asset returns. The second step is always needed in practical
applications, since the expression of optimal portfolio weights
resulting from the first step usually involve the unknown pop-
ulation parameters of the asset return distribution. Replacing
these parameters by their sample estimators leads to additional
uncertainty in the decision process which has been ignored for
a long time in financial literature. It is important to note that
following this two-step approach, the obtained solution is only
suboptimal and it can deviate considerably from the optimal
(population) portfolio obtained in the first stage.

In this paper, we propose a new approach, where the solu-
tion of the investor’s optimization problem is obtained by
employing the posterior predictive distribution which takes
parameter uncertainty into account before the optimal port-
folio choice problem is solved. As a result, its solution is
presented in terms of historical data and is independent of the
unknown parameters of the asset returns distribution. Conse-
quently, it can be directly applied in practice and, in contrast
to the conventional approach, it is optimal.

The rest of the paper is organized as follows. Main theoret-
ical results are given in Section 2. Here, we characterize the
posterior predictive distribution of the asset returns by devel-
oping a very helpful stochastic representation (Theorem 1).
This stochastic representation provides not only a way how
the future realization of portfolio returns can be simulated,
but it is also used to derive the first two moments needed
for the considered optimization problem. Section 2.2 deals
with constructing optimal portfolios by maximizing the pos-
terior mean—variance utility function, while the expression of
the Bayesian efficient frontier is derived in Section 2.3. In
Section 2.4 the optimal portfolio choice problem is solved
by employing the informative conjugate prior, that can be
considered as an extension of the Black—Litterman model, a
popular approach in the financial literature. Section 3 presents
a numerical comparison of the two Bayesian approaches
between each other as well as to methods based on frequentist
statistics. The theoretical results are implemented in an empir-
ical study in Section 4, while Section 5 provides a conclusion.
The technical derivations are given in an appendix.

2. Mean-variance analysis under parameter uncertainty

2.1. Posterior predictive distribution

Let X, denote the k-dimensional vector of returns on asset
at time 7. Assume that a sample of size n of asset returns
X/—n,...,X;_1, realizations of X,_,,...,X;_;, is available
which provides the information set J,_; and let x,_;) =
(X;—n, - .-, X;_1) be the observation matrix at time t — 1. Con-
sequently, an investor makes a decision by optimizing prefer-
ences using information F,_;.

Before the decision problem is formulated in Section 2.2,
we first derive the predictive posterior distribution p(X;|X—1))
of X, given the previous observation of asset returns summa-
rized in X_1y. The derivation of p(X;|X(—1)) is based on the
methods of Bayesian statistics which provide well-established
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techniques for providing inferences of future realizations of
asset returns given information F;_;.

In the following we assume that the asset returns X, Xo, . . .
are infinitely exchangeable and multivariate centred spheri-
cally symmetric (see, Bernardo and Smith 2000, Section 4.4
for the definition and properties). This assumption is very gen-
eral and it implies that neither the unconditional distribution
of the asset returns is normal nor that they are indepen-
dently distributed. Moreover, the unconditional distribution of
the asset returns appears to be heavy-tailed which is usually
observed for financial data (see, e.g. Bradley and Taqqu 2003).

Parameterizing the density function of X¢_1) = X, ...,
X;_1) by the parameter 6, the posterior distribution of @ is
obtained by applying the Bayes theorem and it is given by

7 (01x(-1)) o f(X(—1)10)7 (), (1)
where 7 (@) denotes the prior and f (x(—1)|6) is the likelihood
function of X(,_1). The posterior distribution @ is then used
to derive the posterior predictive distribution of the portfolio
return at time ¢ expressed as

2)

Xp,t = WTXZ,
where w = (wq,..., w,,)-r is the k-dimensional vector of port-
folio weights.

The posterior distribution (1) is employed in the derivation
of the posterior predictive distribution as follows:

FGpulxoon) = /0 S0 @lx) . G

Due to the integration present in the definition of the posterior
predictive distribution, it is possible to obtain the analytical
expression of f(x,|Xy—1)) only in very rare cases. More-
over, the integration in (3) could also be high-dimensional,
which makes the application of numerical methods very time
consuming and also questions the quality of their numerical
approximation. In Theorem 1, we derive a stochastic repre-
sentation for the posterior predictive distribution f (x,;|X(—1))
which can be very easily used to draw samples from this dis-
tribution as well as to compute its expected value and variance
analytically. Finally, it has to be noted that the application
of the stochastic representation describing the distribution of
random quantities has been used both in the frequentist statis-
tics (see, e.g. Givens and Hoeting 2012, Gupta et al. 2013)
and in the Bayesian statistics (cf. Bodnar et al. 2017).

THEOREM 1 Let X1,X,... be infinitely exchangeable and
multivariate centred spherically symmetric. Let w(0) = |F|'/?
be Jeffreys’ prior where |A| denotes the determinant of
a square matrix A and F = —E(82log(f(x(,_1)|0))/8080T)
is the Fisher information matrix. Assume n>k. Then the
stochastic representation of the random variable )?,,,, whose
density is the posterior predictive distribution (3) is given by

S d _ T=
Xp =W X +V/WISw

T1 T T

— 41+ :
Jnn —k) n—kyn—k+1
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where

B 1 —1 t—1 B B
%= D xi and S =) (x—Xo)&—%-1),

o @)

i=t—n

and t1, Ty are independent with Ty ~ t,_; and T ~ t,_j+1.

The symbol L Jenotes the equality in distribution.

The proof of Theorem 1 is given in the appendix. Its results
provide an easy way how a random sample from the posterior
distribution of f (x,|X—1)) can be simulated as summarized
in Algorithm 1:

Algorithm 1

(i) generate tl(b)

(i) compute

~b _
XP(,Z) = WTX:—I + VWIS _w
()

2!

Jnn —k) +

(b) )
~tpand T, '~ _kg1;

b b
(.L_l( ))2 .L,z( )

1+
n—k Jn—k+1

(iii) Repeat steps (i) and (ii) for b = 1, ..., Bresulting in an
independent sample X;,',), . ,Xp(f) from the posterior
predictive distribution (3).

ot e ,)?;ﬁ) is used to calculate
important characteristics of the distribution f (x,|X(—1)), like
the mean, the variance, the credible interval, etc. To this end,
we note that the condition n > k ensures that S; is positive
definite and, hence, it is invertible.

Another important application of Theorem 1 provides us
with the analytical expression of the expected value and the
variance of the posterior predictive distribution f (x, |X(—1)).
These findings are formulated in Corollary 1.

The generated sample xW

COROLLARY 1| Under the conditions of Theorem 1, let
n—k> 2. Then:

Ew' X [X(-1) = W'% (5)
and
VGV(WTXAX(,,D) = ckyanS,,lw with
1 2n—k—1
Ck.n (6)

T k=1 T ni—k—Dun—k—2)

The proof of Corollary 1 is given in the appendix. Its results
are used in the next section where the expressions of optimal
portfolio weights are given.
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2.2. Mean—variance optimal portfolios

The mean—variance investor constructs an optimal portfolio
at time ¢ — 1 for the next period by maximizing the mean—
variance utility function given by

Y
Uw) =EX,,|x¢—1)) — EVCIV(Xp,AX(z—l))

w S, w @)

under the constraint that the whole wealth is invested into
the selected assets, i.e. w'l =1 where 1 denotes the k-
dimensional vector of ones. The quantity y > 0 stands for the
coefficient of the investor’s risk aversion and describes the
investor’s attitude towards risk.

