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Abstract

We perform a study on acoustic metasurfaces, aiming to achieve simultaneously low resonance fre-
quencies (below 400 Hz), high attenuation bandwidth (greater than 200 Hz), and high attenuation
coefficient magnitudes (above 0.8), while maintaining a surface-like structure. We propose the im-
plementation of geometrical optimization through genetic algorithms, as well as the incorporation of
a chamber to induce resonator coupling in a supercell hexagonal Helmholtz resonator metasurface,
to achieve the stated objectives simultaneously. Results show that genetic algorithms can effectively
increase the attenuation bandwidth while maintaining a moderate attenuation coefficient magnitude.
Incorporating a chamber induces resonator coupling, causing frequency locking and pulling phenom-
ena. A narrow chamber can effectively lower the resonance frequencies and enhance the attenuation
coefficients at those frequencies, while maintaining a surface-like structure. However, incorporating a
chamber may lead to a reduction in bandwidth. By combining the genetic algorithm optimization with
chamber integration, we observe a significant reduction in bandwidth narrowness, while the benefits of
frequency locking and pulling are maintained. In conclusion, genetic algorithms have the potential to
achieve wide attenuation bandwidths, while chamber incorporation holds promise for attaining low res-
onance frequencies with high attenuation coefficients. Using both methods simultaneously may enable
the achievement of all objectives.
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1
Introduction

Multitonal low frequency noise (MLFN) attenuation is of concern for industries such as aerospace,
ground transportation and civil engineering, due to the impact these sound frequencies have on hu-
man health [1]. Specifically, the health effects these soundwaves have on the human body range from
discomfort and irritability, to hearing loss, sleep disorders, and even cardiovascular diseases [2]. Ex-
ample of problems that require MLFN attenuation include acoustic liners, which shield from aircraft
engine noise [3], and enviromental urban noise inside buildings, all while keeping sufficient inner venti-
lation [4]. Methods of low frequency noise reduction by use of classical methods include active control
techniques [5] and micro perforated panels [6].

The main issue that arises when attempting to attenuate MLFN is the requirement of thicker and
heavier structures. Noise attenuation typically happens by scattering and absorption of incident sound
waves [7]. Materials follow what is called the mass density law, which states that in order to increase
the sound transmission loss of any material by 6 dB, this material needs to double its density or thick-
ness [8]. This law indirectly implies that the lower the frequency of the incoming wave, the less efficient
any material will be at attenuating it if the material is too thin. However, increasing the thickness of
the material may even become counterproductive due to the phenomenon of critical frequency [8]. At
critical frequency, the wavelength of the mechanical bending waves of the material are of the same
order as those of the incident sound. The material enters resonance and starts vibrating in phase with
the sound, making it loose its attenuation capabilities. The critical frequency of a material decreases
as the thickness of the material increases and usable space is crucial in places such as airplanes. For
example, in aircrafts, noise attenuating structures occupy space and have considerable weight. This
reduces weight carrying capacity and available space, which in turn reduces fuel efficiency, causing
economical losses for the industry [9]. In areas such as construction and building design, lighter noise
attenuating structures are also needed to avoid reductions in productive and habitable spaces [5]. Not
only is it not efficient to increase MLFN attenuation by increasing the material’s thickness, but it also
makes the material less practical to implement [10]. Therefore increasing the thickness of noise atten-
uating material is not an option in such cases.

During the early 1980’s, materials with special acoustic properties were proposed by Donald A. [11]
and Seshadri S. [12]. This proposal gave origin to the study of acoustic scattering structures known
as phononic crystals. As an alternative to classical noise attenuating materials, phononic crystals and
metamaterials show promise on overcoming the limitations of common sound attenuating materials.
Phononic crystals are periodic structures that scatter by means of Bragg’s scattering a range of fre-
quency waves (band gap) [13]. Phononic crystals are able to attenuate sound waves with wavelengths
of the same scale as the unit structure of the crystal. Their band gap can be analyzed through a band
structure analysis. While phononic crystals can display many properties such as wave deflection, re-
flection and attenuation not possible for regular materials, they are not optimal for MLFN attenuation.
Since their crystal unit cell has to be of the same scale as the wavelength they interact with, they need
to become big to scatter low frequency sound waves. This doesn’t necessarily happens with metama-
terials.
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Metamaterials, are materials that posses properties that are not usually, or at all, found within reg-
ular materials [14]. Metamaterials’ characteristic properties are due to their structure, rather than the
intrinsic properties of the materials they are made of. The first designed metamaterials were created to
display particular properties when interacting with electromagnetic waves. Some of these unique prop-
erties include a highly customizable magnetic permeability and electric permittivity, providing the ability
to make both their values highly anisotropic, simultaneously negative, or zero [15]. Such properties
allow the use of these metamaterials on specialized tasks such as optical cloaking, chemical sensors,
and laser accelerators, among others [16].

Almost immediately after electromagnetic/optical metamaterials were introduced, and drawing an
analogy from their interaction with electromagnetic waves, metamaterials that interact with mechanical
waves were proposed. Such metamaterials are known as acoustic/elastic metamaterials. The fist ex-
perimental proposition of an acoustic material was done by Zhengyou Liu et al. [17]. The experiment
proposes a double sided acoustic device (a soft rubber sphere composite to be precise) that is able to
break the mass density law and attenuate noise of 400 Hz with a dimension of 2 cm. These metama-
terials are used for specific tasks such as noise and vibration attenuation [3, 10, 18, 19, 20, 21, 22],
wave collimation [23, 24], wave directional transmission [25, 26, 27], cloaking, and total reflection of
acoustic/elastic waves [28, 29, 18].

While phononic crystals attribute their unique properties to their periodic structure and Bragg’s scat-
tering, the properties of metamaterials are due to local resonance. Local resonance refers to the phe-
nomenon in which subunits within the material material resonate locally in contrast to the overall meta-
material. Acoustic metamaterials are composed of designed unitary substructures termed local res-
onators. Such structures are usually of milimetric to nanometric scale, and respond in an out-of-phase
motion when interacting with elastic or acoustic waves. These resonators are scattered all throughout
the material and mechanically behave as a mass-spring oscillator system, embedded within the ma-
trix [30]. When these resonators interact with a wave possessing a coherent frequency to that of the
resonator’s resonance frequency, they oscillate and produce interference. The cumulative motion of
the local resonators opposes that of the sound waves traveling through the material causing destructive
interference that effectively attenuates the traveling wave. Acoustic local resonator designs widely re-
searched nowadays include acoustic black holes [21, 31, 32], Mie resonant structures, and Helmholtz
resonators [33, 3, 34, 35, 36, 37, 38, 39, 40].

Acoustic metamaterials show properties that make them more optimal than phononic crystals at at-
tenuating low frequency sound. One such property is sub-wavelength sound attenuation, which means
that structures with dimensions orders of magnitude smaller than that of the incident sound wavelength
can be used for sound attenuation [41]. For example, Meng Jin et al. [41] developed a folded like struc-
ture capable of capturing acoustic energy, effectively attenuating incoming sound with metamaterials of
sub-wavelength dimensions. Hui Gou et al. [33] proposed a phononic crystal metamaterial hybrid able
to resonate with soundwaves, whose wavelength is 4 times bigger than the crystal unit of the phononic
crystal. This was done to achieve low frequency energy absorption with piezoelectric elements. The
reason these materials can display sub-wavelength attenuation because they can possess an effective
negative bulk modulus and an effective negative dynamic mass density. Bulk modulus is the strain
response a material displays under hydrostatic pressure or compression. A negative bulk modulus
implies that the material will expand under compression, and then return to its rest volume after com-
pression is removed. This is basically an opposing response to the incident pressure, which causes
the attenuation of the incident pressure. Effective dynamic mass density refers to the average force
density over the average acceleration a material displays when affected by an impeding force [30]. An
effective negative dynamic mass density implies that a force within the material opposes the impeding
force, attenuating the transmission of the wave throughout the solid. This phenomenon breaks the
limits of the density mass law. This allows attenuation of low frequency waves without increasing static
mass or thickness of the material. A material possessing both negative effective bulk modulus and dy-
namic mass density is therefore optimal for low frequency sound attenuation. These properties, among
others, make metamaterials a more efficient choice for MLFN attenuation than phononic crystals [42].
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Since metamaterial properties depend on their structure and oscillating frequency of their local res-
onators, a higher customizability without strict size restrictions can be achieved [23]. In contrast to reg-
ular sound attenuating materials, they have no strict size, weight or material composition restrictions.
Ideally, a metamaterial designed with the purpose of attenuating MLFN should posses four properties:
Extremely low-frequency noise attenuation, high attenuation efficiency, broad attenuation spectrum
and surface structure. So far the literature has only been able to achieve this goal partially and so far
no metamaterial possessing all these properties has been proposed. This is because achieving one of
these properties can deteriorate others. For example, the smaller the desired resonance frequency of
a metamaterial is, the bigger the local resonators need to be, which may impede achieving a surface
structure [30].

