

Delft University of Technology

Decentralized collaborative version control

Nasrulin, Bulat; Pouwelse, Johan

DOI
10.1145/3493426.3493824
Publication date
2021
Document Version
Final published version
Published in
DICG 2021 - Proceedings of the 2021 International Workshop on Distributed Infrastructure for Common
Good

Citation (APA)
Nasrulin, B., & Pouwelse, J. (2021). Decentralized collaborative version control. In DICG 2021 -
Proceedings of the 2021 International Workshop on Distributed Infrastructure for Common Good (pp. 11-
16). (DICG 2021 - Proceedings of the 2021 International Workshop on Distributed Infrastructure for
Common Good). ACM. https://doi.org/10.1145/3493426.3493824
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3493426.3493824
https://doi.org/10.1145/3493426.3493824

Decentralized Collaborative Version Control

Bulat Nasrulin
Delft University of Technology

Johan Pouwelse
Delft University of Technology

ABSTRACT

Decentralized systems offer alternatives to Big Tech. How-
ever, maintaining availability and correctness despite faults
and manipulations in decentralized settings is challenging. In
this paper, we introduce a collaborative model that is capable
of exposing all observable lying, all cheating, and all faults,
while only requiring merely unreliable message exchange.
Our model is based on conflicting operations on arbitrary
data, set reconciliation, and conflict resolution strategies to
deal with branches. It is sufficiently general to support appli-
cations like Wikipedia, Github, and Datahub in a non-profit,
collaborative, and decentralized form. Our protocol guaran-
tees strong convergence despite any Byzantine nodes. We
exhibit four conflict resolution strategies that cover the spec-
trum of possible use cases. A remarkable property of our
model is that two honest nodes are guaranteed to converge
despite an arbitrary-large number of faulty nodes.

CCS CONCEPTS

·Computer systems organization→ Fault-tolerant net-
work topologies; · Information systems → Collabora-
tive and social computing systems and tools.

KEYWORDS

Accountability, Conflict Resolution, Decentralized Collabo-
ration, Byzantine Resilience
ACM Reference Format:

Bulat Nasrulin and Johan Pouwelse. 2021. Decentralized Collabo-
rative Version Control. In International Workshop on Distributed
Infrastructure for Common Good (DICG ’21), December 6ś10, 2021,
Virtual Event, Canada. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3493426.3493824

1 INTRODUCTION

The total market capitalisation in 2021 of the five biggest
tech companies is 8.9 trillion dollar. This concentration of
capital and market dominance is unprecedented. Large-scale

DICG ’21, December 6ś10, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9169-6/21/12.
https://doi.org/10.1145/3493426.3493824

collaborative applications offer an alternative to the services
of Big Tech companies. The collaborative open model has
various degrees of decentralization, which stands in stark
contrast to Big Tech services which are hosted, governed,
and exclusively owned by a central party. The collaborative
model is still immature and lacks many theoretical and prac-
tical foundations. Nonetheless, this model is a promising di-
rection that provides a defense against monopoly formation
in digital markets with intrinsic winner-take-all dynamics.
We present theoretically sound grounding for a single

primitive for building large-scale collaborative versioning
systems. Our work finds a direct application in existing
collaborative applications such as Wikipedia, Github, and
Datahub [2]. We designed the primitive around data version-
ing and conflicts. Cheap storage enables the preservation
of all project contributions such as information, code, and
data. We also preserve all data versions and conflicting op-
erations. We show that revealing all data versions helps in
backtracking, spotlighting errors, and addressing dissensus.

Our method provides accountability, i.e., faulty nodes are
eventually identified, and exposed to correct nodes. We for-
mulate three simple requirements to achieve accountability
despite Byzantine nodes. Any failure to follow the require-
ments will expose the faulty node. The exposure serves as
irrefutable evidence with guaranteed protection from false
accusations.
All operations are preserved in a shared tamper-evident

grow-only set. Our model provides strong eventual consis-
tency [16], in which correct nodes converge to the state
despite any number of Byzantine failures. Any data conflict
is resolved with one of the four proposed conflict resolu-
tion functions. Remarkably, two honest nodes can success-
fully collaborate in a network with otherwise 99% fraudulent
participants. In summary, this paper makes the following
contributions:

• We present a universal data model for large-scale col-
laborative systems (Section 2). We list three require-
ments for accountable collaboration.

