
Utilizing General Planners to Solve the Train Unit Shunting Problem Extended
with Servicing

Bozhidar Andonov 1

Supervisors: Sebastijan Dumančić1, Issa Hanou 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Bozhidar Andonov
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Issa Hanou, Rihan Hai

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
When not in use, trains are stored at shunting yards,
where they may need servicing. Planning for where
the rolling stock should be parked during its stay at
the yard is known as the Train Unit Shunting Prob-
lem (TUSP) and it is NP-hard. Algorithmic plan-
ners can assist with this computationally difficult
task by providing a sequence of actions to be ex-
ecuted for the trains in the shunting yard. To out-
put such a sequence, planners should be given a do-
main and an instance of it as input, both of which
can be defined in the Planning Domain Definition
Language (PDDL). In this paper, we first formal-
ize the TUSP extended with servicing and imple-
ment a domain for it in PDDL. Then, we compare
four planners submitted to the International Plan-
ning Competition 2018 against 9 instances of the
domain. The best of these planners reduces the
problem to the Boolean Satisfiability Problem. We
improve its performance with 31.5% by removing
redundant clauses and an irrelevant computational
element of the reduction.

1 Introduction
Trains have to be stored at so-called shunting yards when not
scheduled for operation. Finding a plan for where the arriv-
ing vehicles should be parked, how they should be recom-
posed, and when they should depart this yard is known as the
Train Unit Shunting Problem, or TUSP [1]. In addition, the
rolling stock may need to undergo maintenance (also known
as servicing), such as cleaning or repairs, which can only be
executed on designated tracks.

Finding plans for shunting yards is mostly done by human
planners with little support from computers [2]. This task be-
comes more difficult and tedious as the size of the yards and
the number of trains increases. In fact, the TUSP is an NP-
hard problem [1], which is further complicated by the addi-
tion of servicing. Its complexity incentivizes the automation
of the planning procedure so that it can be done more swiftly
and reliably.

Algorithmic planning for the TUSP extended with servic-
ing can be achieved in numerous ways. For instance, J. Mul-
derij et. al. [3] give a real-world application of multi-agent
path-finding algorithms to solve this problem. Another exam-
ple would be employing local search algorithms and integer
linear programming which is what Broek et al. [2] do.

Yet another approach is to translate the problem into a lan-
guage that general planners can understand. A planner is a
program that takes a domain and an instance of it and out-
puts a sequence of actions that should be performed in order
to go from the starting state to the goal state of that instance.
Therefore, we can provide a planner with a shunting yard and
lists of arriving and departing trains and it will produce a se-
quence of actions, such that trains arrive in the correct order,
have been serviced before departure, and have left the shunt-
ing yard at the correct time. All of the described constraints
can be encoded into the domains and instances that planners

take as input, using a language called the Planning Domain
Definition Language (PDDL). If we wanted an even better
performance of a specific planner, we could tweak it so that it
deals better with the domain.

To our knowledge, not much research has gone into the
specialization of general planners to work in the TUSP do-
main. The acquisition of rolling stock by Dutch Rail-
ways (NS) and the increasing demand for transportation re-
quires that planning for these shunting yards gets automated
promptly. It could be possible that the optimization of an
algorithmic planner beats existing methods, hence why it is
crucial that this option is explored and evaluated.

Thus, the research question to be answered can be formu-
lated as follows:

Can general planners be improved for the TUSP
extended with servicing?

To answer this question we first give a translation of the
domain into PDDL. Afterward, we create 9 instances of in-
creasing complexity of that domain. These are then used to
compare 4 planners submitted to the International Planning
Competition 2018 based on a metric we define in Section 4.2.
The best-performing one reduces the problem of planning to
the Boolean Satisfiability Problem (or SAT). We improve it
by removing a computation which is unnecessary for our do-
main and by deleting a set of clauses that are redundant. We
then compare the modified planner’s performance to its orig-
inal version and show the tweaked planner is 31.5% better.

The rest of the paper is structured as follows. The next sec-
tion explores existing literature and provides background in-
formation on the Planning Domain Definition Language and
its usage by planners. In Section 3, we formalize the train
unit shunting problem extended with servicing. The method-
ology used for conducting the experimental work is described
in Section 4. A metric for planner comparison is also devised
in that Section. The implementation of the problem’s domain
and its instances is outlined in Section 5. The planners are
compared and the best one is improved in this section, as
well. The ethical aspects of the research are part of Section
6. The paper concludes with future work that could be done
to enhance the planner further.

2 Background
In this Section, we discuss the background, which is neces-
sary for understanding aspects of the experiments. The first
Subsection gives an overview of the existing literature, re-
lated to this paper. Next, we provide an extensive explanation
of the functionality and purpose of the Planning Domain Def-
inition Language. Finally, we describe how planners use this
language and give a few commonly-used planning strategies.

2.1 Related work
To our knowledge, the TUSP (without servicing) is first for-
malized by Freling et al. [1]. They give an overview of
the problem in a constraint-free form, allowing for arbitrary
shunting yards, train configurations, and arrival and departure
schedules. They also prove it is NP-hard by reducing it to the
0-tram dispatching problem, introduced by Winter [4]. Due
to its complexity, large problem instances cannot be solved in



a sensible time, and thus, we have to add a few restrictions to
the problem definition.

Hanou et al. [5] study the feasibility of TUSP instances.
The constraints they introduce are similar to ours, i.e. they
consider only tree-like shunting yard layouts and trains that
are of unit length. We have thus depicted the problem in a
similar way with the exception of servicing which they do
not support. A full description of the problem including all
constraints is provided in Section 3.

In order to solve the servicing version of TUSP, a lot of
methods that do not rely on general planners, have been de-
vised. In addition to employing multi-agent path finding [3]
and local search algorithms [2], previous work has tried using
deep reinforcement learning [6]. Xiaoming et. al. [7] employ
a multi-commodity network flow model of the problem and
solve it using a custom relaxation heuristic.

To our knowledge, solving TUSP with out-of-the-box gen-
eral planners has not been considered previously. However, it
may be the case that existing planners can deal well with this
problem, considering its natural translation into the Planning
Domain Definition Language. Therefore, in this paper, we
deviate from the researched methods and focus on comparing
and modifying existing planners, instead.

2.2 The Planning Domain Definition Language
The Planning Domain Definition Language is a standardized
planning language used to model domains and instances of
these domains. It was introduced in 1998 by Ghalib et al.
[8] in an attempt to systemize the domain representations that
planners used. It also allowed the first International Plan-
ning Competition (IPC) to take place. Since its initial release,
PDDL has gone through several major updates that introduce
new features. However, we have not employed any of these
in our research and have thus left them out. In the remainder
of this Subsection, we discuss PDDL version 1.2.