Despite their effectiveness, metamaterials still rely in bulky structures even too big for certain ap-
plications. Metasurfaces were thus proposed as an alternative, which are materials with a thinned-out
dimension. Metasurfaces were originally proposed for optical waves, but since then, they have been
used for acoustic/elastic waves [43]. Metasurfaces show advantages when trying to achieve MLFN at-
tenuation. It is also worth noting that metasurfaces with different resonant frequencies can be stacked,
which makes them loose their collapsed direction, but can make them achieve broadband attenua-
tion [30]. The preferred acoustic resonators for noise attenuation are Helmholtz resonators. whichs
are hollow structures consisting of both a main chamber and a neck or cavity that connects the inner
hollow main chamber with the exterior. The air within the main chamber behaves as a mass with spring
constant that acts as a mass spring oscillator under impacting of sound waves [39].
Since metasurfaces are constrained to 2 dimensions, effective attenuation of extremely low frequency
waves (0-100 Hz) without sacrificing the small dimensions of local resonators is chalenging. Xinxin et
al. [19] analyzed the possibility of enhancing the reflected energy of incoming acoustic waves by using
non linearity and second wave harmonics. The metamaterial reflects second harmonic waves which
interact destructively with the impacting sound wave. Yong Li et al. [44], designed an acoustic meta-
surface based on a spiral helmholtz design that can achieve an attenuation coefficient of almost 1 at
frequencies as low as 125 Hz with 12.2 mm thickness. This is a subwavelength attenuation ratio of 1

223 .

Current methods of enhancing resonance response include supercell design, multilayer designs, ge-
ometrical optimization and resonator coupling. A supercell configuration refers to a periodic structure
whose basis is composed of multiple local resonators, each possessing a different resonant frequency.
Kexin Zeng et al. [34] designed an extensible hexagonal supercell structure in which the addition of
outer layers of resonators causes a broadening of the band gap. In contrast, a multilayer configuration
refers to using more than one type of resonator in series or inside other resonators such as in the de-
sign by Junzhe Zhu et al. [40]. These designs are able to resonate at their individual resonance peaks
without observable dips in their attenuation coefficient while occupying only the volume of the largest
resonator.

Geometrical optimization in this case refers to changing the shape of a structure, so that their prop-
erties can be tailored to a more desired value. Krupali Donda et al. [45] improved the spiral Helmholtz
metasurface design, reaching resonant frequencies as low as 50 Hz, with a unit of just 13 mm. This
model draws analogy from the way electric circuits operate with electromagnetic waves and current,
to achieve an equivalent effect with acoustic waves and air flow. Despite this, the attenuation range
of these resonators is quite narrow. Zhiwen et al. [46] propose a deep sub-wavelength hexagonal
metasurface capable of simultaneous broadband frequency attenuation and crash energy dissipation
by mechanical deformation.

Just as geometric optimization is able to lower the resonant frequency of a structure, it can also
increase the attenuation coefficient at resonance. Lei Zhang et al. [47] were able to optimize the ge-
ometry of the neck of a Helmholtz resonator in order to increase its surface roughness. This in turn
increases the amount of energy dispersed by the neck, increasing the attenuation coefficient of the over-
all resonator, as well as lowering its resonant frequency. Just as optimizing the neck of the Helmholtz
resonator can increase its attenuation coefficient, optimizing the geometry of the open cavity is also a
viable option. In a study by YutaoWu et al. [10] they increased the attenuation coefficient of a finger-like
structure for a Helmholtz resonator by 5%. The change in geometry consists in uniting the finger-like
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section by a common thin chamber or base. This initially shows an increase in resonance frequency
as well, but after a certain number of coiled up units are integrated into the structure, the resonance
frequency reduces again.

Normally, resonators show a dip in attenuation efficiency at higher frequencies relatively close to
their resonant frequency. This phenomenon is termed antiresonance. These dips result in very nar-
row frequency ranges of sound attenuation as in the case of Helmholtz resonators. Among the most
common methods to deal with broadband sound attenuation includes intentional coupling. Resonator
coupling refers to the effect a resonator has on adjacent resonators and vice versa, affecting the overall
resonance response. A study by D. Roca et al. [48] shows that coupling resonators show promise at
eliminating attenuation dips effectively extending the attenuation frequency range. Resonator coupling
can be achieved through various methods like changing the dimensions of the resonators or the spac-
ing between them. A study by Liyun Cao et al. [32] analyses the onset of resonator coupling by varying
the height of local resonators. This study shows that at a certain frequency-height ratio, resonators
are able to couple and sharply increase the overall reflection of the metamaterial. Hongfei et al. [49]
proposed the use of non-local coupling effects through the implementation of a structure that mechan-
ically connects non-adjacent resonators, to achieve a broader attenuation frequency range. Coupling
can happen in a local or non-local manner. This means that the resonant response of one resonator
is influenced by a resonator unit cells away. Just as with local resonator coupling, non-local coupling
can help lower the antiresonance response of individual resonators. In the study by Zhiling Zhou et
al. [50] they were able to achieve non-local resonance by overdamping (going beyond what is needed
to prevent oscillation) a multi-resonant structure. They managed to achieve overdamping by increas-
ing the thickness of the resonators from what is the minimal necessary to achieve perfect attenuation
per resonator. This technique to induce non-local resonance was able to extend the attenuation fre-
quency band of the supercell structure. Non-local resonance can also be induced by non-conventional
means. Siddhartha Nair et al. [21] proposed a metasurface design consisting of acoustic black holes.
Black holes are surface structures, usually concave, that are able to slow down the phase and group
velocity of sound waves [31]. The sound waves are deflected, trapped within the acoustic black hole
and then dissipated by a viscous structure attached to the resonator. The acoustic black holes in this
study had their centers (section of acoustic singularity) directly connected by beams to the rest of the
metasurface, in order to induce a non-local resonator coupling. This study was able to lower the overall
attenuation frequency range and expand the acoustic band gap of the non-connected structure. Sibo
Huang et al. [51] demonstrated that coupling imperfect resonators (resonators with a low absorption
peak) can show better attenuation capabilities in a supercell structure, than using quasiperfect individ-
ual resonators in the same supercell structure.

So far we have seen that resonator coupling and geometric optimization are fundamental for broad-
band multi-tonal low frequency sound attenuation. Despite these observations, there is still need for
a metastructure able to achieve broadband ultra low frequency attenuation with high efficiency on a
metasurface design.

In this thesis a meta-surface is proposed to achieve broadband low frequency attenuation by imple-
mentation of geometric optimization by a genetic algorithm, and a common chamber that induces cou-
pling between the local resonators, without sacrificing its surface structure. This metasurface displays
coupling phenomena analogue to those of electronic circuits such as frequency pulling and frequency
locking which manages to lower the resonance frequency of the local resonators. Through geometrical
optimization the structure was able retain a comparable attenuation frequency range width to that of
the original metasurface without loss of attenuation efficiency.
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Background

2.1. Acoustic fundamentals
2.1.1. Sound wave equation
The Navier-Stokes equations are used to describe the state of a fluid medium at any point in time.
These equations take into account the conservation of momentum, mass and energy. Supposing a
mostly ideal fluid system with no thermoviscous loses, the mass conservation equation (Eq. (2.1)), the
momentum conservation equation (also known as the Cauchy equation) (Eq. (2.2)), and the energy
equation (Eq. (2.3)) take the respective form:

∂ρ

∂t
+∇ · (ρu) = M, (2.1)

∂u
∂t

+ (u · ∇)u =
1

ρ
∇p+ F, (2.2)

∂s

∂t
+∇ · (su) = 0, (2.3)

where ρ is the fluid density, u the velocity field, M is the total mass, p is the total pressure, F is the
external force applied to the medium, t is time and s is entropy. Assuming an isentropic process the
energy equation can be put in terms of the medium pressure. Merging of the Navier-Stokes equations
by substitution of terms gives us the governing wave equation that describes acoustic pressure distri-
bution within a lossless system.

