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Abstract Aerosol optical depths (AODs) from the new Himawari-8 satellite instrument have been
assimilated in a dust simulation model over East Asia. This advanced geostationary instrument is capable
of monitoring the East Asian dust storms which usually have great spatial and temporal variability. The
quality of the data has been verified through a comparison with AErosol RObotic NETwork AODs. This
study focuses on extreme dust events only when dust aerosols are dominant; promising results are obtained
in AOD assimilation experiments during a case in May 2017. The dust emission fields that drive the
simulation model are strongly improved by the inverse modeling, and consequently, the simulated dust
concentrations are in better agreements with the observed AOD as well as ground-based observations of
PM10. However, some satellite AODs show significant inconsistence with the simulations and the PM10
and AErosol RObotic NETwork observations, which might arise from retrieval errors over a partially
clouded scene. The data assimilation procedure therefore includes a screening method to exclude these
observations in order to avoid unrealistic results. A dust mask screening method is designed, which is based
on selecting only those observations where the deterministic model produces a substantial amount of dust.
This screen algorithm is tested to give more accurate result compared to the traditional method based on
background covariance in the case study. Note that our screen method would exclude valuable information
in case the model is not able to simulate the dust plume shape correctly; hence, applications in related
studies require inspections of simulations and observations by user.

1. Introduction
East Asia is affected by severe dust storms every year, especially in late spring and early summer. These dust
storms usually originate from the Mongolia and Gobi Deserts and then move to the densely populated east-
ern areas of China by the prevailing winds. Occasionally, the dust clouds even reach the Korean peninsula
and Japan. Though those dust events only last for a few days, they carry a great amount of dust aerosols
to the downwind regions. The substantial dust particles not only pose great threats to human health and
social activities but also influence the atmospheric environments and biochemistry (Calil et al., 2011; Shao
& Dong, 2006; Wu et al., 2016).

To understand the formation and spread of dust, simulation models have been developed that describe
the dust life cycle of emission, transport, and deposition (Gong et al., 2003; Liu et al., 2003; Wang et al.,
2000). Those models not only help us to better understand the characteristics of the dust storms but also
are essential elements of dust forecasting and early warning systems. However, huge discrepancies usu-
ally exist in simulated dust concentrations even in case the different modeling systems use the same dust
emission parametrization scheme, boundary conditions, and meteorological data (Huneeus et al., 2011; Niu
et al., 2008). It is also reported that the differences between dust simulations and real observations can be as
large as 2 orders of magnitudes. The uncertainty in the dust emission modeling is the main reason for such
large differences (Gong & Zhang, 2008; Uno et al., 2006). The high levels of uncertainties in dust emission
parametrization are due to insufficient knowledge about the dust lifting itself, the lack of input data on the
soil characteristics and the impossibility for the models to resolve the fine-scale variability in wind fields
that drive the dust emission (Escribano et al., 2016; Foroutan & Pleim, 2017; Foroutan et al., 2017).
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Data assimilation provides a method to feed measurements into the dynamic models, in order to improve
the estimate of the model state or its input parameters. In the dust data assimilation field, both the varia-
tional data assimilation methods and ensemble-based filtering have been adopted to assimilate the available
observations. Surface visibility and aerosol optical depth (AOD) were incorporated into the China Unified
Atmospheric Chemistry Environment/Dust to correct the errors in initial conditions by three-dimensional
variational data assimilation (Gong & Zhang, 2008; Niu et al., 2008; Wang et al., 2008; Zhou et al., 2008).
In that work, a relationship between PM10 observations and visibility was established, which transferred
the large number of visibility monitoring data into dust concentrations. Lin, Wang, and Zhu (2008a) and
Lin, Zhu, and Wang (2008b) assimilated daily averaged PM10 using an Ensemble Kalman Filter, which also
resulted in corrected initial model states.

In addition to the state variable estimation, the emission inversion from observations is also an important
research topic in dust modeling. Yumimoto et al. (2008) assimilated AOD observations from ground-based
LIDAR sites to estimate the dust emission rate using four-dimensional variational (4DVar) data assimila-
tion. Aerosol products from the MODIS instrument have also been used widely in dust/aerosol emission
inverse modeling by ensemble-based (Di Tomaso et al., 2017; Khade et al., 2013; Schutgens et al., 2012;
Yumimoto et al., 2016) and variational data assimilation (Escribano et al., 2016; Yumimoto & Takemura,
2015). While those AOD observations only provide information about the total column, satellite observa-
tions from the CALIPSO instrument provide information on the vertical structure of a dust plume. Those
measurements are also used to estimate the emission field using Local Ensemble Transform Kalman Filter
(Sekiyama et al., 2010). Recently, dust emission inversion was conducted by Jin et al. (2018), in which the

hourly measured PM10 measurements from the observing network established by the China Ministry of
Environmental Protection (MEP) are assimilated using a reduced tangent linearization (RTL) 4DVar. In that
work, model reducing techniques were designed which significantly reduce the computation cost of build-
ing the tangent linear model. Also, an observational bias correction algorithm was designed to exclude the
nondust fraction from the PM10 concentration which made the PM observations more representative.

The observations of AOD and particulate matter (PM) are of high importance for improving dust simula-
tions. However, the limitations are also not negligible. For instance, the ground-based stations that observe
visibility, PM10, or AOD are often located only in the downwind and densely populated regions, which are
far away from the source regions of dust in East Asia (the Mongolia and Gobi Deserts). Those instruments
can only measure the dust levels when the plumes have already arrived in the downwind areas; hence, they
are of little help to the early dust forecasting and warning system. Besides, the model error due to the trans-
port process usually grows with the distance that the plume travels. Even in case the dust emissions would
be known accurately, the simulation error could be substantial by the time that the plume reaches an obser-
vation site. It will then be difficult to determine whether the simulation-observation differences are due to
the transport error or the emission deficiencies. Satellite instruments such as CALIPSO or MODIS are better
capable of measuring the dust plume at its initial stage. However, CAPLISO has a narrow spatial coverage
of about 5 km and therefore only a limited observing coverage. The MODIS products provide a much larger
spatial coverage but only information on the total column and therefore no estimate of the plume height or
thickness. The polar orbiting instruments also have a limited temporal coverage; for example, the MODIS
AQUA and TERRA platforms pass by only around 10:30 and 13:30 (local time).

Designed with the wide observing coverage and high temporal resolution, geostationary measuring instru-
ments provide valuable information to track these short-term and fast-changing airborne pollution events.
Such as Seviri carried onboard Meteosat Second Generation, the aerosol products have been used in
dust storm detection (Ian & Richard, 2012) over North Africa and volcanic ash estimation (Fu et al.,
2017) in Europe. The first of the next-generation geostationary Earth orbit meteorological satellites,
Himawari-8, was launched in October 2014 by the Japan Meteorological Agency (Bessho et al., 2016) and
is pointed to East Asia. One of the instruments on the satellite is the Advanced Himawari Imager (AHI),
which has significantly higher radiometric, spectral, and spatial resolution than those previously available
in the geostationary orbit. The AHI has a multiband imager with 16 spectral channels, covering a wave-
length range from 0.46 to 13.3 𝜇m. With a short observation interval of 10 min for the full disk and 2.5 min
for specific target regions, Himawari-8 has the ability to track fast-changing phenomena and thus provide
useful data for assimilation into a dust storm model over East Asia. The Himawari-8 aerosol properties have
already been used in the airborne aerosol data assimilation (Yumimoto et al., 2016) and also in the dust
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Figure 1. Simulations of AOD (550 nm) by LOTOS-EUROS model, as well as Himawari-8 AOD (550 nm), and AOD uncertainty and AHI RGB composite image
at 13:00 (CST), 3 to 5 May. (a–c) Model AOD. (d–f) Himawari AOD. (g–i) Himawari AOD uncertainty. (j–l) AHI RGB image. AHI = Advanced Himawari
Imager; RGB = red green blue.

data assimilation which shows the overwhelming strength compared to the MODIS satellite measurements
(Sekiyama et al., 2016).