In contrast to the conventional approach that involves the
unknown parameters of the asset return distribution in its for-
mulation, the optimization problem in (7) already incorporates
the parameter uncertainty by using the available informa-
tion summarized in the data matrix x;_y. As a result, the
output of solving (7) is the formula for optimal portfolio
weights that could be directly applied in practice, while the
estimation of optimal portfolio weights is required in the
conventional methods that leads to the suboptimality of the
resulting portfolio.

The optimization problem in (7) is similar to the opti-
mization problem in the conventional approach (see Inger-
soll 1987, Okhrin and Schmid 2006) with the exception that
the risk aversion coefficient is multiplied by the constant cy .
As a results, the solution of (7) is given by

S 11
Wivy = o= 47 QX1 with
TS ,
s l1rs’!
Qt—l = S;—ll el St g § (8)

1S;1

together with the expected return and the variance expressed
as

1's'x,_,
Ruvy = ———+y "X, Q%1 (9)
MV.y I’S,_fll Vo CrnX—1—1Xi-1
and
Chkan 2 —1=T -
Vwy = oy TV GnXm1 Qi X, (10)

1S, '1
respectively, where we use that Q,_;1 =0 and Q,_;S;_,
Q1 = Q. in(10).

Additionally to the formulae of the optimal portfo-
lio weights, the expected return and the variance of the
mean—variance optimal portfolios presented in (8)—(10), the
Bayesian approach allows to characterize the posterior pre-
dictive distribution of the constructed optimal portfolio. This
is achieved by applying the results of theorem 1 where the
weights of an arbitrary portfolio are replaced by the optimal
portfolio weights given in (8). Then, the posterior predictive
distribution of the optimal portfolio return is obtained via sim-
ulations as described after theorem 1 by replacing w with
Wy, as in (8). This is a very important result which allows
the whole characterization of the stochastic behaviour of opti-
mal portfolio return and is a great advantage with respect to
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the conventional approach where the point estimator is only
present.

We conclude this section by noting that the original
Markowitz problem (see Markowitz 1952, 1959) is solved in
the same way. In the mean variance analysis of Markowitz,
the optimization problem is given by: (i) minimizing the port-
folio variance for a given level of the expected return Ry or
(i1) maximizing the expected return for the given level of the
variance Vj. In the first case the optimal portfolio weights are

given by (8) with
17S %
(ko v)

-1 R
V :Ck,n—v

X, Qt— 1 it*l

an

while in the second case the weights are obtained from (8)
with

1 1
-1 CinV0 = s 1

y = Ck’nT—.
vV X, Q1%

2.3. Bayesian efficient frontier

12)

Equations (9) and (10) determine the set of all optimal portfo-
lios obtained as solutions of (7) for y > 0. Solving these two
equation with respect to y leads to a set in the mean—variance
space where all mean—variance optimal portfolios lie. We call
this set the (objective) Bayesian efficient frontier since the
non-informative Jeffreys prior is employed in its derivation.
It is given by

T —
X, 1Q1Xi-1

(R — Rouv)* = : V= Vewy), (13)
k.n
where
Romv = ITS;;IIKH and  Vgyy = Chn (14)
1S;'1 1S;'1

are the expected return and the variance of the global mini-
mum variance portfolio, i.e. the mean—variance optimal port-
folio with the smallest variance, whose weights are expressed
as
-1
S,1

L 15
's'1 ()

Wemy =
The quantity s = i,T_IQ,_li,_l /Ck.n 1s the slope parameter
of the efficient frontier which is equal to the amount of the
excess squared return with respect to the return of the global
minimum variance portfolio when the variance is increased
by one. Finally, we note that the Bayesian efficient fron-
tier is a parabola in the mean—variance space which is the
same finding as obtained by the conventional approach (see
Merton 1972).

2.4. Subjective Bayesian approach: extended
Black-Litterman model

The results of Sections 2.1-2.3 were obtained by assigning the
non-informative Jeffreys prior to the model parameter x and
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¥ corresponding to objective Bayesian inference in statistical
literature. In this section we discuss an alternative Bayesian
approach which is based on the (extended) Black—Litterman
model (cf. Black and Litterman 1992). The latter model corre-
sponds to the application of an informative prior for g and X
and, thus, it is referred as the subjective Bayesian approach.

In order to incorporate expert knowledge in the construc-
tion of an optimal portfolio, Black and Litterman (1992)
suggested to employ the normal prior for the mean vector u.
This approach is known in financial literature as the Black—
Litterman model. Below we consider an extension of this
model by also including a prior on ¥ in the decision pro-
cess. To this end, it leads to the application of the informative
conjugate prior for # and X given by

1

j78p> N-/\fk<mo,—)3>, (16)
1o

X ~ IWi(do,So), (17)

where my, rg, do, Sp are additional model parameters known
as hyperparameters. The symbol A (mg, X /ry) denotes the
k-dimensional normal distribution with mean vector my and
covariance matrix X /ry, while ZW(dy,Sp) stands for the
inverse Wishart distribution with d degrees of freedom and
parameter matrix Sg. The prior mean mq reflects the prior
expectation about g, while Sy determines the prior beliefs
about X. The other two hyperparameters ry and dy are known
as precision parameters for my and Sy, respectively.

In Theorem 2 we present a stochastic representation from
the posterior predictive distribution of the portfolio return
derived under the application of the prior (16)—(17). The proof
of the theorem is presented in the appendix.

THEOREM 2 Let Xi,X,... be infinitely exchangeable and
multivariate centred spherically symmetric. Assume n + dy —
2k > 0. Then, under the application of the informative
prior (16)—(17), the stochastic representation of the ran-
dom variable 5(\1,,, whose density is the posterior predictive
distribution (3) is given by

d _T_ m
X =W X174+ /WS- w(
pem T\ Vot o+ d - 20

TI% n2

n+do—2kn+dy—2k+1])°

1+

where

nX;—1 + romg

and S,_
- —1,1

X1 =

(my — X,—11)(mg — X,—17) "

=S,_.1+ S+ nr
—1 0 0 ———

. (18)

and ny and n, are independent with 1y ~ tyiq,—2% and 1y ~
bt dy—2k+1-
Similarly to Theorem 1, the findings of Theorem 2

allow to simulate samples from the posterior distribution of
S (xps|X¢—1y) in a simple way given by:
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Algorithm 2

. b b
(i) generate )" ~ tuigy—ox and 15" ~ tysgy—2ks1;
(ii) compute

TO _ Wik
Xipy =W o +/WIS1yw

)
M
* (J(n + ro)(n 4+ dy — 2k)

b b
("2 ny

n+do—2k J/n+dy— 2k + 1

+/1+

(iii) Repeat steps (i) and (ii) for b = 1,..., B resulting in
independent sample X, ,(Jl)ft, . ¢ ,(’1;)[ from the posterior
predictive distribution (3).

Furthermore, the closed-form expressions of the expected
value and of the variance of the posterior predictive distribu-
tion f (x, /|X¢—1y) is computed as shown in Corollary 2 whose
proof is given in the appendix.