1

ρc2
∂2p

∂t2
+∇ ·

(
1

ρ
(∇p− qd)

)
= Qm. (2.4)

where c is the speed of sound within the medium, d is the dipole domain source andQm is the monopole
domain source .Eq. (2.4) is the general wave equation for a pressure sound wave without thermovis-
cous losses. This equation takes the form of an inhomogeneous Helmholtz equation, assuming zero
force sources within the medium. However, if we assume oscillating pressure changes within the ma-
terial, such as p(x, t) = p(x)ejωt, and multiplying by ω, the time derivative of the equation reduces to
the pressure function:

∇ ·
(
1

ρ
(∇p− q)

)
− ω2p

ρc2
= Qm. (2.5)

The pressure variable here can be found by solving the eigenvalue problem, taking into account
boundary conditions imposed in this case by the geometry of the structure containing the fluid.
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2.1. Acoustic fundamentals 6

This derivation of the pressure wave is only valid for simple geometries. For more complex struc-
tures, such as porous materials or narrow structures, thermoviscous losses must be considered. Ne-
glecting these losses can lead to results that significantly diverge from real values (this is further ex-
plained in the thermoviscous losses section).

Under the previous assumptions, an incident single-frequency three-dimensional sound pressure
wave in air at room temperature and pressure can be described as:

∂2p

∂t2
= −c20∇2p. (2.6)

where c0 is the speed of sound in air at room temperature and pressure. Assuming the solution to
Eq. (2.6) to be oscillatory and one dimensional (planar), the pressure p has a harmonic form as a
general solution. Therefore p can be written as:

p = p0e
∓jλ/2π(x−c0t) = p0e

∓j(kx−ωt), (2.7)

where p0 is the pressure value at the wave’s crest, k = 2π/λ is the wave number and ω = 2πc0/λ the
angular frequency. If we consider a time independent wave, then Eq. (2.7) reduces even further to the
form:

p = p0e
∓j(kx) = p0. (2.8)

It is important to note that kx is a vector product that possesses magnitude and direction, which de-
scribes sound propagation.

2.1.2. Viscous and thermal losses
Part of the energy lost in sound wave transmission is due to thermoviscous losses. Kinetic energy is
transformed into thermal energy causing a loss of sound intensity that increases sound attenuation in
a structure. This phenomena is specially relevant in surface contact zones, where a boundary layer
may form due to an abrupt shift in flow velocity and turbulent flow. Energy dissipation occurs at said
surface contact points due to viscous and thermal effects such as viscous shear and thermal expan-
sion. Thermoviscous losses becomes relevant for measuring sound attenuation when dealing with
sound transmission within acoustically small regions such as narrow ducts, slits or cavities. Narrow
structures experience significant thermoviscous losses due to the increased surface contact between
the fluid and the sound-hard surfaces.

The boundary layer is the region within a structure where viscous and thermal losses become im-
portant in sound propagation. This region is defined by two key factors: the viscous shear wavelength
and the thermal oscillation wavelength. The viscous shear wavelength refers to the wavelength of a
shear dissipative wave that displaces particles in a medium. The thermal oscillation wavelength refers
to the spatial wavelength of a temperature gradient caused by an oscillation in temperature within the
medium. To define a general boundary layer thickness is necessary to use the larger of these two
values in order to encompass both phenomena. Beyond these lengths thermoviscous losses become
irrelevant. This is because the magnitude of these phenomena decays exponentially beyond these
wavelengths (up to 1/500 of the initial amplitude after the first wavelength in fact).

The viscous shear wave and thermal oscillation wavelengths have the respective forms:

Lv = 2π

√
µ

πρ0f
= 2πδv, (2.9)

Lt = 2π

√
k

πρ0fCp
= 2πδt, (2.10)

where µ is the dynamic viscosity, Cp is pressure constant heat capacity, δv is the viscous penetration
depth and δt are the viscous and thermal penetration depth, respectively. It is to be noted that both
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terms depend on the frequency of the wave and their dimensions increase with lower frequencies.

Assuming small harmonic-oscillatory perturbations of the form xt = x0 + x1e
iωt, where x0 is the

equilibrium position and x1e
iωt is the displacement due to the perturbation, the state variables such as

mean flow (u), pressure, density, temperature, external force and monopole domain source take the
form o = o0 + o1e

iωt where o is a place holder variable. Assuming also zero mean flow (u0 = 0) and
adiabatic conditions, the goberning equations within the boundary layer become:

jωρ+∇ · (ρ0u) = 0, (2.11)

jωρ0u = ∇ ·
(
−pI+ µ(∇u+ (∇u)T )−

(
2µ

3
− µB

)
(∇ · u)I

)
+ F, (2.12)

ρ = ρ0(βT p− αpT );T =
αpT0

ρ0Cp
, (2.13)

where ρ0 is air density at room temperature and pressure, I is the intensity vector, µB is the bulk vis-
cosity, T is isothermal compressibility, αp is the coefficient of thermal expansion, T0 is the equilibrium
temperature and T is the total temperature. When considering the medium as an ideal gas without
viscous losses, the state equations can be simplified and merged into the inhomogeneous Helmholtz
equation mentioned previously.

2.1.3. Sound transmission and attenuation
Suppose an acoustic wave collides with a flat solid material of a specific thickness. Due to Schnell’s
Law, the collision generates a reflected and a transmitted sound wave. Each wave has an acoustic en-
ergy associated with itself. In Fig. 2.1 we can see how these energies are transmitted during a surface
collision.

Figure 2.1: Diagram of power transmission of a solid surface. Ei, Er and Eh are the energies associated with the incident,
reflected and transmitted wave respectively. The term Ea refers to the energy dispersed by the material due to thermoviscous

losses.
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Assuming conservation of energy within the system, the energy of the incident wave is the sum of
the energy of the reflected and transmitted wave, plus the energy dispersed by the material itself., i.e.,

Ei = Er + Ea + Eh. (2.14)
Each sound wave’s acoustic power is measured as:

W =

∫∫
S

p

2ρ0c0
cos(θ) dx dy , (2.15)

where θ is the angle between the wave vector and the vector normal to the material’s surface. The
dissipation of energy in the medium results in the loss of some of the incident sound power which is
not transmitted to the rest of the waves. Thanks to energy conservation, however, we can measure
the power loss dispersed by calculating the ratio between the incident wave power and the transmitted
wave power. From this we can calculate what is known as the attenuation coefficient; this coefficient
refers to the capability of a material to attenuate incoming energy [8]. The attenuation coefficient is
therefore:

α =
Wa

Wi
= 1− Wh

Wi
, (2.16)

whereWa,Wi andWh are the absorbed power and the power associated with the incident and transmit-
ted waves respectively. When α = 1 we say the material is a perfect absorber. In the case of acoustic
waves this would mean the material attenuates all sound. When the coefficient approaches 0 however,
the less effective a material is at attenuating sound. This ratio depends on various parameters such as
material composition, dimensions, and particularly the frequency of the colliding wave as well.

The attenuation coefficient is related to the sound reduction index or sound transmission loss (STL),
which is often used to quantify the sound absorption performance of a material and is defined as:

STL = 10 log 1

h
= 10 log Wi

Wh
= 10 log 1

1− α
, (2.17)

where h is the transmission coefficient. This index shows the amount of acoustic power lost by a
structure in dB.