In this paper, we present the dust emission inversion using AOD observations from the Himawari-8 instru-
ment. The geostationary satellite potentially covers both the dust source regions and the dust-affected
regions, with high spatial and temporal resolution. This opens the possibility that a dust storm is observed
in an early stage already and could therefore help to reduce the uncertainty in the emission estimate. The
observations are assimilated into a dust simulation model based on the LOTOS-EUROS chemistry trans-
port model using the RTL 4DVar technique (Jin et al., 2018). To ensure that the Himawari observations and
model simulations are consistent with each other, special attention is paid to the observation selection. A
dust masking technique that only selects observations where the model is able to simulate a dust load has
been developed too.

A description of the dust simulation model (LOTOS-EUROS) is provided in section 2, together with sim-
ulation results for the extreme dust storm event over China that has been selected as test case. In section
3, the background uncertainties in the dust emission with respect to the wind field and friction velocity
threshold are analyzed. The methodology of the RTL 4DVar is described in section 4. The Himawari-8 AODs
used for data assimilation are described and evaluated using the ground-based AOD observations from the
AErosol RObotic NETwork (AERONET) network in section 5. This section also describes the ground-based
observation network from the China MEP that is used to provide independent PM10 data to assess the dust
simulations. In section 6, both the dust mask (DM) observation screen method and a traditional measure-
ment selection method are described and illustrated. Assimilation results are then shown and evaluated by
comparisons with the available AOD and PM10 observations in section 7.
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2. Dust Simulation Model
2.1. LOTOS-EUROS Model
The LOTOS-EUROS regional chemistry transport model is used to simulate the dust storms over East Asian
areas. It has been widely used in the daily air quality forecast over Europe (Manders et al., 2017) and China
(https://www.marcopolo-panda.eu; Timmermans et al., 2017) and also for dust emission data assimilation
in East Asia (Jin et al., 2018). In this study, the model only simulates dust, since the focus is on estimation of
dust emissions for a case with an extreme dust storm event in northeast China. Although in urbanized areas
in this region the amount of nondust aerosol could be substantial too, for the event that is studied, these
amounts are relatively small compared to the observed dust concentration. The nondust aerosol is therefore
neglected here but might become important when the focus changes to the analysis of long time series of
Himawari data during episodes where dust is less present.

To establish a dust simulation system over the East Asia areas, the LOTOS-EUROS model is configured on
a domain from 15◦N to 50◦N and 70◦E to 140◦E (Figure 1), with a resolution about 0.25◦ × 0.25◦. Vertically,
the model consists of eight mixing layers with a top at 10 km. The model is driven by the European Center
for Medium-Ranged Weather Forecast operational forecasts for forecast horizons of 3–12 hr, starting from
the 00:00 and 12:00 analyses. The data are extracted from the archive at regular longitude/latitude grid of
about 7-km resolution. Physical processes included are advection, diffusion, dry and wet deposition, and
sedimentation. The dust load is described by five aerosol bins within a diameter range 0.01 𝜇m < Dp < 10
𝜇m. Similar aerosol size range setting can be found in dust model NMMB-MONARCH (Di Tomaso et al.,
2017) and BSC-DREAM8b (Mona et al., 2014).

2.2. Dust Storm Event
In this paper, a dust storm event is investigated that occurred in May 2017. This dust event is reported to be
the most severe one in the past 20 years. Figures 1a–1c show the LOTOS-EUROS simulation of AOD (550
nm) at 13:00 (CST) for 3 to 5 May. The model AOD map on 3 May shows that the severe dust plume stayed in
Inner Mongolia, while a very small part was already transported to Central China. In the most severe dust
plume, the maximum model AOD value was around 5 to 8. In the next 24 hr, the main plume was gradually
blown along the southeast direction. The area affected by the dust storm is extended, while the maximum
simulated column-integrated AOD lowers to a range from 2 to 5. On 4 May 13:00, the dust plume covers
almost all of North China, and a new dust plume started to develop in Inner Mongolia. In the third day, most
of north China is free of extreme dust loads, and the main plume has been transported further to the south
east and even arrived at the Korean Peninsula. The dust aerosols deposited significantly while the plume
moved to the east, and most of the simulated AOD values are lower than 2 on 5 May, 13:00.

3. Uncertainty in Dust Emissions
The goal of this study is to estimate dust emissions during a severe dust event by assimilation of Himawari-8
AOD observations. To achieve this, it is necessary to describe the uncertainty in the dust simulations. We
assume that the main uncertainty is in the parametrization of the dust emissions. Although other model
elements such as transport and deposition are uncertain too, for the event under study they are assumed to
be of less importance than the location and the amount of dust emission. This assumption could be seen
as a first step toward a system that takes into account other uncertainties too but that probably requires
additional information such as vertical distributions of the dust load which are currently not available.

3.1. Emission Parametrization
The dust emission scheme implemented in LOTOS-EUROS is mainly based on the formulation of horizontal
saltation flux (Marticorena & Bergametti, 1995) and sandblasting efficiency 𝛼 (Shao et al., 1996). The vertical
dust flux f (𝜇g · m−2· s−1) in a given cell is parameterized as follows

𝑓 (u,ut) =

{
0 u ≤ ut

 · 𝛼 · pa
g

u3 · (1 + ut
u
)(1 − u2

t
u2 ) u > ut

(1)

where u denotes the wind friction velocity while ut represents the friction velocity threshold. Only when
u overcomes the minimum erosive force to initialize the soil particles' motion, the dust emission occurs. 
is the fraction of the erodible surface in the given cell; surface covered with snow, vegetation, or water is
classified as nonerodible land and excluded from the potential dust source list. In the previous work (Jin et
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al., 2018), we have shown that the error in the friction velocity threshold parametrization is one of the main
reasons that prohibits accurate dust forecasts. Besides, the wind field uncertainty itself will also introduce
uncertainty in the emission, as f is proportional to the cube of u.