• We show a protocol that achieves convergence through
set reconciliation despite any Byzantine nodes (Sec-
tion 4).

• Finally, we propose four conflict resolution policies for
different application. (Section 5).

11

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

https://doi.org/10.1145/3493426.3493824
https://doi.org/10.1145/3493426.3493824
https://doi.org/10.1145/3493426.3493824
https://creativecommons.org/licenses/by-sa/4.0/

DICG ’21, December 6–10, 2021, Virtual Event, Canada Nasrulin, et al.

2 PRELIMINARIES AND SYSTEM MODEL

We consider an asynchronous network of nodes. Nodes
send messages to each other through pairwise network links.
Messages might be delayed or dropped; however, after a
sufficient number of retransmissions they are eventually
delivered. The network can partition but eventually recovers.
Each node runs the same protocol, which describes how

to execute and validate network messages. Each node in the
network is either correct or faulty. We later specify three
requirements for correct nodes. A faulty node might deviate
from these requirements in arbitrary ways. The number of
faulty nodes at any time is limited by 𝑓 .
Each node has a unique private key that it uses for digi-

tal signatures. When a node creates a message, it attaches
it’s public key and signs the message. The corresponding
public key uniquely identifies the creator of the received mes-
sage. This assumption is common in modern decentralized
applications, such as Bitcoin, IPFS.
We make an assumption on the node discovery and how

the network topology is formed. Without a reliable over-
lay, malicious nodes might censor any communication in
the system. It should guarantee that any correct node will
eventually be connected to at least one honest node. This
assumption is required to tackle eclipse attacks [17] and
communicate in presence of Byzantine nodes. For example,
a robust overlay can be achieved with Brahms [4]. We say
that each correct node maintains at all times connections to
a reasonable threshold of non-faulty nodes. Correct nodes
do not maintain connections to observably faulty nodes.

2.1 Consistency Goals

We base our model on strong eventual consistency proper-
ties [16]. The key idea of eventual consistency is to guarantee
the eventual delivery of all messages and convergence to a
common state. The nodes converge to the same state when
they have received the same set of messages. The goals of
our eventual consistency model are as follows:

Eventual delivery. If a correct node applies an oper-
ation, then all correct nodes will eventually apply that
operation.
Strong Convergence. Any two correct nodes that
have applied the same set of messages are in the same
state.
Causal Consistency. If a correct node applies mes-
sage 𝑜1 before applying message 𝑜2, then all correct
nodes apply 𝑜1 before 𝑜2.

2.2 Accountability Goals

We strengthen our model by making it censorship-evident.
Censorship happens when a faulty node attempts to trick a

Figure 1: The example graph of multi-version data
with conflicts and merges on one state key 𝜅1. Nodes
in the graph represent operations, and edges are
‘depends-on’ relationships. 𝑜6 and 𝑜7 operate on a dif-
ferent branch.

correct node by hiding messages. We address this challenge
by designing a model that forces nodes to reveal the truth or
risk being exposed and eventually excluded from the system.
We address two classes of faulty behavior: observable

omission and commission failures. Commission failure hap-
pens when a node creates a message that a correct node
would not produce. However, this failure would be observed
only when incorrect messages were received by the correct
node. We say a node 𝑎 is exposed as faulty by node 𝑏 if node
𝑏 receives an incorrect message (or set of messages) created
by node 𝑎.
Omission failure happens when a node fails to produce

a message when required. For example, a Byzantine node
might pretend to crash and refuse to provide service to other
nodes. We call such nodes ignorant. The difference between
an ignorant and crashed node is that the correct node will
eventually restore the connection and provide any requested
service. We say that node 𝑎 is suspected of being faulty by
node 𝑏 if node 𝑎 if fails to send a message when requested
by 𝑏. As soon as 𝑎 provides the requested message, it will no
longer be suspected. We say that any protocol is accountable
if it provides the properties as follows:

• Correct Suspicion. No correct node is suspected for-
ever.