2.1.4. Electro-mechanical-acoustic analogy model
Analogy models in science serve to draw similarities between unrelated phenomena. Used as a tool to
understand an unknown observation from already known relations. In the case of electro-mechanical-
acoustic analogy models, similarities are drawn between the equations describing phenomena such
as current flow, resistivity, impedance and so on. One of the first people to research into analogies of
this type was Maxwell [52]. It was noted that a mechanical force and velocity of an element had math-
ematical similarities to that of an applied voltage and electric current. Even more complex mechanical
phenomena including the dynamics of a spring or a damper have an electronic analogue. Take for
example impedance analogy. Impedance analogy compares mechanical force to voltage induced by
inductance, kinetic energy stored within an oscillating spring system to potential energy stored in a ca-
pacitor, and mechanical dampened force to a current under electric resistance. Another analogy that
allows for description of acoustic or mechanical elements working in parallel or in series is admittance
analogy. Admittance analogy in contrast to impedance analogy describes mechanical force as analog
to current induced by capacitance, kinetic energy from a spring system to voltage induced by induc-
tance, and a mechanical dampened force to a current induced by voltage under a specific conductance.
Table 2.1 displays the mathematical equivalent elements among the previously mentioned analogies.

Analogies between mechanical and electromagnetic phenomena are also present for acoustic phe-
nomena. The description provided on how a local resonator behaves is done using an acoustic-
mechanical analogy. Specifically, admittance analogy is very useful for the description of metasurfaces



2.1. Acoustic fundamentals 9

Mechanical domain Acoustic domain Electrical domain
Impedance analogy Capacitance analogy

Body Acceleration F = m du
dt

Mass p = m du
dt

Inductor v = L di
dt

Capacitor i = C dv
dt

Spring du
dt

= C dF
dt

Compliance du
dt

= C dp
dt

Capacitor di
dt

= C dv
dt

Inductor dv
dt

= L di
dt

Damper F = Ru Resistance p = Ru Resistor v = Ri Resistor i = Gv
Table 2.1: Table showing the equivalent mathematical structures on rows for each physics domain where m is mass, v is

voltage, i is electric current, C is capacitance, L is inductance, R is resistance and G is conductance.

with differently tuned resonators and coupling phenomena between said resonators. These character-
izations are mostly done through impedance analysis.

2.1.5. Acoustic Impedance
Electric impedance refers to the opposition a system displays to the flow of an alternating electric
current. It is composed by resistance and reactance. Following from the electro-mechanical-acoustic
analogy model, we can define acoustic impedance using the impedance analogy. Acoustic impedance
is defined as the opposition to the transmission of sound waves through a system. Acoustic impedance
is most commonly defined through the ratio:

Z = p/Qv, (2.18)

where Qv is the acoustic volume flow rate. The acoustic volume flow rate refers to the amount of
medium displaced by the pressure shift in volumetric terms. The acoustic impedance is a complex
number of the form:

Z = r + jχ, (2.19)

where r is known as the acoustic resistance and χ is the acoustic reactance.

For analysis of the acoustic impedance of a structure we use the terms specific acoustic impedance
and characteristic impedance. Characteristic impedance is the instrinstic opposition of a medium to
sound propagation. In case of air at room temperature and pressure, its characteristic impedance is:

Z0 = ρ0c0. (2.20)

Specific acoustic impedance is ameasurement of the opposition amaterial or system displays under
acoustic interactions. Unlike the characteristic impedance, specific impedance depends on the amount
of material and the geometry of the system and it is used to measure the total sound transmission loss.
The specific acoustic impedance of a material can be measured with the reflection coefficient (R) of
the system as:

Zs = Re (Zs) + jIm (Zs) =
1 +R

1−R
. (2.21)

An acoustic structure such as a resonator at room conditions reaches perfect attenuation when the real
part of the specific acoustic impedance is equal to the characteristic impedance of air (Re(Zs) = ρ0c0 =
Z0) and the imaginary part is zero (Im(Zs) = 0) at the same instance [53].

The attenuation coefficient of a material can be measured from the material’s specific impedance as:

α = 1− |R|2 = 1− |Zs cos θ − ρ0c0|
|Zs cos θ + ρ0c0|

2

, (2.22)

where Zs cos θ is the effective specific sound impedance at the angle of incidence θ.
Assuming a normal incidence (θ = π/2), the specific impedance in Eq. (2.22) changes to:

α = 1− |R|2 = 1−
∣∣∣∣Zs − ρ0c0
Zs + ρ0c0

∣∣∣∣2 . (2.23)
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2.1.6. Local Resonance
When a system is in resonance, it absorbs energy from the stimulus and amplifies the response. In
local resonance, specific regions of the system respond to an applied stimulus with their own natural
frequency of vibration. These regions of the material behave as individual oscillators separate from the
matrix or main material and may respond in an in-phase or out-of-phase manner with respect to the
stimulus.

The frequency at which both resonance and local resonance are the highest in magnitude is called
the resonant frequency. Local resonators can posses a resonant frequency different from the material
they are part of, meaning they will have a different response to that of the rest of the material. This
can make the material exhibit very particular properties at the resonant frequency of local resonators.
Some of such properties are are an effective negative bulk modulus and an effective negative dynamic
mass density.

A negative bulk modulus implies that the material will expand under compression, and then return
to its rest volume after compression is removed. This is an out-of-phase response to the incident stim-
uli, which in acoustic metamaterials can aid in the attenuation of the incident pressure. An effective
negative dynamic mass density implies that the transmission of a wave through a solid will significantly
diminish. This in turn breaks the limits of the Dynamic Mass Law, and allows the attenuation of low fre-
quency waves without increasing their mass or thickness. It is therefore that materials possessing both
negative effective bulk modulus and negative dynamic mass density are attractive for low frequency
sound attenuation.

Among the types of acoustic resonators that have been of interest in literature are acoustic black
hole resonators, Mie resonators, and Helmholtz resonators. Acoustic black holes consist of a concave
structure, usually circular in shape, that is able to change the wave vector of a sound wave and change
its transmission path, trapping it within a resonator analogue to light and black holes. Mie resonators
are maze like open structures with sound rigid walls that show Mie resonance with acoustic waves,
analogue to Mie resonance in photonics. Helmholtz resonators consist of an open cavity filled with air,
and a neck or tube that connects the inner cavity with the outside.

2.1.7. Resonator coupling
Resonator coupling is the phenomenon in which the resonant response of one resonator alters the res-
onant response of an adjacent resonator. Coupling can happen both in a constructive or destructive
manner, meaning it can enhance or reduce the intensity of the resonant response of the resonators.
Various factors affect coupling such as the relative position of each resonator, the orientation of oscilla-
tion, and the proximity of their own resonant frequency, all with respect to each other. Junzhe et al. [40]
developed a Helmholtz multilayer structure consisting of multiple Helmholtz resonators stacked inside
each other. The coupling effect between the neck of resonators was shown to depend on their position
with respect to the closest neighbouring necks. This indicates that proximity to adjacent resonators can
influence their own resonant response.

Resonator coupling is the basis of supercell research. Supercell metamaterials are periodic struc-
tures whose unitary base structure is composed of multiple local resonators, each tuned to a different
frequency. Local resonators respond to a specific frequency and quickly lower their response for dif-
ferent frequencies. The purpose of a supercell is to add up the individual responses of each resonator
so no “response gap” are observable. This base structure is therefore designed to display a frequency
broadband response.

Proper coupling is important to achieve broadband response, since improper attenuation can hin-
der the response of the overall structure. Proper coupling can help to not only avoid diminishing the
resonator’s response, but to also enhance it. Sibo et al. [54] performed a study on the effects of coher-
ent coupling of “weak resonances” and showed that under coupling, the individual response of each
resonator could be enhanced. Roca et al. [48] proposed the use of coupled resonators to extend the
working acoustic attenuation bandgap of a metamaterial to lower frequencies. This was done using mul-
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tiple local resonators with different working frequencies to give a more continuous attenuation bandwith
when compared to uncoupled multi-resonator metamaterials.

