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A B S T R A C T

Parameterized model predictive control (PMPC) is one of the many approaches that have been developed
to alleviate the high computational requirement of model predictive control (MPC), and it has been shown
to significantly reduce the computational complexity while providing comparable control performance with
conventional MPC. However, PMPC methods still require a sufficiently accurate model to guarantee the control
performance. To deal with model mismatches caused by the changing environment and by disturbances, this
paper first proposes a novel framework that uses reinforcement learning (RL) to adapt all components of the
PMPC scheme in an online way. More specifically, the novel framework integrates various strategies to adjust
different components of PMPC (e.g., objective function, state-feedback control function, optimization settings,
and system model), which results in a synthesis framework for RL-based adaptive PMPC. We show that existing
adaptive (P)MPC approaches can also be embedded in this synthesis framework. The resulting combined RL-
PMPC framework provides a solution for an efficient MPC approach that can deal with model mismatches.
A case study is performed in which the framework is applied to freeway traffic control. Simulation results
show that for the given case study the RL-based adaptive PMPC approach reduces computational complexity
by 98% on average compared to conventional MPC while achieving better control performance than the other
controllers, in the presence of model mismatches and disturbances.
1. Introduction & motivation

Model predictive control (MPC) has been studied extensively within
the last century, and mature theoretical results have been established
for it (Morari and Lee, 1999; Camacho and Alba, 2013). MPC operates
in a receding-horizon style, where an optimization problem is solved
at every control step to determine a sequence of control inputs based
on a prediction of the future states using a prediction model. Only
the first element of this control input sequence is implemented in
practice, and after shifting the prediction horizon to the next control
step, the entire procedure is repeated. In addition, since MPC can
explicitly deal with state and input constraints and provide robust
control performance (Pannocchia et al., 2011), it has been widely used
in engineering practice, such as industrial processes, power systems,
robotics, and management of transportation networks (Qin and Badg-
well, 2003; Hegyi et al., 2005). However, for a large number of real-life
systems where the dynamics are in general nonlinear and nonconvex,
the optimization problem of MPC may become too complex that is not
feasible for real-time implementations. Besides, a sufficiently accurate
model is needed to ensure the control performance, which is not always
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available in practice. Therefore, the applications of MPC are often
impacted by two main issues: high online computational complexity
and model mismatches.

To address the first issue, a large number of studies have investi-
gated computationally efficient MPC approaches, and have achieved
satisfying results (see e.g., Alessio and Bemporad (2009), Karamanakos
et al. (2015)). One of the successful methods is parameterized MPC
(PMPC) (Lofberg, 2003; Goulart et al., 2006), which simplifies the
optimization problem of conventional MPC by reducing the number
of the optimization variables. More specifically, PMPC introduces a
parametric state-feedback function as the control law. This means that
the PMPC input function does not vary across the prediction horizon,
and only the parameters in the control law need to be optimized per
control step. More details of PMPC and its applications will be given
in Section 2.1. Nonetheless, although PMPC can reduce the online
computational complexity, it still suffers from model mismatches that
are caused by the changing environment and by unknown disturbances.
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To address this issue, extensive research efforts have been made.
Two representative directions are robust MPC and stochastic MPC (Be-
mporad and Morari, 2007; Mesbah, 2016). Robust MPC solves a robust
optimal control problem at each control step within the MPC scheme
by considering the worst-case scenarios for the external disturbances,
which results in conservatism in the control performance. Stochastic
MPC considers the probability distribution of the uncertainties to guar-
antee the chance-constraint satisfaction on the basis of conventional
MPC. However, these approaches design the controllers by assuming
certain knowledge of the uncertainties. In addition, these methods
require even more computational power than conventional MPC.

Thanks to the advancements in machine learning techniques,
learning-based methods are gaining increasing attention and are being
widely studied in engineering applications (Singh et al., 2023; Jiang
et al., 2022). Accordingly, another representative direction to address
the model mismatch issue of MPC is learning-based or data-driven MPC
methods (Hewing et al., 2020; Li et al., 2022). Most of these methods
focus on the identification of a system model, and are, thus, also known
as adaptive MPC. More details about learning-based MPC will be given
in Section 2.2. Another research direction that has recently drawn great
interest is to combine MPC and reinforcement learning (RL) (Sutton
and Barto, 2018). RL is a technique from the field of machine learning
that learns how to take action in an uncertain environment so that
to maximize an accumulative return. Deep reinforcement learning
(DRL) incorporates deep learning techniques within conventional RL
schemes, allowing agents to deal with problems with a large state
space (Mnih et al., 2013). For simplicity, we use the term RL to refer
to all RL-related algorithms, including DRL. RL has recently shown
great potential in many fields, including optimal control (Mnih et al.,
2015; Arulkumaran et al., 2017). Since RL is able to improve its control
policy via interacting with the system and with its environment, it can
naturally deal with unknown environments and disturbances. Despite
these appealing features, RL still struggles with its own shortcomings,
including constraint violations (i.e., safety issues) and low sample effi-
ciency (i.e., a prolonged training process) (Dulac-Arnold et al., 2021).
Due to the very complementary characteristics of RL and MPC (Görges,
2017), many studies have developed various methods to exploit the
advantages of both techniques. More details about relevant research
that combine MPC with RL will also be presented in Section 2.3.

Although there is a large body of research on solutions for each of
the two main issues of MPC, i.e., high online computational complexity
and model mismatches, very few papers consider addressing these two
issues simultaneously. Therefore, this paper contributes to the state-
of-the-art by developing a novel integrated RL-based adaptive PMPC
synthesis framework (called RL-PMPC) that employs RL to adjust the
PMPC scheme, in order to deal with the changing environment and
disturbances, and also with the online computational complexity. This
also leads to a unified framework for extension of existing adaptive
MPC methods, and further improves PMPC in terms of control perfor-
mance. The resulting RL-PMPC controller can overcome the two main
challenges of conventional MPC by exploiting the advantages of RL and
PMPC, and thus allows to broaden the application range of MPC-based
methods.

The remainder of this paper is organized as follows. Section 2
introduces more details on related work. Section 3 presents the novel
RL-PMPC synthesis framework and all the available strategies to adjust
PMPC via RL techniques. Section 4 performs a case study to illustrate
the performance of the proposed approach by applying it to traffic
management for a freeway network. Section 5 concludes the paper and
proposes topics for future work.

2. Related work

This section first explains PMPC, and then presents related work on
learning-based MPC and adaptive MPC. In addition, recent studies that
utilize RL within the MPC framework are presented.
2

2.1. PMPC

Lofberg (2003) introduced a feedback loop in the control input
sequences of a robust MPC problem, by parameterizing the future
control inputs in terms of future states and several new parameters.
This parameterization process reduces the number of decision variables
from the number of control inputs over the prediction horizon to the
number of the introduced parameters. Note that conventional MPC can
be regarded as a special case of PMPC, with an identity function as
the parameterized control law. Goulart et al. (2006) further extended
this approach by parameterizing the control input sequence as an affine
function of the sequence of past disturbances. In this way, the distur-
bances can be accounted for by solving a convex optimization problem
resulting from the parameterization. All of these studies focused on
the robust MPC problem for linear systems. However, most systems in
practice are nonlinear.

Zegeye et al. (2012) applied PMPC in freeway traffic management
for the first time by parameterizing ramp metering rates and variable
speed limits, such that compared to solving the original nonlinear
MPC problem the computation time was significantly reduced without
much loss of performance. Van Kooten et al. (2017) also employed the
idea of parameterization to design a state-based adaptive controller
for an urban traffic network. Pippia et al. (2018) applied PMPC to
the operation of microgrids. Jeschke and De Schutter (2021) applied
PMPC in signal control for urban traffic management, and achieved
comparable control performance with substantially decreased computa-
tion time, compared to conventional MPC. However, the design of the
parametric function that maps the states to control inputs is difficult
and often requires expert knowledge. Jeschke et al. (2023) addressed
this issue by introducing a grammatical evolution method to generate
the parametric function automatically. They applied this method for
traffic signal control of an urban network. The results show that the
generated parametric state-feedback function even outperformed the
handcrafted function.