PDDL is based on predicate logic. That is, its foundation
are statements that are either true or false at the time of ex-
ecution. For instance, At(x, y) could be interpreted as x is
at y. Logical operators can be used to concatenate different
statements. For example, At(x, y)∧Robot(x)∧Location(y)
would mean that robot x is at location y. Quantifiers can
be used alongside predicates, as well - ∀x∃y(Robot(x) →
(Location(y)∧At(x, y))) would mean that every robot is at
some location.

Predicates in PDDL are defined by putting them in the
:predicates section of the PDDL file. Each predicate needs
to be given a name, followed by the variables it takes, along-
side their types. In particular, we could define the predicates
from the previous examples in the following way:

(:predicates
(robot ?x - object)
(location ?y - object)
(at ?x ?y - object)

)

If we only wanted to use the At predicate for robots and
locations, we could simplify this code by defining the types
robot and location, as follows:

(:types
robot location - object

)
(:predicates

(at ?x - robot ?y - location)
)

Actions can now be defined based on these predicates. An
action has a name and takes the parameters it acts upon as
arguments. In order to execute an action, the precondition
consisting of predicates is checked. If it holds, the action is
performed and the world state is modified (by changing the
truth values of other predicates). As an example, take the
following code:

(:action move-robot
:parameters

(?r - robot ?x ?y - location)
:precondition (at ?r ?x)
:effect (and

(not (at ?r ?x))
(at ?r ?y)

)
)

When carried out, this action takes a robot and two loca-
tions and changes the location of the robot to the second one,
given that it is at the first one.

While domains define how the world functions, instances
of this world should be provided so that planners have some-
thing concrete to work with. An instance defines objects that
exist in the world, a starting state, and a goal state. The fol-
lowing code defines an instance where a robot starts out in
one location and its goal is a second one.

(:objects
r - robot
loc1 loc2 - location

)
(:init (at r loc1))
(:goal (at r loc2))

A plan satisfying the constraints of this instance can be of
the following form:

1. move-robot r loc1 loc2

It would move the robot to the second location, satisfying
the goal and thus yielding a valid plan. It is important to note
that this is not the only valid plan, however.

1. move-robot r loc1 loc2
2. move-robot r loc2 loc1
3. move-robot r loc1 loc2

The plan above would first move the robot to the second lo-
cation, then the first one, then the second one again. The goal
state is reached, so the plan is valid. However, the number of
steps is higher, rendering this sequence of actions suboptimal.

2.3 Algorithmic planners
General algorithmic planners often utilize PDDL for the def-
inition of problems they solve. As input, they take a domain,
consisting of predicates and possible actions, and an instance



of that domain. The instance is converted into an internal rep-
resentation and is solved using various algorithms and heuris-
tics. The planner then outputs a file containing a sequence of
actions whose execution takes the initial state to the goal state.

These planners make use of different strategies when they
solve problem instances. A substantial number employ a vari-
ation of the heuristic-based fast-downward approach, intro-
duced by M. Helmert [9], as it has proven quite effective when
it comes to general planning.

Other planners reduce planning to well-known problems
such as the Boolean Satisfiability Problem (SAT, i.e. given
sets of boolean literals and clauses, does there exist an as-
signment of the literals to boolean values such that the con-
junction of all clauses is made true [10]). One such planner
is the Freelunch planner that team 4 submitted to the Inter-
national Planning Competition 2018. It first generates literals
out of the predicates and actions (also called operators), based
on the objects of the instance, and eliminates invariant ones.
Then, it produces the initial and goal state out of these literals.
Afterward, for each time step, it adds the following clauses.

• If an action is executed at time t, its precondition holds
at time t and its effect is made true at time t+ 1.

• If a predicate is made false (true) at time step t+1, then
an operator that made it false (true) should be executed
at time step t

Here, timesteps are an abstract term due to the ∃-step par-
allel semantics that the Freelunch planner utilizes [11]. In
sequential semantics, each time step would correspond to ex-
actly one action. However, the idea of ∃-step parallel seman-
tics is to distribute operators into sets, which are executed
one after the other, such that the operators in each set do not
affect each other. Timesteps here, therefore, refer to the se-
quence of the sets of operators and not to the individual ac-
tions. Additional chain clauses are also added to guarantee
the ∃-step semantics of the plan. These are produced based
on the strongly connected components of the operator graph,
as explained in [12].

After the reduction is complete, it is fed as input to an in-
cremental SAT-solver that starts with one clause and checks
how that can be made true. Using this information, it builds
up the complete expression one clause at a time to check
whether it is satisfiable as a whole. A plan is then generated
based on the operators that are required to be true at certain
times. This procedure is tried out with 0, 1, 2... timesteps
until a plan is found or a timeout is reached.

Newly-developed efficient planners are often submitted
to the International Planning Competition, where they are
benchmarked against different problems in multiple tracks.
Two of these tracks are satisfiability (whether a planner can
output any plan for the domain instances) and optimality
(whether planners output an optimal plan for domain in-
stances). We are interested in the former one as optimality
can be even more time-consuming to construct for the do-
main of TUSP extended with servicing. We also only look at
planners from the 2018 edition of the IPC as those have been
freely provided to us. An overview of the planners in that
competition can be seen in the contest’s summary, compiled
by Torralba et al. [11].

3 Problem Description
The purpose of this Section is to give a thorough description
of the constrained version of the TUSP extended with servic-
ing. First, restrictions on the problem are introduced so plan-
ners can solve instances in a feasible amount of time. Next,
the problem is formalized and an extensive example, illustrat-
ing an instance of the domain is given.

3.1 Formalizing the problem
Before formalizing the problem, restrictions on the types of
shunting yards and trains should be placed. We do this in
order to alleviate the computational complexity of the general
TUSP problem. The constraints we consider are as follows:

• Mostly shuffleboard (tree-like) shunting yard layouts are
considered. That is, there is a single entry point into each
track, with only a single track being the root one. Each
track can branch into multiple other ones. This is sensi-
ble, as a vast number of real-life shunting yards follow
that layout. One of the shunting yards we consider has
tracks, that violate this condition. However, these tracks
are few and are meant to present a challenge to the plan-
ners.

• Trains start their departure after all rolling stock has
arrived at the shunting yard. This is also not unusual
as shunting yards are mostly utilized during night-time
when trains have finished their operations.

• Trains are of unit length, meaning each train takes the
same amount of space as all other ones. Train lengths
exponentially increase the time required to solve prob-
lem instances, hence why they are omitted.

• Tracks consist of a finite number of track parts, where
one track part is the size of one train unit. Combined
with the restriction above, this implies that a track of
size n can be a parking spot for at most n train units at
the same time.

• Trains can only leave the shunting yard once they have
undergone all services they require.

• Services are provided by tracks, not by track parts. Such
tracks also double as parking spots for the rolling stock.