Resonator coupling is also seen in electronic systems. Thanks to the electro-mechanical-acoustic
analogy we can apply methods to characterize coupling between electric resonators to acoustic res-
onators. In electronic systems coupling between resonators can be calculated by comparing their
scattering parameters. In the acoustic realm some of these scattering parameters are the equivalent
to the reflection and transmission coefficient. Some of the phenomena observed within electronic res-
onator coupling is the downshift and merging of resonance frequencies. Both phenomena are known
as frequency pulling and frequency locking, respectively [55].

Another way to characterize coupling derived from the electro-mechanical-acoustic analogy model
is to measure the impedance of a system with two or more impedance elements in parallel/series. The
total acoustic impedance of n acoustic attenuating structures connected in parallel can be measured
through:

1

Z
=

n∑
i=1

1

Zi
, (2.24)

where Zi is the acoustic impedance of each individual structure. This is in the case of uncoupled reso-
nant structures. In the case such resonators have a degree of coupling, the total acoustic impedance
will change. Therefore we can measure the degree of coupling between resonators by measuring the
difference between the predicted reflection/attenuation coefficient to the actual reflection/attenuation
coefficient of the coupled system.

2.2. Geometric optimization
By geometric optimization wemean the use of numerical methods to vary structural parameters in order
to minimize or maximize an objective function. This is fundamental to achieve maximum efficiency in
local resonator structures.

One of the methods for geometric optimization is genetic algorithms. These are optimization meth-
ods inspired in biological evolution. It takes a sample population of individuals that encode the param-
eters of the problem to produce an off-spring population, whose properties are based on those of their
parents. The parents that are chosen to make the offspring are chosen through selection methods by
fitness, truncation, tournament, etc. Offspring properties are obtained through mutation (slight random
change in their parents’ properties) and through a crossover (combination of the parents’ properties).
From this point, the best fit parameters of the offspring that approach the goal of the optimization, called
the elite, are chosen to be the parents of the next generation. This process repeats until one of the
stop criteria of the algorithm is reached. Some of the stop criteria can be a threshold value (whenever
the objective function reaches said value the optimizations stops), a limit to the number of generations
or time, when the value of fitness function stops changing considerably around the best point, and so on.

2.3. Helmholtz resonator
Helmholtz resonators were first introduced by Helmholtz himself in 1862 on his book “On the sen-
sations of tone as a physiological basis for the theory of music”. They are usually used for passive
noise attenuation in structures without solid material obstruction, such as in the case of pipes and air
ducts [36].Particularly, Helmholtz resonators have been of interest in research since they display both
negative effective bulk modulus and negative dynamic mass density. They are of simple design and do
not depend on material composition as long as the materials can be considered sound rigid. Despite
their narrow attenuation capacity, Helmholtz resonators have been shown to poses a high attenuation
coefficient, particularly at low frequencies. Also their band narrowness has been shown to be easily
compensated by the use of multiple resonators tuned at different frequencies [37]. And finally, they do
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not have a strict geometric shape, which allows for design exploration. In fact, the Helmholtz resonator
geometry has a considerable effect on its resonance response, even when controlling for absolute vol-
ume, neck cross sectional area and length. The fact that Helmholtz resonators do not have a preset
geometric design is of great interest to design metasurfaces.

The mechanism of work of a Helmholtz resonator is as follows: Whenever a pressure wave of res-
onant frequency comes in contact with the neck opening of a Helmholtz resonator, air flows into the
neck increasing the air pressure inside the resonator’s cavity. In response to this increase in pressure,
the air compresses increasing its density. Since the air outside the resonator at this point possesses
a lower air density compared to that within the resonator, the air within the resonator expands in re-
sponse. The expansion of the air within the cavity causes the air inside the cavity to exit through the
neck in opposition to the incoming air flow. After the air exits the resonator, the air density within the
resonator lowers below the air pressure outside the cavity, causing air to flow back in. Fig. 2.2 displays
the aforementioned process in three stages.

Figure 2.2: Displacement of the acoustic mass in the neck (blue) of a Helmholtz resonator under acoustic wave pressure at
resonance frequency. The intensity of the red color within the cavity of the resonator represents the air mass density, while the

black arrow represents the displacement vector of the acoustic mass of the neck.

Following the mechanical-acoustic model analogy, the acoustics of a Helmholtz resonator can be
described as a dampenedmass oscillator in function of its geometry and the physical intrinsic properties
or air (under isothermal conditions). Such analogy can be seen in Fig. 2.3. From this analogy we can
calculate the resonance frequency. The equation of motion of the Helmholtz resonator mechanical
analog is:

mẍ(t) + cdẋ(t) + kx(t) = f(t), (2.25)

where m is the acoustic mass of the neck of the resonator (which takes the roll of the mass displaced
by the spring under the analogy), cd is the linear viscous damping coefficient, and k is the linear elastic
stiffness. These properties are the mechanical analogues to thermoviscous losses and acoustic stiff-
ness respectively.

Under the induction analogy, a Helmholtz resonator can be treated as a electronic structure, consist-
ing of an inductance, a capacitor, and an electric impedance element (if dampening or energy losses
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Figure 2.3: Spherical Helmholtz resonator and its mechanical analog (in gray) that describes the movement of the acoustic
mass. P represent the incoming pressure, m is the acoustical mass of the neck, k is the equivalent spring constant and cd is

the equivalent dampening factor.

are considered) all in a series arrangement as displayed in Fig. 2.4.

Figure 2.4: Sketch of the electronic equivalent of a Helmholtz resonator under induction analogy. ∆P is the potential diference,
Leq is the equivalent inductance, Ceq is the equivalent capacitance, and req is the equivalent resistance.

The electronic equivalent values for the capacitance, inductance, and impedance of the components
in the Helhmoltz resonator circuit are characterized by the geometric and medium properties as:

Leq =
ρleff
S

= m, (2.26)

Ceq =
V

ρc2
, (2.27)
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Zeq = req + iχeq =
8πµl

S
+ j

(
ωLeq +

1

ωCeq

)
, (2.28)

whereLeq is the equivalent inductance,Ceq is the equivalent capacitance,Zeq sis the equivalent impedance,
req is the equivalent resistance, χeq is the equivalent reactance, le is the efficient length of the neck
(le = l + 2δ) where l is the actual length of the neck (and δ is a correction factor), V is the air volume
inside of the cavity and S is the surface area of the neck at its exterior face, and µ is the dynamic
viscosity of air. Do notice that the acoustic reactance (χeq) directly depends on the inductance and
capacitance. From this deduction, we can actually deduce the resonance frequency by minimizing Zeq

in function of ω. Zeq will arrive at a minimum value when the reactance reaches zero or a minimum
value. Clearing for ω and substituting the mass and capacitance within the equation, we can arrive at
the expression for the resonant frequency in terms of the geometrical parameters of the resonator:

f =
c0
2π

√
S

V le
. (2.29)

For subwavelength acoustic resonators such as Helmholtz resonators, it becomes important to con-
sider thermoviscous losses. The neck of the Helmholtz resonator itself is responsible for a significant
amount of energy dispersion during resonance, which is why its dimension is highly relevant when it
comes to its own attenuation capacity [10]. Viscous effects of the boundary layer within the neck of
the Helmholtz resonator are responsible for rapid sound attenuation, as energy is lost due to friction
between the airflow layer and the walls of the resonator’s neck [40]. When frequencies between in-
coming air waves and the Helmholtz resonator’s own resonance frequency become congruent, air flow
within the resonator raises significantly. Therefore air friction within the resonator, especially in the
neck, becomes substantial. Here most of the sound wave energy is therefore transformed into heat,
which disperses sound and attenuates sound intensity [40].



3
Methodology, Results and Analysis

3.1. Simulation parameters
Themodels were built in COMSOL according to the supplementary material provided by Kexin et al. [34]
for the experimental model.

The software built-in material properties of air at room temperature and pressure were used. The
values were respectively, c0 = 343ms, ρ0 = 1.2kgm−3 and Z0 = c0ρ0 = 411.6kgm−2 s−1. Both the
pressure acoustics module and thermoviscous model were used, as well a module that describes the
interaction between both domains. Both modules solve for the linearized Navier Stokes equations in
order to describe the propagation of pressure waves within both sections.