2.2. Learning-based adaptive MPC

This section presents a brief overview of the literature on learning-
based MPC, whose major purpose is to handle model uncertainties
during the implementation of MPC. Hewing et al. (2020) gave a
comprehensive review of learning-based MPC approaches, in which
the reader can find more details. Conventional adaptive MPC refers
to the studies that focus on system identification to compensate for
model uncertainties. In this paper, we broaden the scope of adaptive
MPC to any MPC approach that can adapt to model uncertainties and
disturbances.

2.2.1. Adaptive MPC by system identification
Lorenzen et al. (2017) considered a constrained linear system with

unknown but constant system parameters. A set-membership system
identification method is used to estimate the set that contains the real
parameter values, which results in a robust MPC problem. Then tube
MPC techniques (Raković et al., 2012) are used to solve the problem,
and to construct the terminal constraint and terminal set to guarantee
stability and recursive feasibility. Heirung et al. (2017) proposed an
adaptive dual MPC approach for a single-input single-output linear
time-invariant system for which the dynamic matrices are known and
determined by orthogonal basis functions. A recursive least squares
method is used to estimate the unknown parameters using observed
data. The resulting optimization problem is subject to probabilistic out-
put constraints, and is then reformulated as a quadratic programming
problem that can be solved efficiently. Tanaskovic et al. (2019) also em-
ployed a two-stage method for adaptive MPC of a linear time-varying
multiple-input multiple-output system subject to model uncertainties
and measurement noise. First, a set-membership algorithm is used to
estimate the parameter matrix. Then the obtained set is exploited in
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the MPC optimization problem to enforce constraints, which results
in a robust finite-horizon optimal control problem. A similar method
was used by Zhang and Shi (2020) for adaptive linear MPC, where the
main contribution consists in adding extra variables to the optimization
problem in order to adjust the shape and size of the cross section of
the tube. The obtained results are less conservative w.r.t. conventional
adaptive MPC, while guaranteeing closed-loop stability and recursive
feasibility.

The above studies are all about linear systems. There are also a few
studies that focus on nonlinear adaptive MPC. Adetola et al. (2009)
proposed adaptive MPC for constrained nonlinear systems, where the
model uncertainties are assumed to be static and can be expressed by
unknown constant parameters. An uncertainty set is updated recur-
sively to estimate the bounds of these parameters, which results in
a robust MPC problem that is solved via both a Min–Max approach
and a Lipschitz-based approach. Köhler et al. (2021) presented a
tube-based robust adaptive MPC approach for an uncertain nonlinear
system subject to unknown constant model parameters and additive
disturbances. Compared to ordinary robust MPC problems, the work
improves the computational efficiency by modifying the tube formula-
tions, while providing robust recursive feasibility and robust constraint
satisfaction. Akpan and Hassapis (2011) proposed to utilize neural
networks to approximate the system model for MPC, since neural
networks can approximate any nonlinear function with an arbitrary
high accuracy (Kumpati et al., 1990). The neural network is trained
online based on a recursive least squares algorithm, and the resulting
optimization problem with a neural network-based model is solved
using gradient-based methods.

All the studies presented so far enforce assumptions on the structure
of the system dynamics and model uncertainties. The uncertainty pa-
rameters (whether constant or varying) are assumed to be parametric
(i.e., the system dynamics is linear in the parameters), which limits
the application of adaptive MPC. In addition, robust MPC techniques
used to solve the optimization problem will introduce conservatism in
control performance.

2.2.2. Adaptive MPC by adjusting the controller
Another direction of learning-based adaptive MPC is to adjust the

controller design, such as learning the cost function, the constraint
set, or the terminal components. Marco et al. (2016) considered the
design of a linear quadratic regulator (LQR) for a linearized model.
Instead of identifying the model, they directly tuned the introduced
parametric cost function by iteratively evaluating the controller on
the real system. This approach can also be integrated into an MPC
scheme as in Bansal et al. (2017). Piga et al. (2019) adjusted the
model parameters oriented towards the overall performance of the MPC
controller, instead of minimizing the error between the model and the
real system. In addition, the size of the prediction horizon is also added
to the parameters to be adapted. Brunner et al. (2015) worked on
enlarging the terminal set of an MPC controller for linear systems by
using the collected historical data. Rosolia and Borrelli (2017) focused
on iterative tasks with nonlinear MPC, in which the terminal cost and
the terminal set are adjusted at every iteration in order to guarantee
constraint satisfaction and system stability. Experiences from previous
iterations are employed, and it is ensured that the cost does not increase
from iteration to iteration. They further extended the result to a robust
control context in Rosolia et al. (2017).

2.3. RL-based adaptive MPC

RL-based adaptive MPC is another direction that utilizes RL tech-
niques to obtain adaptive MPC. Due to the complementary features of
MPC and RL, as mentioned in the previous section, combining MPC and
RL is a promising research direction that has been drawing more and
more attention recently. The very early study that employed RL in an
MPC scheme is Negenborn et al. (2005), in which the value function of
3

RL was used to represent the infinite-horizon objective function value of
MPC for Markov decision processes. The value function can be learned
on-line during the implementation, and the MPC prediction horizon
reduced to one step due to the approximation of the objective function.
This idea opened up a research direction to combine MPC and RL,
and has been adopted in many studies, such as Zhong et al. (2013),
Zhang et al. (2020) and Arroyo et al. (2022). Although this approach
can alleviate the computational issue of conventional MPC by reducing
the prediction horizon, it still suffers from model mismatches since the
control inputs are optimized based on the prediction model. In addition,
solving the optimization problem with a value function in the objective
function is even more difficult due to the introduced extra nonlinearity.
By connecting the objective function of MPC and the value function
of RL, Gros and Zanon (2019) parameterized the objective function
of MPC and adapted it using RL. It is shown that the optimal policy
can be obtained even based on an inaccurate model by modifying the
objective function. However, it is not explained how to parameterize
the objective function in a structured way, which is the core procedure
for implementing this method.

The other main direction to combine MPC and RL is to merge their
control inputs directly. Zhang et al. (2021) integrated an RL agent
in a model-reference scheme together with a conventional nonlinear
controller. The RL agent is trained by performing repetitive tasks to
compensate for the mismatches between the nominal model and the
real system, and to eliminate the errors between the real states and
the desired states. This idea is adopted by Remmerswaal et al. (2022),
which combines RL and MPC in a model-reference framework and ap-
plies the resulting MPC-RL framework to traffic signal control for urban
networks. Sun et al. (2024) further extended the work by constructing
a hierarchical framework in which the MPC and RL controllers work
with different control frequencies and their control inputs are summed.
The resulting framework is applied to traffic management of freeway
networks, and the results show that the combined MPC-RL controller
can excellently deal with model mismatches. Another related study is
by Hosseini et al. (2023). They proposed a hierarchical structure for
power distribution system restoration, in which the RL agents work at
the lower level to make fast decisions on the active power dispatches,
and a quadratic programming agent operates at the higher level using
the local RL decisions to check the major grid constraints and to
ensure system resilience. Based on the commands from the high-level
controller, the RL agents revised their actions accordingly.

Although many studies have explored the combination of MPC and
RL in various fields, so far there is not a comprehensive survey on this
topic. The authors believe that the potentials of combining MPC and
RL have not yet been fully developed. In addition, despite the fruitful
results of adaptive MPC, relevant research on PMPC is quite limited.
Therefore, in this paper, a synthesis framework that utilizes RL to adjust
PMPC is presented. It will be shown that not only the RL-MPC methods
in Section 2.3, but also the learning-based adaptive MPC techniques
introduced in Section 2.2 can be extended to PMPC and embedded in
this framework.

3. The synthesis framework of RL-based adaptive PMPC

In this section we first extend the conventional definition of PMPC
such that all the components of PMPC can be modified. Based on this
definition, we present a novel synthesis framework for RL-PMPC, and
further consider five cases, each corresponding to a specification of the
novel framework by parameterizing a different component of PMPC.
The frequently used mathematical notations are defined in Table 1.