• A general order of the arrival and departure of the trains
is provided instead of set times. This abstraction does
not strip away too much from the problem as duration
costs can be assigned to different actions, yielding a
timed plan, as required.

Now that we have imposed restrictions on the problem and
it is more feasible for a planner to solve, we can proceed with
its formal definition.

Problem: Constrained TUSP with servicing
Input: I = (T,A,D, S), where

• T is a graph (V,E), depicting the shunting yard and its
layout. Here V is the set of tracks of the shunting yard
and E is the set of tracks that are adjacent to each other.
Each track is represented by a 3-tuple, consisting of the
name of the track, its length in number of track parts,
and a set of services it provides.



• A is a sequence of arriving trains where the first arriving
train is the one at the beginning of the sequence;

• D is a sequence of departing trains where the first de-
parting train is the one at the end of the sequence;

• S is a set of tuples, where each tuple links a train with
a set of services that the train requires during its stay at
the shunting yard.

Output: A sequence of moving and servicing actions for
shunting yard T , such that trains arrive from the first track
part of the root track and depart from that same part based
on the arrival and departure orders A and D. Each train also
needs to be serviced according to S before departing.

3.2 An example
To give the reader a better understanding of the description
of the problem, we provide a small example. We then explain
it through text and figures.

Take the following instance of the problem: I =
(T,A,D, S)

• T = (V,E)

– V = {(a, 1, ∅), (b, 1, {cleaning}), (c, 2, ∅)}
– E = {(a, b), (a, c)}

• A = D = [t1, t2]

• S = {(t1, cleaning)}
This is a 4-tuple of the sets/sequences T,A,D and S. Here,

T is the layout of the shunting yard. It consists of 3 tracks (a
of length 1, b of length 1, and c of length 2). Tracks a and c are
regular tracks, while b is a service track for cleaning. Track
a is adjacent to both b and c. From A and D (the arrival and
departing train sequences), we learn that there are two trains
that will stay at this shunting yard, namely t1 and t2. Train
t1 arrives first and leaves last. S contains a single servicing
operation and that is the cleaning of t1. Figure 1 gives a visual
representation of this instance.

Figure 1: An instance of the formalized problem with tracks a, b
and c, where b supports train cleaning. On the right, the arriving
train sequence A with t1 requiring cleaning can be seen. Below A
is the departing train sequence D.

4 Methodology
The aim of this Section is to establish the methodology with
which the main research question is tackled. First, the main
steps of the experimental work are outlined. Then, we devise
a metric that is used to compare existing general planners.

4.1 Experimental procedure
The procedure for conducting the experiments can be divided
into 4 steps. The following are evaluated in Section 5:

1. Implement the domain: The TUSP extended with ser-
vicing domain is realized in PDDL based on the formal
problem description provided in Section 3.

2. Define domain instances: We define 9 instances of the
domain based on 3 shunting yards, the biggest one of
which is inspired by one of the shunting yards at the
Hague Central Station.

3. Compare existing planners against instances: We
choose 4 planners from the International Planning Com-
petition 2018 to be compared and run them against the
defined instances. We compare the results based on the
metric described in Section 4.2 and determine the best
planner.

4. Improve best planner: The planner which scores best
reduces the problem to SAT. We modify the algorithm
by removing redundant computation and then show that
the tweaked version performs better.

4.2 Metric for planner comparison
One of the steps that is executed during the experimental
work is comparing the planners. However, in order to objec-
tively quantify each planner’s performance, a metric should
be devised.

Planners are usually evaluated against 3 criteria [13]. The
one that is employed most often is the ratio of solved in-
stances. We define a function R to indicate whether a planner
P is successful in solving an instance I in Equation 1.

R(P, I) =

{
0 if P has no plan for I
1 otherwise

(1)

The second metric is the time a planner takes to generate
a plan. This is applicable only when the planner is able to
find a solution to an instance. It is often the case that planners
time out on bigger problems. That would be considered an
inability to generate a plan, so this metric is not defined in
that case. We give a function Q to indicate how a planner P
performs for instance I compared to all planners Π based on
the time it took to generate a plan. It is given in Equation 2.
Here, t(P, I) is the time planner P took for generating a plan
for instance I in milliseconds. The metric calculates where
a planner stands in time compared to the best planner (which
will have a score of 1) and the worst one (which will have
a score of 0). To exemplify, if the best planner took 100ms
and the worst one - 200ms, a planner with a time of 140ms
would have a score of 200−140

200−100 = 0.6.

Q(P, I,Π) =
maxP ′∈Π t(P ′, I)− t(P, I)

maxP ′∈Π t(P ′, I)−minP ′∈Π t(P ′, I)
(2)

The final criterion that is used to evaluate a planner’s per-
formance is the cost of the plan. It is most often expressed in
the number of actions the generated plan contains. Similarly
to timing, this is also not defined when a solution cannot be



found. Also alike the previous criterion, we provide a func-
tion C to indicate how a planner P performs on instance I
compared to all planners Π based on the cost of the generated
plan, described in Equation 3. Here, c(P, I) is the number
of actions the plan for instance I , generated by planner P ,
contains. Note that this is almost identical to Q. The only
difference is the used metric.

C(P, I,Π) =
maxP ′∈Π c(P ′, I)− c(P, I)

maxP ′∈Π c(P ′, I)−minP ′∈Π c(P ′, I)
(3)

Based on the provided insights and the defined functions,
we propose a generalized function F to compare planners
with. It assigns a score between 0 and 1 to each planner P
out of Π for instance I . It is defined in Equation 4.

F (P, I,Π) = R(P, I) · 2 ·Q(P, I,Π) + C(P, I,Π)

3
(4)

Here, R, Q and C are the functions defined in Equations
1, 2 and 3, respectively. Note that a score of 0 is assigned to
planners which cannot solve the instance due to R. If only
one planner is able to solve a certain instance, it is assigned
a score of 1 for that instance. However, the best planner may
not always have a score of 1. We also assign a higher weight
to the time it took to find a plan, as we are interested in find-
ing some plan, which is not necessarily optimal in number of
actions. To evaluate a planner against all instances, we aver-
age all of these instance scores. The planner with the highest
overall score is deemed superior.

5 Experimental Setup and Results
We now set up and conduct the experimental work, as de-
scribed in Section 4.1. Section 5.1 gives a PDDL implemen-
tation of the formalized TUSP with servicing problem. In
Section 5.2 we create several instances of the domain, which
are used in Section 5.3 to compare planners against the metric
we devised. The best planner is then improved and evaluated
against the same criterion in Section 5.4.