An incident sound pressure wave of 1Pa of magnitude and varying frequency was utilized as the
incident sound wave within the simulated impedance tube. No initial phase shift was considered for
the incident wave. The incident pressure plane wave equation used in the COMSOL simulation is of
the form

Pi = P0e
ϕe

−iks
(xek)

|ek| , (3.1)

where P0 is the initial wave amplitude, ϕ is the wave phase, ek is the dimensionless wave direction,
and k2s = ( ω

c0
)2 is the complex wave number [56]. Replacing the definition of ks in Eq. (3.1) makes

the pressure wave equation a function of ω, therefore P (ω). The incident pressure wave equation is
derived from both Euler’s equation and the continuity equation [56].

It is to be noted that the waveguide has an equivalent electronic element whose impedance and
capacitance are measured as:

L = ρ0lw/2D
2, (3.2a)

C = D2lw/2ρ0c0, (3.2b)

where D is the side length of the waveguide (assuming a square waveguide) and lw is the length of
the waveguide in the direction of the incident pressure wave vector. Under this analogy resonators
have an added acoustic resistance term r, unlike the waveguide, to take into account thermoviscous
losses due to their small size; i.e., it is assumed the waveguide is a big enough structure so that ther-
moviscous losses are negligible within most of this region. The thermoviscous model was used on the
metasurface domain, as well as on a section of the impedance tube domain, specifically the section
closest to the metasurface. The thickness of the section of the impedance tube in which we will use
the thermoviscous acoustics model is determined by the thermal and viscous boundary layer at the
lowest simulated sound frequency. Specifically we take the largest of the values so that both thermal
and viscous effects are taken into account properly. The remaining section of the impedance tube is
considered smooth, big and far apart enough from the metasurface to ignore thermoviscous effects.

15
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Here the pressure acoustics module was used to save computation time.

The transfer function describes the transmission of energy from one point to the other. In the case
of an impedance tube, these points would be microphones as shown in Fig. 3.1.

Figure 3.1: Experimental setup of an impedance tube for sound attenuation measurement. Pi is the incident pressure wave,
P1 and P2 are the measured pressure intensities at the microphones 1 and 2, respectively, s is the distance between the

microphones, and x1 and x2 are the distances between the metasurface and microphones 1 and 2, respectively.

The pressure as a function of frequency is measured in each microphone. From this measurements,
the transmission function is

H12 =
P1(ω)

P2(ω)
, (3.3)

where P1(ω) and P2(ω) are the acoustic pressure measured at the microphones 1 and 2, respectively.
From this value, the acoustic reflection factor can be obtained as

R =
H12 − e−jks

ejks −H12
e2jk(s+x2), (3.4)

where s is the distance between both measuring microphones, x2 is the distance between microphone
2 to the metasurface. From R we can obtain the values for the sound attenuation coefficient and the
sound transmission values. Likewise, from here we can obtain the values for the specific acoustic
impedance from Eq. (2.21).

3.2. Chamber analysis
A simulation was done to analyze the effects of an added chamber has on a two Helmholtz resonator
structure, where both resonators are tuned to different resonance frequencies. Fig. 3.2 displays a two
resonator system with and without a connecting chamber, respectively. The model utilized to ana-
lyze the coupling of Helmholtz resonators is the inductance analogy model. Under this analogy, two
Helmholtz resonators connected to a waveguide such as an impedance tube possess an electronic
analogue as displayed in Fig. 3.3. Assuming a planar acoustic wave with normal incidence, both
resonators are connected in parallel to the waveguide because they interact with the same acoustic
pressure value. For metasurfaces with more than 2 resonators, it is just a matter of adding the equiva-
lent circuits for each additional resonator, all connected in parallel at the same node.
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Figure 3.2: Two Helmholtz resonator base unit dimensions with a connecting chamber (right) and without a chamber (left).
Both resonators have a height of 30 mm. The chamber depth (ch_h) varies during the experiment.

Figure 3.3: Electronic structure of an impedance tube with two resonators connected in parallel. L and C are the
corresponding inductance and capacitance of the wave guide and Li,Ci, and ri are the impedance, capacitance and

resistance elements associated with the i Helmholtz resonator.

Fig. 3.4a, 3.4b and 3.4c show results on chamber depth and its influence on the acoustical prop-
erties of a two resonator Helmholtz structure as displayed in Fig. 3.2. It is noticeable that just the
presence of a connecting chamber decreases the resonance frequency of both resonators, while also
pulling both closer to each other. The downshift in resonance frequency is a phenomena arising from
coupling, called frequency pulling. This phenomenon happens when two or more resonators shift their
resonance frequency due to their interaction with nearby resonators. We can also observe that the dif-
ference between both resonance frequencies diminishes. This is known as frequency locking. Multiple
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(a)

(b)

(c)

Figure 3.4: Attenuation coefficient (3.4a), real impedance (3.4b), and imaginary impedance (3.4c) of the two Helmholtz
resonator system with a common chamber from Fig. 3.2. The numbers in the legends of each figure display the different

depths of the connecting chamber in mm. The Z0 line displays the characteristic impedance of air and the line that says ”No
chamber” in the legend of each figure displays the case in which the metasurface structure has no added chamber.
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resonators enter in resonance simultaneously at the same frequency, merging neighbouring frequen-
cies. This is indicative of a higher coupling strength between resonators. Frequency pulling and locking
are concepts originally used for electronic resonators, but they can be applied to acoustics thanks to
the electro-mechanical-acoustic analogy model. This coupling causes a change in the effective capac-
itance and effective inductance of individual LC resonators.

The attenuation coefficient of the structures with a chamber mostly reach higher efficiency than the
structures without a chamber. If we take a look at the real and imaginary values of the impedance in
both cases, we can see that the real impedance of the structure without a chamber is way higher than
that of the chambered structure. However the imaginary impedance of the chambered structures is
generally larger than that of the one without a chamber. In fact, the smaller the chamber, the higher
the imaginary impedance of the overall structure. This pinpoints that with a decreasing chamber size,
the acoustic attenuation depends less on thermoviscous effects and more on the equivalent inductance
and capacitance terms. This therefore suggests that the addition of a chamber structure can also lower
the resonance frequency of a multiple resonator structure without sacrificing efficiency or surface depth.

3.3. Geometric optimization
Zhiwen et al. [46] were able to design a hexagonal metasurface structure composed of Helmholtz
resonators capable of broadband attenuation in the 300-600 Hz range, as well as high load-bearing
strength against compression. We decided to use this design because hexagonal designs are most
optimal for both compact packing of resonators as well as for mechanical stress and energy dissipa-
tion [46]. We performed a geometric optimization on this design to attempt to increase the overall sound
reduction within its intended frequency range of 300-600 Hz.

We used parallel computing to do the optimization. Parallel computing involves performing multiple
calculations at the same time. Certain optimization calculations can be done simultaneously, reduc-
ing the total computation time. We used a genetic algorithm. A genetic algorithm is a computational
method inspired by natural evolution. A parent set of data produces various data sets. The fitness
of these data sets is evaluated and the fittest of these sets survives. A genetic algorithm consists of
both a genetic representation of the data used in the algorithm and a fitness function that the data is
evaluated against. The fitness function uses the population data to obtain a value, which is considered
the ”fitness” of the population itself. The offspring data goes through crossover and/or mutation in order
to produce candidates for the next generation of data. Crossover refers to the combining of parent data
sets’ properties to produce the next generation’s properties, and mutation refers to a random shift in
the subsequent generation properties independent of the parent’s properties. Our algorithm uses both
methods to produce the next generation candidates. These potential candidates are evaluated by the
fitness function. From these data points, the fittest data set will make up the next generation of par-
ent data. This process repeats until a stop criterion is met. The optimization can have many different
stop criteria, like achieving a certain level of fitness, reaching an error threshold, reaching a maximum
computation time, or reaching a maximum number of generations. The process can be seen visually
in Fig.3.5

The parameters subject to our genetic optimization were the length and diameter of each resonator’s
neck, as well as the inner resonator’s side length. Only the outer resonators side length and surface
depth were kept constant to maintain metasurface unit cell volume. The fitness function used during
optimization was

A = Σn
i=0α(ωi), (3.5)

where ωi are the frequency values at which the attenuation coefficient was measured within the fre-
quency range of interest. This was done to achieve the highest attenuation coefficient possible. Each
ωi value is 0.25 Hz apart from the previous and/or later frequency. Our stop criteria was a maximum
set number of 20 generations.