3.1. Extended PMPC scheme

In a general PMPC scheme, there are three time scales: the simu-

lation sampling time 𝑇s of the prediction model, the control sampling
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Table 1
Definitions of the mathematical notations.

Notation Definition

𝐹 (⋅) Prediction model for the controlled system
𝑘s Simulation step counter of the prediction model
𝑘c Control step counter of the controlled system
𝑘p Operation step counter of the PMPC scheme
𝑘rl Operation step counter of the RL agent
𝑇s Simulation sampling time of the prediction model
𝑇c Control sampling time of the controlled system
𝑇p Operation sampling time of the PMPC scheme
𝑇rl Operation sampling time of the RL agent
𝒙(𝑘s) Measured state at time step 𝑘s
�̂�(𝑘s) Predicted state at time step 𝑘s
�̃�(𝑘p) Sequence of the predicted states over the prediction horizon at

the PMPC operation step 𝑘p
�̄�(𝑘rl) Measured system states at the RL operation step 𝑘rl
𝒖𝜃 (𝑘p) Optimization variables of PMPC at the PMPC operation step 𝑘p
𝒖c(𝑘c) Control input generated by the parameterized control law at

control step 𝑘c
�̃�(𝑘p) Sequence of control inputs over the prediction horizon at the

PMPC operation step 𝑘p
�̄�(𝑘rl) Implemented control inputs at the RL operation step 𝑘rl
𝑁p,o Prediction horizon size counted in terms of the PMPC

operation steps
𝑁p,c Prediction horizon size counted in terms of the control time

steps
𝑁p,s Prediction horizon size counted in terms of the simulation

time steps
𝑁b Number of PMPC operation steps where 𝒖𝜃 (𝑘p) remains

constant within the prediction window

Note: Without loss of generality, 𝐹 (⋅) is the discretized model of the controlled system
with a sampling time 𝑇s. For simplicity, the measurement sampling time is taken to
be equal to the simulation sampling time. Each time step 𝑘s corresponds to the time
nterval [𝑘s𝑇s , 𝑘s𝑇s +𝑇s) for the real system. Similar statements hold for step 𝑘c , 𝑘p, and
𝑘rl.

time 𝑇c, and the PMPC operation sampling time 𝑇p, and the correspond-
ing counting steps are 𝑘s, 𝑘c, and 𝑘p. The relationships between them
are:

𝑇p = 𝑚2 ⋅ 𝑇c = 𝑚2𝑚1 ⋅ 𝑇s, 𝑚1, 𝑚2 ∈ N+, (1)

with 𝑚1 and 𝑚2 positive integers, N+ the set of positive integer values.
The output parameters generated by PMPC at operation step 𝑘p are
assumed to remain constant during time interval [𝑘p𝑇p, (𝑘p + 1)𝑇p),
while the control inputs given to the system are updated every 𝑇c
time units based on the parameterized control laws, and the states
which are measured every 𝑇s time units.1 Within the prediction win-
dow, each PMPC operation step 𝑘p corresponds to the control steps
{𝑚2𝑘p,… , 𝑚2𝑘p + 𝑚2 − 1}, and each control step 𝑘c corresponds to the
simulation steps {𝑚1𝑘c,… , 𝑚1𝑘c +𝑚1 − 1} of the prediction model. The
relationships among different time scales over a prediction window are
illustrated in Fig. 1, in which

𝑁p,s = 𝑚1 ⋅𝑁p,c = 𝑚1𝑚2 ⋅𝑁p,o, 𝑚1, 𝑚2 ∈ N+. (2)

Considering a PMPC problem for a general nonlinear system with
state and input constraints, the following optimization problem needs
to be solved at every PMPC operation step 𝑘p:

min
𝒖𝜃 (𝑘p)

𝐽 (�̃�(𝑘p), �̃�(𝑘p),𝜽𝐽 ) (3)

.t. �̂�(𝑚1(𝑚2𝑘p + 𝑘) + 𝓁 + 1) =

𝐹
(

�̂�(𝑚1(𝑚2𝑘p + 𝑘) + 𝓁), 𝒖c(𝑚2𝑘p + 𝑘),𝜽𝐹
)

,

for 𝓁 = 0,… , 𝑚1 − 1, 𝑘 = 0,… , 𝑁p,c − 1, (4)


(

�̃�(𝑘p), �̃�(𝑘p),𝜽
)

≤ 0, (5)

1 In general, the measurement sampling time can be different to allow for
easurement of states, constraints, and performance criteria.
4

�̃�(𝑘p) = [�̂�⊤(𝑚1𝑚2𝑘p + 1),… , �̂�⊤(𝑚1𝑚2𝑘p + 𝑚1𝑁p,c)]⊤, (6)

̃ (𝑘p) = [𝒖⊤c (𝑚2𝑘p),… , 𝒖⊤c (𝑚2𝑘p +𝑁p,c − 1)]⊤, (7)
𝒖c(𝑚2𝑘p + 𝑘) = 𝑓

(

�̂�(𝑚1(𝑚2𝑘p + 𝑘)), 𝒖𝜃(𝑘p),𝜽𝑓
)

,

for 𝑘 = 0,… , 𝑁p,c − 1, (8)

�̂�(𝑚1𝑚2𝑘p) = 𝒙(𝑚1𝑚2𝑘p), (9)

n which 𝒖𝜃(𝑘p) denotes the parameter variables to be optimized every
peration step, 𝐹 (⋅) is the prediction model that is parameterized by 𝜽𝐹 ,
nd 𝒙(𝑚2𝑚1𝑘p) is the measured state vector at the time instant 𝑚1𝑚2𝑘p;
(⋅) is the objective function parameterized by 𝜽𝐽 , and  represents

he constraint for the control inputs and states parameterized by 𝜽;
is the state-feedback function, which maps 𝒖𝜃 to 𝒖c and which is

arameterized by 𝜽𝑓 . Typically, only the first element of the optimized
arameter vector, i.e., 𝒖𝜃(𝑘p), is implemented, and the optimization
roblem is solved again at the next operation step 𝑘p + 1.

emark 1. For the sake of simplicity, it is assumed in the PMPC
ormulation (3)–(9) that 𝒖𝜃(𝑘p) remains constant during the entire
MPC prediction window. However, it is straightforward to allow
𝜃(𝑘p) to vary with the PMPC operation step within the PMPC pre-
iction window. One choice is to keep the parameters constant for an
nterval (e.g., several time steps) and then change for the next interval
ver the prediction horizon, which is a hybrid option called move
locking (Cagienard et al., 2007).

In conventional PMPC (Lofberg, 2003; Goulart et al., 2006), only
he control inputs are parameterized and the resulting parameters 𝒖𝜃
re optimized. If we simplify the state-feedback function (8) to an
dentity function such that 𝒖c = 𝒖𝜃 , then the PMPC problem reduces
o a conventional MPC problem. In the PMPC problem (3)–(9), in
ddition to the state-feedback function, the other components of the
MPC scheme are all parameterized, including the constraint sets, the
bjective function, and the system model. This yields an extended
MPC scheme that can cover the existing MPC methods introduced
n Section 2. However, if we take all the parameters as decision
ariables in (3)–(9), the resulting optimization problem will be difficult
o solve, due to the large number of optimization variables and the
onlinearity and nonconvexity introduced by the parameters. This issue
an be addressed by the proposed RL-based adaptive PMPC synthesis
ramework.

