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A B S T R A C T

In this paper, a gradient boosting tree model is proposed to detect, identify and localize single-phase-to-ground
and three-phase faults in low voltage (LV) smart distribution grids. The proposed method is based on gradient
boosting trees and considers branch-independent input features to be generalizable and applicable to different
grid topologies. Particularly, as it is shown, the method can be estimated in a specific grid topology and be
employed in a different one. To test the algorithm, the method is evaluated in a simulated real LV distribution
grid of Portugal. In this case study, different fault resistances, fault locations and hours of the day are considered.
In detail, the algorithm is evaluated at eighteen fault resistance values between 0.1 and 1000 Ω; similarly, nine
fault locations are considered within each one of the 32 sectors of the grid and the faults are simulated across
different hours of a day. The developed algorithm showed promising results in both out-of-sample branch and
fault resistance data especially for fault detection, demonstrating a maximum fault detection error of 0.72%.

1. Introduction

In order to tackle the climate change threat, more and more forms of
renewable energy sources are being installed in the grid. The integra-
tion of those distributed sources comes with many challenges that in-
crease the complexity of the grid and introduce a lot of uncertainty. On
the other hand, advances in the rapidly evolving field of smart grids and
the increased functionalities they bring, e.g. installation of smart me-
ters, enhance the monitoring capabilities of the system operators. In
this context, fault diagnosis processes are needed in order to pave the
way towards a self-healing electrical network.

Faults at the distribution level account for eight out of ten cases of
customer electricity interruptions [1]. While their societal and eco-
nomical impact is huge, it is very difficult to calculate the cost of a
power outage as it is a multivariant equation with many factors that are
difficult to estimate, e.g. customer behavior or company reliability loss
[2]. The famous blackout of 2003 in the USA and Canada resulted in an
estimated cost of $6 billion. Another outage event the same year in Italy
was reported to have caused a damage of €120 million to the local
economy [2]. In an attempt to measure the impact of the faults on the
customers, the value of lost load (VoLL) is used. The VoLL (€/kWh) is
defined as the ratio of the economic value of leisure in households over

the total household consumption. An annual average of 8.37 €/kWh
was measured in Europe in 2013 [3]. Despite the grave effects of
electricity interruptions described above, even today, many utilities are
relying on customer phone calls to detect or localize a fault [4].

In the literature, several attempts have been made to automatize the
fault detection and location process and minimize human interference
[5]. The two most widely used fault location methods are the im-
pedance-based and traveling wave methods; these methods are thor-
ough analyzed by the IEEE standard C37.114-2014 [6]. A study re-
viewing the different available impedance-based methods is also
provided in [7]. Besides impedance-based and traveling wave methods,
other methods also exist: sparse measurements [8–11], artificial in-
telligence [12–15], as well as hybrid methods [16,17] that have at-
tracted the researchers’ attention over the last years.

While several methods have been proposed in the literature, they all
have several underlying problems. Impedance-based methods, although
being the most widely used method for fault location applications, they
have a big problem: when using them, there is an underlying risk of
identifying multiple fault locations belonging to different branches but
of the same distance from the beginning of the feeder [4,18]. The latter,
can be quite misleading in reality when a crew is sent to restore the
power. While traveling wave methods have a higher accuracy, they also
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present several disadvantages: (a) they rely on the detection of the
wavehead, which sometimes can be quite challenging, (b) they depend
on the line parameters, which on distribution systems vary a lot since
the speed of the wave is based on the inductance and capacitance of the
lines, and (c) they are vulnerable to external signal interference
[4,19,18]. Similarly, other methods like sparse measurements or hybrid
methods can be very demanding in terms of equipment and quite costly
[4]. Finally, knowledge-based methods face the danger of not identi-
fying the fault in the case where it has not been part of the training
scenarios [4,18].

A second problem with the existing work in the literature is that it
has been limited to medium voltage (MV) distribution grids and low-
impedance faults. In particular, a very limited amount of studies ex-
amined fault cases of a fault resistance higher than 100 Ω [15,20–22].
Similarly, to the best of the authors’ knowledge, only a few methods
were applied to low voltage (LV) grids [23–26] of which the maximum
studied fault resistance was 6 Ω [23]. Considering that a large amount
of faults appear in LV distribution grids and that the fault resistance
range is in practice between 1 and 1000 Ω, it becomes clear that the
existing literature is very limited. Moreover, as the larger the fault re-
sistances are the harder it becomes to detect and identify the fault, there
is a pressing need for LV fault diagnosis methods that can detect and
identify high resistance faults.

