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Abstract Ecosystem sensitivity to climate variability varies across East Africa, and identifying the
determinant factors of this sensitivity is crucial to assessing region-wide vulnerability to climate change
and variability. Such assessment critically relies on spatiotemporal data sets with inherent uncertainty, on
new processing techniques to extract interannual variability at a priori unknown time scales and on adequate
statistical models to test for biogeographical effects on vegetation-precipitation relationships. In this study,
interannual variability in long-term records of normalized difference vegetation index and satellite-based
precipitation estimates was detected using ensemble empirical mode decomposition and standardized
precipitation index with varying accumulation periods. Environmental effect modeling using additive models
with spatially correlated effects showed that ecosystem sensitivity is primarily predicted by biogeographical
factors such as annual precipitation distribution (reaching maximum sensitivity at 500mmyr�1), vegetation
type and structure, ocean-climate coupling, and elevation. The threat of increasing climate variability and
extremes impacting productivity and stability of ecosystems is most imminent in semiarid grassland and
mixed cropland ecosystems. The influence of oceanic phenomena such as El Niño–Southern Oscillation
and Indian Ocean Dipole is foremost reflected in precipitation variability, but prolonged episodes also pose
risks for long-term degradation of tree-rich ecosystems in the East African Great Lakes region.

1. Introduction

Terrestrial ecosystems respond to fluctuations in climatic conditions, which are primarily measured as
interannual variability in precipitation and temperature regimes [Myoung et al., 2013]. Climate-driven inter-
annual vegetation changes affect ecosystem services such as carbon sequestration in soil and biomass
[Luyssaert et al., 2007; Piao et al., 2011], water cycle regulation [Hirabayashi et al., 2013; Liu et al., 2008], and
rain-fed crop production [Cooper et al., 2008; Knox et al., 2012; Ray et al., 2015]. Empirical studies have
demonstrated greening and browning responses of ecosystem photosynthetic activity due to increased
interannual climate variability [De Keersmaecker et al., 2015; Holmgren et al., 2013].

Viewedona subcontinental scale, interannual vegetation response is spatially heterogeneousdue to variations
in mesoscale climate [Plisnier et al., 2000], mean annual precipitation [Camberlin et al., 2007; Greve et al., 2011],
and topographic factors [White et al., 2005]. Understanding these interactions is key to making spatial projec-
tions of the impacts of climate change on natural andmanaged ecosystems, delineating vulnerable areas, and
implementing adaptation and mitigation measures [Intergovernmental Panel on Climate Change, 2014].

Semiarid ecosystems in Africa have been identified as particularly vulnerable to the impacts of increased
climate variability [Busby et al., 2014]. As opposed to the well-studied Sahel region [e.g., Dardel et al., 2014;
Fensholt et al., 2013; Herrmann et al., 2005; Nicholson, 2013; Nicholson et al., 1990], East Africa represents a
specific case where strong topographic effects, exposure to oceanic influence, and strong heterogeneity of
vegetation types contribute to the uncertainty on the fate of ecosystems under changing climate conditions.
To date, regional assessments of ecosystem response to climate variability [e.g., Brando et al., 2010; Brown
et al., 2010; Guo et al., 2014; Ibrahim et al., 2015; Ivits et al., 2014] face unresolved challenges in terms of data
consistency, time series analysis techniques, and statistical modeling approaches.

First, consistency in spatiotemporal data sets for long-term ecosystem studies is a subject of current research.
In remote sensing-based vegetation monitoring, the key issue is temporal consistency and calibration
between subsequent sensors to minimize spurious temporal trends [e.g., Gonsamo and Chen, 2013; Nagol
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et al., 2014; Tian et al., 2015]. As for climatic records, the main challenge in obtaining spatially consistent data
products is to trade off the spatial density of observations against the uncertainty of the models and
algorithms [e.g., Awange et al., 2016;Maidment et al., 2013; Sapiano, 2010], particularly in data-scarce regions.
Often, ecosystem sensitivity studies tend to draw conclusions from one particular combination of vegetation
and climate data sets without accounting for the potential effects of data inconsistency.