.2. The synthesis framework

Instead of designing a specific scheme and tailor a solution for each
ossible parameterization case separately, we propose to integrate all
he possible solutions in an RL-PMPC synthesis framework. As shown
n Fig. 2, all parameterization cases are embedded in this framework,
nd a high-level RL agent is employed to adapt the parameterized
omponents, such that the complex optimization problem with mul-
iple parameters is avoided. Note that the RL agent in general works
ith a lower frequency than PMPC to adjust the parameters 𝜽 =
𝜽⊤𝐹 ,𝜽

⊤
𝑓 ,𝜽

⊤
𝐽 ,𝜽

⊤
 ,𝜽

⊤
s ]

⊤ of all the parametric components.
The high-level RL agent directly adjusts the parameters such that

hey can be regarded as constants during the PMPC computation proce-
ure. This simplifies the optimization problem of PMPC and makes the
ramework computationally efficient. In addition, by parameterizing
he control inputs via 𝜽𝑓 , the number of the optimization variables
f the proposed framework can be further reduced. One additional
dvantage of the proposed framework is that each parameterization
ase can be implemented either alone or jointly with other parame-
erization cases. This significantly improves the ability and flexibility
f the framework to deal with varying or unknown environments and
isturbances. Next, we first define the RL agent and then illustrate the
roposed framework by detailing each case separately.
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Fig. 1. Illustration of different time scales of the PMPC scheme within one prediction window, in which 𝑘p is the PMPC operation step, 𝑘c is the control step, and 𝑘s is the
simulation step of the prediction model.
Fig. 2. The synthesis framework of RL-PMPC.

3.2.1. Definition of the RL agent
The definition of the RL agent within the framework is related to

the learning goal and the learning process, whereas the extended PMPC
framework together with the controlled system can be regarded as the
environment of the RL agent. The high-level RL agent introduces an
extra time scale, i.e., RL adapts the PMPC controller with an operation
sampling time 𝑇rl:

𝑇rl = 𝑚3 ⋅ 𝑇p, 𝑚3 ∈ N+, (10)

and with the corresponding adaption step 𝑘rl. The reinforcement learn-
ing process is modeled as a discrete-time stochastic control process
(i.e., a Markov decision process (MDP)), which can be represented
by a five-tuple ⟨𝑆,𝐴, 𝑃 ,, 𝛾⟩. According to the RL agent within the
framework (see Fig. 2), these elements are defined as follows:
5

• 𝑆: State space, which is the set of all possible states 𝑠𝑘rl of the
environment per step 𝑘rl. In this framework, the state space may
include the measured system states 𝒙(𝑘s) where 𝑘s = 𝑚3𝑚2𝑚1𝑘rl,
the measurable external disturbances, and the control inputs gen-
erated by the low-level PMPC controller. To facilitate the learning
process, the state values are normalized to the same scale.

• 𝐴: Action space, which is the set of all possible actions 𝑎𝑘rl that
can be taken by the DRL agent based on state 𝑠𝑘rl at operation
step 𝑘rl. In this framework, the action can include values of the
parameters, which is defined in the most general case by:

𝑎𝑘rl = 𝜽 = [𝜽⊤𝐹 ,𝜽
⊤
𝑓 ,𝜽

⊤
𝐽 ,𝜽

⊤
 ,𝜽

⊤
s ]

⊤. (11)

The action can contain the parameters of a single or multiple
components of the PMPC scheme during implementations. In or-
der to avoid safety issues or significant performance fluctuations
during the learning process of the framework, the action space
(i.e., the range of the parameters) of the RL agent can be restricted
to a relatively safe set based on previous experiences or expert
knowledge. When the modified values 𝜽 of the parameters violate
their given upper and lower bounds (i.e., 𝜽 and 𝜽), the values will
be saturated within the bounds.

• 𝑃 : A function of the state and the action that determines the
transition probability among the states when taking the corre-
sponding action. In this framework, this function is implicitly
defined jointly by the PMPC scheme and the system.

• : Reward function, which generates the immediate reward
𝑟𝑘rl (𝑠𝑘rl , 𝑎𝑘rl ) when taking action 𝑎𝑘rl at state 𝑠𝑘rl . The reward
function is the core component of an RL agent, as it determines
the learning goal. Since the proposed framework is performance-
driven, the reward function should contain the performance cri-
teria of the system, which can include the objective function 𝐽 (⋅)
used in the PMPC scheme and other extra performance indices
(e.g., computation time or penalty on constraint violations).

• 𝛾 ∈ [0, 1): A user-defined discount factor on future rewards.

The goal of learning is to find a policy 𝜋 ∶ 𝐴 × 𝑆 → [0, 1], 𝜋(𝑎, 𝑠) =
Pr(𝑎𝑘rl = 𝑎|𝑠𝑘rl = 𝑠), that maximizes the accumulative long-term reward,
which is the expected return defined by:

𝑄𝜋
(

𝑠𝑘rl , 𝑎
𝜋
𝑘rl

)

=E𝑟,𝑠∼𝐸

[ ∞
∑

𝑘rl=0
𝛾𝑘rl 𝑟𝑘rl (𝑠𝑘rl , 𝑎

𝜋
𝑘rl
)

]

=E
[

𝑟 (𝑠 , 𝑎𝜋 ) + 𝛾𝑄𝜋
(

𝑠 , 𝑎𝜋
)]

,

(12)
𝑟,𝑠∼𝐸 𝑘rl 𝑘rl 𝑘rl 𝑘rl+1 𝑘rl+1
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where the subscript 𝑟, 𝒔 ∼ 𝐸 denotes the stochastic transitions among
he states in the environment, and 𝑎𝜋𝑘rl

is the action taken at step 𝑘rl
based on the policy 𝜋(⋅). Depending on the specific problem, various
RL algorithms can be chosen. In particular, when dealing with large-
scale problems with multiple parameters, deep RL algorithms that can
address continuous state space are preferred, such as Deep Q-Network
(DQN) or actor-critic algorithms (Mnih et al., 2013, 2016; Lillicrap
et al., 2015; Haarnoja et al., 2018).

Remark 2. The learning process can be conducted offline (i.e., using
a detailed simulation model to generate data), which is known as
pre-training, or online (i.e., interacting with the real system), or via
a combination of online and offline processes. Both variants have a
similar training process (see Algorithm 1).

Algorithm 1 summarizes the overall learning process of the pro-
posed framework, and a deep RL algorithm, i.e., deep deterministic
policy gradient (DDPG) (Lillicrap et al., 2015), is used for example.2
The RL agent is trained for 𝑀 episodes, and each episode starts from the
initial state and ends in the terminal state or at the terminal time step.
Note that Algorithm 1 can be easily extended to other RL algorithms.
In addition, the online variant of Algorithm 1 can be obtained by
changing line 14, in which the simulation model is replaced by the
real system. Next, the RL-based modification of each component of the
PMPC scheme is discussed separately in detail.

3.2.2. Case A: RL modifying the system model
Adjusting the model parameters can reduce the mismatch between

the prediction model and the real system, thus resulting in more
accurate predictions and better control performance. Therefore, the
states 𝑠𝑘rl of the RL agent in the adaptation step 𝑘rl can include the
measured states of the real system at the corresponding time step,
i.e., 𝒙(𝑘s) with 𝑘s = 𝑚3𝑚2𝑚1𝑘rl, and other necessary information about
the environment, such as disturbances and PMPC inputs. In this section,
the objective of RL (i.e., the reward function) can be either minimizing
the modeling errors, as in Wang et al. (2020) and Hu et al. (2022),
or optimizing the control performance directly. For the former case,
the reward function can be defined to minimize the error between the
predicted states and the measured states. For the latter case, the reward
function can be defined to minimize the objective function in PMPC:

𝑟𝑘rl (𝑠𝑘rl , 𝑎𝑘rl ) = −𝑅(�̄�(𝑘rl), �̄�(𝑘rl)), (13)

where 𝑅(⋅) can be similar to the PMPC objective function 𝐽 (⋅), and �̄� and
̄ include the measured states and implemented PMPC inputs during
ime interval [𝑘rl𝑇rl, (𝑘rl + 1)𝑇rl). For linear systems with parametric

uncertainties (e.g., see Zhang and Shi (2020), Lorenzen et al. (2017)),
one way is to parameterize the system as:

𝐹 (𝒙, 𝒖,𝜽𝐹 ) = 𝐴(𝜽𝐹 )𝒙 + 𝐵(𝜽𝐹 )𝒖. (14)

The parameters 𝜽𝐹 can be adjusted by the RL agent directly at every
adaptation step 𝑘rl, and the action can be the corresponding parameter
values. In this way, RL can adjust the varying parameters caused by
the changing environment, via interacting with the environment or a
simulation model. This strategy can also be extended to more general
linear systems with other parametric models than (14).