5.1 Domain implementation
We have been provided with a default implementation of the
domain by the supervisors of this research. It has been used
in the feasibility study of tree-like shunting yard instances by
Hanou et al. [5]. As already mentioned, the constraints that
paper follows regarding the problem are similar to ours, hence
it is not unreasonable to start with this implementation. We
tweak it in order to fully conform to our problem definition.
The original domain can be found in Appendix A.1.

As can be seen in Figure 2, there are 4 main types that
the modified domain utilizes - trackpart, representing a
single track part, where only one train unit can be parked;
track - a track in the shunting yard which consists of at
least one track part; trainunit, which is a single train; and
service, which describes services that the tracks provide or
trains need. In addition, each trainunit can be of one of 4
subtypes - icm, virm, sng and slt.

trackpart track trainunit service - object
icm virm sng slt - trainunit

Figure 2: The types used in the modified version of the domain.

The predicates that are needed to establish the constraints
of the problem are defined in Figure 3. Some of these have al-
ready been hinted at when describing the types. The nextTo
predicate determines whether two track parts are next to each
other. These need not necessarily be on the same track. The
onTrack predicate signifies that a track part is on a certain
track. To decide whether a track part is free we can use
the eponymous predicate. If it is occupied, the at predi-
cate will return true for some train unit for that track part.
A train has three more properties - hasBeenParked, which
is false only when the train has not entered the shunting
yard yet; hasDeparted, which is true if the train has al-
ready departed the yard; and needsService which deter-
mines whether a train unit needs a certain service. Whether
a track provides any services can be learned by querying the
isServiceTrack predicate.

(nextTo ?x ?y - trackpart)
(onTrack ?x - trackpart ?y - track)
(free ?x - trackpart)
(at ?x - trainunit ?y - trackpart)
(hasBeenParked ?x - trainunit)
(hasDeparted ?x - trainunit)
(needsService ?x - trainunit ?y - service)
(isServiceTrack ?x - track ?y - service)
(onPath ?x - trackpart)

Figure 3: The predicates used in the modified version of the domain.

Since Hanou et al. [5] want to preserve the arrival and de-
parture order of the trains, as they enter and leave the shunt-
ing yard, they introduce a path track of length |A|, which we
reuse. In the beginning, trains are positioned there according
to their arrival sequence (A). After all vehicles have departed,
they will be on the path once again, this time ordered accord-
ing to their departure sequence (D). The path track is con-
nected to the root track of the shunting yard and is treated as
a regular track with two exceptions. Firstly, trains cannot be
parked there. Secondly, if a train has been parked on a regular
track and moves to the path track, it is considered departed.
However, just like regular tracks, the path consists of track
parts. Thus, the onPath predicate determines whether such a
track part lies on the path.

Additionally, two predicates from the initial domain have
been omitted. The first one is parkedOn. After the modifica-
tion of the original domain, this predicate was never checked
in action preconditions and was not used as a goal in the do-
main instances. Therefore, it was sensible to delete it. The
second one is the switch predicate. As regular track parts
can be next to each other even if they are part of different
tracks, switches are redundant and have, therefore, also been
excluded from the domain.

Now, we define the actions that are included in the



tweaked version of the domain. The move-on-arrival and
move-on-departure ones have been preserved from the
original domain definition and still move trains between track
parts of the path track. These actions are needed due to the
path not being a normal track. Since switches have been dep-
recated, the move-to-track and move-from-track actions
have been erased, as well. Thus, moving from, along, and to
a track has been reduced to a single move operation. This
action takes a train and 2 track parts and checks whether the
train unit is currently on the first part track, the second track
part is free, and the track parts are next to each other. If so,
the first track part is freed, the second one is occupied and the
train is parked. Since the original domain definition does not
support servicing, an action to service a train has also been
defined. It takes a train unit, a track part, a track, and a ser-
vice. In order to execute the action, the train has to be at the
track part and it should need that service. Moreover, the track
part should be part of a track that provides this service. If
these preconditions hold, the train can be serviced. The full
implementation of the domain can be found in Appendix A.2.

5.2 Domain instances
The 9 domain instances that we devise are based on 3
shunting yards. The number of tracks, number of track parts,
and the services each yard provides are listed in Figure 4.
The big yard is inspired by one of the shunting yards at the
Central Hague Station 1. Note that the latter is not tree-like,
i.e. there are tracks with more than 1 entry point, thus we
include it as a challenge for the planners to solve. We give a
visual representation of the small, medium and big shunting
yards in Figure 5, Figure 6 and Figure 7, respectively.

Shunting yard # Tracks # Tr. parts Services
Small 5 10 1 × cleaning

Medium 12 25 2 × cleaning
1 × inspection

Big 37 57
2 × cleaning

1 × inspection
1 × washing

Figure 4: The three shunting yards used in the planner comparison.

Figure 5: The small shunting yard.

1www.sporenplan.nl/html nl/sporenplan/ns/ns nummer/
gvc-bkh.html

Figure 6: The medium shunting yard.

Figure 7: The big (Hague-Central-inspired) shunting yard.

We create 3 increasingly difficult instances from each of
the created yards, all of which are shown in Figure 8. In each
instance, roughly 1

3 of the trains require servicing. The distri-
bution of the needed services follows the ratio of track parts
dedicated to each service and the total number of service track
parts. A train may require more than 1 service. The arriving
and departing train sequences are generated randomly. The
goal of each instance is to service each of the trains, make
sure they have been parked, have departed (they are on the
path track) and have done so in the correct order.

Shunting yard Number of trains
Instance 1 Instance 2 Instance 3

Small 2 5 8
Medium 5 10 15

Big 10 20 30

Figure 8: Number of trains used in each of the instances of the shunt-
ing yards. The more trains an instance has, the more complex it is.

www.sporenplan.nl/html_nl/sporenplan/ns/ns_nummer/gvc-bkh.html
www.sporenplan.nl/html_nl/sporenplan/ns/ns_nummer/gvc-bkh.html


5.3 Planner comparison
The course supervisors provide us with planners from the
IPC2018, hence why we use those for solving the constrained
TUSP with servicing. Out of the 23 available algorithmic
planners, 6 are able to find a solution to at least one instance
and only 4 manage to find a plan for at least 2 instances. Since
we want the planner to be somewhat usable, we restrict our
attention to the aforementioned 4 ones. Namely, the planners
that we compare in this section are the baseline one given by
the contest and the planners of teams 2, 4, and 7. Team 4’s
algorithm reduces the problem to SAT and uses an incremen-
tal SAT-solver to find a solution, which is then translated into
a plan for the instance. The other three planners solve the
problems by using variations of the fast-downward approach,
instead. Note that team 2’s and team 7’s planners have been
constructed from the baseline planner.

The planners were executed in Singularity containers on
TU Delft’s MAPFW server. The machine utilizes 12 AMD
EPYC 7702P 64-Core Processors and 8 gigabytes of RAM.
It runs the Ubuntu 22.04.2 LTS Linux distribution, while the
Singularity images run on the Xenial 16.04 operating system.