COROLLARY 2 Under the conditions of Theorem 2, let n +
do — 2k > 2. Then:

Ew X, [x¢ 1) =W X1 (19)
and
Var(w' X, |X(_1)) = qxaW' Si_1,W (20)
with
1
Gkn = m

+ 2n—|—r0~|—d0—2k—1
n+ro)n+dy—2k—Dm+dy—2k—2)

Substituting (19) and (20) in (7) we find the weights of
the optimal portfolios in the case of the extended Black—
Litterman model expressed as

_ Szi—ll,l1 —1 -1 — ith
Wymv,y = m + 7 G Q1 X—1y Wi
S_llllllst_lll
Q. ., = S:l _ =L et 1)
t—1,1 t—1,1 l,St__llJl
with the expected return and the variance expressed as
lTS__ll [iz—l,l
Ruvy = — =+ 7 g, % 1, Q1 Fs (22)
'S 1 ’ ’
and
_ _ Gkn -2 _—1<T -
Vivy = + ¥V @ X1/ Qi X1 (23)

s 1

Although the expression of the optimal portfolio weights
obtained from the (extended) Black—Litterman model looks
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similar to the one obtained in the case of the (objective)
Bayesian optimal portfolio (8), they are in fact completely
different due to the definition of X;_;; and S;_;; in (18).
In contrast to the latter approach which is based on the
observed sample only, the weights resulting from the Black—
Litterman model incorporate the expert knowledge about the
asset returns. As a result, the Black—Litterman Bayesian opti-
mal portfolios do not obviously belong to the efficient frontier
as given in (13), but they create their own set of optimal port-
folios (see (24)), which we call the Black—Litterman efficient
frontier. This frontier is obtained by solving (22) and (23)
with respect to y resulting in a set in the mean—variance space
where all mean—variance optimal portfolios lie following the
(extended) Black—Litterman model. It is given by

—T —
X1 QX1 (

2
(R—Romvi)” = 7 V—Vouvy), 24)
k.n
where
'S o1y q
R — e ad Y =T (25)
GMV.I s :_lu 1 GMV 1 1/8;—11,1 1

are the expected return and the variance of the Black—
Litterman global minimum variance portfolio, whose weights
are given by
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Also, in the case of the (extended) Black—Litterman model,
the efficient frontier is the parabola in the mean—variance
space. However, its location also depends on the expert
knowledge, that is on mgy and S, as well as on the beliefs on
this knowledge expressed by ry and dj. As a result, it might
significantly deviate from the Bayesian efficient frontier given
by (13). On the other side, the application of the Bernstein—
von Mises theorem (cf. Bernardo and Smith 2000) ensures
that as the sample size increases the differences between the
two efficient frontiers (13) and (24) as well as between the
optimal portfolios (8) and (21) become negligible.

3. Numerical study

The results of Section 2 are obtained from the viewpoint
of Bayesian statistics. In this section we compare these two
Bayesian approaches of the construction of optimal portfolios
between each other as well as to the method based on the fre-
quentist statistics (see, e.g. Jobson and Korkie 1981, Okhrin
and Schmid 2006, Bodnar et al. 2018, 2019).

3.1. Conventional approach

Let u and X be the mean vector and the covariance matrix
of the asset returns. Then the traditional approach to con-

~1
O — Sl (26) struct an optimal portfolio consists of two steps (see, e.g.
R A | Ingersoll 1987, Okhrin and Schmid 2006):
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Figure 1. The ratio ¢t ,/d, plotted as a function of k/n for k/n € [0,0.95) and n € {50, 100}.
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Table 1. Average absolute deviation (AD) of the estimated portfolio expected return and of the estimated portfolio variance from their
population values.

y =50 AD of portfolio expected return AD of portfolio variance

Bayesian

Black-Litterman

Sample n = 50 n=7175 n = 100 n = 130 n = 50 n=75 n = 100 n = 130

Robust, MVE

Robust, MCD
0.1017 0.0822 0.0713 0.0621 0.0020 0.0016 0.0014 0.0012
1.0889 0.7257 0.5438 0.4140 0.0218 0.0145 0.0109 0.0083

k=5 0.1186 0.0912 0.0768 0.0660 0.0024 0.0018 0.0015 0.0013
0.3824 0.2284 0.1751 0.1319 0.0076 0.0046 0.0035 0.0026
0.2494 0.1984 0.1661 0.1459 0.0050 0.0040 0.0033 0.0029
0.2541 0.1944 0.1660 0.1439 0.0051 0.0039 0.0033 0.0029
2.6794 1.7051 1.2657 0.9547 0.0536 0.0341 0.0253 0.0191

k=10 0.4127 0.2730 0.2183 0.1765 0.0083 0.0055 0.0044 0.0035
1.0597 0.5949 0.4299 0.3305 0.0212 0.0119 0.0086 0.0066
2.4460 0.9509 0.5799 0.3900 0.0489 0.0190 0.0116 0.0078
0.8878 0.6205 0.5116 0.4236 0.0178 0.0124 0.0102 0.0085
8.5916 4.8591 3.3871 2.4422 0.1718 0.0972 0.0677 0.0488

k=25 3.9959 1.9720 1.3382 0.9466 0.0799 0.0394 0.0268 0.0189
11.349 5.7082 3.3371 2.1340 0.2269 0.1142 0.0667 0.0427
25.837 9.3763 5.2220 3.2756 0.5167 0.1875 0.1044 0.0655
2.3320 1.2120 0.9153 0.7521 0.0466 0.0242 0.0183 0.0150
16.5132 8.1638 5.1806 3.5884 0.3303 0.1633 0.1036 0.0718

k=40 27.9857 7.4658 4.2657 2.8229 0.5597 0.1493 0.0853 0.0565
73.6087 20.148 12.158 7.5067 1.4722 0.4030 0.2432 0.1501
533.452 33.396 16.574 9.7837 10.669 0.6679 0.3315 0.1957

Notes: The smallest values are depicted in bold. Five considered estimators are the (objective) Bayesian estimator (first line in each panel),
the estimator resulting from the (extended) Black-Litterman model (second line in each panel), the sample estimator (third line in each
panel), the robust MVE estimator (fourth line in each panel), and the robust MCD estimator (fifth line in each panel) for several values of
k € {5,10,25,40} and n € {50, 75, 100, 130} with y = 50. The asset returns are assumed to be conditionally normally distributed with small
variances.