For nonlinear systems, consider a widely-used parametric nonlinear
model (Adetola et al., 2009):

𝐹 (�̂�, 𝒖,𝜽𝐹 ) = 𝐹𝑓 (�̂�, 𝒖) + 𝐹𝑔(�̂�, 𝒖)𝜽𝐹 , (15)

here 𝜽𝐹 can be the adjusted by the RL agent. Moreover, accord-
ng to Tóth (2010), basis functions can be used to construct linear

2 The explanation of the DDPG techniques, i.e., critic and actor structure,
xperience replay, and target networks, is omitted here for compactness. For
ore details, the reader can refer to Mnih et al. (2013) and Lillicrap et al.

2015).
6

f

Algorithm 1 Offline learning process of the RL-PMPC synthesis
framework
1: Initialize the DDPG agent: the critic and actor networks, the

corresponding target networks and the experience replay buffer
2: Initialize the PMPC scheme by determining the parameterization,

and define the state space, action space, and reward function of
the DDPG agent

3: for episode from 1 to 𝑀 do
4: Initialize the system states
5: for every RL adaption step 𝑘rl do
6: Observe state 𝑠𝑘rl
7: Take action 𝑎𝑘rl according to state 𝑠𝑘rl and policy 𝜋(⋅), and

update parameters 𝜽 of the PMPC scheme
8: for every PMPC operation step 𝑘p do
9: Measure state 𝒙(𝑚2𝑚1𝑘p)

10: Solve the PMPC problem (3), and get the optimized
parameter 𝒖𝜃(𝑘p)

11: for every control step 𝑘c do
12: Measure state 𝒙(𝑚1𝑘c) and calculate the control inputs

𝒖c(𝑘c) according to (8)
13: for every step 𝑘s do
14: Implement control input 𝒖c(𝑘c) on the simulation model;

measure and record states 𝒙(𝑘s + 1)
15: end for
16: end for
17: end for
18: Observe the reward 𝑟𝑘rl and next state 𝑠𝑘rl+1
19: Store transition (𝑠𝑘rl , 𝑎𝑘rl , 𝑠𝑘rl+1, 𝑟𝑘rl ) in the replay buffer
20: Sample a mini-batch of 𝑁 data points from replay buffer

randomly
21: Update the critic and actor (target) networks based on the

sampled data according to Lillicrap et al. (2015)
22: end for
23: end for

parameter-varying models. Then the RL agent can be used to tune the
weights of the chosen basis functions. This can also be applied to the
cases where artificial neural networks (ANNs) are used to approximate
the nonlinear system. For example, the RL agent can be used to tune
the weights of the neurons of ANNs (Akpan and Hassapis, 2011), or
to compensate for the modeling errors between the real system and
the ANNs (Perrusquía and Yu, 2021). Furthermore, some systems have
different modes or dynamics under different working conditions, which
can be described by switching among several system models. Then the
RL agent can be used to select the suitable system model to adapt to
varying conditions.

3.2.3. Case B: RL modifying the parameterized control laws
Parameterizing the control laws with state-feedback functions

(i.e., control law 𝑓 (⋅)) is the main way to reduce computation time in
his framework. Several studies (see, e.g., Zegeye et al. (2012), Van
ooten et al. (2017), Pippia et al. (2018)) consider a fixed control

aw that is pre-designed based on the experience or expert knowl-
dge. This handcrafted design may work well for some scenarios, but
he control performance may deteriorate when the system conditions
hange over time. Therefore, in this section, the RL agent within this
ramework allows to tune the control law 𝑓 (⋅), which is parameterized

by 𝜽𝑓 . Consider the following example, where the control law 𝑓 (⋅) is a
ombination of several basis functions:

(�̂�, 𝒖𝜃 ,𝜽𝑓 ) =
𝑛𝑓
∑

𝑖=1
𝜃𝑓,𝑖𝜙𝑓,𝑖(�̂�, 𝒖𝜃), (16)

n which 𝜽𝑓 = [𝜃𝑓,1,… , 𝜃𝑓,𝑛𝑓 ]
⊤ with 𝑛𝑓 the number of the basis
unctions. Accordingly, the action of the RL agent can be defined by
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(11). The basis functions 𝜙𝑓,𝑖(�̂�, 𝒖𝜃), 𝑖 = 1,… , 𝑛𝑓 should be designed
a priori to handle various system conditions. They can be constructed
empirically or by resorting to a learning-based method. For example,
the grammatical evolution algorithm can be used to generate the
control laws automatically in an offline style (Jeschke et al., 2023).
Furthermore, the state space and the reward function for this case can
be defined in the same way as in Case A.

3.2.4. Case C: RL modifying the objective function and constraint sets
It has been shown that the objective function and constraints within

the PMPC scheme can be adjusted to further improve the control
performance (Gros and Zanon, 2019), while it has not been illustrated
how to systematically parameterize the objective function. Arroyo et al.
(2022) also approximated the infinite cost of the objective function
by using a stage cost and a value function. However, this leads to
increased complexity in solving the optimization problem, since the
value function introduces extra nonlinearity and nonconvexity to the
optimization problem. Arroyo et al. (2022) used an exhaustive search
method to find an optimal action per time step. In this section, we
propose to rewrite the objective function (3) as in Gros and Zanon
(2019), which is given by:

𝐽 (�̃�(𝑘p), �̃�(𝑘p),𝜽𝐽 )

=
𝑁p,c−1
∑

𝑘=0

𝑚1−1
∑

𝓁=0
𝐿(�̂�(𝑚1(𝑚2𝑘p + 𝑘) + 𝓁), 𝒖c(𝑚2𝑘p + 𝑘),𝜽𝐽 )

+ 𝑇 (�̂�(𝑚1𝑚2𝑘p + 𝑚1𝑁p,c),𝜽𝐽 ), (17)

where 𝐿(⋅) and 𝑇 (⋅) are the stage cost function and terminal cost func-
tion parameterized by 𝜽𝐽 . One possible realization of the parameterized
stage cost 𝐿(⋅) and terminal cost 𝑇 (⋅) can be similar to (16), i.e., a
combination of basis functions weighted by the parameters. In addition
to the methods presented in Section 3.2.3 for constructing the basis
functions, radial basis functions (RBFs) can also be considered since
they have the universal approximation property (Micchelli, 1984; Park
and Sandberg, 1991). The selection of the centers and weights of the
RBFs can be done by the RL agent within this framework, where these
parameters can be integrated into 𝜽𝐽 , and the action of the RL agent
can be the same as (11).

The terminal constraint set is important in MPC theory to guarantee
the recursive feasibility and it can be adapted online (Rosolia and Bor-
relli, 2017). However, Rosolia and Borrelli (2017) did not consider the
changing environment or disturbances. In this case, all the constraint
sets are integrated in the function (�̂�, 𝒖,𝜽), which is parameterized
y 𝜽. Therefore, 𝜽 can be tuned by the RL agent to respond to the
arying environmental conditions. Furthermore, the state space and
eward function for this case can be defined as in Case A.

.2.5. Case D: RL modifying the optimization settings
In this section, we propose to use the RL agent to modify the

ptimization settings, such as the length of the prediction horizon as
n Piga et al. (2019) and the optimization options of a solver. Proper
uning of the prediction horizon can result in a balance between compu-
ational complexity and performance, so as the solver options. Different
ptimization algorithms may lead to various results, and for each algo-
ithm, the optimization settings such as the constraint tolerance, step
ize tolerance, function value tolerance, and other parameters, which
ignificantly influence the optimization speed and accuracy, should be
re-selected. Within our proposed framework, these parameter values
re allowed to be adapted according to the varying environment and
ontrol objective. The reward function of the RL agent for this case
hould be revised, for instance to be defined as a combination of the
ontrol performance and the computational efficiency, which is given
y:

(𝑠 , 𝑎 ) = −𝑅(�̄�(𝑘 ), �̄�(𝑘 )) − 𝐽 (𝑎 ), (18)
7

𝑘rl 𝑘rl 𝑘rl rl rl  𝑘rl
where 𝐽 (⋅) is an index that denotes the computational efficiency of
the solver (e.g., the computation time for solving the optimization
problem). Accordingly, the state space of the RL agent can be defined
as in Case A, and the action can be given by (11).