To determine how long each planner takes to generate a
sequence of actions, we employ Unix’s time command and
look at the number of seconds spent in user mode. This is an
adequate measure of time since it is the one spent executing
the planner’s code. In order to avoid outliers both in time
and in number of actions, we run the planners 5 times against
each instance. The metric for a planner and an instance is
then computed using the average time and number of actions
for that planner and instance.

We present the averaged results of running the planners in
Figure 9 and Figure 10. We observe that the baseline and
team 2’s planner are able to deal with only 2 out of the 9 in-
stances, whereas team 7’s can handle 3. It is surprising to find
that the baseline planner performs better on time than team
2’s and team 7’s planners on the instances that all planners are
able to solve. Since the latter 2 are derived from the baseline
one, we expected the opposite to be the case. We attribute this
to team 2’s and team 7’s additional computation, which does
not work well for this domain. In terms of number of actions,
the three planners perform quite similarly. In contrast, team
4’s planner finds a solution to all 9 instances and consistently
performs best in terms of time and plan size. The only excep-
tion is the small shunting yard with 2 trains, where it finds a
plan with 13 actions, while the baseline’s and team 2’s action
sequences consist of 11 actions. The raw data, containing all
executions of the planners can be found in Appendix B.1.

In Figure 11 we observe how each of these planners per-
forms against the metric we devised in Subsection 4.2. It is
evident that team 4’s planner greatly outperforms the other
competitors. We attribute this to its ability to find solutions
for all instances and doing so swiftly. Since these two criteria
form the main part of our metric, it is sensible that team 4
scores so high and the others have a score below 0.12. There-
fore, we conclude that the fast-downward approach is not
suitable for the constrained TUSP with servicing, whereas re-
ducing instances to SAT leads to an efficient method of find-
ing plans for this domain.

Instance Baseline Team 2 Team 4 Team 7
S2 0.2362 0.2584 0.1394 0.2612
S5 N/A N/A 0.2328 18.192
S8 N/A N/A 16.0856 N/A
M5 285.88 1251.573 0.4978 1063.124

M10 N/A N/A 1.602 N/A
M15 N/A N/A 14.0436 N/A
B10 N/A N/A 4.769 N/A
B20 N/A N/A 25.3628 N/A
B30 N/A N/A 1660.835 N/A

Figure 9: Average time over 5 runs for running the baseline, team
2’s, team 4’s, and team7’s planners against 9 instances of the domain
(in seconds). The first letter of the instance encodes the shunting
yard (S - small, M - medium, B - big); the following digit(s) specify
the number of trains for that instance. N/A is placed if the planner
times out or does not produce a solution for that instance.

Instance Baseline Team 2 Team 4 Team 7
S2 11 11 13 13
S5 N/A N/A 48 48
S8 N/A N/A 135 N/A
M5 135 137 105 131

M10 N/A N/A 240 N/A
M15 N/A N/A 500 N/A
B10 N/A N/A 394 N/A
B20 N/A N/A 1103 N/A
B30 N/A N/A 2060 N/A

Figure 10: Number of actions in the generated plans when running
the baseline, team 2’s, team 4’s, and team7’s planners against 9 in-
stances of the domain.

Figure 11: Metric scores of the four compared planners.

5.4 Improving the best planner
Team 4’s planner consists of 3 components. First, the reduc-
tion to an instance of SAT, adhering to ∃-step semantics, is
done. The result is fed into an incremental SAT-solver, which
gradually builds the solution by querying a third component
- the Lingeling SAT-solver [14]. In this paper, we focus on
tweaking the reduction itself, as improving state-of-the-art
SAT-solvers is unachievable in the time constraints that we
are imposed with.

We modify the reduction in two ways. Firstly, we remove



one type of clauses, namely that changing the boolean value
of a predicate implies executing an operator that does so. We
can scrap these, as they are guaranteed to hold by another
set of clauses, already in the reduction - executing an opera-
tor means its precondition holds at time t and its effect - at
time t+ 1. The removed clauses’ purpose is to narrow down
the search space of the SAT-solver by introducing more con-
straints it has to adhere to. However, this may have an adverse
effect on bigger instances, as it introduces yet another set of
clauses that have to be satisfied. Thus, in order to make the re-
duction more compact and see how that impacts big instances,
we omit it. Secondly, we remove the computation of the op-
erator graph as there are no strongly connected components
of more than 1 node, meaning no operators mutually affect
each other for any of the instances. Thus, it does not add any
clauses to the reduction, making its deletion reasonable.

The planner is now reevaluated using the same setup as
before. The modified algorithm is still able to solve all 9
instances. The changes in time and number of actions are
presented in Figure 12 and Figure 13, respectively. In terms
of time, the enhanced planner performs almost identically to
the original one for small instances of the problem. The in-
significant fluctuations (< 5%) imply that the changes did not
influence these instances much. As expected, the modifica-
tions had a notable impact on the most complex problems of
each yard. A great improvement is observed for the most dif-
ficult ones of the small and big shunting yards, 52.1% and
366.4%, respectively. However, the runtime of the most com-
plex medium instance became worse by 18.6%. We believe
both results are due to the impact of redundant clauses, as ex-
plained earlier. Regarding the number of actions, the changes
are minor and can be simply explained with the change of
the reduction. The raw data, containing all executions of the
modified planner is part of Appendix B.2.

Instance Before After Change
S2 0.1394 0.1404 -0.7%
S5 0.2328 0.2238 4.0%
S8 16.0856 10.5742 52.1%
M5 0.4978 0.5170 -3.7%

M10 1.6020 1.4230 -3.7%
M15 14.0436 17.0402 -18.6%
B10 4.7690 4.7764 -0.2%
B20 25.3628 24.6526 2.9%
B30 1660.8350 356.0948 366.4%

Figure 12: Average time over 5 runs after running the planner before
and after the improvement (in seconds). The last column indicates
the change - a positive percentage implies an improvement.

The metric is recomputed based on the change in
time/actions over the original value. For instance, if the orig-
inal planner’s time metric is 1, a 50% improvement would
yield 1.5. This is done in order to reuse the already computed
metrics of team 4’s planner. After recalculation, the score of
the modified planner comes to 1.2659, which is a 31.5% pos-
itive change from the initial planner’s 0.9629. Thus, we can
conclude that we have improved it.

Instance Before After Change
S2 13 13 =
S5 48 48 =
S8 135 133 1.5%
M5 105 113 -7.1%

M10 240 250 -4.0%
M15 500 494 1.2%
B10 394 392 0.5%
B20 1103 1131 -2.5%
B30 2060 2131 -3.3%

Figure 13: Number of actions in the generated plans after running
the planner before and after the improvement.