• Correct Exposure. No correct node is ever exposed.
• Unanimous Exposure. If a correct node exposes a
faulty node, this faulty node is eventually exposed by
every correct node.

• Unanimous Suspicion. Ignorant nodes are eventu-
ally suspected by every correct node.

3 MUTLI-VERSION COLLABORATION
MODEL

In this section we present a model that captures all the
collaboration of a decentralized application in one simple

12

Decentralized Collaborative Version Control DICG ’21, December 6–10, 2021, Virtual Event, Canada

data structure. We formulate three requirements that any
correct node should follow.
Figure 1 illustrates the model of data versioning used in

this paper. We use this figure as a running example through-
out the paper, referring to it as the example graph.
Our model is based on nodes, messages, operations, and

state. Network nodes collaborate to track any changes in
the application data. The application data is captured as a
global system state. The global state can be divided into
a set of fragments K . One fragment 𝜅 ∈ K is a state key.
Examples of state keys are pages in Wikipedia or files in a
git repository. The state changes through operations. Nodes
exchange messages that contain operations. Upon receiving
a message, nodes locally execute all operations contained in
the message. Operations universally represent any change
to the application data, e.g., edits on wiki pages, new source
code in Github repositories, or changing a dataset in Datahub.

3.1 Causally Consistent Data

We say that operation 𝑜𝑖 = (𝜙i , 𝜅, 𝑂̆𝑖) is a function 𝜙i

executed in the context of 𝑂̆𝑖 and state key 𝜅 . The context of

operation 𝑂̆𝑖 is the set of previous operations that should be

execute before 𝑜𝑖 . Operations {𝑜 ∈ 𝑂̆𝑖 } are direct predecessors
to the operation 𝑜𝑖 . Operation 𝑜𝑖 depends-on its predecessors,

i.e., ∀𝑜 ∈ 𝑂̆ | 𝑜𝑖 − > 𝑜 , or 𝑜𝑖 is a successor to 𝑂̆ . Note that
the ‘depends on’ relationship is the reverse of Lamport’s
‘happened-before’[12]. Depends-on relationships are a strict
partial order and are transitive, irreflexive and antisymmetric.
All predecessors operate on the same key 𝜅.

Naturally, the operations form a directed acyclic version
graph, in which a directed edge captures the ‘depends-on’
relationship, as shown in Figure 1. The first operation, 𝑜1
does not have any predecessors. Any operation mutates the
state by applying its corresponding function. Without loss of
generality, lets assume that initial state of 𝜅 is some string 𝑠0.
Then operation 𝑜1 adds new characters to the string, creating
a version 𝑠1. The operation 𝑜2 revert changes made by 𝑜1 and
creates version 𝑠2. Despite, the fact that 𝑠2 is equal to 𝑠0
we preserve these versions separately. Later, operations 𝑜3
and 𝑜4 concurrently change the string, creating 𝑠3 and 𝑠4
respectively. Finally, the state version 𝑠5 is created when a
merge function is applied, combining both 𝑠3 and 𝑠4.
Let 𝑂𝑎 be the operations locally known to the node 𝑎.

Terminal operations are locally known operations such that:

terminal (𝑂𝑎) = {𝑜𝑖 ∈ 𝑂𝑎 |�𝑜𝑘 ∈ 𝑂𝑎 |𝑜𝑘− > 𝑜𝑖 }

When a node creates an operation, it specifies direct pre-
decessors for the operation. Transitivity property allows
capturing complex relationships with only a few direct pre-
decessors. For example, operation 𝑜5 has only two direct

predecessors, i.e. 𝑂̆5 = {𝑜3, 𝑜4}, but depends on the set of

operations {𝑜1, 𝑜2, 𝑜3, 𝑜4}. We require that each operation
preserves the causal order of its state key. Therefore, any
operation created by a correct node must depend on the local
terminal operations. In the example graph, 𝑜9 is a terminal
operation, and further operations should depend on 𝑜9.