As mentioned in Remark 1, the optimization variables 𝒖𝜃 can be
hanged in a move blocking way. Let 𝑁b denote the number of the
MPC operation steps where the parameters remain constant within
he prediction window. If 𝑁b = 𝑁p,o, then 𝒖𝜃 is constant over the
rediction window. In this case, the computation time is reduced, but
ill in general result in less optimal performance. Therefore, 𝑁b can
lso be a parameter that is tuned by the RL agent to reach a trade-off
etween the performance and the computation time.

.2.6. Case E: RL modifying parameterized control inputs
This is a degenerate case with the PMPC module, in which the RL

gent is used to tune 𝒖𝜃 generated by the optimization process of the
MPC module. This is different from conventional studies (Zhang et al.,
021; Remmerswaal et al., 2022; Sun et al., 2024), in which the RL
gent directly adjusts the control inputs that are fed into the system.
onsidering a simple case for (8), where the parameterized control law

s a linear function:

c(𝑘c) = 𝒖𝜃 �̂�(𝑚1𝑘c), (19)

he corresponding RL action is

𝑘rl = 𝛥𝒖𝜃 , (20)

here 𝛥𝒖𝜃 is the adjustment value to 𝒖𝜃 . Compared to adjusting 𝒖c or
etermining 𝒖𝜃 directly, tuning the parameters 𝛥𝒖𝜃 is expected to be
ore robust in terms of the control performance during the learning
rocess. In particular, without the MPC scheme (i.e., the receding
orizon optimization process), the framework will be reduced to an RL-
ased adaptive state feedback controller, as in Sun et al. (2023). The
tate space and reward function can be defined as in Case A.

. Case study

In this section, Case B from Section 3.2.3 is implemented on a
reeway network, in order to illustrate the proposed framework. First,
he freeway network is presented, followed by the traffic demand
rofiles, external disturbances, and weather conditions that introduce
arameters uncertainties. Then the parameterized control law based
n ramp metering (RM) is introduced. A DQN agent is utilized in the
roposed framework to tune the parameters of the parameterized RM
ontrol law. The performance of the proposed framework is compared
ith conventional MPC, PMPC, and a standalone RL controller.3

.1. Freeway network

The benchmark freeway network from Liu et al. (2022) is used in
his case study, which is presented in Fig. 3. This freeway network is
ivided into 18 segments of 1000 m long. There are 1 mainstream ori-
in (𝑂0), 3 on-ramps (𝑂1, 𝑂2, 𝑂3), 1 unrestricted destination (𝐷0), and

3 unrestricted off-ramps (𝐷1, 𝐷2, 𝐷3). All three on-ramps are regulated
by a traffic light, which can control the ramp metering rate (i.e., ramp
metering (RM) control). Therefore, there are 3 control signals in total
for this network. In this case study, METANET is used to represent
the freeway network, and the perturbed version of the same model is
used as the prediction model for PMPC. Therefore, both the controlled
system and the prediction model have the same simulation sampling
time. METANET is a second-order macroscopic traffic flow model that
has been widely used in freeway traffic control (Hegyi et al., 2005;
Liu et al., 2022) thanks to its ability to reproduce freeway traffic
phenomena with relatively less computational complexity. More details
about METANET can be found in Messner and Papageorgiou (1990) and

Kotsialos et al. (2002).
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h

Fig. 3. The layout of the freeway network in this case study.
Fig. 4. Traffic demand profiles for the origins of the freeway network.

Fig. 5. The downstream density used to generate a shock wave for the freeway
network.

In this case study, a scenario of recurrent traffic demand for 2 h
during the rush hour is considered. Traffic demands from all origins
(𝑂0, 𝑂1, 𝑂2, 𝑂3) are presented in Fig. 4. In addition, a shock wave
from the downstream boundary is generated to produce extra traffic
jams. Such a shock wave is an abrupt increase in traffic density that
will propagate from downstream to upstream. The downstream density
profile is presented in Fig. 5. The parameters of the freeway model are

3 The source codes of the case study are available via the repository:
ttps://github.com/dingshansun/RL-based-PMPC.
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taken from Liu et al. (2022). In this case study, environment changes
are considered that can influence the parameters of the traffic network.
More specifically, the weather condition is taken into consideration,
which is classified into three levels: good weather, bad weather, and
extreme weather. The real parameters of the freeway model and the
estimated parameters of the prediction model are presented in Table 2,
for different weather conditions. The mathematical notations of the
parameters are the same as in Liu et al. (2022). For definitions of the
parameters, the reader can refer to Hegyi et al. (2005) and Liu et al.
(2022).

Six weather scenarios are considered, each of which corresponds
to a 2-hour simulation interval where the weather condition remains
unchanged for the first hour and switches to another condition for the
next hour. The weather scenarios are defined as:

• Scenario 1: from good weather to bad weather;
• Scenario 2: from good weather to extreme weather;
• Scenario 3: from bad weather to extreme weather;
• Scenario 4: from bad weather to good weather;
• Scenario 5: from extreme weather to good weather.
• Scenario 6: from extreme weather to bad weather.

Fig. 6 gives an illustrative description of the scenarios. In this case
study, all the controllers are implemented on these six scenarios and
the performances of the resulting controlled systems are compared per
scenario. Note that each simulation starts with a fixed initial state,
which is obtained by starting with an empty freeway network and
considering a constant demand of 3000 veh/h from the mainstream
origin and 500 veh/h from the on-ramps for a period of 15 min; the
state of the freeway network at the end of this period is used as the
initial state for each of the simulations.

4.2. Parameterized freeway traffic control laws

Ramp metering (RM) rates have been widely used in freeway traffic
management (Hegyi et al., 2005). This control measure was further
parameterized by Zegeye et al. (2012) in an MPC framework. The
parameterized control law of RM used in this case study is based
on Zegeye et al. (2012), and is given by:

𝑢rm,𝑖
(

𝑘c + 1
)

= 𝑢rm,𝑖
(

𝑘c
)

+ 𝑢𝜃(𝑘p)
(

𝜃𝑓 (𝑘rl) − 𝜌𝑖(𝑘c)
)

, (21)

where 𝑘c is the control step, 𝑘p is the PMPC operation time step, 𝑘rl is
the RL operation time step, 𝑢rm,𝑖

(

𝑘c
)

is the RM control input for the on-
ramp that is linked to segment 𝑖, 𝜌𝑖(𝑘c) is the measured traffic density of
the downstream segment 𝑖 of the on-ramp, and 𝑢𝜃(𝑘p) is the parameter
optimized by PMPC at operation step 𝑘p. Note that the control law
(21) is derived from ALINEA (Papageorgiou et al., 1991), in which the
original parameter 𝜃𝑓 is the setpoint density obtained and pre-defined
through experiments and historical data. In this case study, the same
parameterized control law (21) is applied to all the three on-ramps, in
which 𝜃𝑓 (𝑘rl) is the parameter that is tuned by the RL agent at operation

step 𝑘rl.

https://github.com/dingshansun/RL-based-PMPC
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Fig. 6. Illustrative depiction of the weather scenarios 1-6 considered in the case study.
Table 2
Parameters of the freeway network under different weather conditions.