Table 2. Average absolute deviation (AD) of the estimated portfolio expected return and of the estimated portfolio variance from their
population values.

y =50 AD of portfolio expected return AD of portfolio variance

Bayesian

Black—Litterman

Sample n =50 n=7175 n = 100 n = 130 n =50 n=7175 n = 100 n =130

Robust, MVE

Robust, MCD
0.0111 0.0091 0.0079 0.0070 0.0002 0.0002 0.0002 0.0001
0.0932 0.0629 0.0473 0.0361 0.0018 0.0012 0.0009 0.0007

k=5 0.0133 0.0102 0.0086 0.0075 0.0003 0.0002 0.0002 0.0001
0.0292 0.0192 0.0154 0.0123 0.0006 0.0004 0.0003 0.0002
0.0389 0.0234 0.0177 0.0132 0.0008 0.0005 0.0003 0.0003
0.0256 0.0200 0.0171 0.0147 0.0005 0.0004 0.0003 0.0003
0.2397 0.1542 0.1155 0.0874 0.0048 0.0031 0.0023 0.0017

k=10 0.0431 0.0287 0.0229 0.0184 0.0009 0.0006 0.0005 0.0004
0.1079 0.0600 0.0435 0.0331 0.0021 0.0012 0.0009 0.0007
0.2498 0.0956 0.0584 0.0390 0.0050 0.0019 0.0012 0.0008
0.0878 0.0619 0.0512 0.0428 0.0018 0.0012 0.0010 0.0009
0.7786 0.4504 0.3171 0.2310 0.0156 0.0090 0.0063 0.0046

k=25 0.4062 0.2003 0.1355 0.0966 0.0081 0.0040 0.0027 0.0019
1.1483 0.5773 0.3361 0.2148 0.0230 0.0115 0.0067 0.0043
2.6215 0.9502 0.5253 0.3290 0.0524 0.0190 0.0105 0.0066
0.2280 0.1200 0.0915 0.0747 0.0046 0.0024 0.0018 0.0015
1.4380 0.7473 0.4825 0.3379 0.0288 0.0149 0.0096 0.0068

k=40 2.8277 0.7556 0.4309 0.2848 0.0565 0.0151 0.0086 0.0057
7.3905 2.0316 1.2234 0.7575 0.1478 0.0406 0.0245 0.0151
52.933 3.3593 1.6674 0.9872 1.0587 0.0672 0.0333 0.0197

Notes: The smallest values are depicted in bold. The five estimators are the (objective) Bayesian estimator (first line in each panel), the
estimator resulting from the (extended) Black—Litterman model (second line in each panel), the sample estimator (third line in each panel),
the robust MVE estimator (fourth line in each panel), and the robust MCD estimator (fifth line in each panel) for several values of k €
{5, 10,25,40} and n € {50,75, 100, 130} with y = 50. The asset returns are assumed to be conditionally normally distributed with large
variances.
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Table 3. Average absolute deviation (AD) of the estimated portfolio expected return and of the estimated portfolio variance from their
population values.

y =50 AD of portfolio expected return AD of portfolio variance

Bayesian

Black—Litterman

Sample n = 50 n=7175 n = 100 n = 130 n =50 n=7175 n = 100 n = 130

Robust, MVE

Robust, MCD
0.1490 0.1209 0.1088 0.0956 0.0030 0.0024 0.0022 0.0019
1.2668 0.8216 0.6116 0.4632 0.0253 0.0164 0.0122 0.0093

k=5 0.1971 0.1480 0.1268 0.1076 0.0039 0.0030 0.0025 0.0022
0.7206 0.5815 0.5211 0.4857 0.0144 0.0116 0.0104 0.0097
0.7974 0.6005 0.5240 0.4836 0.0159 0.0120 0.0105 0.0097
0.3728 0.3008 0.2633 0.2272 0.0075 0.0060 0.0053 0.0045
3.3112 2.0669 1.5232 1.1441 0.0662 0.0413 0.0305 0.0229

k=10 0.7125 0.4794 0.3833 0.3089 0.0143 0.0096 0.0077 0.0062
2.3178 1.6962 1.4892 1.3501 0.0464 0.0339 0.0298 0.0270
3.6668 2.1039 1.6832 1.4458 0.0733 0.0421 0.0337 0.0289
1.4528 1.1011 0.9058 0.7880 0.0291 0.0220 0.0181 0.0158
11.873 6.8656 4.7531 3.4785 0.2374 0.1373 0.0951 0.0696

k=25 6.8816 3.5138 2.3958 1.7749 0.1376 0.0703 0.0479 0.0355
18.522 10.176 7.0974 5.6988 0.3704 0.2035 0.1419 0.1140
29.560 14.142 10.194 8.1919 0.5912 0.2828 0.2039 0.1638
3.2387 2.3571 1.9424 1.6140 0.0648 0.0471 0.0388 0.0323
22.5595 12.4591 8.3420 5.9158 0.4512 0.2492 0.1668 0.1183

k =40 46.3159 12.7395 7.5904 5.1566 0.9263 0.2548 0.1518 0.1031
117.427 33.2640 20.775 14.454 2.3485 0.6653 0.4155 0.2891
541.115 42.8432 25.721 18.805 10.822 0.8569 0.5144 0.3761

Notes: The smallest values are depicted in bold. The five estimators are the (objective) Bayesian estimator (first line in each panel), the
estimator resulting from the (extended) Black—Litterman model (second line in each panel), the sample estimator (third line in each panel),
the robust MVE estimator (fourth line in each panel), and the robust MCD estimator (fifth line in each panel) for several values of k €
{5,10,25,40} and n € {50,75, 100, 130} with y = 50. The asset returns are assumed to be conditionally multivariate z-distributed with 5
degrees of freedom and small variances.

Table 4. Average absolute deviation (AD) of the estimated portfolio expected return and of the estimated portfolio variance from their
population values.

y =50 AD of portfolio expected return AD of portfolio variance

Bayesian

Black-Litterman

Sample n =50 n=75 n = 100 n =130 n =50 n=7175 n = 100 n =130

Robust, MVE

Robust, MCD
0.0150 0.0123 0.0110 0.0096 0.0003 0.0002 0.0002 0.0002
0.1085 0.0710 0.0533 0.0405 0.0021 0.0014 0.0010 0.0008

k=5 0.0196 0.0149 0.0127 0.0107 0.0004 0.0003 0.0003 0.0002
0.0671 0.0528 0.0472 0.0436 0.0013 0.0010 0.0009 0.0009
0.0737 0.0544 0.0475 0.0435 0.0014 0.0011 0.0009 0.0008
0.0374 0.0300 0.0263 0.0225 0.0007 0.0006 0.0005 0.0004
0.2958 0.1863 0.1386 0.1043 0.0059 0.0037 0.0028 0.0021

k=10 0.0706 0.0474 0.0379 0.0303 0.0014 0.0009 0.0008 0.0006
0.2242 0.1613 0.1412 0.1271 0.0045 0.0032 0.0028 0.0025
0.3534 0.1998 0.1592 0.1361 0.0070 0.0040 0.0032 0.0027
0.1476 0.1116 0.0912 0.0792 0.0023 0.0022 0.0018 0.0015
1.0651 0.6335 0.4441 0.3277 0.0213 0.0127 0.0089 0.0065

k=25 0.6878 0.3502 0.2383 0.1763 0.0137 0.0070 0.0048 0.0035
1.8374 1.0074 0.6999 0.5614 0.0367 0.0201 0.0140 0.0112
29172 1.3960 1.0026 0.8062 0.0583 0.0279 0.0200 0.0161
0.3257 0.2392 0.1970 0.1630 0.0065 0.0048 0.0039 0.0033
1.9528 1.1312 0.7753 0.5575 0.0391 0.0226 0.0155 0.0111

k=40 4.6225 1.2720 0.7580 0.5142 0.0924 0.0254 0.0152 0.0103
11.768 3.3082 2.0689 1.4391 0.2354 0.0662 0.0414 0.0288
49.947 4.2723 2.5567 1.8670 0.9989 0.0854 0.0511 0.0373

Notes: The smallest values are depicted in bold. The five estimators are the (objective) Bayesian estimator (first line in each panel), the
estimator resulting from the (extended) Black-Litterman model (second line in each panel), the sample estimator (third line in each panel),
the robust MVE estimator (fourth line in each panel), and the robust MCD estimator (fifth line in each panel) for several values of k €
{5, 10, 25,40} and n € {50, 75,100, 130} with y = 50. The asset returns are assumed to be conditionally multivariate ¢-distributed with 5
degrees of freedom and large variances.
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Figure 2. Sample optimal portfolios (squares), (objective) Bayesian optimal portfolios (circles), and the Black—Litterman optimal portfolios
(triangulares) for the risk aversion coefficient of y € {10, 25,50, 100}, for the sample case of n = 130 and for the portfolio dimension of
k € {5,10,25,40} in the case of weekly data.