The geometry of the structure before optimization as designed by Zhiwen et al. is displayed in
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Figure 3.5: Flow chart of a genetic algorithm.

Fig. 3.6a, with its respective parameter values and average attenuation coefficient within the 300-600
Hz sound range in Table 3.1. The geometry parameter values and average sound attenuation of the
structure after optimization are displayed in Fig. 3.6b and Table 3.1, respectively. The attenuation
spectrum of the geometries before and after optimizations are displayed in Fig. 3.7a and Fig. 3.7b,
respectively.

We can observe in the optimized structure Fig. 3.6b that the inner resonator is substantially reduced
in size while prioritizing the outer resonator’s volume. Despite this reduction in volume, the number of
peaks in the attenuation coefficient spectrum remains the same, and the average attenuation coefficient
increases by 0.06. While this increase is not substantial, the geometric optimization could potentially
aid in creating an equally efficient structure with different geometry. To analyze the attenuation band-
width, we can measure a quantity known as the half absorption bandwidth (HABW), which refers to
the frequency range where the attenuation coefficient is continuously greater than 0.5. In Table 3.1,
we can observe that the HABW increases by 35% after optimization, despite the average attenuation
coefficient not showing a significant increase. Due to the increase in bandwidth we proceeded to use
the optimization technique to incorporate a common chamber into the structure, in order to examine
the potential benefits of this addition.

3.4. Chamber and optimization analysis
A geometric optimization was performed using Matlab utilizing parallel computing and the genetic al-
gorithm in the previous section. First, the unit cell of the metasurface was optimized by maximizing
the integral of the attenuation coefficient over the frequency range of interest (300-600 Hz). Two mod-
els were optimized: One without an added chamber, and one with an added chamber, as seen in
Figs. 3.8a and 3.8b, respectively. All necks were optimized individually. Each had their diameter and
length changed. The diameter of the neck was constrained to remain smaller than the width of its re-
spective resonator (taking into account wall thickness). The length of the neck was also changed while
maintaining the neck smaller than the length of the resonator plus the wall thickness. The length of
the outermost resonators is kept constant in order to keep the surface density of the resonators within
the metamaterial constant. We set the height of the metasurface constant to maintain metasurface
thickness.

To analyze the total sound loss within a specific frequency range, we define the value cumulative
attenuation response (CAR). We define this value as the integration of the attenuation coefficient over
a frequency range. In this case, the CAR was measured using the trapezoidal rule. We can observe
in Tables 3.2 and 3.3 that the CAR of the structures in Fig. 3.8a and 3.8b shows a larger increase
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(a)

(b)

Figure 3.6: Hexagonal Helmholtz metasurface base structure by Kexin et al. [34] before parameter optimization (3.6a) and
after optimization (3.6b). The respective optimized parameters are the side length of the inner resonator (h0), neck diameter
(di) ,and neck length (li) of each i resonator. The total metasurface depth (D) and outer resonator side length (h1) were kept

constant to maintain the total volume of the base unit constant.

in comparison to the optimization in Table 3.1. This suggests that the geometric optimization is a
reliable method to improve the acoustics of the structures in an automated way without much human
supervision. The HABW of Figs. 3.8a and 3.8b also shows a significant improvement, increasing by
15% and 35%, respectively, despite the optimization not directly targeting bandwidth.

The optimization of the model with the added chamber was similar to the previous model, with a
few exceptions. The total depth of the metasurface was now defined by the surface wall thickness and
the resonator depth, as well as the depth of the chamber. Previously, the metasurface’s unit cell depth
equaled the resonator depth plus the surface wall thickness, but in this model, the same total depth
was maintained while also accounting for the chamber depth. This was done to properly compare the
efficiency of both structures with the same metasurface thickness.

Both Fig. 3.9c and 3.9d display the simulated attenuation coefficient curves of the most optimal pa-
rameter values tomaximize the attenuation coefficient over the range of 300-600 Hz. Both optimizations
were set with a population of 250 and were set to run for 20 generations. Smaller population/generation
settings would reduce the quality of the final results and bigger population/generation settings would in-
crease computation time, to the point where the optimizations would become unfeasible for this project.
The final values of the optimization parameters are in the tables 3.4 and 3.5. The optimized geometries
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Structure before optimization Structure after optimization
Parameter Value [mm] Value [mm]

D 50 50
h1 20.02 20.02
h0 7 1.8372
d0 2.7 1.5202
l0 7.3 7.9966
d1 1.9 2.8845
l1 2.3 5.2038
d2 2.15 2.7449
l2 4.3 6.3781
d3 2.45 2.6494
l3 7.5 3.8087
d4 2.75 2.0529
l4 12 4.8045
d5 3.1 1.7830
l5 18.8 6.0595
d6 3.2 1.7897
l6 21.4 4.8913

Attenuation coeff. Average Average
0.62 0.68

HABW Range [Hz] Range [Hz]
(345 - 530) (310 - 560)

Table 3.1: Parameter values, average sound attenuation coefficient, and half attenuation bandwith (HABW) within the 300-600
Hz frequency range of both Fig. 3.6a and 3.6b.

(a) (b)

Figure 3.7: Attenuation coefficient spectrum in the 300-600 Hz frequency range for Fig. 3.6a (a) and Fig. 3.6b (b).

Values Before Optimization After Optimization
Cumulative attenuation response 174.15 191.23

HABW range (367.5 - 587.5) (345 - 600)
Table 3.2: Value comparison between the hexagonal structures without a chamber before optimization (Fig 3.8a) and after

optimization (Fig 3.9a).



3.4. Chamber and optimization analysis 23

(a) (b)

Figure 3.8: Hexagonal Helmholtz metasurface without a chamber (Fig. 3.8a) and with a chamber (Fig. 3.8b) before
optimization following the design from Kexin et al. [34].

(a) (b)

(c) (d)

Figure 3.9: Final optimized hexagonal structure without a chamber (Fig. 3.9a) and with an added chamber (Fig. 3.9b), with
their respective attenuation coefficient curves (Fig. 3.9c and 3.9d). The structures were optimized to maximize attenuation

coefficient in the 300-600 Hz range. The curves illustrate the individual attenuation coefficient of each resonator, as well as the
attenuation coefficient of the overall base unit. The dashed line showing the attenuation of the base unit without any resonators

was to demonstrate that the chamber does not attenuate sound independently within the selected frequency range.

are shown in Fig. 3.9a and 3.9b

The first curve in Figs. 3.9c and 3.9d with the label ”All resonators”, represents the overall atten-
uation spectrum of the full structures, from 300-1200 Hz. This extended range was used due to the
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Figure 3.10: Attenuation coefficient curves for the hexagonal structure without a chamber before optimization (Fig 3.8a) and
after optimization (Fig 3.9a).

Figure 3.11: Attenuation coefficient curves for the chambered hexagonal structure before optimization (Fig 3.8b) and after
optimization (Fig 3.9b).
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Values Before Optimization After Optimization
Cumulative attenuation response 172.56 193.19

HABW range (372.5 - 547.5) (362.5 - 600)
Table 3.3: Value comparison between the chambered structure before optimization (Fig 3.8b) and after optimization (Fig 3.9b).

appearance of individual resonance frequencies at higher values than in the optimization range. The
remaining curves marked by the Resonator x label show the attenuation spectrum of each individual
Helmholtz resonator within the hexagonal structure, where all other resonators have been removed.
This was done to gain insight into the contribution and frequency shift of each resonator under the
presence of the remaining resonators within the metasurface.