Second, interannual variability of vegetation greenness is a key variable for assessing ecosystem responses to
climatic change and variability [Hilker et al., 2014; Luo et al., 2011]. Separating interannual variability from
annual variability requires dedicated temporal filtering tools for time series. A wide range of time series
decomposition tools have been reported, based on parameterization of growing seasons [Eerens et al.,
2014; Jönsson and Eklundh, 2002], Fourier analysis [e.g., Immerzeel et al., 2005; Lhermitte et al., 2008], trend
and break detection [Verbesselt et al., 2010], principal component analysis [Ivits et al., 2014; Myoung et al.,
2013], wavelet decomposition [Martínez and Gilabert, 2009; Swinnen, 2008; Torrence and Compo, 1998], or
empirical mode decomposition (EMD) [Hawinkel et al., 2015; Huang et al., 1998; Wu and Huang, 2009].
Despite this abundance of techniques, it has not yet been shown how these can provide a meaningful spatial
indicator of interannual response to climate variability over large spatial scales.

A third challenge toward understanding sensitivity of ecosystems to climate variability is to identify the biogeo-
graphical factors controlling this response, which can be either topographic, ecological, meteorological, or
related to the regional climate-ocean interactions. Whereas early approaches were merely descriptive [e.g.,
Braswell et al., 1997; Camberlin et al., 2007; Farrar et al., 1994; Nicholson and Farrar, 1994], recent studies have
used explanatory statistical techniques to evaluate the role of biogeographical factors by hypothesis testing
[Brown et al., 2010], linear regression techniques [Li et al., 2013; Zhao et al., 2015], nonlinear relationships
[White et al., 2005], andmixed-effect modelingwith spatial correlation [De Jong et al., 2013]. However, systematic
assessment of ecosystem sensitivity to climate variability still lacks a unified statistical approach. A consistent set
of techniques to deal with multiple, nonlinear, and spatially correlated effects through hypothesis testing have
already been explored in environmental effect modeling of biological systems [Zuur et al., 2009].

Therefore, the objectives of this research are threefold. First, we systematically consider the impacts of spatio-
temporal data uncertainty in a regional study of ecosystem sensitivity to climate variability. Second, we aim
to quantify andmap the interannual response of East African ecosystems to climate variability from various spa-
tiotemporal data sets. The third objective of this paper is to fully integrate environmental effect modeling into
spatiotemporal assessments of interannual ecosystem responses to climate variability, applied to East Africa.

First, an overview of the current knowledge on East Africa's climate dynamics is given. Also, the crucial issue of
uncertainty in spatiotemporal data products is discussed prior to the selection of cross-sensor vegetation index
time series and satellite-based spatial precipitation estimates. Next, we employ a novel time series decomposi-
tion tool based on ensemble empirical mode decomposition (EEMD) to extract and map the interannual
vegetation response to precipitation variability over East Africa. Finally, an environmental effect model is
presented to identify and quantify the biogeographical factors that determine the vegetation response to
interannual climate variability (i.e., precipitation patterns, ocean-coupled phenomena such as El Niño–
SouthernOscillation (ENSO) and IndianOceanDipole (IOD), topographic parameters, and vegetation structure).

The results contribute significantly to the quantitative knowledge of the sensitivity of East African ecosystems
to climate variability and of its controlling factors and help to delineate vulnerable areas under future climate
scenarios of increased variability. Also, they serve to demonstrate and evaluate a systematic analysis frame-
work for regional climate sensitivity studies worldwide.

2. Study Area

The ecosystems of East Africa (hereafter defined as the region spanning 26.4°E to 51.4°E and 14.7°N to 12.0°S)
are strongly determined by the distinct regional topography, their tropical latitude, and the proximity of the
Indian Ocean as shown in Figure 1. The eastern and western branches of the East African Rift System consist
of chains of extensional basis which form the East African Great Lake and are lined with volcanic highlands.