(1) The optimization problem (2) The unknown population quantities are replaced by

subjcttow'1 = 1

27
is solved resulting in the expression of optimal port-
folio weights presented in terms of the population
(unknown) parameters g and X:

wip— %WTZW —> max

D | i .
Wpyy = m —+ Y RIL Wlth
o, Tzt
R=z' -2 0% (28)
1'x"'1

with the expected return and the variance expressed as

1" 'p
R = — + -1 TR and
Py 1/2711 Y " "
1
Vpy = —— +v 2n'Ru. (29)

1z 1

their sample counterparts, i.e. by the sample mean
vector and the sample covariance matrix given by

f=%_, and ¥ =4d,S,_, with d,=

n—1"

Then the sample optimal portfolio weights are
obtained by
il

= +97'd7'Q,_ % 30
I/St—_lll y n Qt 1&¢—1 ( )

Ws,y

with the sample estimators for the expected return and
for the variance given by

178X, it B
Rsy = w +y d, X_,Q_ X1 and
n 2 5-1<T -
Vsy = s +yd, X 1Q X1 (31)
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Figure 3. The sample efficient frontier, the (objective) Bayesian efficient frontier, and the Black-Litterman efficient frontier for n = 130 and

k € {5,10, 25,40} in the case of weekly data.

In the similar way, the sample efficient frontier is con-
structed by (see Bodnar and Schmid 2008, 2009, Kan and
Smith 2008) and it is expressed as

—T —
X, Q,_(X,_
(R— RGMV,S)2 = 'ldt—m (V—=Veuvs), (32
where
1'S7' %, .,
Remv,s = W and Vguyvs = @ (33)

Formula (32) presents the sample estimator of the population
efficient frontier.

3.2. Comparison of the three estimators of the efficient
frontier

It is remarkable that the expression of the sample optimal port-
folio weights has the same structure as the weights of the opti-
mal portfolios obtained following the (objective) Bayesian

approach. The only difference is that ¢, in (8) is replaced
by d, in (30). Similar results are also obtained in the case
of the efficient frontier which is fully determined by three
parameters: the mean and the variance of the global minimum
variance portfolio and the slope parameter. While the formu-
lae in the case of the mean of the global minimum variance
portfolio coincide, this is not longer true for the variance of
the global minimum variance portfolio and the slope coef-
ficient. The (objective) Bayesian approach leads to a larger
value of the variance and to a smaller value of the slope
parameter. The difference between the corresponding expres-
sions obtained by the sample estimation or derived from the
Bayeian posterior distribution as in Section 2 can be con-
siderable when the portfolio dimension is comparable to the
sample size as shown in figure 1, where we plot the ratio
ckn/dn as a function of k/n for n € {50,100}. We observe
that when the number of assets k gets closer to the sample
size, even for a moderate ratio of k/n = 0.6, the (objective)
Bayesian estimator and the sample estimator deviate. If the
number of assets corresponds almost to the sample size, the
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Comparison of efficient frontiers, n =78

—— Bayesian frontier

3.0

Sample frontier

—— BL frontier

25
|

1.5 2.0
|

1.0

0.0
1

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

Comparison of efficient frontiers, n = 130

3.5
|

3.0
|

1.5

1.0

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

\"

Figure 4. The sample efficient frontier, the (objective) Bayesian efficient frontier, and the Black—Litterman efficient frontier for k = 40 and

n € {52,78,104, 130} in the case of weekly data.

estimators deviate considerably. Since it is sometimes neces-
sary to restrict an estimation to a smaller sample size, e.g. after
a structural break in the data, the difference in the estimators
has to be considered. To this end, we note that such a simple
comparison of the estimated efficient frontiers cannot be per-
formed in the case of the Black-Litterman efficient frontier
due to a more complicated structure of the latter which also
depends on the expert knowledge about the parameters of the
asset return distribution.

It is a well-known fact that the sample efficient fron-
tier is overoptimistic and overestimates the location of the
population efficient frontier in the mean—variance space (cf.
Basak et al. 2005, Siegel and Woodgate 2007, Bodnar and
Bodnar 2010). In contrast, the Bayesian approach provides
an improved procedure which shrinks the sample efficient
frontier by increasing the estimated variance of the global
minimum portfolio and reducing the slope parameter. We will
illustrate this point in Section 4 on real data described in
Section 4.1.

3.3. Simulation study

We provide a detailed comparison of the estimators of
the optimal portfolio weights, namely the suggested (objec-
tive) Bayesian approach, the estimator resulting from the
(extended) Black-Litterman model, and the sample estima-
tor, via simulations in this section. In the comparison study
we also include two robust estimators of optimal portfo-
lio weights (see, Chapter 20 in Wiirtz et al. 2015), which
are based on the robust estimation of the mean vector and
of the covariance matrix known as the minimum volume
ellipsoid (MVE) estimator (see, e.g. Rousseeuw 1984) and
the minimum covariance determinant (MCD) estimator (see,
e.g. Rousseeuw and Driessen 1999). The aim of the Monte
Carlo study is to assess the performance of each strategy
in the estimation of the expected return and the variance of
optimal portfolios. Such results will provide a better under-
standing about potential improvements which can be obtained
by employing the new Bayesian approach.
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Figure 5. Sample optimal portfolios (squares), (objective) Bayesian optimal portfolios (circles), and the Black-Litterman optimal portfolios
(triangulares) for the risk aversion coefficient of y € {10, 25, 50, 100}, for the sample case of n = 130 and for the portfolio dimension of

k € {5,10,25,40} in the case of monthly data.

The results of Proposition 4.6 of Bernardo and Smith (2000)
ensure that the conditional multivariate normal distribution
satisfies the imposed assumptions of infinitely exchangeabil-
ity and of multivariate centred spherically symmetry. For
that reason, we assume that the asset returns are indepen-
dently and identically distributed given mean vector p =
(i1,...,ux)" and covariance matrix ¥ with the condi-
tional distribution given by X;|u, ¥ ~ N (., X). In order to
avoid any restriction to specific values of u, the elements
of this vector were generated from the uniform distribu-
tion on [—0.01,0.01] in each simulation run, that is wu; ~
Unif (—0.01,0.01). For the covariance matrix we consider its
decomposition into the correlation matrix R and the diagonal
matrix with standard deviations D = diag(d,,...,d), i.e.
¥ = DRD. Two choices of volatility are considered: (i) low
volatility with d; ~ Unif (0.002,0.005) and (ii) high volatil-
ity with d; ~ Unif (0.005,0.02). The correlation matrix is set
toR = (1 — p)I; + pJr with p = 0.6, k-dimensional identity
matrix I, and the k-dimensional matrix of ones J;. We put

k € {5,10,25,40}, n € {50,75, 100, 130}, and y = 50. In the
case of the (extended) Black—Litterman model the precision
parameters are ro = 100 and dy = 100, while my and S, are
obtained by perturbing g and ¥ as mg = p + 0.5¢ and Sy =
¥ +0.5A with & = (¢e1,...&)" and A = diag(8},...,8})
where ¢; ~ Unif (—0.01,0.01) and §; ~ Unif (0.001,0.005).
The results in the tables are based on B = 10000 independent
repetitions.