3.2. Emission Uncertainty
For the data assimilation algorithm described in section 4, both the background emission field and its uncer-
tainty are required. The latter defines the distribution of the deviation from the former. Considering the
main drivers of the emission, the emission deviation can be approximated as a linear combination of these
two parameters, friction velocity and friction velocity threshold

𝛿𝑓 ≈ Fu 𝛿u + Fut
𝛿ut (2)

The linear operators Fu and Fut
approximate the change in emissions given changes in u and ut with respect

to a simulation with the default configuration. We assume that the uncertainty in the friction velocity 𝛿u
(which is a property of the meteorology) is independent from the uncertainty in the friction velocity thresh-
old 𝛿ut (which is a property of the soil). Further, we define the vectors 𝛿u⃗ and 𝛿u⃗t, which consist of 𝛿u and
𝛿ut in the model grid cells, respectively, and assume that their uncertainty follows a Gaussian distribution
defined by a zero mean and covariance matrices Bu and But

, respectively. The uncertainty in the vector 𝛿f
with emission perturbations on the grid is then

B = Fu Bu FT
u + Fut

But
FT

ut
(3)

with Fu and Fut
the matrix operators based on the linearizations. To perform a proper orthogonal decompo-

sition (POD) of the error covariance B in the RTL 4DVar, which will be described in more detail in section
4, more efficient, parameter filters (Jin et al., 2018) are used. In this study, they significantly reduce the size
of the emission vector 𝑓 to O(104) by excluding those nonsensitive emissions.

The emission covariance is not exactly computed as in equation (3) which would require the input of the
two huge-sized uncertainty matrix, Bu and But

, and the matrix operators Fu and Fut
. The two contributions

to the covariance of the emission deviation are discussed in the following sections 3.3 and 3.4.

3.3. Uncertainty in Friction Velocity
A suitable method to estimate the uncertainty in emissions due to uncertainty in the friction velocity field
is to use the variability in the meteorological input. For the European Center for Medium-Ranged Weather
Forecast meteorological forecasts that are used as model input, the variability could be estimated from the
ensemble forecast that is available too, where each member is a perturbation of the deterministic forecast.
For the studied period the ensemble forecast consists of 26 different members, and each of these have been
used with the model to compute dust emissions. These ensemble forecasts are valid for prediction horizons
of 3–12 hr from the 06:00 and 18:00 analyses, extracted from the archive at a resolution of about 30 km. The
ensemble covariance of these emissions is then representative for the uncertainty in the emissions due to
uncertainty in friction velocity

Fu Bu FT
u ≈ 1

N1 − 1

N1∑
k=1

(
𝑓u,k −

̄⃗
𝑓 u

)(
𝑓u,k −

̄⃗
𝑓 u

)T
(4)

where 𝑓u,k denotes the emission vector computed using meteorological ensemble member k, ̄⃗
𝑓 u is the

ensemble average, and N1 = 26 is the ensemble size. This ensemble covariance is not computed and stored
as a full matrix due to its huge size; instead, the ensemble members are stored and elements of the covariance
are evaluated when needed.

3.4. Uncertainty in Friction Velocity Threshold
The parameterization of ut follows the concept of adding two correction terms to the threshold friction
velocity over an idealized dry and smooth surface. One term is for soil moisture, governed by the inputs of
soil moisture and soil clay mass fraction, and another one is for the nonerodible surface roughness elements,
governed by the input of the surface roughness. The imperfect spatial distributed surface states and soil
texture data set are the main reasons for inaccurately modeling the friction velocity threshold in the dust
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Figure 2. (a) Standard deviation (Std) of the emission index F from 2 May 15:00 to 4 May 15:00. (b) Std of F due to the perturbation in wind field and
(c) in friction velocity threshold map.

emission parametrization. It is shown in Jin et al. (2018) that the error in the friction velocity threshold can
be compensated by introducing a spatially varying multiplicative factor 𝛽

utrue
t (i, t) = 𝛽(i) · ut(i, t) (5)

where ut(i, t) is the model parameterized friction velocity threshold in a given cell i at time t and utrue
t is the

true value. The 𝛽 factors are defined to be temporally constant within each assimilation cycle. The values
are defined to be random variables with a mean of 1.0 and a standard deviation 𝜎 = 0.1, with a truncation
to the interval [0.7,1.3] to avoid extreme variations. This empirical standard deviation was found to provide
sufficient variations to explain the observation-simulation difference. The background covariance of 𝛽 is
formulated as a combination of the constant standard deviation and a correlation matrix C as follows

B𝛽 (i, 𝑗) = 𝜎2 · C(i, 𝑗) (6)

where the C(i, j) denotes a distance-based spatial correlation between the 𝛽s in two grid cells i and j, which
is defined as

C(i, 𝑗) = e−(di,𝑗∕L)2∕2 (7)

where di,j represents the distance between two grid cells i and j. In Jin et al. (2018), the correlation length
scale L was configured to be 800 km, which was found to be suitable to simulate the main characteristics of
the dust event studied there. In this study, however, a smaller length scale L = 200 km is used which gives
a higher spatial degree of freedom, while it can still be resolved by the assimilation due to the larger amount
of (spatially distributed) satellite data.

With the covariance matrix B𝛽 , an ensemble of samples of 𝛽 is drawn with a random generator. These
ensemble samples are then applied in the dust model, and each of them produces a emission forecast.
The covariance of these emission fields is used to approximate the emission uncertainty due to the friction
velocity threshold

Fut
But

FT
ut

≈ 1
N2 − 1

N2∑
k=1

(
𝑓ut ,k −

̄⃗
𝑓 ut

)(
𝑓ut ,k −

̄⃗
𝑓 ut

)T
(8)

where 𝑓ut ,k represents the emission vector computed using friction velocity threshold ensemble member
k, ̄⃗

𝑓 ut
is the ensemble average, and N2 = 100 is the friction velocity threshold sample size.
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3.5. Comparison of Uncertainties
To estimate the relative importance of the two contributions to the emission uncertainty, an emission inte-
gration index Fi (g/m2) is computed that represents the accumulated dust emission in a cell i from 2 May
15:00 to 4 May 15:00, the period of which exactly covers the two assimilation cycles as shown in Figure 3. The
map of deterministic Fi can be found in Figure 9a, and Figure 2a presents the evaluated standard deviations
from the parameterized uncertainties based on the meteorological ensemble and samples of 𝛽 factors drawn
with a random generator over the potential source region. The maps show that the variability in emissions
due to uncertainty in friction velocity Figure 2b is small compared to the variability due to uncertainty in
friction velocity threshold Figure 2c. The total standard deviation is therefore mainly caused by the uncer-
tain soil parameters in this study case. However, the uncertainty in the wind field might have considerable
contribution to the emission uncertainty during other dust storms.

4. RTL 4DVar
4.1. Data Assimilation Methodology
The assimilation system that will be used to combine Himawari-8 AOD observations with the dust simu-
lations is based on a RTL 4DVar. In this study, the goal of the 4DVar technique is to find the maximum
likelihood estimator of the dust emission field 𝑓 , given the available observations over an assimilation win-
dow. A common approach is to use an incremental formulation, which aims to find the optimal emission
deviation 𝛿𝑓 as the minimum of the cost function

J(𝛿𝑓 ) = 1
2

𝛿𝑓 B−1 𝛿𝑓 + 1
2

k∑
i=1

(
HiMi𝛿𝑓 + d⃗i

)T
R−1

i

(
HiMi𝛿𝑓 + d⃗i

)
(9)

where k is the number of time steps within the assimilation window for which observations are available. For
an observation time i, the innovation vector (length mi) is defined as the difference between the simulation
and observations

d⃗i = i(i(𝑓 )) − 𝑦i (10)

where i is the LOTOS-EUROS transport model, i is the operator that relates the observations to the
model state, and 𝑦i is the vector with observations for this time step. The operators Hi and Mi denote the
linearizations of i and i around the prior state 𝑓b, respectively. In each outloop minimization process,
the posterior state from the last iteration will be treated as the prior for the next iteration, where the linear
operators Hi and Mi, and the innovation vector d⃗i will be updated. The observation error term is weighted
by the observation error covariance R, for which the individual elements will be described in section 5.1.
The vector 𝛿𝑓 denotes a perturbation of the emissions with respect to the background state, and B is the
covariance matrix of this perturbation as defined in equation (3).