Weather
condition

𝑇
[s]

𝜏
[s]

𝜅
[veh/km/lane]

𝜂
[km2/h]

𝑎𝑚 𝜎 𝑣free
[km/h]

𝜌crit
[veh/km/lane]

𝛼 𝜌max
[veh/km/lane]

𝐿𝑚
[m]

Good 10 18.0 40 65.0 1.867 0.10 102 33.5 0.10 180 1000
Real Bad 10 27.0 60 55.0 1.667 0.30 92 26.5 0.00 150 900

Extreme 10 36.0 80 45.0 1.467 0.50 82 19.5 −0.10 120 800

Good 10 18.9 42 68.3 1.960 0.11 107 36.9 0.11 189 1050
Estimated Bad 10 28.4 63 57.8 1.750 0.32 97 29.5 0.00 158 945

Extreme 10 37.8 84 47.3 1.540 0.53 86 22.5 −0.11 126 840
4.3. Controllers

All the MPC-based controllers in this case study use the prediction
model with estimated parameters given in Table 2. In addition, the
learning-based controllers (i.e., standalone RL controller and RL-PMPC
controller) are trained off-line with the prediction model, and are
validated via the system with real parameters. The simulations are
performed on a PC with an Intel Xeon Quad-Core E5-1620 V3 CPU with
a clock speed of 3.5 GHz.

In this case study, the total time spent (TTS) by all the vehicles in
the entire freeway network for all the 6 weather scenarios is taken as
the performance criterion for the controllers. For the METANET model,
the simulation sampling time is 𝑇s = 10 s. The control sampling time for
the parameterized control laws is 𝑇c = 60 s; the PMPC scheme operation
sampling time is 𝑇p = 300 s. The control input constraints are given by:

0 ≤ 𝑢rm ≤ 1.

Therefore, the RM control inputs generated by (21) should be saturated
within the bounds. The projection method in Jeschke et al. (2023) is
utilized to enforce the constraints on the control inputs, and it has
been illustrated that the projection-based PMPC can achieve better
or equal performance than the conventional PMPC with constraints.
During the entire 2-hour simulation, it is assumed that the prediction
model used by the (P)MPC controllers is fixed with the estimated
parameters corresponding to the initial weather condition. Meanwhile,
the parameter 𝜃𝑓 in the parameterized control law remains constant
with the value of critical density 𝜌crit of the initial weather condition
for the standalone PMPC controller.

4.3.1. ALINEA controller
ALINEA (Papageorgiou et al., 1991) is a well-known state-feedback

controller for freeway ramp metering control that aims at regulating the
downstream density at the specified critical density 𝜌crit to maximize
the throughput. In this case study, it is used as a baseline controller.
The ALINEA controller has the same expression as (21), but with fixed
parameters:

𝑢
(

𝑘 + 1
)

= 𝑢
(

𝑘
)

+ 𝑐
(

𝜌 − 𝜌 (𝑘 )
)

,
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rm,𝑖 c rm,𝑖 c rm crit 𝑖 c
where 𝑐rm is the fixed gain coefficient, which is taken as 0.1 in this
case study by trial and error, and 𝜌crit is the estimated critical density
of the initial weather condition corresponding to the specified weather
scenarios. The values of 𝜌crit under the different weather conditions are
given in Table 2.

4.3.2. Standalone PMPC controller
The objective function of the PMPC scheme only contains the TTS

within the prediction window. The PMPC operation sampling time
is 300 s, i.e., the parameterized optimization problem is solved every
300 s, while the parameterized control law (21) works on the basis of
60 s (i.e., provides control inputs according to the states every 60 s).
The length of both the prediction horizon and the control horizon is
900 s. Thus, 𝑁p,s = 90, 𝑁p,c = 15, 𝑁p,o = 3. Furthermore, 𝑁b = 1,
which means that the optimized parameters are allowed to change per
PMPC operation step (i.e., every 300 s) within the prediction window.
Therefore, the number of the optimization variables is 1×𝑁p,o∕𝑁b = 3.

The sequential quadratic programming (SQP) algorithm (Boggs and
Tolle, 1995) is implemented via the fmincon function from Maltab to
solve the nonlinear constrained optimization problem. To avoid getting
stuck in local optima, multiple starting points are selected randomly to
solve the optimization problem, and the best solution is taken as the
final result. In this case study, the number of initial points is selected to
be 40, which is determined according to the experiments, as in this way
a balance is achieved between optimality and computational efficiency.
In addition, the stopping criteria of the SQP algorithm are also tuned,
in which the cost function tolerance, step tolerance, and constraint
tolerance are all selected to be 10−2.

4.3.3. Standalone MPC controller
A conventional standalone MPC controller is also implemented on

the freeway network. It has the same settings as the PMPC controller,
and has an operation sampling time of 60 s. Since the conventional
MPC controller directly optimizes the ramp metering rates of the entire
freeway network for every control step within the prediction window, it
has a larger number of optimization variables than the PMPC controller,
which is 3 ×𝑁 = 45.
p,c
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Table 3
Training parameters of the DQN agent.
Parameter Value

Maximal episodes 𝑀 2000
Mini-batch size 𝑁 512
Experience replay buffer size 1 ⋅ 105

Discounter factor 𝛾 0.99
Learning rate 0.001
Target network update rate 𝛽 0.01
Initial 𝜖 value 1.0
𝜖 decay rate 0.005
Minimum 𝜖 value 0.01

4.3.4. Standalone RL controller
The definition of the RL agent is similar to what has been explained

in Section 3.2.1. More specifically, the state space of the RL agent con-
sists of: the measured traffic state 𝒙 at RL operation step 𝑘rl, the traffic
demands, downstream boundary density, previously implemented ramp
metering rates, and the real-time weather condition. The action of the
RL agent consists of the ramp metering rates, which are given to the
freeway network directly and have the same bound constraints as the
PMPC controller. For simplicity, the three on-ramps share the same
ramp metering rates, which is discretized into 11 values distributed
equidistantly between 0 and 1. Therefore, the dimension of the state
space is 46 and the dimension of the action space is 1. The operation
sampling time for the standalone RL controller is the same as the
network control sampling time, that is, 𝑇rl = 60 s. Thus the reward is
defined as the negative value of the TTS during the simulation interval
[𝑘rl𝑇rl, (𝑘rl + 1)𝑇rl) between two RL operation steps.

Accordingly, a deep Q-Network (DQN) (Mnih et al., 2013) agent
is used, which can address the continuous state space and the discrete
action space. The neural network consists of one input layer, one output
layer, and three hidden layers. The size of the input and output layers
correspond to the dimensions of state and action spaces, respectively.
The three hidden inner layers have 64, 256, and 64 neurons,4 and each
of them uses a ReLU activation function. The training parameters of the
DQN agent are given in Table 3, in which 𝜖 is the exploration parameter
decaying from the initial value to the minimum value with the decay
rate. A higher value 𝜖 encourages more exploration. Thus, the agent
has a high probability to choose actions randomly in the early learning
stage, and the probability decreases gradually as the training procedure
evolves. Similarly to Sun et al. (2024), 𝑛−step TD (temporal difference)
is also used in this DQN agent to improve the learning and control
performance, with 𝑛 = 15.

4.3.5. RL-PMPC control framework
The RL-PMPC control framework consists of a PMPC controller

and an RL agent. The PMPC controller is the same as the standalone
PMPC controller defined in Section 4.3.2. The DQN agent defined in
Section 4.3.4 is also used in this control framework. In addition to the
state space of the standalone RL controller, the agent in this framework
has extra state variables, i.e., the PMPC input 𝑢𝜃(𝑘p). Furthermore, the
action space is also different. The RL agent within the framework tunes
the parameters 𝜃𝑓 (𝑘rl) of the control law (16) at every RL operation step
𝑘rl. Based on numerical tuning experiments, the range of the parameter
𝜃𝑓 is set from 15 veh/km/lane to 40 veh/km/lane, and the action space
is discretized into 11 actions distributed equidistantly within this range.
The parameter selected by the RL agent is applied to all the on-ramps.

The time complexity of the framework depends on the number
of the optimization variables of the PMPC module. Since PMPC is
an optimization-based controller, in the general case, which includes
nonlinear nonconvex optimization, the computation time in practice
would grow exponentially with the increasing number of optimization

4 These numbers have been selected by manual tuning.
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variables. Nevertheless, the computation time of the framework has
been significantly reduced compared to conventional MPC methods,
because of the fact that the number of optimization variables of PMPC
is greatly reduced compared to conventional MPC method (e.g., from
45 to 3 in this case study).