The aim of this work is to address the issues raised above and ex-
plore aspects of fault detection, identification and location in a LV
distribution grid under both low and high resistance faults with fault
resistances ranging from 0.1 to 1000 Ω. In particular, to overcome the
disadvantages of the traditional methods, a new artificial intelligence
method is proposed in this paper based on gradient boosting trees (GBT).
The proposed method can detect, identify and locate both single-phase-
to-ground faults, the most frequent ones, and three-phase faults, the
most severe ones. The main advantage of GBT is its very fast estimation,
which in turn makes it implementable in real-time applications. The
contribution of this paper is fourfold and is summarized below:

(a) A method for fault detection and faulty feeder identification: the
occurrence of the fault is detected with a simultaneous identifica-
tion of the feeder under fault.

(b) A method for fault type identification: a distinction of the faulty and
non-faulty phases is achieved thus identifying the fault type, single-

phase-to-ground (AG, BG or CG) or three-phase fault.
(c) A method for faulty branch identification: following the feeder and

phase identification, the faulty branch within a faulty feeder is also
identified.

(d) A method that is topology-independent: unlike literature methods,
the proposed approach is generalizable and applicable to different
grid topologies. Particularly, the method can be estimated in a
specific grid topology and be employed in a different one.

The paper is organized as follows. In the following section, an ex-
plication of the developed method is provided. In the third section, the
LV distribution grid case study is analyzed. Furthermore, the obtained
results are presented in the fourth section. Finally, the conclusions are
drawn in the last section.

2. Method

2.1. Model definition

The GBT algorithm [27] is a prediction model based on the principle
of combining several regression trees. In particular, regression trees are
models characterized by either having high bias and low variance errors
if the tree is shallow, or low bias and high variance errors if the tree is
deep. To solve this issue, there are two families of algorithms that
combine several regression trees to reduce high errors.

The first family is random forests and it is based on the principle of
bagging [28], i.e. combining models with low bias and high variance
error in order to reduce the variance while keeping a low bias. In
particular, the original training dataset is first sampled with replace-
ment to create different bagged samples. Then, for each of the samples,
a deep tree is trained, i.e. a model with high variance and low bias
error; as the bagged samples are all different from each other, the
prediction of each tree is different. Finally, the final prediction is built
using the majority voting rule of all the decision trees. Fig. 1 depicts an
example of a random forest algorithm.

The second family is gradient boosting trees and it is based on the
principle of boosting [28], i.e. combining models with high bias and
low variance error in order to reduce the bias while keeping a low
variance. In detail, instead of using deep trees and different training
datasets, boosting trees employ shallow trees that are trained in the

Fig. 1. Example of a random forest.
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same dataset but where each tree is specialized in a specific char-
acteristic of the input–output relation. In particular, successive shallow
trees are trained in series, where the nth tree is trained with the goal of
reducing the prediction errors of the previous −n 1th trees. Fig. 2 il-
lustrates a simplified example of fault detection using boosting trees. In
the figure, there are datapoints representing healthy and faulty opera-
tion scenarios, together with the voltage–current measurements for
each scenario. To distinguish between faulty and healthy, a first tree is
estimated: the tree draws a decision boundary based on a voltage value.
Next, a second tree is estimated to correct the missclassified samples of
the first tree; this tree draws a second boundary using a current value.
Finally, a third tree is estimated to correct the errors of the first two. At
the end, the prediction of the model is based on the serial combination
of the three trees.

The reason for selecting this algorithm and no other, e.g. a neural
network, was threefold: (a) this has been shown to outperform other
regression tree methods and has recently become the winner of several
challenges in Kaggle, a site that hosts machine learning competitions;
(b) it has been successfully used in other energy-based applications, e.g.
forecasting electricity prices [29] or solar irradiance forecasting [30];
(c) it is a very fast model to train which allows real-time applications.

2.2. Algorithm functionality

The proposed algorithm has three distinct functionalities:

1. Fault detection: the first functionality of this algorithm is the de-
tection of a fault occurrence with a simultaneous identification of
the feeder under fault.

2. Fault type identification: an extra element which is often omitted
by fault location algorithms is the fault type identification process.
In this study, the proposed algorithm can also differentiate faulty
from non-faulty phases.

3. Faulty branch identification: the last functionality of this pro-
posed method is the faulty branch identification, which is the faulty
branch within a faulty feeder.

2.3. Working principle

The main idea of the algorithm is to make use of its prediction
capabilities to diagnose the grid faults. In particular, the algorithm uses
a training dataset =

=
X Y{ , }i i i

N
1� , where X are the inputs of the GBT

model and Y are the desired predicted output. For all the identification

Fig. 2. Gradient boosting tree working principle for a simplified detection task. Healthy data are marked with circles while data under faulty operation (characterized
mainly by a current increase) with an x. Missclassified datapoints are marked with red.
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tasks, the inputs X are the same: specific data corresponding to a spe-
cific branch, e.g. voltage on that branch. The outputs Y however de-
pend on the specific task. Particularly, the output Y changes with the
task as the algorithm has a slightly different working principle for each
of the three tasks:

• Fault detection: to identify a faulty feeder, the algorithm considers
data from healthy branches in healthy feeders and data from faulty
branches. Then, it labels the healthy branches with a 0 and faulty
branches with a 1 and the algorithm is trained to predict 0 or 1 to
indicate the existence of a fault in a branch. In real time, to identify
a faulty feeder, the algorithm is simply tested on all the branches of
a feeder.