One of the main efforts in using this formulation is the use of the linearized model operator Mi. This tangent
linear model is often a separate model that needs to be maintained and updated next to the full model i. To
simplify the method, in this study a RTL 4DVar is used. The RTL 4DVar is based on a POD of the background
covariance B which efficiently carries out a model order reduction by identifying the few most energetic
modes

B = UUT ≈ ŨŨT

𝛿𝑓 ≈ Ũ𝛿w⃗
(11)

where U ∈ RP×P is the background emission covariance transform, while Ũ ∈ RP×p is the truncation of U
based on POD. The vector 𝛿w⃗ ∈ Rp is the transformed vector, P denotes the emission field size of O(104), and
p is the reduced rank size. In this study, the size of the background covariance B is O(104 × 104). For this case,
the computational cost of a Cholesky decomposition is still affordable. In case when B has a much larger
dimension, the principle patterns of the emission vector can also be computed using an Arnoldi iteration
method (Arnoldi, 1951).

With the truncated transform of B, the cost function of the RTL 4DVar is formulated as follows:

J(𝛿w⃗) = 1
2
𝛿w⃗T𝛿w⃗ + 1

2

k∑
i=1

(
HiM̃iŨ𝛿w⃗ + di

)TR−1
i

(
HiM̃iŨ𝛿w⃗ + di

)
(12)
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Figure 3. Timeline of observation availability, assimilation windows and forecasts.

where M̃i denotes the reduced tangent linear model with a rank p, which is approximated using the pertur-
bation method. Similar to the traditional incremental 4DVar, posterior control variable vector 𝛿w⃗ from the
last outer loop iteration will be used as the prior for the next iteration in the minimization process, where
both the linear model operator M̃i and innovation d⃗i are updated. In this study, the reduced rank size p is
set as 40. A larger reduced rank p > 40 is also tested, but the improvement is negligible. By projecting the
original parameter field into a subspace of a few leading patterns, the RTL 4DVar significantly decreases the
computation time for deriving the linear model operator. However, as it only explores the optimal param-
eters in a reduced subspace, inevitably some properties of the original dynamic system will be lost. More
details about the RTL 4DVar algorithm can be found in Jin et al. (2018).

4.2. Assimilation Window
Figure 3 shows the assimilation window settings for the test event. The dust simulation is configured with
a period from 15:00, 2 May, to 06:00, 6 May. The dust outbreak events are fully covered by the assimilation
windows; hence, the model is assumed to be free of dust at the starting moment. It forwards with default
emission field 𝑓b and provides early dust forecast for the whole period if no data assimilation analysis is
performed. The first assimilation cycle is set from the start to 15:00, 3 May, with a length of 24 hr, while the
available observations from 09:00 to 15:00, 3 May, are used in the RTL 4DVar. Then our model propagates
from the start again with the newly estimated emission vector 𝑓a, resulting in the posterior simulation in the
first cycle as well as the dust forecast after 15:00, 3 May. In fact, parts of AOD observations in the following
time are also attributed to the dust emission in the first assimilation window; hence, an extended window,
for example, 48 hr, will enrich the data to estimate these emissions. However, to provide the in-time dust
forecast like in case of an operational system, our assimilation starts once the observations during a full day
(09:00–15:00) are obtained.

The second cycle is designed with the same length, and the posterior emission field is used to provide the
dust forecast after 15:00, 4 May. After the end of the second cycle, dust emission is negligible and will not
be carried into downstream; thus, a third assimilation cycle is not implemented. With the settings of the
assimilation window, we are able to evaluate whether the assimilation algorithm helps to improve the dust
early forecasting in practical applications.

5. Data for Assimilation and Validation
5.1. Himawari-8 AOD
The Japan Aerospace Exploration Agency (JAXA) has developed a Himawari-8 aerosol retrieval algorithm
(Fukuda et al., 2013; Ishida & Nakajima, 2009; Yoshida et al., 2018). Cloud/clear discrimination is performed.
The AOD at 500 nm and the Ångström exponent are derived from the visible channels (470, 510, and 640
𝜇m) over land areas and from both the visible (640 𝜇m) and near-infrared data (860 𝜇m) over ocean regions.
The JAXA retrievals provide Himawari-8 AOD Level 2 at 10-min intervals with a resolution 0.05◦ × 0.05◦.
In this study, the JAXA Himawari-8 Level 2 AOD will be assimilated with the dust simulations using the
RTL 4DVar to identify and track the rapid-changing dust storm events.
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AOD at the wavelength 550 nm is more widely used to evaluate the aerosol column-integrated concentration;
the original Himawari-8 Level 2 products (500 nm) are extrapolated using (Cesnulyte et al., 2014)

AOD550 = AOD500 ·
(550

500

)−𝛼
(13)

where 𝛼 represents the Ångström exponent which is also from the Himawari-8 aerosol property product.
Figures 1d–1f show three snapshots of the AOD (550 nm) map. For better interpretation, also the RGB com-
posite images from the AHI are shown in Figures 1j–1l. In general, the three plume maps show a large
similarity to the prior LOTOS-EUROS AOD simulation as shown in Figures 1a–1c. Note that the Himawari-8
AOD observations do not exceed a value of 2, while the prior model simulated AOD shown in Figure 1a
exceeds this value significantly.

As shown in Figure 1d, on 3 May the main part of the dust plume stayed in the boundary region between
Mongolia and North China, which is believed to be the source region. The adding value of the Himawari-8
AOD product over ground-based observations is clearly visible for that day, while the dust plume was already
observed by the satellite in detail at this early stage, the first ground-based sites that observed the plume
are located far away from the source region. For instance, the upstream four sites (Wuhai, Bayanzhuoer,
Hohhot, and Baotou) did not measure severe PM10 concentration until 4 to 8 hr later (see section 7.3 and
Figure 13. The early observations of the dust plume could therefore be of great benefit for a timely forecast
of dust storms. Note that only a few AODs are available in the Central China for that day. As shown in the
RGB composite in Figure 1j, this region is covered by clouds which hampers retrievals of total AOD columns.
The AOD fields retrieved by Himawari have rather high values in an area next to the cloud covered region,
which is marked by a red frame in Figure 1d. However, the model simulations did not show high AOD
values in this area, and therefore, the high values in the observations might also arise from retrieval errors
over a partially clouded scene. The difference between observations and simulations in this region will be
discussed further in section 6 on observation selection.