As a measure of performance, the average absolute devi-
ation from the resulting estimator to the corresponding true
population value was computed for the portfolio expected
return and the portfolio variance. The values are summarized
in table 1 in the case of low volatilities and in table 2 for high
volatilities. We observe that the application of the new objec-
tive Bayesian estimation strategy leads to the considerable
improvements in terms of both performance measures mean-
ing a better point estimation of both the portfolio expected
return and the portfolio variance. The impact of the improve-
ment increases as the portfolio dimension becomes larger.
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Figure 6. The sample efficient frontier, the (objective) Bayesian efficient frontier, and the Black—Litterman efficient frontier for n = 130 and

k € {5,10, 25,40} in the case of monthly data.

Especially, when k = 40 and n = 50 the new Bayesian esti-
mator results in the values of the average deviation which
are 12 times smaller than the one computed for the sam-
ple portfolio in the case of the portfolio expected return and
about 11.7 times smaller in the case of the variance when the
volatilities are low, while both these values are above 12.2
for high volatilities. These findings are in line with the results
presented in figure 1. Also, a slightly better performance is
observed in the case of the (extended) Black-Litterman esti-
mation strategy when the portfolio dimension is large. In this
case, it is ranked on the second place by using both criteria
when k£ = 40 and n = 50, while it is on the third place in all
other cases showing that the influence of the expert knowl-
edge could have a great impact when the sample size is not
large. Similar findings are also present for two robust portfo-
lio selection strategies, which are ranked on the fourth and on
the fifth places. Also, in these cases, the sample size is not
large enough with respect to the portfolio dimension, which
causes a bad performance of these two strategies. Finally, we
point out that with the increase of the sample size, the val-
ues of the two performance measures becomes smaller and in

the case of k = 5 and n = 130 they are almost the same for
the new Bayesian approach and the sample method while the
Bayesian approach is still more preferable.

3.4. Robustness analysis

Next, we investigate how robust are the numerical findings
obtained in the previous section to the deviation from the
conditional normality. For this purposed, we employ the con-
ditional multivariate ¢-distribution with 5 degrees of freedom,
which has the same mean vector g and the same covariance
matrices X as in the case of the model from Section 3.3.
Furthermore, it is noted that in contrast to the conditional
multivariate normal distribution, the conditional multivari-
ate z-distribution does not belong to the family of infinitely
exchangeability and multivariate centred spherically symmet-
rical distributions.

The replacement of the conditional multivariate normal
distribution by the conditional multivariate z-distribution
influences the values of the average absolute deviation com-
puted in both cases of the portfolio expected return and of
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Figure 7. The sample efficient frontier, the (objective) Bayesian efficient frontier, and the Black—Litterman efficient frontier for k = 40 and

n € {52,78,104, 130} in the case of monthly data.

the portfolio variance. All these values become considerably
larger which is explained by the heavy-tailed nature of the
multivariate z-distribution (see tables 3 and 4). On the other
side, the ranking between the five estimation strategies does
not change. The new (objective) Bayesian approach outper-
forms the other four competitors in all of the considered cases
similarly when the observation data were generated from
the multivariate normal distribution. Also, in the case of the
large-dimensional portfolio consisting of 40 assets and the
sample size equal to n = 50, the (extended) Black-Litterman
approach is ranked on the second place for both low and high
volatilities, while the sample estimator performs better in the
rest of the considered cases.

4. Empirical illustration

4.1. Data

For the first empirical illustration, we use weekly returns from
a collection of assets of the S&P500, allowing for portfolios

ranging from 5 to 40 assets. A similar setup is also used in the
second empirical illustration where monthly returns instead
of weekly returns are used. The parameters are estimated with
sample sizes of n € {52,78, 104, 130}, corresponding to one
year up to two and a half years of weekly data or to approx-
imately four and a half up to eleven years of monthly data.
All the data end on the 8th of October 2017. The constructed
portfolios consist of k € {5, 10, 25,40} assets. The hyperpa-
rameters in the extended Black-Litterman model are obtained
by employing the empirical Bayes approach (see, e.g. Gelman
et al. 2014, Bauder et al. 2020). This allows us to anal-
yse the behaviour of the proposed model not only in terms
of economic risk but also regarding statistical estimation
uncertainty.

4.2. Results for weekly data

As mentioned in Section 3, there is a distinct difference
between the classical sample estimators and the (objective)
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Figure 8. Credible intervals for the return of optimal portfolios with varying risk attitudes for weekly data obtained by employing the
(objective) Bayesian approach. The sample sizes are chosen to be n € {52,78, 104, 130} and the portfolio dimension is fixed to k = 25. The

confidence level is set to o = 0.05.

Bayesian estimators proposed in this paper. With this con-
clusion and the fact that the sample efficient frontier over-
estimates the population efficient frontier, we expect the
estimators for the expected return and the variance to be
larger in the Bayesian case compared to the sample estima-
tors indicating that the (objective) Bayesian approach also
takes the estimation risk into account in its construction which
in practice automatically leads to smaller values of the risk
aversion coefficient in comparison to the conventional case.
Figure 2 illustrates this presumption: fixing n = 130 and
considering different portfolio sizes k € {5, 10, 25, 40} for dif-
ferent risk attitudes y € {10,25,50, 100}, we find that for
the same value of the risk coefficient y and for the same
portfolio size, the (objective) Bayesian estimator performs
as expected compared to the sample estimator, whereas the
Black-Litterman optimal portfolios exhibit a more exagger-
ated behaviour. The latter results are related to the usage of
the additional information in the construction of the Black—
Litterman optimal portfolios which, in particular, can lead to

the increase of uncertainty especially when the hyperparam-
eters differ considerably from the corresponding population
values as shown in the simulation study of Section 3. Further-
more, the difference in the estimators increases if the number
of assets gets closer to the sample size, as illustrated in figure 1
or when y decreases, i.e. for less risk averse investors the
impact of parameter uncertainty becomes larger.

Regarding the efficient frontier, figure 3 shows the esti-
mated efficient frontiers for a fixed sample size of n = 130
and varying portfolio sizes k € {5, 10,25,40} in all three
cases, namely the sample efficient frontier, the (objective)
Bayesian efficient frontier, and the Black-Litterman efficient
frontier. The (objective) Bayesian efficient frontier lies always
below the sample efficient frontier and therefore exhibits less
overestimation of the population efficient frontier. In contrast,
the Black-Litterman frontier exhibits even a stronger overes-
timation compared to the population efficient frontier due to
the uncertainty related to hyperparameters which are present
in the model. Furthermore, figure 3 also illustrates the finding
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Figure 9. Credible intervals for the return of optimal portfolios for the Black-Litterman model with varying risk attitudes for weekly data.
The sample sizes are chosen to be n € {52,78,104, 130} and the portfolio dimension is fixed to k = 25. The confidence level is set to

a = 0.05.

shown in figure 1. The estimators of the efficient frontier devi-
ate stronger when the portfolio size gets closer to the sample
size. This fact is also illustrated in figure 4 for fixed k = 40
and varying n € {52,78, 104, 130}. The (objective) Bayesian
and the sample estimated efficient frontiers coincide more
the larger the sample size n is, whereas the Black-Litterman
efficient frontier appears to exhibit stronger overestimation
with growing sample size. This is in line with the theoreti-
cal implications. Finally, we also observe the increase in the
slope parameter of the efficient frontier when the portfolio
dimension increases indicating the well-documented positive
effect of portfolio diversification.