• Fault type identification: to identify the type of fault, the algo-
rithm considers only data from faulty branches. Then, it labels each
branch datapoint with 1, 2, or 3 to respectively denote single-phase
fault in phase A, B and C, and uses a label 4 to denote three-phase
faults. In real time, to identify the fault, the algorithm is simply
tested on the faulty branch.

• Faulty branch identification: to identify the faulty branch within a
faulty feeder, the algorithm considers data from healthy branches in
a faulty feeder and data from faulty branches. Then, the algorithm is
trained to distinguish between the two cases using two labels, i.e. 0
and 1. In real time, to identify the branch, the algorithm is tested on
the branches of a faulty feeder.

A simplified representation of the proposed model for the three
diagnosis tasks is depicted in Fig. 3. As can be seen, in all three tasks,
sequential shallow trees are trained to identify the correct label in each
task, where successive trees are estimated to improve upon the error of
previous trees. Independently of the task, the trees take all type of
variables into account to correctly identify the labels: voltage threshold,
current values, voltage in one node larger than a voltage in another
node, etc. The main difference between the tasks is the output of the
model: while the fault detection and faulty branch identification tasks
output 0 or 1 depending on whether a fault exist, the fault type iden-
tification task outputs 1, 2, 3 or 4 to indicate which of the four possible
faults has occurred.

2.4. Training

Independently of the task, as they are all classification tasks, the
algorithm is trained to minimize the cross-entropy loss of the training
dataset. Moreover, to optimize the structure of the algorithm, all the
boosting tree hyperparameters, e.g. number of branches or tree depth,
are optimally selected using the Bayesian optimization [31]. In parti-
cular, the dataset is divided in three subsets: a training dataset, a va-
lidation dataset and a test dataset. The training dataset is used to esti-
mate the algorithm parameters, the validation dataset is used to
estimate the algorithm hyperparameters and finally the test dataset is
used to evaluate the quality of the algorithm.

2.5. Input features

In terms of the inputs of the model several design choices were
made. In particular, to make the model general enough, i.e. to make the
model applicable to different grid topologies with various number of
branches and available measurements, two design choices were made:

• First, the use of branch-specific features was avoided, e.g. the
branch length or the branch resistances and reactances.

• Second, all branch-specific measurements were substituted with a
fixed number of interpolated values so that each branch could have
the exact same number of features. For instance, independently of
the number of voltage measurements in a branch, five equally
spaced points within the branch were selected and the voltage

values from the voltage measurements were interpolated to these
five locations.

With that motivation, in order to identify if a fault occurs at time t
the following input features were considered:

1. Time: the hour of the day corresponding to t . This is important be-
cause the load and microgeneration penetration in the grid change
along the day.

2. Load: the load in the grid at time t .
3. Generation: the microgeneration in the grid at time t .
4. Current at time t : the current at the beginning of each feeder at time t

was considered as shown in Fig. 4. In particular, the current through
the three phases and the neutral.

5. Current 5 min before t : the current at the beginning of each feeder
five minutes before t was also considered. As before, current through
the three phases and the neutral was considered. These features are
important to have a comparison between two points close in time so
that if a fault occurs at time t , the method can compare the current
at time t with the values of the current during normal operation.

6. Voltages at time t: voltage values across each branch at time t were
considered. More specifically, as mentioned before, five virtual/in-
terpolated equally spaced measurements that were obtained from
the real measurements in the branch were considered. Moreover, the
voltages for each phase were considered, i.e. in total fifteen voltage
points per branch.

7. Voltage 5 min before t: voltage values across the branch five minutes
before t were also considered. The same fifteen voltage points as in
time t were used. As with the current, the motivation behind these
input features is to provide the method with voltage measurements
during normal operation.

2.6. Computation time

A key advantage of the current algorithm is that it only needs to be
trained periodically. In particular, for real-time fault diagnosis, the
method simply evaluates a boosting tree model. As a result, the com-
putational cost of the method is independent of the training dataset and
nearly-independent of the grid size. Moreover, its computation cost in
real time is in the order of milliseconds, which makes it very suitable for
real-time applications.

In terms of training, the algorithm is also very fast: training a
boosting tree model is done in less than 1 min. Therefore, as new data
become available, the method is also very suitable for continuous
adaption, e.g. hourly or daily, to environmental changes.