During the next 24 hr, the severe dust plumes were moved southeastward. Figure 1e shows that there was a
band with severe dust loads from the Central China to Northeast China around 4 May 13:00 CST. As shown
in Figure 1k, the central region of this band is free of cloud, but AOD retrievals there are not available for
unknown reasons. A new plume with high dust loads is also present in the Inner Mongolia province. On 5
May, the plume was transported further in southeast direction as shown in Figure 1f and even affected the
Korean Peninsula. AOD retrievals over Northeast China are not available on this day, while the model still
simulates a band with high dust loads.

Figures 1g–1i represent the AOD uncertainty from the same JAXA Himawari product. The AOD uncertain-
ties over lands stay at a high level similar to the AODs from SEVIRI onboard a geostationary satellite (Carrer
et al., 2010) but much larger than the MODIS AODs from polar orbit satellites (Remer et al., 2005). Zhang
et al. (2019) indicated they are due to the large uncertainties in the aerosol models and surface reflectance
estimation in the retrieval algorithm. In fact, Level 3 with more certain measurements is also available;
however, only few AODs survive during the further retrieval hence not used in this work. To make the
observation resolution consistent with the model, the Himawari AODs (550 nm) and the uncertainty are
coarsened. The coarsened AODs and uncertainty are taken as the average over the 0.25◦ × 0.25◦ model grid
cell. The coarsened data can be seen in Figure 8.

The square of coarsened uncertainty is set as the diagonals of the observation covariance matrix R. Although
the relative uncertainties of the Himawari AODs are higher than the emission uncertainties in Figure 2 with
respect to the prior emission in Figure 9, the huge number, O(104 − 106), due to a fine resolution and a
wide coverage still makes the observation error term dominant in the cost function J. In addition, a spatial
correlation of the coarse AODs is assumed while building the error matrix R

s(i, 𝑗) = e−a·h(i,𝑗) (14)

where s(i, j) and h(i, j) represent the correlation coefficient and distance between model cells i and j respec-
tively, while a = 0.03 km−1 is an empirical value based on a statistical analysis of the original Himawari
AODs. Note that experiments were also conducted using a diagonal observation error covariance, thus
neglecting the spatial correlations in the observation errors. Those assimilation runs resulted in similar
results (not included in this paper) to the experiments shown here. This is because that our simulation is
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Figure 4. Time series of AOD at or around AERONET sites: AERONET AOD observations (level 1.5 or 2), Himawari-8
AOD retrievals with the gray bar representing the observation error (mean of uncertainties within the grid cell) around
the AERONET sites. AERONET = AErosol RObotic NETwork.

spatially smooth and does not contain strong local variability; the impact of observation spatial correlation
is then very weak.

5.2. Himawari-8 AOD Versus AERONET
Before assimilating the new Himawari-8 AOD, the product is first evaluated through a comparison to
ground-based observations from the AERONET. At the sites of this network, AOD total columns are mea-
sured by ground Sun photometers. In the dust-affected region, four AERONET stations are available, marked
as A1 to A4 in Figure 6: Baotou, Beijing, Beijing CAMS, and Xianghe. Figure 4 shows the time series of
AERONET AOD at these four sites (red marks), either from the Level 1.5 product (cloud screened and qual-
ity controlled) or otherwise Level 2.0 (quality assured). Himawari-8 Level 2 AODs at 500 nm are also shown,
as average over the 0.25◦ × 0.25◦ model grid cell in which the site is located; for each 10-min observation
time, the blue mark is the grid cell mean and the gray error bar represents the observation error which is the
mean of Himawari AOD uncertainties within the grid cell. As can be seen in the time series, the spread in
the Himawari observations is large, but in general, the mean values are rather stable. Though the Himawari
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Figure 5. Scatter diagrams of Himawari-8 AOD compared to AERONET
AODs at Baotou, Beijing, Beijing CAMS, and XiangHe from 3 to 5 May.

AODs did not match the AERONET measurements all the time, all the
AERONET AODs are within the spread of observation error.

On 4 May, high AOD values are observed by AERONET as well as
Himawari in all four sites. For the Beijing CAMS station, no observa-
tions are available at these moments, but it is supposed to give similar
measurements with Beijing and XiangHe due to the small distance. The
Himawari AOD observations match well with the AERONET observa-
tions during the event. On 5 May, the Himawari and AERONET stations
Baotou and Beijing CAMS all observe low AOD values, which indicated
the dust storm already expired at that time.

For further comparison, the scatter diagrams of the AODs at the above
four sites during the dust storm from 3 to 6 May are plotted in Figure 5.
The comparison results in a high correlation coefficient (R2 = 0.9762).
As can be seen in the maps before, the Himawari AOD values do not
exceed a value of 2; with high dust loads, the AERONET observations
reach values in a range of 0.0–2.5. Although this limited comparison is not
a guarantee for a high quality of Himawari-8 AODs over the whole model
domain in the dust event, the agreement is sufficient to have confidence
that this new data set represents the dust plume optical properties.

5.3. Field Station Observations
Since 2013, the China MEP has commenced to release the hourly average measurements of atmospheric
constituents including PM2.5, PM10, CO, O3, and SO2. By now, a network of over 1,500 field stations all over
China has been established as shown in Figure 6. Most of these ground stations are located in the densely
populated regions in eastern China and are rather far away from the dust source region in Inner Mongolia.
Compared to the Himawari-8 AODs, these could not provide information on the dust storm from the very
start. However, hourly averaged PM10 observations from the network could be used as independent data,
to verify the improvement of the dust simulation in the areas where the interest in accurate forecast is the
highest.

Though all these Himawari-8, AERONET AODs, and the ground PM10 data are actually a sum of the dust
aerosols and particles released in local activities, the 2017 dust storm is an extremely severe one; hence,
dust aerosols are very dominant in the full aerosols. Therefore, all these measurements are assumed to be
consistent to the dust simulations. Observational bias corrections (Dee & Uppala, 2009; Jin et al., 2018) or
nondust baseline removals would be required in case of less severe dust storms.

6. Observation Selection for Data Assimilation
The data assimilation system is designed to deal with imperfect model simulations and uncertain observa-
tions. For our case, it aims to find the optimum dust emission field that ensures the best match between

Figure 6. The China MEP network of field measurement stations, AERONET stations, and source region sites.
MEP = Ministry of Environmental Protection; AERONET = AErosol RObotic NETwork.
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Figure 7. Time series of observed (Himawari-8 and AErosol RObotic NETwork) AOD and simulated AOD (left axis), as
well as the observed and simulated surface PM10 concentrations in Baotou (right axis).

simulations and Himawari-8 AOD observations. Fundamentally, it relies on the assumptions of an unbiased
model and measurements with a Gaussian probability distribution. In practice, the discrepancy between
the simulations and the observations can be strongly biased, however, for example, because model errors in
deposition and transport are not taken into account. Also, sometimes the AOD retrievals might be strongly
biased, for example, due to failed retrievals under the presence of clouds. Such inconsistency will inevitably
lead to analysis errors or model divergence.

To limit the negative effects of inconsistency between observations and simulations, algorithms for data
selection have been developed and implemented in data assimilation systems (Anderson & Järvinen, 1999;
Sakov & Sandery, 2017). The general idea of the observation selection is to exclude measurements that cannot
be represented well by the background model simulation. The actually assimilated observations are then a
subset of the original data. The reason why certain observations are excluded should be monitored through
the assimilation process, and ideally, the assimilation system should be adjusted to allow inclusion of these
observations in the future.