6 Responsible Research
We deem it crucial that research is conducted responsibly.
Therefore, in the rest of this section, we describe the measures
we have taken to make the experimental procedure transpar-
ent and reproducible. Furthermore, we discuss the integrity
of this research and how it may affect stakeholders, closely
related to this problem, such as Dutch Railways (NS) and its
employees.

6.1 Research reproducibility
We believe we have been as explicit as possible when it comes
to reproducibility. While we cannot guarantee that the imple-
mented domain is bug-free, we have manually tested it on
small instances in order to verify that it behaves in a correct
manner. In that regard, researchers can find both the original
and the modified versions of the domain in Appendices A.1
and A.2. We also provide the full codebase, including several
instance generators and the modified planner. These can be
found in TU Delft’s research repository.

We have fully depicted the instances the planners were
compared against, along with the metric that we employed
for their comparison. We have also described the computer
configuration we used during this performance evaluation in
detail. Although the time results could be skewed due to dif-
fering system loads at the time of executing the planners, we
believe that the user time is an adequate measure for such
comparisons. This is mainly attributed to the metric’s mini-
mal deviation from the actual time the planner has run on the
processor. To further minimize the risk of outliers, we ran the
planners on each instance a total of 5 times and averaged the
resulting execution times, as well.

6.2 Research integrity
No funding has been received for conducting this research,
therefore, there is no conflict of interest to report. The main
stakeholder of this problem, NS, might suffer adverse conse-
quences if the resulting planner is blindly trusted and/or un-
monitored. For instance, generating a plan that causes two
trains to be parked at the same spot, due to an unintended
code error, might cause damage to the trains, were the driver
not to be cautious during the execution of the plan’s actions.
Even though we have tried to ensure that the domain and its
instances are modeled properly, we advise human planners to



review the automatically generated plans before they commit
to them.

There might also be concerns that the complete integra-
tion of this tool at Dutch Railways may cause people to be-
come unemployed. However, the planner, at least at its cur-
rent stage, should only be used to help with the decision-
making of human planners. It is by no means fully-fledged
software that is ready to replace human workers. Thus, we
advise strongly against dismissing people from their work-
place for the sake of automation.

7 Conclusions and Future Work
In this paper, we improve a planner for a constrained ver-
sion of the Train Unit Shunting Problem extended with ser-
vicing. For that purpose, we first give a formal description
of the problem and introduce constraints to make instances
more feasible to solve. These restrictions include considering
only tree-like shunting yards, trains of unit length, and tracks
consisting of a finite number of track parts. We then model
the problem in the Planning Domain Definition Language by
modifying an existing domain to suit our needs. Afterward,
we evaluate 4 planners from the International Planning Com-
petition 2018. We discover that the baseline planner, provided
by the contest, and the planners which derive from it, namely
team 2’s and team 7’s, cannot handle the 9 created domain
instances well. In contrast, team 4’s planner is able to deal
with all instances and does so swiftly, which places it first in
a metric for planner comparison that we devise. This plan-
ner reduces the problem to the Boolean Satisfiability Prob-
lem and then uses state-of-the-art SAT-solvers to find a so-
lution. We enhance it by modifying the reduction not to in-
clude redundant clauses, typically used for narrowing down
the search space of the SAT-solver, as these overcomplicate
big instances. We also remove a computation that increases
the time of the reduction, without providing any benefit for
our problem. These tweaks result in a 31.5% increase in the
performance of the planner, meaning we do improve it.

Future work might want to consider non-tree-like shunting
yard layouts, since those are abundant in the Netherlands, as
well. While one of the shunting yards we tested against had a
few tracks that were not tree-like, we believe more thorough
research should be conducted to test the feasibility of plan-
ners for such layouts. Since we have found a planner that
generates action sequences quickly even for bigger instances,
further research should look into trains that are composed
of multiple train units. We believe the speed of the planner
might be able to compensate for the exponential increase in
complexity. We also suspect that the improved planner can be
enhanced further by swapping the employed SAT-solver with
a faster one, or one that works better for the modified reduc-
tion. Due to the non-modularity of team 4’s planner, along-
side time constraints, we were unable to do so, and therefore
leave it for future work.

References
[1] R. Freling, R. M. Lentink, L. G. Kroon, and D. Huis-

man, “Shunting of passenger train units in a railway sta-

tion,” Transportation Science, vol. 39, no. 2, pp. 261–
272, 2005.

[2] R. van den Broek, H. Hoogeveen, M. can den Akker,
and B. Huisman, “A local search algorithm for train unit
shunting with service scheduling,” Transportation Sci-
ence, vol. 56, no. 1, pp. 141–161, 2022.

[3] J. Mulderij, B. Huisman, D. Tönissen, K. van der Lin-
den, and M. de Weerdt, “Train unit shunting and servic-
ing: a real-life application of multi-agent path finding,”
2020.

[4] T. Winter, “Online and real-time dispatching problems,”
2000.

[5] I. K. Hanou, M. M. de Weerdt, and J. Mulderij, “Moving
trains like pebbles: A feasibility study on tree yards,”
Proceedings of the International Conference on Auto-
mated Planning and Scheduling, 2023. To be published.

[6] E. Peer, V. Menkovski, Y. Zhang, and W.-J. Lee, “Shunt-
ing trains with deep reinforcement learning,” in 2018
IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 3063–3068, 2018.

[7] X. Xu and M. M. Dessouky, “Train shunting with ser-
vice scheduling in a high-speed railway depot,” Trans-
portation Research Part C: Emerging Technologies,
vol. 143, p. 103819, 2022.

[8] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett,
D. Christianson, M. Friedman, C. Kwok, K. Golden,
S. Penberthy, D. Smith, Y. Sun, and D. Weld, “Pddl -
the planning domain definition language,” 1998.

[9] M. Helmert, “The fast downward planning system,”
Journal of Artificial Intelligence Research, vol. 26,
pp. 191–246, 2006.

[10] A. Biere, M. Heule, and H. van Maaren, Handbook of
satisfiability, vol. 185. IOS press, 2009.

[11] A. Torralba and F. Pommerening, “Ipc 2018 - classical
tracks,” 28th International Conference on Automated
planning and Scheduling, 2018.

[12] J. Rintanen, K. Heljanko, and I. Niemelä, “Plan-
ning as satisfiability: parallel plans and algorithms for
plan search,” Artificial Intelligence, vol. 170, no. 12,
pp. 1031–1080, 2006.

[13] A. Howe and E. Dahlman, “A critical assessment of
benchmark comparison in planning,” 2002.

[14] A. Biere, “Lingeling, plingeling and treengeling enter-
ing the sat competition 2013,” 2013.