These two properties are key as they lead to a simple, yet accurate,
fault diagnosis method that does not require complex techniques, e.g.
data clustering or data reduction, to decrease the computational cost.

2.7. Representation

To provide a better understanding of the method, Fig. 5 represents
the different components of the proposed methodology and how they
relate to each other.

3. Case study

3.1. Grid structure

In order to apply the developed method to a real case scenario, the
semi-rural LV distribution grid of Portugal that was provided by Efacec
and is presented in Fig. 4, was used. This grid is a three-phase-four-wire
one where the neutral is solidly grounded. Moreover, it incorporates
eighteen single-phase photovoltaic installations and forty eight also
single-phase loads in different nodes, attributing thus an unbalanced
nature to the grid in terms of topology. Heterogeneity is yet another
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feature of this grid since conductors of various lengths, resistances and
reactances are used to connect the nodes.

Fig. 4 is also helpful to define the grid sector and branch. A sector is
the segment of the grid between two nodes, e.g. the part of the grid
connecting nodes three and six would be a sector. In this grid of 33

nodes, 32 sectors can be defined. At the same time, a branch is a unique
chain of sectors and in this grid topology nine different branches can be
identified (Fig. 4).

Finally, the available measurements considered were: (a) phase rms
voltage measurements in every node of the grid and (b) phase rms

Fig. 3. Gradient boosting tree examples per task where 0 and 1 label a healthy and faulty state respectively for tasks 1 and 3. For the fault type identification task the
number 1 to 4 correspond the faulty phase (1 for AG fault, 2 for BG, 3 for CG and 4 for ABC).
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Fig. 4. LV distribution grid of Portugal.

Fig. 5. Conceptual representation of the method implementation.
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current measurements in the beginning of each feeder where in theory a
sudden increase of the current is expected upon the occurrence of a
fault.

3.2. Simulation environment

In order to obtain the necessary data, a realistic simulation model of
the studied LV grid, designed in the MATLAB/Simulink environment,
was employed. The simulation model was provided by the company
Efacec [32]. The simulation environment provides as output: (a) nodal
phase rms voltage measurements and (b) phase rms current measure-
ments from the beginning of each feeder. Moreover, the use of phasor
mode for the simulations reduces heavily the computational time
without compromising the accuracy of the measurements. Additionally,
the environment is suitable for both normal and faulty operation si-
mulations. Finally, the simulation environment provides several con-
figurable options such as: (a) the sampling frequency which in this case
was set at 50 ms to further reduce the computation time, (b) erroneous
measurements and (c) different daily generation and load profiles.

3.3. Grid effects

To simulate the most realistic conditions, five different effects were
identified and considered in this study:

1. Fault resistance: As explained in the motivation, very few studies
were reported in the literature that cover high resistance faults in LV
grids. In this case, 15 different fault resistances were investigated:
0.1, 0.5, 1, 3, 5, 7.5, 10, 30, 50, 75, 100, 300, 500, 750 and 1000 Ω,
covering the full spectrum of faults, both low and high resistance
ones. In addition, to test the algorithm under unknown fault sce-
narios, three extra fault resistances were also considered: 4, 40 and
400 Ω.

2. Fault location: Faults in every sector of the grid were considered (32
sectors in total). In every sector, nine possible locations of fault
occurrence were considered for distances of 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80% and 90% from the beginning of the sector.

3. Fault types: The following fault types were examined: single-phase-
to-ground faults and three-phase faults. For every single-phase-to-
ground fault case, all three phases: A, B and C were considered.

4. Microgeneration penetration and load uncertainty: The studied micro-
generation and load profiles are provided in Table 1. During the
simulations, these two variables were sampled assuming a uniform
distribution with a 20% (generation) and 2% (load) interval length,
and mean following the generation/load profiles defined in Table 1.

5. Measurement noise: As stated before, this study considered phase rms
voltage measurements at every node and phase rms current mea-
surements (including the neutral) at the beginning of each feeder. In
order to approximate real measurement conditions as much as
possible, a 2% underestimation measurement error was introduced.

3.4. Data recording and generation

To generate the data for the study, the grid was simulated using a
Monte-Carlo sampling (MCS) technique. Particularly, while directly
sampling faulty data is not possible (the distribution of that data is
unknown), the distribution of the inputs affecting the grid are known
and a simulated model of the grid is available. In this context, MCS can

be performed for the inputs of the grid, and then the simulation of the
grid with those inputs follows, leading to the generation of the desired
data. In detail, as defined in Section 3.3, the distribution of the fol-
lowing variables is considered:

1. The noise in voltage measurements: modeled assuming a 2% un-
derestimation uniform error.

2. The noise in current measurements: modeled assuming a 2% un-
derestimation uniform error.

3. The location of the fault: modeled assuming nine uniformly dis-
tributed locations per sector.

4. The grid load: modeled using a uniform distribution with a 2% in-
terval length and mean following the load profile defined in Table 1.
During simulation, an hour of the day is first uniformly sampled and
then the load is sampled using the uniform distribution.