4.3. Results for monthly data

Figure 5 shows the location of the sample optimal port-
folios, of the (objective) Bayesian optimal portfolios, and
of the Black-Litterman optimal portfolios computed for the
same values of the risk aversion coefficient y, portfolio

dimension k, and sample size n as in figure 2 in the case of
monthly data. The distinct difference between the classical
sample estimators, the (objective) Bayesian estimators, and
the Black-Litterman optimal portfolios is also identified for
monthly data. In contrast to figure 2 we observe a consider-
able reduction in both the expected returns and the variances
of all constructed optimal portfolios, while their ordering with
respect to the location in the mean—variance space is the
same as the one observed in figure 2. For the same value
of the investor risk aversion coefficient the sample optimal
portfolios exhibit smaller values of the expected return and
the variance following by the (objective) Bayesian optimal
portfolio which incorporate the parameter uncertainty into
account in their construction. Finally, the uncertainty about
the hyperparameters move the Black—Litterman optimal port-
folios futher in the direction of larger values of the expected
return and variance.

Similar findings are also present in figures 6 and 7 where
the sample efficient frontier, the (objective) Bayesian efficient
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Figure 10. Credible intervals for the return of optimal portfolios with varying risk attitudes for monthly data obtained by employing the
(objective) Bayesian approach. The sample sizes are chosen to be n € {52,78, 104, 130} and the portfolio dimension is fixed to k = 25. The

confidence level is set to o = 0.05.

frontier, and the Black—Litterman efficient frontier are drawn
for several values of portfolio dimension k and sample size
n. Both the sample efficient frontier and the Black—Litterman
efficient frontier lie above the (objective) Bayesian efficient
frontier tending to provide a considerable overestimation of
the population efficient frontier especially when the port-
folio dimension is large in comparison to the sample size.
In figure 7 we also observe that sample efficient frontier is
located above the other two estimators when the sample size
is only slightly larger than portfolio dimension k& = 40 indi-
cating its poor performance in such situations independently
of the data frequency used in the estimation. On the other
side, the Black-Litterman efficient frontier demonstrates its
dependence on the chosen hyperparameters used in its con-
struction. The considerable sample sizes in both figures 6
and 7 seem to be not large enough to reduce the effect of
the hyperparameters on the resulting estimator of the efficient
frontier. Better results are expected for larger sample sizes fol-
lowing the Bernstein—von Mises theorem (cf. Bernardo and
Smith 2000).

4.4. Posterior interval prediction

In contrast to the conventional procedure, both the (objec-
tive) Bayesian approach and the application of the Black—
Litterman model provide also the whole posterior predictive
distribution of the optimal portfolio return and not only
the point estimator of its weights. Using data described in
Section 4.1, we calculate in this section the prediction inter-
vals for the optimal portfolio returns for several values of
the risk-aversion coefficient y € {10,20,...,100}, for k €
{5,25}, and for n € {52,78, 104, 130} in the case of weekly
data (see, figures 8 for the (objective) Bayesian approach
and 9 for the Black-Litterman model) and in the case of
monthly data (see, figures 10 for the (objective) Bayesian
approach and figure 11 for the Black—Litterman model).

The prediction intervals in figures 8§ — 11 are obtained by
using the following procedure:

(a) Fix y and calculate the expected return and the vari-
ance of the corresponding mean—variance optimal
portfolio as given (9) and (10) for the (objective)
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(b)

(©)

(d)

(e)

Bayesian approach and in (22) and (23) for the Black—
Litterman model;

For chosen y, compute the weights of the opti-
mal mean—variance portfolio wyy,, using (8) for the
(objective) Bayesian approach and (21) for the Black—
Litterman model;

In using wyy, apply the results of Theorem 1 and
Algorithm 1 for the (objective) Bayesian approach and
Theorem 2 and Algorithm 2 for the Black-Litterman
model to get a sample of optimal portfolio returns
denoted by R,(V,bz/)y forb=1,...,B;

Fix the significance level of the prediction interval «
and compute the «/2- and (1 — «/2)- quantiles from
the empirical distribution of R,(f,%,’y, b=1,...,B in
both cases of the (objective) Bayesian approach and
of the Black—Litterman model;

For the computed value of Vv, in part (a), plot
the point prediction Ryy, from (a) together with
the prediction interval from (d). This procedure
is performed separately for the sample R%/,y for

b=1,...,B obtained by employing the (objective)
Bayesian approach and for a similar sample obtained
by using the Black—Litterman model.

The order of the efficient portfolios given in figures 8— 11
is directly determined by the risk aversion coefficient. The
smaller y, the riskier is the portfolio and lies therefore more
right on the efficient frontier. We observe that the optimal
efficient portfolios are shifted to the right for growing sam-
ple sizes. But the focus lies here on the credible intervals for
a confidence level of o = 0.05. The first observation is that
no credible interval covers negative values, implying positive
portfolio returns with probability of 95%. The second obser-
vation is that the credible intervals become larger the more
risky an efficient portfolio becomes—which is in line with the
theory. And the third observation is that these credible inter-
vals for riskier efficient portfolios become larger regardless
of the increased sample size. Hence, the decrease in estima-
tion risk resulting from a larger sample is outweighed by the
economic risk.
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As in the previous section, no differences between the
results obtained by using weekly data or monthly data are
detected. Most noteworthy is the case of n = 130 for monthly
data as shown in figures 10 and 11, covering the financial cri-
sis of 2008, showing a drastic drop in returns compared to
different periods but also exhibiting credible intervals which
do not cover negative values. To this end, we note that the
optimal Black-Litterman portfolios are located further on the
efficient frontier in comparison to the (objective) Bayesian
optimal portfolio computed for the same value of the risk
aversion coefficient and they also have larger prediction inter-
vals indicating larger amount of uncertainty which is present
when the optimal Black-Litterman portfolios are constructed.

5. Conclusion

The mean—variance analysis of Markowitz presents a funda-
mental method of portfolio construction which is very popular
in the financial literature today. It provides an investor with
the portfolio weights which determine the structure of the
optimal portfolio. However, the investor faces a number of
difficulties in implementing this procedure in practice. One
of the main pitfalls of the mean—variance analysis is that its
solution is presented in terms of unobservable quantities, the
parameters of the asset returns distribution. As a result, the
optimization problem is performed in two steps. After finding
the analytical solution, the optimal portfolio is constructed by
replacing the unknown parameters with their estimates. Due
to the considerable influence of parameter uncertainty on the
investment process, this procedure leads only to sub-optimal
portfolios.