Appendix
A PDDL Domains
The purpose of this Section is to give the complete definitions of the PDDL domains, used throughout this research. The domain
that was provided by the supervisory team is presented in Section A.1. The one that is extended with servicing actions is given
in Section A.2.

A.1 Original domain
The domain we have been given is presented in Figure 14. It does not contain anything related to services but has predicates
and actions we employ in the modified domain.
(

define (domain original-domain)

(:requirements :adl)

(:types
trackpart track trainunit - object
icm virm sng slt - trainunit ; these are the different types of train units

)

(:predicates
(nextTo ?x ?y - trackpart) ;track part x next to other track part y
(onTrack ?x - trackPart ?y - track) ;track part x on track y
(at ?x - trainunit ?y - trackpart) ;train unit x on track part y
(hasBeenParked ?x - trainunit) ;true if x is parked on some track
(free ?x - trackpart) ;trackpart x has nothing parked there
(parkedOn ?x - trainunit ?y - track) ; indicates x parked on track y
(onPath ?x) ;trackpart x is on the arrival/departure path L
(switch ?x) ;trackpart x is a switch

)

; action to move a trainunit to a neighbouring trackpart on a track, to park it
(:action move-to-track

:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(onTrack ?to ?t)
(switch ?from)

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))
(hasBeenParked ?train)
(parkedOn ?train ?t)

)
)

; action to move a trainunit to out of a track, and reset the parkedOn predicate
(:action move-from-track

:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)



(onTrack ?from ?t)
(switch ?to)

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))
(not (parkedOn ?train ?t))

)
)

; action to move a trainunit along a track
(:action move-along-track

:parameters (?train - trainunit ?from ?to - trackpart ?t - track)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(onTrack ?from ?t)
(onTrack ?to ?t)

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))

)
)

; Can only move back to departure if all trains have been parked.
(:action move-to-departure

:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(onPath ?to)
(forall (?unit - trainunit) (hasBeenParked ?unit))

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))

)
)

; Action to move train unit over the arrival path towards the shunting yard
(:action move-on-arrival

:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(not (hasBeenParked ?train))
(onPath ?from)

)
:effect (and



(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))

)
)

)

Figure 14: The domain we start with, which was used for the feasibility study of tree-like shunting yards. Predicates and actions are
commented, so that the reader can gain a better understanding of them.

A.2 Modified domain
The modified domain, which includes support for servicing can be found in Figure 15. In contrast to the original one, this
domain includes service objects, which represent different types of services, e.g. cleaning. In addition, two predicates, specific
to the servicing of trains are introduced - isServiceTrack, which signifies that a train track is able to provide a service, and
needsService, showing whether a train requires a certain service. There is a new service-train action that is executable
when a train is on a service track and needs the exact service the track is for.

(
define (domain servicing-simple)

(:requirements :adl)
(:types

trackpart track trainunit service - object
icm virm sng slt - trainunit ; these are the different types of train units

)

(:predicates
(nextTo ?x ?y - trackpart) ;track part x next to other track part y
(onTrack ?x - trackPart ?y - track) ;track part x on track y
(onPath ?x) ;trackpart x is on the arrival/departure path L
(at ?x - trainunit ?y - trackpart) ;train unit x on track part y
(free ?x - trackpart) ;trackpart x has nothing parked there
(hasBeenParked ?x - trainunit) ;true if x is parked on some track
(isServiceTrack ?x - track ?y - service) ; track x is a track for service y
(needsService ?x - trainunit ?y - service); train unit x needs service y
(hasDeparted ?x - trainunit) ; train unit x has departed

)

; action to service a train for a service
(:action service-train

:parameters (?train - trainunit ?at - trackpart ?track - track ?service - service)
:precondition (and

(at ?train ?at)
(isServiceTrack ?track ?service)
(onTrack ?at ?track)
(needsService ?train ?service)
(not (hasDeparted ?train))

)
:effect (and

(not (needsService ?train ?service))
)

)

; action to move a trainunit to a neighbouring trackpart and park it
(:action move

:parameters (?train - trainunit ?from ?to - trackpart)



:precondition (and
(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(not (hasDeparted ?train))

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))
(hasBeenParked ?train)

)
)

; Can only move back to departure if all trains have been parked.
(:action move-to-departure

:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(onPath ?to)
(forall (?unit - trainunit) (hasBeenParked ?unit))

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))
(hasDeparted ?train)

)
)

; Action to move train unit over the arrival path towards the shunting yard
(:action move-on-arrival

:parameters (?train - trainunit ?from ?to - trackpart)
:precondition (and

(at ?train ?from)
(free ?to)
(nextTo ?from ?to)
(not (hasDeparted ?train))
(not (hasBeenParked ?train))
(onPath ?to)

)
:effect (and

(at ?train ?to)
(not (at ?train ?from))
(free ?from)
(not (free ?to))

)
)

)

Figure 15: The modified domain that also supports servicing. Predicates and actions are still commented for readability.



B Raw Experimental Data
The aim of this section is to present the raw results of running the planners against the 9 domain instances we have devised.
As mentioned in the main part of the paper, each planner was run 5 times against each instance in order to exclude any outliers
in the execution time and number of steps. We have also done 2 sets of experiments - one to compare the baseline, team 2’s,
team 4’s and team7’s planner, and another one to evaluate the improved version of the best (team 4’s) planner. Therefore, we
dedicate a subsection to the results of each set of experiments.

B.1 Raw planner comparison data
We observe the performance of each of the planners against the 9 created instances of the constrained TUSP with servicing
domain in Figure 16. Each instance is encoded as a combination of a letter, signifying the shunting yard (S - small, M - medium,
B - big) and digits, which symbolize the number of trains in that instance.

Instance Run #
Planners

Baseline Team 2 Team 4 Team 7
# Actions Time (in s) # Actions Time (in s) # Actions Time (in s) # Actions Time (in s)

S2

1 11 0.258 11 0.243 13 0.139 13 0.237
2 11 0.244 11 0.280 13 0.137 13 0.286
3 11 0.199 11 0.283 13 0.139 13 0.226
4 11 0.218 11 0.243 13 0.141 13 0.291
5 11 0.262 11 0.243 13 0.141 13 0.266

Average 11 0.2362 11 0.2584 13 0.1394 13 0.2612
Std. Dev. 0 0.0270 0 0.0211 0 0.0017 0 0.0289

S5

1 N/A N/A N/A N/A 48 0.197 48 17.440
2 N/A N/A N/A N/A 48 0.230 48 21.320
3 N/A N/A N/A N/A 48 0.249 48 17.350
4 N/A N/A N/A N/A 48 0.247 48 17.014
5 N/A N/A N/A N/A 48 0.241 48 17.836

Average N/A N/A N/A N/A 48 0.2328 48 18.192
Std. Dev. N/A N/A N/A N/A 0 0.0213 0 1.7729