Reqirement 1. Any operation 𝑜𝑖 on a key 𝜅 created by a

correct node 𝑎 depends on all terminal operations on a key 𝜅

known to 𝑎.

Requirement 1 means that the operations should depend
on all operations created by the node and the operations
received from other nodes. For example, the operation 𝑜5
created by a node 𝑎 directly depends on the operation 𝑜3
created by the node 𝑎 and an the operation 𝑜4 created by
the node 𝑏. A violation of this requirement would indicate
that the node operates on a different protocol. For instance,

when node 𝑎 creates operation 𝑜5 and excludes 𝑜4 from 𝑂̆5.
Another example is when the Byzantine node creates a fork
by creating two operations that do not depend on each other.

3.2 Conflicts and Merges

In this subsection, we present a universal semantics that
captures any divergence between nodes. A divergence in
data can happen in several cases. First, divergence might nat-
urally occur because of weaker consistency and network par-
titioning [7]. Two correct nodes might simply not know each
others operations. Second, data divergence might happen
due to Byzantine nodes, that deliberately create divergent
view in the network by breaking the requirement 1.

We model all the above-mentioned situations with con-
flicts in the version graph. A conflict in a version graph
corresponds to the situation where two operations do not de-

pend on each other, i.e. two operations 𝑜𝑖 = (𝜙i , 𝜅, 𝑂̆𝑖), 𝑜 𝑗 =

(𝜙j , 𝜅, 𝑂̆ 𝑗) such that 𝑜𝑖❩❩−→𝑜 𝑗 ∧ 𝑜 𝑗❩❩−→𝑜𝑖 . In the example graph
(Figure 1), the operations 𝑜3 and 𝑜4 happen simultaneously
without linking each other. Operation 𝑜5 merges two states
and resolves the conflict.

We define merge as an operation 𝑜𝑖 = (𝜙𝑖 , 𝜅, 𝑂̆𝑖) such that

|𝑂̆𝑖 | > 1. Merge operations take multiple conflicting opera-
tions and output one unambiguous state. We recognize that
there is no one-size-fits-all solution. Some conflicts might
be automatically resolved while others require manual in-
put. However, a key requirement for strong convergence is
a uniform conflict resolution policy; i.e., a policy that is recog-
nized by all correct nodes in the network. We list possible
approaches to such policies in section 5.

3.3 Validity of Operations

We say the state 𝑠𝑖 is valid if it satisfies the application-
defined validity. The validity is a predicate over the state, i.e.,
a function 𝑉 (𝑠𝑖) that takes a state created after operation 𝑜𝑖

13

DICG ’21, December 6–10, 2021, Virtual Event, Canada Nasrulin, et al.

and returns either true or false. We say that operation 𝑜𝑖 is
valid if the produced state 𝑠𝑖 is valid. Note that validity is
defined in the causal context, i.e., with respect to previous
causal operations, not globally.

Reqirement 2. Correct nodes create only valid operations.

By following the requirement 2, any correct node would
reject any invalid operation. Any invalid operation is rejected
locally, and no correct node creates and signs the message
with an invalid operation. The message with invalid opera-
tion serves as an evidence of a fault.

3.4 Data Dissemination

Requirement 1 allows preserving all operations in a grow-
only set. We define one more requirement to achieve con-
vergence to a common set of operations. We model the data
dissemination as a sequence of requests. All nodes periodi-
cally send each other requests for all known operations. We
require that correct nodes respond fully to all requests.

Reqirement 3. A correct node responds to all requests

and reveals all known operations to other nodes.