6.1. Inconsistence Between the Dust Model and Himawari-8 AODs
Although Figure 1 showed many similarities between the prior LOTOS-EUROS model simulation and
the Himawari-8 AOD observations during the dust episode, some significant differences were also found.
For instance, on 3 May the Himawari-8 AOD showed high values around the border between Mongolia
and Inner Mongolia at 13:00 (CST), marked by the red frame in Figure 1d. However, the model simu-
lated only a small amount of dust there, resulting in modest AOD values. To analyze this discrepancy, the
time series of AOD and surface dust concentration in Baotou (located in the highlighted red framework) is
shown in Figure 7. The reason to select Baotou is the availability of both Himawari-8 and AERONET AOD
observations, as well as a PM10 observing site.

Figure 7 shows that the surface PM10 observations are low until the arrival of the dust plume around 16:00.
The model simulations show the same pattern, but the computed surface dust concentrations are much
higher than the actually observed PM10 concentrations. The Himawari-8 AOD shows that there are already
quite high AOD values around noon. An explanation could be that the dust cloud is initially elevated from
the surface and therefore not observed by the PM10 network. However, there are no AERONET observa-
tions to confirm the heavy dust in the higher vertical layer, which might be an indication that the sky was
actually partially clouded as suggested by the RGB composite in Figure 1j. Actually, it is difficult to distin-
guish between clouds and thick dust especially in those regions where the temporal variations of dust AOD
are large, since the Himawari-8 product also uses the temporal variation of observed radiance for the cloud
identifications.

The time series in Baotou shows that in this location, for the current model configuration, the simulated
surface PM10 is strongly correlated with the simulated AOD. Assimilation of the high valued Himawari AOD
observations on 3 May would therefore lead to an increase of simulated surface PM10, which is not consistent
with the surface observations. Since the high AOD values retrieved from Himawari could not be confirmed
by AERONET observations, and might have been caused by a partially clouded scene, it would be better
to have these observations excluded from the assimilation. The algorithms of automatic exclusion of these
observations, or selection of observations to be used in the assimilation, will be described in sections 6.2 and
6.3, respectively.
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Figure 8. The results of Himawari-8 AOD observations selected for assimilation by the background check (BC) and dust mask (DM) criterion at 13:00, 3 May:
(a) no selection, (b, c) BC with 𝜅 = 1 and 𝜅 = 2, and (d, e) DM with s = 0.1 and s = 0.4.

6.2. Background Check
A popular data selection algorithm is the background check (BC; Anderson & Järvinen, 1999; Dee et al.,
2011). This selects only those observations for which the difference from the background simulation is
within a range relative to the uncertainty of the difference

(
𝑦 −((𝑓 ))

)2
≤ 𝜅 (𝜎2

b + 𝜎2
o ) (15)

where the left-hand side represents the square of difference between an observation and the corresponding
simulation value by the background model. Under the assumption of this being unbiased, the expected
stochastic distribution has zero mean and the variance shown in parentheses at the right-hand side, 𝜎b
and 𝜎o, are the standard deviations on the diagonals of covariance matrices B in the observation space and
R, respectively. The factor 𝜅 is a predefined threshold; a larger 𝜅 allows more observations to survive the
selection. Anderson and Järvinen (1999) associated quality flags with different values of the threshold, where
𝜅 = 0 selects only correct data, 𝜅 = 1 selects probably correct data, 𝜅 = 2 also selects probably incorrect
data, and 𝜅 = 3 even selects incorrect data.

Figure 8a shows the coarse AOD from the Himawari data on 3 May 13:00; there are lots of measurements
available in the source region, also inside the highlight red frame. Figures 8b and 8c present the selected
Himawari-8 AOD using 𝜅 = 1 and 𝜅 = 2 at the same time snapshot. On 3 May, when using a strong
selection 𝜅 = 1, many AOD observations are excluded, for example, parts of the observations in red and
also many observations in the source regions. Thus, the valuable observations that show the development
of the dust storm at an early stage are excluded too. With a more relaxed selection using 𝜅 = 2, more AOD
observations in the source region remained but still a lot of them are discarded. Definitely, more AODs in the
source region will be kept if a more relaxed BC 𝜅 > 2 is applied, the selection AODs of which are closer to the
original observations. On the other hand, observations in the red frame which should have been excluded
now remained under these two selections 𝜅 = 1 and 𝜅 = 2. The main reason why these observations are
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Figure 9. The posterior emission integration index F after the first analysis (15:00, 3 May) using the no screen Himawari-8 (a), BC k = 1 (b), k = 2 (c), and
DM s = 1 (d), and s = 2 (e) screening methods. BC = background check; DM = dust mask.

selected by the BC is the rather large observation uncertainty, which can be seen in Baotou in Figure 7. On 3
May, the innovations 𝑦 −((𝑓 ) are all within the observations' spread of its uncertainty. More restricted
selection is then required in order to exclude those unexpected measurements inside marked frame. It is
therefore difficult to tune the observation selection properly using this method.

6.3. DM Selection
To have a proper observation selection for the studied application, the DM method is introduced here. The
DM criterion selects only those observations in the grid cells where the deterministic model simulation
exceeds a certain threshold

((𝑓 )) ≥ s (16)

The user defined threshold s denotes a certain dust level over which the grid cell is considered to be affected
by the dust storm. The identification of the dust masked region is only based on the initial simulation of
the dust model and s and independent of the observation uncertainty. This selection works efficiently in
cases where the model is able to reproduce a correct dust plume shape but is not able to simulate the correct
amplitude of dust concentrations. The observations are only selected over this dust masked region where the
model simulated an amount of dust over this level. In other regions, high AOD values reported by Himawari
are excluded, which are due to cloud/dust misdiscrimination or local emissions that are not included in this
simulation model. This selection also removes the modest Himawari AODs where the model also produces a
low dust level. However, as those measurements are already in good agreements with the model simulations,
the exclusion of these data has only minor impacts on the assimilation results.

A limitation of the DM selection is that it could exclude valuable observations in case the model is not able
to simulate the dust plume shape correctly. In that case, the model could simulate a modest dust level (< s)
and hence remove the high AOD values as if they are due to the AOD retrieval error while they actually
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Figure 10. Posterior AOD map using no screen Himawari-8 (a.1–a.3), BC k = 1 (b.1–b.3), k = 2 (c.1–c.3), and DM s = 1 (d.1–d.3), s = 2 (e.1–e.3) screening
methods at three time snapshots: 13:00 (CST), 3 May (a.1, b.1, c.1, d.1, e.1), 4 May (a.2, b.2, c.2, d.2, e.2), and 5 May (a.3, b.3, c.3, d.3, e.3). Note: the prior model
AOD and the Himawari-8 AOD are shown in Figure 1. BC = background check; DM = dust mask.

represent the severe dust. Whether a DM selection is necessary is therefore case dependent and requires
inspections of the simulations and AOD observations by the user.