S8

1 N/A N/A N/A N/A 135 15.772 N/A N/A
2 N/A N/A N/A N/A 135 17.009 N/A N/A
3 N/A N/A N/A N/A 135 15.959 N/A N/A
4 N/A N/A N/A N/A 135 15.762 N/A N/A
5 N/A N/A N/A N/A 135 15.926 N/A N/A

Average N/A N/A N/A N/A 135 16.0856 N/A N/A
Std. Dev. N/A N/A N/A N/A 0 0.5237 N/A N/A

M5

1 135 278.870 137 1610.970 105 0.499 131 1059.600
2 135 283.093 137 1463.843 105 0.518 131 1269.711
3 135 300.479 137 1012.200 105 0.500 131 924.251
4 135 285.024 137 1107.994 105 0.506 131 1153.288
5 135 281.934 137 1062.858 105 0.466 131 908.772

Average 135 285.88 137 1251.573 105 0.4978 131 1063.124
Std. Dev. 0 8.4608 0 268.2128 0 0.0193 0 153.2403

M10

1 N/A N/A N/A N/A 240 1.588 N/A N/A
2 N/A N/A N/A N/A 240 1.621 N/A N/A
3 N/A N/A N/A N/A 240 1.609 N/A N/A
4 N/A N/A N/A N/A 240 1.581 N/A N/A
5 N/A N/A N/A N/A 240 1.611 N/A N/A

Average N/A N/A N/A N/A 240 1.6020 N/A N/A
Std. Dev. N/A N/A N/A N/A 0 0.0168 N/A N/A



Instance Run #
Planners

Baseline Team 2 Team 4 Team 7
# Actions Time (in s) # Actions Time (in s) # Actions Time (in s) # Actions Time (in s)

M15

1 N/A N/A N/A N/A 500 14.432 N/A N/A
2 N/A N/A N/A N/A 500 13.779 N/A N/A
3 N/A N/A N/A N/A 500 14.406 N/A N/A
4 N/A N/A N/A N/A 500 14.215 N/A N/A
5 N/A N/A N/A N/A 500 13.386 N/A N/A

Average N/A N/A N/A N/A 500 14.0436 N/A N/A
Std. Dev. N/A N/A N/A N/A 0 0.4512 N/A N/A

B10

1 N/A N/A N/A N/A 394 4.427 N/A N/A
2 N/A N/A N/A N/A 394 4.624 N/A N/A
3 N/A N/A N/A N/A 394 5.488 N/A N/A
4 N/A N/A N/A N/A 394 4.947 N/A N/A
5 N/A N/A N/A N/A 394 4.359 N/A N/A

Average N/A N/A N/A N/A 394 4.7690 N/A N/A
Std. Dev. N/A N/A N/A N/A 0 0.4623 N/A N/A

B20

1 N/A N/A N/A N/A 1103 24.282 N/A N/A
2 N/A N/A N/A N/A 1103 28.052 N/A N/A
3 N/A N/A N/A N/A 1103 25.172 N/A N/A
4 N/A N/A N/A N/A 1103 25.118 N/A N/A
5 N/A N/A N/A N/A 1103 24.190 N/A N/A

Average N/A N/A N/A N/A 1103 25.3628 N/A N/A
Std. Dev. N/A N/A N/A N/A 0 1.5710 N/A N/A

B30

1 N/A N/A N/A N/A 2060 1558.626 N/A N/A
2 N/A N/A N/A N/A 2060 1714.331 N/A N/A
3 N/A N/A N/A N/A 2060 1670.570 N/A N/A
4 N/A N/A N/A N/A 2060 1694.363 N/A N/A
5 N/A N/A N/A N/A 2060 1666.287 N/A N/A

Average N/A N/A N/A N/A 2060 1660.8350 N/A N/A
Std. Dev. N/A N/A N/A N/A 0 60.3265 N/A N/A

Figure 16: Performance of the 4 compared planners against 9 instances over 5 runs in terms of time and number of actions. N/A is given when
a planner is not successful in finding a solution to that instance. The average and standard deviation of each planner-instance combination
across the 5 runs is also presented.

B.2 Raw improved planner evaluation data
We present the evaluation of the improved planner against the same 9 instances using the same metrics as before. The results
can be found in Figure 17.

Instance Run # # Actions Time (in s) Instance Run # # Actions Time (in s)

S2

1 13 0.118

M15

1 494 16.224
2 13 0.155 2 494 17.120
3 13 0.147 3 494 18.700
4 13 0.153 4 494 16.730
5 13 0.129 5 494 16.427

Average 13 0.1404 Average 494 17.0402
Std. Dev. 0 0.0169 Std. Dev. 0 0.9874

S5

1 48 0.231

B10

1 392 5.051
2 48 0.215 2 392 5.351
3 48 0.224 3 392 4.335
4 48 0.226 4 392 4.635
5 48 0.223 5 392 4.510

Average 48 0.2238 Average 392 4.7764
Std. Dev. 0 0.0058 Std. Dev. 0 0.4157



Instance Run # # Actions Time (in s) Instance Run # # Actions Time (in s)

S8

1 133 12.061

B20

1 1131 25.810
2 113 10.220 2 1131 24.787
3 113 9.883 3 1131 25.587
4 113 10.286 4 1131 23.446
5 113 10.421 5 1131 23.633

Average 113 10.5742 Average 1131 24.6526
Std. Dev. 0 0.8544 Std. Dev. 0 1.0870

M5

1 113 0.476

B30

1 2131 365.719
2 113 0.563 2 2131 360.603
3 113 0.513 3 2131 361.705
4 113 0.519 4 2131 329.950
5 113 0.514 5 2131 362.497

Average 113 0.517 Average 2131 356.0948
Std. Dev. 0 0.0309 Std. Dev. 0 14.7391

M10

1 250 1.441
2 250 1.413
3 250 1.381
4 250 1.449
5 250 1.431

Average 250 1.4230
Std. Dev. 0 0.0271

Figure 17: Performance of the improved team 4’s planner over 5 runs for the 9 instances of the domain the original 4 planners are tested
against. Both the number of actions in the final plan and the time to generate one are reported. The average and standard deviation across the
5 runs is also shown.


	Introduction
	Background
	Related work
	The Planning Domain Definition Language
	Algorithmic planners

	Problem Description
	Formalizing the problem
	An example

	Methodology
	Experimental procedure
	Metric for planner comparison

	Experimental Setup and Results
	Domain implementation
	Domain instances
	Planner comparison
	Improving the best planner

	Responsible Research
	Research reproducibility
	Research integrity

	Conclusions and Future Work
	PDDL Domains
	Original domain
	Modified domain

	Raw Experimental Data
	Raw planner comparison data
	Raw improved planner evaluation data