Annual rainfall variability in East Africa is dominated by the seasonal migration of the Intertropical
Convergence Zone (ITCZ), which induces a strong periodic cycle of precipitation [Anyah and Semazzi, 2006,
2007]. Two rainy seasons are associated with the passage of the ITCZ, i.e., “long rains” from March to May
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and “short rains” from October to December, interrupted by a major dry season from June to August [Anyah
and Semazzi, 2006; Philippon et al., 2015].

On the interannual time scale, precipitation variability over East Africa is large in terms of magnitude as well as
timing [Kizza et al., 2009], with the short rains displaying stronger interannual variability than the long rains
[Behera et al., 2005]. Interannual precipitation variability is generally attributed to annual-to-decadal oscillations
of sea surface temperatures (SSTs) that influence the large-scale continental climate. The teleconnections
known to act over East Africa are IOD [Saji et al., 1999] and ENSO [Ropelewski and Halpert, 1987; Trenberth,
1997]. In particular, most of the interannual variability during the short rains as well as other seasons has been
linked to IOD [Behera et al., 2005; Black et al., 2003; Conway et al., 2007; Lanckriet et al., 2015;Marchant et al., 2007;
Omondi et al., 2013;Williams and Funk, 2011; Zaroug et al., 2014]. Several studies have also found the imprint of
ENSO on the variability of the short rains over parts of East Africa [Giannini et al., 2008; Indeje et al., 2001; Plisnier
et al., 2000; Schreck and Semazzi, 2004; Segele et al., 2009; Smith and Semazzi, 2014; Sun et al., 1999].

Besides this oceanic forcing of East African climate, the characteristics of the land surface play an important
role in modulating precipitation across this region. In particular, evaporation from vegetation or lakes
[Akkermans et al., 2014; Spracklen et al., 2012; Thiery et al., 2014a, 2014b], heat flux regulation by soil moisture
fluxes [Guillod et al., 2015; Taylor et al., 2012], orographic lifting processes [Anyah and Semazzi, 2007; Laing
et al., 2011], and initiation of mesoscale circulation by land-water contrasts [e.g., Anyah et al., 2006; Ba and
Nicholson, 1998; Laing et al., 2011; Lauwaet, 2009] are key local drivers of precipitation production over
East Africa.

A wide range of ecological zones and associated vegetation types occurs (Figure 2), largely oriented along
the precipitation gradient (Figure 3). West of the East African Rift, latitudinal bands of mean annual precipita-
tion determine the transition from tropical forest and woodland systems to shrub- and grass-dominated
savannah systems. Along the rift, topography creates climatic gradients that result in distinct Afromontane
forests in Ethiopia, Kenya, and Rwanda with their associated agroforestry systems. East of the rift, arid and
semiarid conditions impose grassland savannah, sparse shrubland, and thicket vegetation in the lowlands

Figure 1. Elevation map of East Africa (GTOPO30).
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of Somalia, eastern Ethiopia, and Kenya [Lillesø et al., 2011], allowing pastoral grazing activities. Mixed cereal
cropping systems prevail in the subhumid and humid parts of the plateau around Lake Victoria (stretching
eastern Kenya, Tanzania, Burundi, Rwanda, and Uganda) and in the Ethiopian Highlands. The starting hypoth-
esis is that vegetation response to precipitation variability is most distinct between ecological zones, since
vegetation structure and its photosynthetic capacity are the primary limiting factors for gross canopy photo-
synthesis across semiarid (250–500mmyr�1) and subhumid (500–900mmyr�1) Africa [Williams et al., 2008].
Precipitation gradients within those zones are put forward as the controlling factor of this response.
Important deviations from this pattern are expected in areas with strong orography, i.e., the Ethiopian
Highlands and the rims of the East African Rift valley. Finally, although the effects of ENSO and IOD on pre-
cipitation variability are well studied, it is unknown if and how this ocean-climate coupled forcing translates
into alterations of the interannual vegetation response.