4 GUARANTEED FAULT EXPOSURE FOR
DATA DISSEMINATION

We now introduce a multi-version data dissemination pro-
tocol that is capable of exposing censorship and faults. Using
the above-mentioned requirements, we show that the proto-
col can guarantee detection of tampering for any data type,
any data operation, and unbounded group size. Faulty nodes
cannot stop the convergence process, and every correct mes-
sage will eventually progress.

Our protocol is based on the periodical pairwise reconcili-
ation between nodes. A pairwise reconciliation [8] ensures
that two nodes exchange missing operations and end up with
the same operation set. The reconciliation protocol works
as a sequence of requests. Each node sends a request to the
other node. If the requestee does not respond before a time-
out, the requester suspects the requestee node. In practice,
the requester might resend the request multiple times and
only later suspect the node. The correct nodes preserve all
pending requests. A node might fetch pending requests after
a partitioning or a crash.
Let 𝑂𝑡

𝑎 be the set of operations signed by node 𝑎 at a
time 𝑡 and shared in the network. For the correct node, the
two sets are equal, 𝑂𝑡

𝑎 = 𝑂𝑡
𝑎 . However, a faulty node might

omit certain operations and reveal different versions to other
nodes in the network.
Two operation sets, 𝑂𝑖 and 𝑂 𝑗 are inconsistent with each

other if both sets have at least one distinct operation:

inconsistent (𝑂𝑖 ,𝑂 𝑗) = 𝑂𝑖 \𝑂 𝑗 ≠ ∅ ∧𝑂𝑖 \𝑂 𝑗 ≠ ∅ (1)

A node 𝑎 is observed and exposed as faulty by correct node
𝑏, if correct node 𝑏 receives messages containing evidence
of breaking one of the three requirements. When node 𝑏
observes two conflicting operations signed by node 𝑎 (vio-
lation of proposition 1), or an invalid operation signed by 𝑎
(violation of proposition 2), or two responses to requests (or
operation and request) that contain inconsistent operation
sets (violation of proposition 3):

exposed (𝑎) = ∃𝑜𝑖 ∈ 𝑂𝑎 |invalid (𝑜𝑖)

∨ ∃𝜏 ≠ 𝑡 |inconsistent (𝑂𝑡
𝑎,𝑂

𝜏
𝑎)

∨ ∃𝑜𝑖 ∈ 𝑂𝑎 ∧ ∃𝑡 |inconsistent (𝑂̆𝑖 ,𝑂
𝑡
𝑎)

∨ ∃𝑜𝑖 ∈ 𝑂𝑎 ∧ ∃𝑜 𝑗 ∈ 𝑂𝑎 |inconsistent (𝑂̆𝑖 , 𝑂̆ 𝑗)
(2)

We say for two nodes 𝑎 and 𝑏, each having the set of
operations 𝑂𝑎 and 𝑂𝑏 respectively, the difference is a set
𝐷𝑎−𝑏 = 𝑂𝑎 −𝑂𝑏 . Node 𝑎 is outdated in the eyes of node 𝑏 if
the last received set signed by 𝑎 doesn’t include all operations
known to 𝑏:

outdated (𝑎, 𝑏) = 𝑂𝑏 \𝑂𝑎 ≠ ∅. (3)

Protocol 1 Accountable Reconciliation

(1) Create operations. A correct node 𝑎 creates an oper-
ation 𝑜𝑘 that depends on known terminal (𝑂𝑎) opera-
tions. Update 𝑂𝑎 = 𝑂𝑎 ∪ {𝑜𝑘 }.

(2) Request updates. Node 𝑎 periodically requests an
updated set of operations from the outdated (as defined
in predicate 3) nodes.
• Upon receiving a set request from 𝑎 a correct node
𝑏 sends the set of operations 𝑂𝑏 to 𝑎.

• Upon receiving 𝑂𝑡
𝑏
, the node 𝑎 calculates 𝐷𝑏−𝑎 , and

checks if node 𝑏 is still outdated with the new set.
• Node 𝑎 send a request for all missing operations
𝑜 ∈ 𝐷𝑏−𝑎 .