The empirical threshold s is adjustable in practice; if the size of the dust-affected plume is overestimated,
a large threshold should be adopted; otherwise, s should be lowered. In our case, we evaluated the impact
of the DM threshold by using either s = 0.1 or s = 0.4, which corresponds to about 5% and 20% of the
maximum Himawari AOD value.

Figures 8d and 8e present the Himawari-8 AOD observations selected by the DM criterion, for two different
thresholds s = 0.4 and s = 0.1. When using a high DM threshold s = 0.4, the dust-affected region is
located exactly in the source region; observations outside are all excluded. With a lower threshold s = 0.1,
a larger dust-affected region is identified, observations near the source region are also selected. Moreover,
all observations inside the highlighted red frame are excluded with s = 0.4 since the background model
shows that the dust level there is very low (< 0.4), and a small portion of these data are kept in case a lower
threshold s = 0.1 is set.
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Figure 11. Time series of AOD in four sites in the source region site on 3 May, (Himawari observations averaged over the 0.25 × 0.25 model grid).
DM = dust mask; BC = background check.

7. Result and Discussion
7.1. Emission Analysis
Using the above described configurations, the Himawari-8 AOD observations have been assimilated for the
dust storm event to estimate the dust emission field 𝑓 . Different assimilation runs were performed, either
using all observations or using a subset of AODs selected by the BC or DM. Figures 9a–9f show the map
of prior, several posterior emission integration index F (the definition can be found in section 3.5) over the
potential source region during the period of the two assimilation windows. The prior model simulated the
highest emission integration, especially in the boundary region between China and Mongolia. In a large
number of grid cells, the accumulated dust emissions are in the range from 120 to 200 g/m2, which resulted
in the overestimation of the AODs in dust plume center as can be seen in Figure 1a. The assimilation of all
available Himawari AODs and DM selected AODs generally computed a lower level of dust emission; there
are only a few grid cells with the integrated emission exceeding 120 g/m2.

As mentioned in section 6.2, many of the AOD observations in the source region are excluded while
using the BC selection, because they exceed the uncertainty spread of simulation-observation difference in
equation (14). Although the estimated emissions also decreased a bit, the emission flux F still stayed at a
much higher level than posterior emissions by assimilating raw AODs and DM screened AODs.

7.2. AOD Analysis
In each experiment, the LOTOS-EUROS model is used to simulate the dust load using the optimized dust
emissions, and both column-integrated AOD and surface PM10 are evaluated with observations.

Figures 10a–10e show the snapshots of AODs over the domain for each of the 3 days of the events, either
using all observations or parts of AODs from a selection. The prior model AODs at these three correspond-
ing moments are plotted in Figures 1a–1c, while the original Himawari-8 AODs are shown in Figures 1d–1f.
The simulated AOD values show in general the same patterns as the observations for all experiments, but
differences are present at regional scale. Compared to the background simulation, in which the model
AODs are significantly overestimated at the center of the dust plume, all the posterior AODs decreased after
assimilation, but different assimilation runs also resulted in different increments.

The effect of the different observation selection criteria is best seen on 3 May for the area marked by the red
frame. If no selection is applied and all observations are used in the assimilation, emissions are elevated to a
level which is able to produce high simulated AOD values in the red marked region. When a BC selection is
applied (Figures 10b–10c), the simulated AODs are lower in the marked area as parts of the high-value AODs
are excluded. However, since this BC also excluded observations over the source region, the assimilation is
less effective to change the dust emissions here and the simulated AOD remains rather high (values above 5).
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Figure 12. Field PM10, prior and posterior surface dust concentration (SDC) map at 13:00, 3 May (a.1–e.1); 07:00, 4 May (a.1–e.1); and 13:00, 4 May (a.1–e.1).
BC = background check; DM = dust mask.

This effect is less strong when a more relaxed selection (𝜅 = 2) is performed, which also leads to higher AOD
values in the marked area. When the DM criteria are used (Figures 10d and 10e), the simulated AODs in the
marked area remain low and are better than the results obtained using the BC. In addition, the simulated
high AOD values in the source region are also tuned to a low level which are in better agreement with the
observations. In similar cases, the predefined DM threshold s is recommended to be set from 5% to 20% of
the maximum AOD value; a too high threshold will exclude most observations, while a too low value makes
the observation selection less effective.

To illustrate the differences in the posterior AOD performance for the different selection criteria, Figure 11
shows the time series of AOD at four locations in the source region (S1–S4 in Figure 6) during the evolu-
tion of the dust storm on 3 May. The strong dust emissions occurred on this day in this region, and the
Himawari-8 observations are also available. In S1 and S2, the prior model already produced an AOD simu-
lation that is close to the Himawari-8 AOD; however, the model strongly overestimated the AODs in S3 and
S4. This suggests that the existing emission parametrization is in principle able to simulate dust loads, but at
local scale the error might still be large. Assimilation using all available observations (no selection) strongly
improves the simulation, and the best results are obtained using the DM selection criteria. Selection based
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on BC leads to simulations with still much too high AOD, since many of the AOD observations in the source
region are actually not selected for assimilation.

The impact of the different observation selection on the AOD simulation can also be observed on 4 May in
Figures 10a.2–10e.2. If no selections are performed, the simulated AOD values are still a bit overestimated in
the plume center; also, the size of dust-affected region (AOD > 0.1) is extended compared to the background
simulation. When the BC is implemented, the dust-affected region is limited because parts of the inconsis-
tent data are excluded. However, the simulated AOD is still significantly overestimated in the plume center
due to the exclusion of the AOD observations in the source region in the first cycle. In the cases when DM
selection is applied, the size of the dust plume is not much extended especially when a restricted selection
s = 0.4 is used, and the AOD simulation overestimation is mitigated.

On 5 May, differences in the of simulated AODs using the two observation selections still existed but were
not so strong.

7.3. Comparison With Surface PM10
In order to further evaluate the posterior simulations, the simulations of PM10 are now compared with obser-
vations from the surface network described in section 5.3. Since these observations were not assimilated, this
assessment will show the added value of assimilation the Himawari AOD for surface PM10 concentrations.

It should be noted that the PM10 observations represent not only the dust aerosols but also the particulate
matters from local anthropogenic activities. In most cities, the PM10 values are in a range of 10–200 𝜇g/m3

during the nondust period. During a dust event, however, the maximum PM10 concentrations easily reach
several thousands 𝜇g/m3. Therefore, in this study the PM10 observations are compared directly with the
simulated total dust concentrations, neglecting that a small part of the observations is actually nondust and
without using any nondust aerosol correction. Besides, we only used the PM10 from the 200 sites in the
North China which reported this severe dust phenomena instead of assimilating all measurements, since
some sites in the South China were free of the dust during the episode. Figures 12a–12e show the three
time snapshots of surface PM10, from the observation network or from the background simulation or from
the posterior simulations using different AOD selections. These three snapshots show the whole process of
the dust transport. On 3 May 13:00 (CST), the first high surface PM10 concentrations are observed around
the Mongolia and Gobi Deserts. The plume then moves to the Central and Northeast China and leads to
significantly increased concentrations in the morning of 4 May 7:00, and severe dust plume is further carried
southeastward and the surface dust concentrations stayed at a very high level in the following 6 hr. In the
time followed, the surface dust concentrations start to decrease gradually and are much weaker compared
to the ones at 4 May, 07:00 and 13:00, and are not shown here.