We deal with the problem from the viewpoint of Bayesian
statistics. The optimization problem is formulated in terms of
the posterior predictive distribution which does not involve
unknown quantities. Consequently, we deal with parameter
uncertainty before solving the optimization problem. This
approach allows us to find optimal portfolio weights which
now depend only on historical observations of the asset
returns. The advantages of the approach are shown both
theoretically and empirically. In particular, we show that
the constructed Bayesian efficient frontier improves on the
overoptimism present in the sample efficient frontier. Another
important advantage of the suggested procedure is that it
allows us not only to construct an optimal portfolio based on
the posterior predictive distribution, but also leads to an intel-
ligent technique by performing an interval forecast of future
realizations of optimal portfolio returns which are obtained
by employing the derived stochastic representation of the
posterior predictive distribution.
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Appendix

Proof of Theorem 1  The assumptions of infinitely exchangeability
and multivariate centred spherically symmetry implies (see, e.g.
Bernardo and Smith 2000, Proposition 4.6) that the asset returns
are independently and identically distributed given the mean vec-
tor u and the covariance matrix X with the conditional distribution
given by X;|u, T ~ Ni(i, ) (k-dimensional normal distribution
with mean vector g and covariance matrix X). Under this model
with @ = (u, X), Jeffreys’ prior is given by

T, X) o |B|7*ED/2] (A1)

which leads to the posterior expressed as

|7(n+k+1)/2

n _
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1
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where X,_1 and S;_; are given in the statement of the theorem.

From (A2) we obtain that the posterior distribution of X is the
inverse Wishart distribution (see Gupta and Nagar 2000 for the
definition and properties) given by

T ~ IWpn+k+1,8,_1(p)) with

Si—1() = Si—1 +n(p — KD —%—1) |- (A3)

Furthermore, integrating out ¥ we get the marginal posterior for u
expressed as

1
T (W[X(—1)) cx/
b))

| B[~ HFD/2 oy {——tr
0 2

x [0 - W& —w " +5-027']} 4z

o n(®e—t — ) Fi—1 — )|+ ST,

where the last equality follows by observing that the function under
the integral is the density function of the inverse Wishart distribution
with n 4+ k 4 1 degrees of freedom and parameter matrix n(X;—1 —
WE—1 —m) " +S,_1. The application of Silvester’s determinant
theorem leads to

_ I —n/2
7 (mlxg-1) o (14 0@ = m) S G —w) L (A

which proves that p|x;—1 ~ fx(n — k,X;—1, (1/n(n — k))S;—1) (k-
dimensional multivariate ¢-distribution with n — k degrees of free-
dom, location vector X;_1, and scale matrix (1/n(n — k))S;—1).
Because X;_,,...,X; are independent given p and X as well
as conditionally normally distributed, we get that the conditional
distribution X, |, X coincides with X, ;|u, X, X(,_1) is given by

Xpolw, T, X—1) ~ Nw p,wsw),

where the last equality proves that X, ; depends on u, X, and x(;_1)
only over w' p and w' Tw.
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The application of Theorem 3.2.13 in Muirhead (1982) leads to

w'!Zw d 1
wIS_1(ww £

QU

(A5)

where & ~ Xﬁik 41 and is independent of g and X(_1). Then the
stochastic representation of X, ; is given by

JWTSi(ww

d
Y ==

where 1) ~ t1(n — k + 1,0, 1) is independent of p and X;_1.
Finally, from the properties of the multivariate z-distribution, we
obtain

-
_ w'S,_ 1w
wip—w'x_|~n (n—k,(), d )

n(n — k)

and, consequently,

d _
Xps S W X+ /WIS w

T1 + 1+ ‘L'lz (%)
NGO n—kyn—k+1

where 11 and 72 are independent with 71 ~ #,_; and 72 ~ t,;,_j+1.

Proof of Corollary 1. In using the stochastic representation given
in Theorem 1 and the properties of the 7-distribution, we get

E(X;|X¢—1)) =W X—1 + /W S;_1w

2
E(r1) crl 14 0 E(r2)
Jnn —k) n—k| Jn—k+1
=WTi;,1

and

Var(X¢|x¢—1))

= WTS;,lear

S Y PO - S
J/nn—k) n—kn—k+1

2 2 2

T 7 7 &)
= S, E{ — E 1 _—
W tlw( (n(n—k)>+ << +n—k)n—k+1)

T1 T12 (%)
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1
n—k

1
= WTSt—IW (7]{)Var(r1) + (1 +

Var(tl))
n(n

1
X mV(J"(TZ))

1 n—k
nmn—kyn—k—2
1 n—k+1
X
n—k+1ln—k—1

T \n—k-—1

Proof of Theorem 2. Following the proof of Theorem 1, the
marginal posterior of u under the informative prior (16)—(17) is
given by (see, e.g. Bauder et al. 2020, Proposition 2)

1 n—k
.
—w'S,_ 1
v "W( +< +n—kn—k—2>

2n—k—1
nn—k—1)n—k—-2)

) WTSI_ 1W.

1
X;1 ~ +dy — 2k, X;—17, S
IXp—1 k(n ) S T o do — 20 1,1)
X/ m
with @u:w and
n—+ro

- - T
my — Xy— moy — X;—
Sr—1,1=Sz—1+So+nro( 0 — X;—1,7) (Mg — X;—1,7) ’
n+ry

while the conditional posterior of X given u is expressed as
g, X1 ~ IWi(n+do + 1,87 ;(w)) with
Si 1) =Si11+ (4 ro)(m — K1) — K1) |

Because X;_,,...,X; are independent given p and X as well as
conditionally normally distributed, we get that the conditional dis-
tribution X, ,|p, X coincides with Xp|p, X, X;—1) and is given
by

Xpalit, 2, Xq—1) ~ N(w' p,w' Zw),

where the last equality proves that X),; depends on u, X, and x(—1)

only over w' g and w' Zw.
From Muirhead (1982, Theorem 3.2.13) we get

wTw a1

_ = —, A6
WIS ow & (h0)

2

where &5 ~ Xotdy—

2t and is independent of u and X(,_1).Hence,

JWTSE L (W
Jntdo—2k+1
where 12 ~t1(n+dop—2k+1,0,1) is independent of @ and
X(I*l)'
Finally, from the properties of the multivariate #-distribution, we
obtain

d
Xp,t = WT’L +

T

T T— w Stfl,IW
w —W Xp—17~ 1 |n+dy— 2k,0, s
n t—1,1 1( 0 (n+r0)(n+d0—2k))

and, consequently,

d T— 1
Xpr =W X117 ++/WTS_ w(
Pl H T\ VoGt do - 20

n m

+ >
n+dy—2k J/n+dy—2k+1

where 71 and 7, are independent with ny ~ 44,2« and np ~
byt dy—2k+1-
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Var(n)
(n+ro)(n +do — 2k)

+(1+ Var(m) ) Var(n2) )

Proof of Corollary 2. The application of Theorem 2 leads to

= WTSt_lJW <
EX[X¢—1)) = W' X1

and n4dy—2k) n+dy—2k+1
Var(X|x(—1) = W' S 11w CwWTS W ( 1
” T\ i+ ro)(n+do — 2k = 2)
xVar( 1 1
V(n+ro)(n+do —2k) (1
5 n+dy—2k—2)n+dy—2k—1
1+ m n2 1
n+do—2k /n+dy—2k+1 = m
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