5. The grid PV generation: modeled and sampled similarly to the load,
but with a uniform distribution with a 20% interval length devia-
tion.

Then, for each of the fault resistances, fault types and grid sectors
(see Section 3.3), MCS were used to sample these five variables and
simulate the grid. This sampling-simulation procedure is repeated
multiple times to generate the required datasets.

To generate data representing faulty conditions, a total of 72 data-
points are sampled for each fault resistance, fault type and grid sector.
That leads to a regular dataset (in-sample fault resistances) of 165,888
datapoints, and an extra dataset of 27,648 datapoints representing out-
of-sample fault resistances.

To generate data representing healthy conditions (needed for the
algorithm to distinguish between faulty and normal operation), a total
of 300 datapoints are sampled for each hour of the day and for each grid
branch. This leads to a dataset containing 64,800 datapoints re-
presenting healthy conditions.

It is important to note that faulty operation measurements are taken
150 ms after the fault occurrence. This choice was made for the fault to
be as close to the steady-state as possible and to avoid corruption of the
data by the activation of any protective element.

3.5. Implementation

The algorithm was implemented in python using the XGBoost
[27] library for the GBT model, and the hyperopt [33] library to
perform the hyperparameter optimization based on Bayesian optimi-
zation.

3.6. Model training and evaluation

The algorithm is trained and evaluated using the regular dataset (in-
sample fault resistances) and the dataset of healthy data. Both dataset
together comprise a total of 230,688 datapoints, which are randomly
divided into the training, validation and test datasets as defined in
Table 2.

The model was repeatedly trained with the training dataset and the
algorithm was evaluated in the validation dataset for guiding the
Bayesian optimization algorithm to find the optimal parameters. Then,
after the optimal hyperparameters were found, the algorithm was
evaluated in the test dataset.

In addition, to have a model that generalizes to different grid faults,

Table 1
Default microgeneration and load profiles from a typical day in Portugal expressed in percentages (%).

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

μgen 0 0 0 2 9 30 54 60 86 88 73 60 100 83 49 44 14 16 3 0 0 0 0 0
Load 30 28 25 23 20 20 23 30 40 43 46 50 50 55 60 60 55 50 65 85 90 90 75 55
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the algorithm was evaluated in out-of-sample fault resistances. In par-
ticular, to test the algorithm performance against unknown fault sce-
narios, an extra test dataset was created comprising out-of-sample 4,
40, and 400 Ω fault resistances. As defined in Section 3.4, this extra test
dataset comprises 27,648 datapoints.

Similarly, to have a model that generalizes to different grid topol-
ogies, the algorithm was also evaluated against out-of-sample branches.
Particularly, in order to test the generalizability of the method to other
grid topologies, a training and validation datasets were built comprising
only data from the first and third feeder, i.e. branches 1–4 and 8–9
respectively. Then, the method was evaluated in a test dataset com-
prising data from the second feeder, i.e. branches 5–7. This choice is
justified as feeder one and three have the maximum and minimum
number of branches respectively. In that way, as it will be shown in the
next section, the algorithm was able to provide promising results not
only on fault resistances and branches that appear in the training da-
taset, but also in out-of-sample fault resistances and branches.

3.7. Comparison with similar works

Due to a lack of available research papers in the LV grid, two
methods designed for MV distribution grids were employed to compare
the algorithm performance in addition to a conventional method for LV
grids. These references were used to compare the faulty branch iden-
tification results.

In the first case [34], the authors developed a general fault location
method based on voltage and current measurements at the point of
common coupling of distributed generators. They considered all the
different types of faults, i.e. single-phase-to-ground, double-phase-to-
ground, phase-to-phase and three-phase. Moreover, they studied faults
in three possible locations within a sector at distances of 5%, 50% and
95% from the beginning of each sector. However, the maximum fault
resistance value for phase-to-phase and three-phase faults was 5 and
50 Ω for the rest.

In the second study that was used as reference [21], the authors
developed a method based on real time state estimation that detects
faults and identifies faulted lines. The authors considered single-phase-
to-ground, double-phase-to-ground and three-phase faults. Further-
more, they considered only two possible fault locations within a faulty
sector, at the middle of the line and at a distance equal to 25% of the
sector's length. Although they investigated high–impedance faults of up
to 1000 Ω, the data they presented for such high fault resistances were
applicable only to a single fault case of an unearthed neutral. For the
rest of the cases, the maximum fault resistance they tested was that of
100 Ω.