Figure 12a.1 shows that most of the surface sites are free of extreme dust loads on 3 May 13:00 (CST), and
the PM10s are below 200 𝜇g/m3 (first row). Figure 12c.1 shows the map with the posterior dust concentra-
tions obtained by assimilating all Himawari-8 AOD (third row). Unlike the observed PM10 map, it shows that
there are also nonnegligible dust concentrations of about 200–500 𝜇g/m3, especially inside the red frame.
Similarly, the assimilation of the BC selected observations (fourth row) also shows high level dust concentra-
tions in the marked area since the BC selection did not exclude the high AOD values there. On the contrary,
both the prior concentrations (second row) and the assimilations using DM observation selection (fifth row)
do not show high PM loads in this region. This shows that assimilation of certain observations introduces
unrealistic dust concentrations at the surface.

Figures 12a.2–12a.3 show the surface PM10 concentrations at the other two snapshots on 4 May 7:00 and
13:00. Severe dust concentrations are reported by stations all over North China, with a few values up to
2,000 𝜇g/m3, and most ones stay in a range of 500 to 2,000 𝜇g/m3. The second row shows the corresponding
background simulations. Similar to the AOD, the background simulation also overestimated the PM10, and
at many locations the simulated concentrations exceed 2,000 𝜇g/m3. The assimilation of Himawari AOD
(third to fifth row) lowers the concentrations, where the best result is seen when DM selection is used. When
the DM selection is performed, the estimated surface concentrations are now in a range of 500 to 2,000
𝜇g/m3, which is in agreement with the observations.

To further analyze the performance in simulations of surface concentrations, the time series of surface dust
concentration in six sites and the ground PM10 measurements are shown in Figure 13. The locations of these
six sites can be found in Figure 6.

JIN ET AL. 463



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001491

Figure 13. Time series of PM10 and surface dust concentration in C1 to C6:(C1: Wuhai, C2: Bayanzhuoer, C3: Wuhai, C4: Baotou, C5: Beijing, and C6:
Shijiazhuang). DM = dust mask; BC = background check.

The PM10 observations indicate that the dust storm arrived in Wuhai and Bayanzhuoer on 3 May around
14:00 and in Hohhot and Baotou around 19:00. The time series of the prior simulation follow this pattern,
although the simulated values are 2 to 3 times higher than the observed.

After assimilation of Himawari-8 AODs, the posterior concentrations are strongly improved in Wuhai,
Hohhot and Baotou, as shown in Figures 13a, 13c, and 13d. Best results are obtained when the DM selec-
tion is applied. The assimilation does not improve concentrations in Bayanzhuoer as shown in Figure 13b;
the observations there reach values as high as 4,000 𝜇g/m3, while the maximum simulated concentrations
after assimilation are around 1,500 𝜇g/m3.

Assimilation of all available data or using the BC selection criteria could introduce a small inconsistency in
the surface concentrations in the early morning of 3 May, as indicated by the red boxes in Figures 13a–13d.
In some assimilations an extra peak in the dust concentrations is incurred, with a maximum around 200
to 500 𝜇g/m3. This peak was caused by the assimilation of AOD observations that cannot be represented
correctly by the model; it still exists in the assimilation when BC is performed but can be eliminated when
the DM selection is applied.

In the two downstream sites Beijing and Shijiazhuang, the dust plume only arrives in the morning of 4
May. The model is able to simulate the arrival and departure of the plume correctly. The amplitude of the
concentrations is too high for the background simulation, although this is not completely sure for the Beijing
site since observations seem to be limited to 1,000 𝜇g/m3. After assimilation the model simulations are in
better agreement with the observations in especially Shijiazhuang, with best results obtained using the DM
selection.

7.4. Forecast Skill
A practical application of the AOD assimilation is to serve as the start of a forecast. This could be used
to timely provide information to the public on the arrival of the dust plume and the expected dust
concentrations.
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Figure 14. Time series of the RMSE of the model surface dust concentration forecasts with respect to the field
measurements of PM10. RMSE = root-mean-square error; BC = background check; DM = dust mask.

To evaluate the forecast skill, the hourly root-mean-square error (RMSE) between observed and simulated
surface PM10 has been computed over the 200 northern stations most affected by the dust. As shown in
Figure 14, the first and second data assimilation analyses are performed on 3 May 15:00 and 4 May 15:00,
respectively. Each hourly forecasts before the first analysis is provided by the background model, forecasts
from 3 May 15:00 to 4 May 15:00 are based on the estimated emission from the first analysis, while forecasts
in the following hours are based on the optimized emission from the second analysis. Therefore, all the
surface PM10 simulations here could be used as the forecasts in the dust early warning system. Figure 14
shows a time series of the RMSE values. Before the first assimilation analysis is conducted, all the forecasts
are based on the background emission and show the same performance. Though our prior model already
provides a good temporal match of real dust event, the discrepancy is still large due to difficulty in accurately
modeling the actual dust levels. A consistent improvement of the dust forecast skill is shown when the data
assimilation is implemented. The maximum RMSE around 4 May 0:00 is reduced from 1,000 to 600 𝜇g/m3

when the forecast is based on assimilated dust emissions; the forecast skill is further improved with RMSE
values reduced to 500 𝜇g/m3 if the dust mask selection is applied. When the BC is used for observation
selection, RMSE values are actually higher than in the case with all observations included.

8. Conclusions
In this study, a dust emission inverse modeling system was developed. Total column AOD observations
from the new geostationary satellite Himawari-8 have been used to correct mismatches in the dust emission
parametrization. Its aerosol product has a wide spatial coverage and high spatial and temporal resolution,
which provides valuable information to monitor dust storms over Asia.

An extreme dust storm event over North China during 3–5 May 2017 was selected as test case for the assimi-
lation. For this event, the Himawari-8 AOD observations were found to be consistent with the available AOD
observations from the AERONET network. Simulations of dust have been made using the LOTOS-EUROS
regional air quality model, and time series of simulated AOD showed in general good agreements with the
observations with respect to arrival and decrease of the dust storm, but the amplitude is over estimated.

In one region the satellite retrievals of AOD showed rather high values that are not represented by the sim-
ulation model. These high AOD values could not be confirmed by AERONET observations and might be
attributed to the presence of the partially clouded scenes. Using these Himawari observations in an assim-
ilation would then lead to analyzed dust emissions that further result in incorrect simulations. Therefore,
observation selection criteria have been developed by selecting only those observations that can be repre-
sented by the model. A DM selection that uses only those observations, where the model also simulates an
amount of dust, was shown to provide the best results.

The assimilation system uses a RTL 4DVar technique to estimate dust emissions over daily time windows
during the dust event. Both uncertainties in the meteorological wind field and the friction velocity thresh-
old field are taken into account when the emission uncertainty is approximated. Assimilation of Himawari
AOD is shown to provide emission estimates that, when used as input for the model, strongly improves
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the simulated AOD as well as the simulated surface concentrations compared to the PM10 observations.
Using proper selection of AOD observations in the assimilation, the forecast skill during the dust storm was
strongly improved.
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