Since the aim of the RL agent within this framework is to deal
with the changing environment (i.e., the changing weather conditions),
this RL agent has an operation sampling time that is in line with the
weather-changing frequency. In this case study, we have 𝑇rl = 1800 s.

onsequently, the reward at each RL step 𝑘rl is the negative value of
he TTS during the simulation interval [𝑘rl𝑇rl, (𝑘rl + 1)𝑇rl).

.4. Results and discussions

The TTS and CPU time results for each controller per scenario are
ollected, and the results are presented in Table 4, in which the mean
PU time is the average time required for the optimization process per
ontrol step, and the max CPU time corresponds to the maximum over
ll the control steps of the computation time per step.

Table 4 shows that all the controllers improve the performance in
erms of TTS with regard to the no-control case. More specifically, the
tandalone MPC controller provides the best TTS performance among
ll the controllers for most scenarios (1-4). This is because the stan-
alone MPC controller optimizes the control inputs directly for each
n-ramp and because it has a higher operation frequency. Therefore,
PC can adapt to the changing environment and disturbances implic-

tly by measuring the real-time traffic states, and can thus provide
he optimal control inputs. In contrast, ALINEA also regulates each
amp separately, but performs worse than the other controllers. This
s because ALINEA is vulnerable to the estimated network parameter
ncertainties, and the local ALINEA controllers cannot be coordinated
o optimize the global performance. However, the standalone MPC
ontroller results in the largest computation time for all the scenarios,
n terms of both mean and maximum computation time. In comparison,
he standalone PMPC controller significantly reduces the computation
ime by 98% on average with regard to the standalone MPC controller,
nd it provides comparable control performance to the standalone MPC
ontroller in most scenarios (1-4) and even achieves better performance
n scenario 5 and 6.5 The computation time of the standalone RL
ontroller is negligible since only an online neural network evaluation
s required to obtain the control inputs. Nevertheless, the standalone RL
ontroller is sensitive to the model mismatches between the prediction
odel (i.e., the training model) and the real system (i.e., the validation
odel). Therefore, even when the RL agent is trained with a sufficient
umber of data samples, the validation performance still cannot be
uaranteed (see Scenarios 2, 4 and 6 in Table 4).

In contrast, the RL-PMPC controller achieves a better performance
han both the standalone PMPC and the standalone RL controllers.
hrough this ablation study, the effectiveness of the proposed frame-
ork is validated. With the PMPC module, the RL-PMPC framework

an guarantee a basic performance. With the RL module, the RL-
MPC framework can further improve the control performance of the
MPC module by online tuning of the parameters of the parameter-
zed control laws. The RL-PMPC framework can also adapt better to
he model mismatches and the changing environment (i.e., changing
eather conditions). Furthermore, the RL-PMPC controller inherits the

omputational efficiency advantage of PMPC and RL. Therefore, the RL-
MPC controller has a significantly reduced online computation time
ompared to the standalone MPC controller, and meanwhile provides a
TS performance that is comparable to the standalone MPC controller

5 The performance of standalone MPC deteriorates for scenarios 5 and 6,
nd this is because standalone MPC cannot handle the large model mismatches
nder the extreme weather condition without directly adapting the model
arameters.
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Table 4
Comparison of the control performance for different controllers for different weather scenarios, in terms of TTS, mean computation time, and max computation time, in which ‘–’
means that the corresponding item is not applicable to the controller.

Weather scenario Performance No control ALINEA Standalone MPC Standalone PMPC Standalone RL RL-PMPC

Scenario 1
TTS [veh ⋅ h] 4819.15 4040.13 3911.36 4062.56 4003.01 3985.90
Mean CPU time [s] – – 73.46 1.08 – 0.94
Max CPU time [s] – – 104.07 2.03 – 2.24

Scenario 2
TTS [veh ⋅ h] 5426.99 4783.06 4645.06 4732.41 4992.53 4697.27
Mean CPU time [s] – – 69.42 1.05 – 1.05
Max CPU time [s] – – 119.64 2.10 – 2.17

Scenario 3
TTS [veh ⋅ h] 7932.46 6982.50 6804.84 7073.85 6938.64 6877.34
Mean CPU time [s] – – 74.43 1.29 – 0.83
Max CPU time [s] – – 104.60 2.93 – 3.09

Scenario 4
TTS [veh ⋅ h] 6652.77 5446.39 5353.94 5525.41 6084.34 5413.88
Mean CPU time [s] – – 76.69 1.49 – 1.18
Max CPU time [s] – – 116.08 2.88 – 2.62

Scenario 5
TTS [veh ⋅ h] 8362.71 7356.78 7305.03 7559.68 7548.57 7293.49
Mean CPU time [s] – – 50.50 1.61 – 1.47
Max CPU time [s] – – 89.82 4.04 – 3.06

Scenario 6
TTS [veh ⋅ h] 9266.04 7917.86 8357.42 8474.34 8755.09 7961.16
Mean CPU time [s] – – 52.87 1.87 – 2.02
Max CPU time [s] – – 84.48 4.10 – 4.15
D
t

D

c
i

D

A

C
i
G
G

for all the considered scenarios. One additional advantage of RL-PMPC
is that the action space of the RL module is reduced with regard to the
standalone RL agent, since only the parameters of the parameterized
control laws are tuned. The number of the parameters in the parame-
terized control laws is usually smaller than the number of the control
inputs, which therefore makes it easier for the RL agent to explore the
environment and learn the optimal policy. Note that in this case study,
the number of the parameters in the parameterized control law is 1 and
the number of the control inputs is 3.

Remark 3. In this case study, we only consider one freeway control
measure (i.e., ramp metering) to illustrate the concept of the RL-
PMPC framework. If we introduce extra freeway control measures
(e.g., variable speed limits), the RL-PMPC controller has more freedom
to tune the corresponding parameters, which is hypothesized to further
improve the control performance with regard to the standalone PMPC
controller.

5. Conclusions and topics for future research

This paper has proposed a novel synthesis framework for PMPC
that integrates an extended PMPC scheme and an RL agent, in order
to deal with changing environments and disturbances. The resulting
RL-based adaptive PMPC (RL-PMPC) framework is not only compu-
tationally efficient, but it can also adapt to model mismatches and
environmental uncertainties. The novel framework allows to adjust
multiple components of the PMPC scheme by the RL agent, thus pro-
viding more flexibility to deal with uncertainties. Five cases of the
synthesis framework have been presented corresponding to adjusting
different components of the PMPC scheme. The framework embeds
existing adaptive MPC methods, and further broadens adaptive MPC
by proposing several new adaption strategies. We have illustrated the
operation of the RL-PMPC scheme via a simulation-based case study for
a freeway network that suffers from model mismatches and changing
weather conditions. The simulation results show that the proposed RL-
based adaptive PMPC framework outperforms the standalone PMPC
and the standalone RL controllers in terms of total time spent, and can
provide comparable control performance to the conventional MPC con-
troller with a significantly reduced computation time, under a changing
environment and in the presence of disturbances.

Future research can be conducted to address the scalability issue
of the proposed framework, since the computational complexity will
in general increase rapidly with the size of the networks. One po-
tential solution is to extend the framework to a multi-agent variant
11
by integrating distributed PMPC and multi-agent RL and dividing the
large network into several smaller sub-networks. In addition, the sta-
bility and recursive feasibility of the novel control framework can
be investigated, and the performance can be compared with existing
robust MPC methods. Furthermore, more advanced optimization al-
gorithms can be considered, such as the adaptive polyploid memetic
algorithm (Dulebenets, 2021) and the diffused memetic optimization
method (Dulebenets, 2023) to address disruptions, the fast fireworks
algorithm method of Chen and Tan (2023) to deal with a large-scale
optimization problem, the heuristic algorithm of Singh et al. (2022) to
address multiple objectives, or the ant-based optimization techniques
introduced in Singh and Pillay (2022). It would also be an interest-
ing topic to apply and extend all these methods to other application
fields next to traffic management, such as energy management, smart
buildings, and health. Moreover, A comparison study can be carried out
between the proposed method and the algorithms from the references.
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