In the third study (the only one from the LV case) [35], the authors

used a conventional criterion for determining the faulty branch within a
faulty feeder. The faulty branch was considered to be the one that
presented the highest voltage drop. This method was tested against the
simulation scenarios that were described above (under the same case
study) and the results are presented in the following section.

All these information are gathered in Table 3 where the con-
siderably bigger number of fault scenarios that were considered in this
study is demonstrated.

4. Results

As a first step, the algorithm was trained with data from all three
feeders of the grid. Then, its performance was tested against out-of-
sample fault resistance data. As it was mentioned before, the out-of-
sample fault resistances that were chosen were the 4, 40 and 400 Ω. The
next step was to expose the algorithm to out-of-sample branches. As
explained in the motivation, the purpose of this test was to verify the
robustness of the algorithm against changes in the topology of the grid.

For all the results, the following definition of accuracy was used:

=
+

×Acc (%)
(true positives true negatives)

total number of samples
100

(1)

where true positives are the correctly identified faulty branches and
true negatives the correctly identified as non-faulty.

4.1. Fault detection

The first functionality of this algorithm is the detection of a fault
occurrence with a simultaneous identification of the feeder under fault.
The results are presented in Fig. 6 for the test dataset. An accuracy of
100% is achieved across all fault resistances. Such a level of accuracy
renders the proposed method a completely reliable tool for fault de-
tection and feeder identification problems.

4.2. Fault type identification

An extra element which is often omitted by fault location algorithms
is the fault type identification process. In this study, the proposed al-
gorithm was also implemented to differentiate faulty from non-faulty
phases. The obtained results for the test dataset are depicted in Fig. 7.

In Fig. 7, the first effect of the increase of fault resistance is noticed.
For low–resistance faults (below 10 Ω), the accuracy of faulty phase
identification is maintained at a level higher than 98%. After that, a
more and more significant decrease of accuracy is noticed with the
increase of the fault resistance down to minimum of 86.7% for 1000 Ω.
This was an expected result as the increase of fault resistance will de-
crease the voltage drop during a fault and thus bring the voltages across
a faulty branch closer to the values of normal operation. The limit of
10% voltage drop proposed by the EN50160 standard for LV grids, is
very likely to be violated making it more difficult for the algorithm to
distinguish faulty from normal operating phase for fault resistance va-
lues higher than 10 Ω.

Moreover, Table 4 shows the accuracy of the method for each of the
fault types in the same test dataset. A similar performance was noticed
in all four types of faults: single-phase-to-ground (AG, BG, CG) and

Table 2
Dataset sizes.

Dataset type Size

Train 115,344 (50%)
Validation 46,138 (20%)
Test 69,206 (30%)

Table 3
Comparison of different case studies of similar works.

Parameters Brahma [34] Pignati et al. [21] This paper

Grid 12.4 kV (MV), U.S.A. 10 kV (MV), The Netherlands 400 V (LV), Portugal
Fault types 1ph-G, 2ph-G, ph-ph, 3ph 1ph-G, 2ph-G, 3ph 1ph-G, 3ph
Fault resistance 1–5 (ph-ph, 3ph), 1–50 (1ph-G, 2ph-G) 1, 100, 1000a 0.1, 0.5, 1, 3, 5, 7.5, 10, 30, 50, 75, 100, 300, 500, 750, 1000
Fault location within the sector 0.05, 0.5, 0.95 0.25, 0.5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Noise in measurements – 0.016% for V , 1.2% for I 2%

a 1000 Ω only for one case.
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three-phase faults (ABC) with a maximum deviation of 0.9% between
single-phase-to-ground and three-phase faults. This is an indication that
besides the different combinations of generation and load penetration
in the grid, the unbalanced nature of the grid, i.e. the topological and
per phase asymmetry in the distribution of PVs and loads in the grid,
did not affect the proposed method.

4.3. Faulty branch identification

The last functionality of this proposed method is the identification
of the faulty branch. The results obtained with the proposed algorithm
in the test dataset are presented in Fig. 8 and Table 5 for different fault
resistance values and fault types respectively. It is shown in Fig. 8, that
with an increase of the fault resistance the accuracy of the method

decreases. More specifically, as can be seen from Fig. 8, a maximum
accuracy of 95.8% is obtained for 0.1 Ω and a minimum of 84.1% for
300 Ω.

As it was mentioned in the previous subsection, the decrease of the
accuracy of the method with an increase of the fault resistance is ex-
pected as the circulating fault current in the faulty branch will be less
significant and thus the voltage drop smaller.

Furthermore, in Table 5, the accuracy of the faulty branch identi-
fication process is presented for each fault type. In all four of the pre-
sented cases, the proposed method is not affected by the fault type as
the differences are really small. This renders the method immune to the
unbalanced nature of the grid, i.e. the per phase unbalanced distribu-
tion of loads and PVs.