• Upon receiving an operation, 𝑜𝑘 checks validity of
the operation and executes it after the operations

𝑂̆𝑘 .
(3) Expose faulty nodes. Nodes check the message cre-

ator against the predicate ‘exposed’ (as defined in predi-
cate 2). The evidence of inconsistent behavior is shared
with other nodes.

(4) Suspect ignorant nodes. Nodes share the long-
pending requests. If possible, other nodes share a re-
sponse to the request signed by the requestee. The
requestee is no longer suspected if the requester has
received a response to the request.

14

Decentralized Collaborative Version Control DICG ’21, December 6–10, 2021, Virtual Event, Canada

Figure 2: Conflict resolution policies with two conflicting operations𝑂1 created by node𝐶1 and𝑂2 created by node
𝐶2: A) Aggregation. Conflict resolved with a union of two items. B) Competition. One branch is selected based on a
weight function. C) Arbitration. Auto-resolution produces ambivalent state, arbiter node 𝐶3 resolves the conflict.
D) Compromising. The involved parties sign an operation that resolves the conflict.

The data reconciliation protocol listed in protocol 1 works
as follows: (1) All applied operations are stored and included
in the local known set; (2) the known set is further dissemi-
nated to other nodes via requests; and (3) the missing opera-
tions are requested upon detecting inconsistencies between
the observed sets.

Faulty nodes can break requirements 1-3 in arbitrary ways.
For example, a malicious node 𝑥 might split 𝑂𝑥 into several
inconsistent sets and send different versions to other nodes
or refuse valid operations and ignore requests. We address
the issues by forcing nodes to include all known operations.
By continuously polling and requesting updates, nodes con-
verge to a common set. If the node does not respond, it will
eventually be suspected by all correct nodes. As a result,
faulty nodes have to report consistently; otherwise, they risk
exposure from all correct nodes.

Theorem 4.1. Protocol 1 guarantees eventual exposure or

suspicion of malicious nodes for 𝑓 < 𝑁 .

Proof. Amalicious node 𝑝𝑘 has two strategies on disrupt-
ing the protocol: (a) break consistency of the protocol by
sharing different versions of 𝑂𝑘 , or (b) ignore requests to
censor operations and break delivery. Let’s assume that two
correct nodes 𝑝𝑖 and 𝑝 𝑗 received two different versions 𝑂𝑖

𝑘

and 𝑂
𝑗

𝑘
respectively. Since the protocol guarantees eventual

delivery, the nodes 𝑝𝑖 and 𝑝 𝑗 after a reconciliation end up

with the operations set𝑂𝑖 = 𝑂 𝑗 , such that𝑂
𝑖
𝑘
∪𝑂 𝑗

𝑘
⊆ 𝑂𝑖 . Both

nodes 𝑝𝑖 and 𝑝 𝑗 see 𝑝𝑘 as outdated and request an update
from the node 𝑝𝑘 .
If node 𝑝𝑘 refuses to respond, it will be first suspected as

faulty.When node 𝑝𝑖 marks node 𝑝𝑘 suspicious, it will send to
𝑝 𝑗 last state of node 𝑝𝑘 (𝑂𝑖

𝑘
). The node 𝑜 𝑗 upon receiving 𝑂𝑖

𝑘

will expose node 𝑝𝑘 asmalicious, since𝑂𝑖
𝑘
\𝑂 𝑗

𝑘
≠ ∅∧𝑂 𝑗

𝑘
\𝑂𝑖

𝑘
≠

∅. □

Theorem 4.2. Protocol 1 guarantees eventual delivery for

correct nodes for 𝑓 < 𝑁 .