Resonator Neck length [mm] Neck diameter [mm]
0 11.6734 1.5245
1 21.7427 1.7617
2 6.0060 1.7089
3 10.2933 1.6651
4 11.3339 1.9567
5 15.6334 1.6401
6 12.1339 1.6597

Table 3.4: Optimized dimensional parameters of the metasurface without a chamber as displayed in Fig. 3.9c. The side length
of the hexagonal inner resonator (resonator 0) was also optimized. Its value is 1.8415 mm

Resonator Neck length [mm] Neck diameter [mm]
0 10.3225 1.5195
1 3.9404 1.5518
2 4.1814 1.6272
3 3.1637 1.7289
4 20.2290 1.7419
5 9.9003 1.6636
6 4.1363 2.0126

Table 3.5: Optimized dimensional parameters of the metasurface with an added chamber as displayed in Fig. 3.9d. The side
length of the hexagonal inner resonator (resonator 0), as well as the chamber depth and orifice radius were also optimized.

Their values are 1.8214 [mm], 1.6343 [mm] and 1.5565 [mm] respectively.

Metasurface Attenuation percentage [%] Neck’s average volume [mm3]
No Chamber 63% 29.11
With Chamber 61% 17.88

Table 3.6: Percentage of sound attenuated within the 300-600 [Hz] frequency range and the average volume of the resonators’
necks for the “All resonators” curves in Fig. 3.9c and 3.9d.

We observe the following from Fig. 3.9c and 3.9d: The area under the curve “All resonators” in
Fig. 3.9c and Fig. 3.9d in the 300-600 [Hz] range is essentially the same. However, the resonance
frequencies of some individual resonators in Fig. 3.9d, specifically resonators 1 and 2, show propor-
tionally a greater up-shift in attenuation coefficient when in the presence of the other resonators and
the chamber, compared to the up-shift observed in the resonators in Fig. 3.9c. In Fig. 3.9d we do not
observe and up-shift for resonators 3, 4, 5 and 6 because they already reach values above 0.9.

While all resonance frequencies in Fig. 3.9c remain relatively constant whether in presence of the
remaining resonators or not, some resonators in Fig. 3.9d, specifically resonators 0, 3, and 4 down-
shift when in presence of the other resonators. It is important to clarify that the individual resonance
frequency of each resonator in Fig. 3.9d was measured with the chamber included in the impedance
tube. This was done in order to accurately observe the effects the neighbouring resonators alone had
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on the resonator.

We are therefore able to observe frequency pulling in Fig. 3.9d. This could be due to the closeness
of the resonance frequencies. However this frequency pulling does not occur in Fig. 3.9c, hinting that
the added chamber might have a role in the appearance of this phenomenon. It is also observable
that the resonance frequency of resonators 0, 3, and 4 merge into one. This is a sign of frequency
locking. Again, despite resonators having similar or even smaller differences between their individual
resonance frequencies in Fig. 3.9c, no frequency pulling or locking is to be observed.

Despite both Fig. 3.9c and Fig. 3.9d having a similar CAR, it is directly observable in Table 3.6 that
the average volume of the necks in Fig. 3.9b is significantly shorter than that of Fig. 3.9a. Smaller necks
up shift resonance frequency. Therefore, despite the chamber not being able to show a significant in-
crease in attenuation within the 300-600 Hz range, it could potentially aid in increasing attenuation at
lower frequencies.



4
Summary and conclusions

Our goal was to develop a highly efficient low-frequency broadband attenuation metasurface. Based
on our literature review, we identified geometric optimization and the induction of coupling between
differently tuned resonators as the most promising approaches for lowering resonance frequencies,
extending attenuation bandwidth, and enhancing attenuation efficiency.

A common chamber was designed to induce coupling between the resonators within the unit cell
of the metasurface. Results show the occurrence of coupling phenomena such as frequency pulling
and frequency locking, which are typically observed in electronic resonators but are applicable here us-
ing the electro-mechanical-acoustic analogy model. All chamber dimensions exhibit frequency pulling
toward lower frequencies, with the strongest effect occurring in the most extreme instance of a 1 mm
chamber depth. This phenomenon is consistent with the goal of maintaining a shallow structure. How-
ever, the cumulative attenuation response is significantly reduced with decreasing chamber depth, in-
dicating a potential drawback of this method. To address this issue, we applied geometric optimization
with the aim of preserving the beneficial frequency pulling while enhancing the cumulative attenuation
response.

We employed geometric optimization using a genetic algorithm with the goal of maximizing the cu-
mulative attenuation response within a target frequency range. Our results indicate that the hexagonal
structure reported by Kexin et al. exhibited only a 6% improvement in cumulative attenuation response.
However, we observed a 35% increase in the HABW, suggesting a slight reduction in resonance fre-
quency efficiency in exchange for a broader bandwidth.

Finally, we conducted two simulations. In the first, we performed geometric optimization on a hexag-
onal structure without a chamber, using a genetic algorithm. In the second, we optimized a similar
structure with an implemented chamber, while maintaining the same metasurface depth. Optimization
resulted in increased CAR and HABW for the structure with a chamber (9.9% and 15.9%, respectively).
Similarly, the un-chambered structure displayed increases in CAR and HABW after optimization (8.2%
and 35%, respectively).

Comparing the optimized un-chambered model and the optimized chambered model, the former dis-
plays a CAR approximately 1% higher than that of the chambered structure. However, the chambered
structure’s bandwidth was approximately 7% narrower. Despite these results, frequency pulling and
locking were observed in the chambered structure, with a maximum resonance frequency decrease of
138 Hz toward lower frequencies. The chambered structure also exhibited increased attenuation coeffi-
cients for certain resonance peaks, particularly for resonators 1 and 2, compared to the un-chambered
structure’s resonators 1, 2, 4, 5, and 6.

Overall, genetic algorithm optimization appears to be an effective approach for expanding band-
width with a moderate reduction in peak attenuation coefficient at resonant frequencies. Incorporating
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a chamber exhibits frequency pulling and locking toward lower frequencies but results in reduced band-
width. Applying geometric optimization to the chambered structure can help mitigate this reduction in
bandwidth while preserving the benefits of frequency pulling and locking.

Incorporating a chamber and applying optimization does not appear to provide significant advan-
tages over optimization alone in terms of bandwidth or CAR. However, the presence of frequency
pulling and locking in the chambered structure offers potential for extending the lower frequency range
of the CAR. Future research aimed at shifting the attenuation band to lower frequencies without sacri-
ficing metasurface depth or incurring significant reductions in bandwidth or CAR could yield promising
results.

Resonator coupling shows promise as a method for enhancing sound attenuation as well as for
downshifting resonance frequencies. The coupling phenomenon observed in this study can be ex-
plained due to the applicability of the electro-mechanical-acoustic analogy, which has demonstrated
validity and utility in describing resonator acoustics. The implementation of a common chamber en-
hances coupling between resonators, suggesting that its incorporation may be useful in designing meta-
surfaces with low-frequency attenuation. The geometrical simplicity of the common chamber indicates
that its implementation would be cost-effective, and the strongest coupling occurred with the thinnest
chamber design, implying that this approach may be suitable for developing compact metasurfaces
with efficient low-frequency sound attenuation. Such metasurfaces could have a range of applications,
from noise-reducing architectural panels to acoustic screens.

Geometric optimization using genetic algorithms has proven effective for metasurface design. This
approach has the potential to enhance design efficiency, especially in cases where resonator geome-
tries become more complex. Further studies could explore alternative algorithms to identify the most
effective approach. Additionally, using genetic algorithms for geometric optimization demonstrates sig-
nificant potential for expanding the bandwidth of acoustic structures, contributing to greater automation
in the design process.

Future research could focus on investigating how the common chamber induces coupling and the
mechanisms behind its coupling effect. Exploring the effect of the common chamber through the electro-
mechanical-acoustic analogy could provide additional insights. Alternatively, the use of alternative
geometric shapes for the common chamber may be worth exploring. Additionally, characterizing the
mechanical mechanisms underlying the coupling effect induced by the common chamber could be valu-
able.

As discussed earlier, the common chamber shows promise for extending the metasurface’s atten-
uation spectrum to lower frequencies without increasing surface thickness. A study that prioritizes
minimizing attenuation coefficient peaks could determine whether this observation holds true and pro-
vide valuable insights into the effectiveness of the common chamber and its potential applications.
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