The above result is a key feature of this method. It was expected that
since the loads and PV units are connected to the grid via single-phase
connections, that a big difference in the accuracy of the method with
regards to the fault type would be observable. However, this is not the
case as it is demonstrated in Table 5.

4.4. Comparison with literature methods

As mentioned in the previous section, three similar studies were
used to compare the algorithm results. Two methods designed for the
MV grid and one conventional one for the LV grid. It should be noted
that there are two factors that render the comparison with the MV cases
not exactly fair: (a) the fact that the LV grid presents a more complex
structure, highly heterogeneous and unbalanced, and (b) the fact that
there are differences in the case studies between the available in the
literature methods, e.g. studied grid, available measurements, noise in
the measurements, fault location scenarios, studied fault resistances,
fault types etc. These differences between the case study of this paper
and the ones from the literature are presented in Table 3.

The results of this comparative analysis are gathered in Table 6. The
results presented in Table 6 concern the fault types considered in this
study: the single-phase-to-ground faults (most frequent) and three-

Fig. 6. Fault detection accuracy for different fault resistance values in the test
dataset.

Fig. 7. Faulty phase identification accuracy for different fault resistance values
in the test dataset.

Table 4
Faulty phase identification accuracy for each fault type in the test
dataset.

Fault type Phase identification accuracy (%)

AG 95.6
BG 96.0
CG 96.1
ABC 96.5

Fig. 8. Faulty branch identification accuracy in the test dataset for different
fault resistance values.

Table 5
Faulty branch identification accuracy in the same test dataset for each
fault type.

Fault type Phase identification accuracy (%)

AG 93.1
BG 89.2
CG 91.2
ABC 91.7
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phase faults (most severe). In order to compare the results for similar
values of fault resistances, two cases were identified: (a) a range from 1
to 50 Ω which was used in [34] and b) the case of 100 Ω from [21]. For
the first case, the proposed method of this paper outperforms the one
from the literature by an average of 1.7%. For the second case, the
proposed method outperforms the one of the literature in some cases. In
general, taking into consideration the enlarged number of scenarios
considered in this case study, i.e. the increased number of considered
fault locations and the noise in the measurements, and the fact that the
LV grid is a more complex case, the results are considered excellent.

To further test the performance of the proposed method, a con-
ventional method for the LV grid case [35] was tested on the same
dataset/case study of this paper. The results are presented in Fig. 9. The
superiority of the proposed method is evident. An important remark is
that although the accuracy of the conventional method decreases se-
verely with the increase of the fault resistance, down to a minimum of
43.8% for 1000 Ω, the proposed method maintains high levels of accu-
racy as it was mentioned before.

4.5. Generalization to different fault cases

As a first step to test the robustness and generalization capabilities
of the method, the algorithm was exposed to different fault cases, i.e.
out-of-sample fault resistances. The values of these fault resistances
were 4, 40 and 400 Ω. Then, to analyze the robustness of the method, its
performance when exposed to out-of-sample fault resistances was
compared with the one of the regular test dataset. In particular, the
average accuracy in the test dataset between 3 Ω and 500 Ω was com-
pared with the average accuracy of the three out-of-sample fault re-
sistances. The results of this comparison are presented in Fig. 10.

It is shown that for the fault detection, the accuracy is identical in
both cases (100%). For the fault type identification task, the difference
in the accuracy is negligible (0.25% less accurate in the out-of-sample

case). For the faulty branch identification accuracy, while the accuracy
drops from 91.3% to 81.9%, this level of accuracy is still considered
excellent. Therefore, based on these results, it can be concluded that the
method can generalize to unknown fault cases as its performance in out-
of-sample fault resistances is either identical, negligible or very similar
to the one of in-sample fault resistances.

4.6. Generalization to different grid topologies

As explained in the introduction, a key property of the proposed
method is that it is generalizable and independent of the grid topology.
Particularly, the method can be trained in a specific grid topology and
then be used in a different one.

In this section, to study this specific property, the accuracy of the
method is analyzed when it is trained in a specific grid topology and
then employed in a different one. For that, the method is trained using
feeders one and three of the considered grid, and then evaluated using
data from the second feeder. Feeder one and three are selected as a
training basis since they contain the maximum and minimum amount of
branches (see Fig. 4). The results of all three method tasks when ex-
posed to out-of-sample branches are depicted in Fig. 11.

For the fault detection task, a reduction of the accuracy from 100%
to 99.15% can be noticed. Since the maximum error is 0.85 % for both
single-phase-to-ground and three-phase faults, it is safe to assume that

Table 6
Comparison of faulty branch identification accuracy of different MV methods to
the performance of the proposed method for single-phase-to-ground and three-
phase faults and specific fault resistance values/ranges.