Proof. Let us assume that the correct node 𝑝𝑖 is the first
correct node to receive a new operation 𝑜𝑘 . Upon receiving 𝑜
the node 𝑝𝑖 updates it’s local set𝑂𝑖 . Since node 𝑝𝑖 is the first
node to receive the operation, all observed sets don’t contain
operation: ∀𝑗 ≠ 𝑖𝑜𝑘 ∉ 𝑂 𝑗 , node 𝑝𝑖 . As a result, node 𝑝𝑖 will
enforce all other nodes to update by requesting new oper-
ations sets that contain 𝑜𝑘 . According to our assumptions,
node 𝑝𝑖 will eventually stumble upon some correct node 𝑝 𝑗

and deliver 𝑜𝑘 . □

5 CONFLICT RESOLUTION POLICIES

Large-scale collaborative systems produce incompatible
operations on the same data and cause a fork. This section
introduces four strategies (Figure 2) for conflict resolution,
both manual, and fully automated.
Aggregation. Aggregation (Figure 2A) might be appro-

priate for some collaborative systems; it simply produces a
state which includes state changes from both branches. This
resolution is possible if two operations work on separable
data items, such as different letters, words in a string, or dif-
ferent items in a set. A merge function applies immediately
when a conflict is detected. Every correct node creates the
same merge operation. This resolution guarantees strong
convergence despite Byzantine nodes.
Competition (Figure 2B) is also fully automatic and uses

scoring to select only one of the operations. The scoring
function determines which operations obtain the highest
score, applies these operations and ignores other forks. For
instance, within a Wikipedia-like system, the scoring func-
tion may be the user’s reputation proposing an operation.
The ’three revert rule’ in Wikipedia gives an abuse penalty
to users who abuse the revert operation.
Arbitration. Simple concatenation might result in a se-

mantically ambiguous state (Figure 2C). One natural way to
resolve any conflict is to wait for a manual resolution from

15

DICG ’21, December 6–10, 2021, Virtual Event, Canada Nasrulin, et al.

a dedicated node. This method is commonly seen in big col-
laborative projects such as Wikipedia or large Github reposi-
tories. Repository maintainers or page administrators merge
and resolve conflicts. Typically, the arbitration requires man-
ual input. However, one can imagine an automated arbiter
that resolves the conflict randomly or according to some
procedure. The key benefit that our model provides for this
resolution is the transparency of the arbitration process. The
biases of any arbitration are visible to all correct nodes.
How do you select an arbiter? In general, any leader se-

lection algorithm might apply. In permissioned settings, the
application defines global authorities that act as arbitrary
for resolving any conflict. For example, in PeerReview [9]
such arbiters might be witness nodes preassigned via a hash
function. In federated settings, nodes can predefine their
trust set, like in Stellar [14] or Mastadon [15]. The arbiter is
a node at the intersection of these sets.
Compromise is a resolution based on the compromised

state, to which nodes come via an agreement (Figure 2D). A
compromise is achieved through multiple rounds of negotia-
tions between the involved nodes. A conflict is finalized if the
resolution achieves some threshold on votes. This strategy
is widely used in DAOs [10].

6 RELATED WORK

Our work is one of the first to propose a model which
could, in principle, create non-profit versions of Big Tech plat-
forms. Large-scale collaborative systems are studied by both
the database community and distributed systems researchers.
Most elements of collaborative systems are approached in
isolation, such as CRDTs [16], gossip protocols [5], byzan-
tine faults [9, 11], version management [18], tamper-evident
storage [1]. We extend their work by showing a strong foun-
dation for any decentralized application.

Eventually, consistent storage is commonly used in collab-
orative settings. Practical systems [7] priorities availability
over strong consistency for performance [13]. The concept
later matured into CRDTs [16], which showed that strong
convergence can be achieved in collaborative settings. De-
spite its wide applicability in multi-writer internet services,
e.g., Figma, Riak, this concept is rarely discussed in fully
decentralized byzantine settings [3, 11].
Versioning is widely discussed in databases, which ex-

plores the tradeoffs between space-saving and reconstruction
time of different versions of state [6, 18, 19].

7 CONCLUSION

In this paper, we presented a design for decentralized
collaborative applications. We show that strong eventual
consistency can be applied to decentralised settings despite a
supermajority of Byzantine nodes. The key idea that enabled

state convergence is accountability. Nodes reveal the full
context of the application and isolate any node that attempts
to censor it. Our accountability protocol guarantees both
correctness and unanimity.

The presented model universally captures all interactions
in the network through operations. All operations are kept
in an append-only and tamper-evident data structure. Any
inconsistency is eventually detected, and the correct nodes
converge to a common state via four merge strategies.

REFERENCES
[1] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system.

arXiv preprint arXiv:1407.3561 (2014).

[2] Anant Bhardwaj et al. 2014. Datahub: Collaborative data science &

dataset version management at scale. arXiv preprint arXiv:1409.0798

(2014).

[3] Loïck Bonniot et al. 2020. Pnyxdb: a lightweight leaderless democratic

byzantine fault tolerant replicated datastore. In SRDS. IEEE, 155ś164.

[4] Edward Bortnikov et al. 2009. Brahms: Byzantine resilient random

membership sampling. Computer Networks 53, 13 (2009), 2340ś2359.

[5] Stephen Boyd et al. 2006. Randomized gossip algorithms. IEEE trans-

actions on information theory 52, 6 (2006), 2508ś2530.

[6] Natacha Crooks et al. 2016. Tardis: A branch-and-merge approach to

weak consistency. In ICMD. 1615ś1628.

[7] Giuseppe DeCandia et al. 2007. Dynamo: Amazon’s highly available

key-value store. ACM SIGOPS operating systems review 41, 6 (2007),

205ś220.

[8] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Vargh-

ese. 2011. What’s the difference? Efficient set reconciliation without

prior context. ACM SIGCOMM Computer Communication Review 41, 4

(2011), 218ś229.

[9] Andreas Haeberlen et al. 2007. PeerReview: Practical accountability

for distributed systems. ACM SIGOPS operating systems review 41, 6

(2007), 175ś188.

[10] Christoph Jentzsch. 2016. Decentralized autonomous organization to

automate governance. White paper, November (2016).

[11] Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual

Consistency and the Fundamental Limits of Peer-to-Peer Databases.

arXiv preprint arXiv:2012.00472 (2020).

[12] Leslie Lamport. 2019. Time, clocks, and the ordering of events in

a distributed system. In Concurrency: the Works of Leslie Lamport.

179ś196.

[13] Wyatt Lloyd et al. 2011. Don’t settle for eventual: Scalable causal

consistency for wide-area storage with COPS. In SOSP. 401ś416.

[14] Marta Lokhava et al. 2019. Fast and secure global payments with

Stellar. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles. 80ś96.

[15] Aravindh Raman et al. 2019. Challenges in the decentralised web: The

mastodon case. In Proceedings of the Internet Measurement Conference.

217ś229.

[16] Marc Shapiro et al. 2011. Conflict-free replicated data types. In Sym-

posium on Self-Stabilizing Systems. Springer, 386ś400.

[17] Atul Singh et al. 2006. Eclipse attacks on overlay networks: Threats

and defenses. In In IEEE INFOCOM. Citeseer.

[18] Sheng Wang et al. 2018. Forkbase: an efficient storage engine for

blockchain and forkable applications. VLDB 11, 10 (2018), 1137ś1150.

[19] ChenggangWu et al. 2019. Anna: A kvs for any scale. IEEE Transactions

on Knowledge and Data Engineering (2019).

16

	Abstract
	1 Introduction
	2 Preliminaries and System Model
	2.1 Consistency Goals
	2.2 Accountability Goals

	3 Mutli-Version Collaboration Model
	3.1 Causally Consistent Data
	3.2 Conflicts and Merges
	3.3 Validity of Operations
	3.4 Data Dissemination

	4 Guaranteed Fault Exposure for Data Dissemination
	5 Conflict Resolution Policies
	6 Related Work
	7 Conclusion
	References