Paper Fault Resistance (Ω)

1–50 100

Brahma [34] 92.1% –
Pignati et al. [21] – 83.78–100%
Proposed method 93.8% 91.7%

Fig. 9. Comparison of the branch identification accuracy of the proposed
method with a conventional one for LV distribution grids [35].

Fig. 10. Comparison of the average accuracy of the three tasks between all
studied fault resistances between 3 and 500 Ω and the out-of-sample fault re-
sistances.

Fig. 11. Comparison of the average accuracy of the three tasks between all
branches being part of the training and out-of-sample branches.
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the algorithm will also detect out-of-sample double-phase-to-ground
and phase-to-phase faults. Therefore, it can be stated that the fault
detection results even under unpredictable circumstances are con-
sidered excellent. For the following two tasks however, the method is
not as successful as before.

For the fault identification task, the accuracy decreases from 96.1%
to 76.4%. At the same time, for the faulty branch identification task, the
average accuracy drops from 90.15% to 62.76%; however, although not
depicted in Fig. 11, the decrease of the accuracy is bigger for high fault
resistance faults. Particularly, for faults up to 10 Ω an accuracy higher
than 70% is achieved for the faulty branch identification task. In this
case, to further improve the attained results, a retraining of the method
is advised. The same is also advised in the case of a microgrid that needs
to operate in isolated mode. The rapid training time of the algorithm
facilitates that process and makes it ideal for real-time applications.

4.7. Overfitting

A standard issue with computational intelligence methods is over-
fitting [36]. Particularly, unless regularization techniques are used,
computational intelligence methods can easily overfit the training da-
taset and perform poorly in out-of-sample data.

In the proposed method, to prevent that, the GBT model is evaluated
during training using a validation dataset so that the hyperparameters
and model structure do not become too complex. In this section, to
show that the proposed method does not overfit, the performance of the
method is compared with the training, validation and test datasets.

Fig. 12 displays this comparison for the three tasks. As can be clearly
seen, the method does not overfit for fault detection, i.e. the accuracy is
exactly the same across the three datasets. Similarly, the method does
not overfit either for fault type identification: while a minor decrease in
accuracy can be observed between the training and validation test, and
validation and test dataset, this behavior is expected. Particularly,
while the accuracy of three methods should ideally be the same, this is
not possible since the number of datapoints in each dataset is finite. In
practice, since the data distribution in each dataset is slightly different,
the method always performs slightly better in the datasets used during
training, and minor differences between the datasets are expected. A
similar reasoning can be applied to the branch identification task: while
the accuracy in the training dataset is slightly better, the method does
not overfit.

5. Conclusions

In this paper, a gradient boosting tree model was proposed to detect,

identify and locate faults in low voltage (LV) smart grids. To estimate the
model, a set of non-branch-specific input features was employed to
ensure the robustness of the algorithm against different grid topologies
and available number of voltage measurements per branch. The pro-
posed method was evaluated in a case study of a real case semi-rural LV
distribution grid of Portugal. In detail, the case study comprised: (a)
fault resistances between 0.1 and 1000 Ω, (b) different fault locations
inside each sector (c) single-phase and three-phase faults, and (d) a 2%
of underestimation error in the phase rms current and voltage mea-
surements.

To test the accuracy of the proposed algorithm, the method was
tested in an out-of-sample dataset. In addition, to analyze the robust-
ness and generalization capabilities of the algorithm, the method was
also tested against out-of-sample fault resistances and branches (re-
sistance values and grid branches not included in the training dataset).

An excellent accuracy for fault detection and fault type identifica-
tion was achieved. Faulty branch identification showed very promising
results. In comparison with other studies in the literature, the algorithm
accuracy for identifying a faulty branch, was found to be superior to a
conventional method for the LV grid but also better than two methods
from the medium voltage case. A great feature of the algorithm was
that, as can be seen in the symmetrical performance in all the phases,
the asymmetrical distribution of loads and photovoltaics across the
phases and branches does not really affect the algorithm performance.
In addition, as it could be expected, the increase of the fault resistance
decreased the accuracy of fault type and branch identification tasks.

In detail, the algorithm obtained an accuracy of 100% when iden-
tifying the faulty feeder, an accuracy between 99.7% and 86.7% (the
higher the fault resistance the lower the accuracy) when identifying the
fault type, and an accuracy between 95.8–86.2% when identifying the
faulty branch. These results show a clear superiority of the proposed
method with regards to the other methods of the literature.

In future work, the omitted fault types will be included: double-
phase-to-ground faults and phase-to-phase faults as well as the exten-
sion of the method to an exact fault location estimation. In addition, the
algorithm will be applied in different grids and/or experimental setups.
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