3. Data
3.1. Normalized Difference Vegetation Index Data Sets

Satelliteswith opticalmultispectral sensors in a near-polar orbit provide periodic images in visible and infrared
wavelengths. The normalized difference vegetation index (NDVI) [Tucker and Sellers, 1986] is an indicator of the
photosynthetic activity and thegreenness of vegetation. It is calculatedperpixel from red (R) and infrared (NIR):

NDVI ¼ Ref lNIR � Ref lRð Þ= Ref lNIR þ Ref lRð Þ (1)

The NDVI produced from historical satellite image archives (as from 1979 with NOAA-advanced very high
resolution radiometer (AVHRR) [Cracknell, 2001]) captures the long-term responses of ecosystems to climate
variability [Dubovyk et al., 2012; Pettorelli et al., 2005; Yengoh et al., 2014]. However, a critical step when integrat-
ing the temporal NDVI trajectories fromdifferent sources is to account for artifacts in one-sensor data series (e.g.,
volcanic eruptions and platform orbital drift [Nagol et al., 2014; Swinnen et al., 2014]) and between-sensor incon-
sistencies due to differences in Sun-target-sensor geometry [Swinnen and Veroustraete, 2008], sensor spectral
response [Trishchenko et al., 2002], or processing specifications [Tian et al., 2015].

Efforts to minimize these uncertainties and maximize temporal consistency have resulted in cross-sensor data
products such as the 15day composite NDVI product of the Global Inventory Modeling and Mapping Studies
(GIMMS3g) [Fensholt and Proud, 2012]; NASA's Long-Term Data Record (LTDR v4) [NASA, 2014]; the continuum
of SPOT-VGT1, VGT2, and PROBA-V products [Deronde et al., 2014; Dierckx et al., 2014; Swinnen et al., 2014];
and the higher spatial resolution NDVI record of shorter length from the Moderate Resolution Imaging
Spectroradiometer instrument [Huete et al., 2002]. For a quantitative comparison of these data sets for long-term
temporal analysis, we refer to Tian et al. [2015]. Based on their analysis, the newly updated GIMMS3g data set
[Fensholt and Proud, 2012] can be considered the state-of-the-art global consistent long-term NDVI record for
spatiotemporal analysis (R. Fensholt, personal communication, 2 October 2015). GIMMS3g consists of recali-
brated historic NOAA-AVHRR data (0.083° resolution, 1981–2011) and corrects for spurious trends due to calibra-
tion loss, volcanic eruptions, and orbital drift.

Figure 2. Ecological zones of East Africa as derived fromGlobal Land Cover 2000 (GLC2000) [Bartholomé and Belward, 2005]
represent land cover types in distinct climatological and topographical regions at 20 km spatial resolution.
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Such standardized, periodically published data sets often do not meet the requirements of spatiotemporal
detail, operational availability, or preprocessing flexibility. A widely used alternative is the integration of historic
AVHRR series with the later products [e.g., Pedelty et al., 2007; Swinnen and Veroustraete, 2008], applying
physically based empirical cross-calibration [Gonsamo and Chen, 2013; Steven et al., 2003; Trishchenko et al.,
2002]. A long-term data set is generated by cross-calibration between AVHRR and SPOT-VGT. This procedure
is described in detail in previous work [Hawinkel et al., 2015]. It comprises resampling of LTDR v2 (0.05° resolu-
tion, 1981–1999) and SPOT-VGT (0.009° resolution, 1998–2014) to a common frame, 10day compositing, and
profile smoothing [Eerens et al., 2014; Swets et al., 1999]. Next, empirical cross-calibration is achieved by applying
a linear VGT-to-AVHRR correction model [Steven et al., 2003], estimated from corresponding, cloud-free, near-
nadir pixels in the 1999 images from both data sets.

In this study, both GIMMS3g and cross-calibrated AVHRR+ VGT data sets are retained for subsequent analysis
over East Africa to assess the impact of temporal consistency on detected environmental effects.

3.2. Precipitation Data

Spatiotemporal studies of regional climatic effects are confronted with the scarcity and varying quality of
observational data. Over Africa, precipitation records from rain gauge stations are few and spatially unevenly
distributed [Dinku et al., 2007]. Any interpolation approach, whether relying on pure data or employing
advanced model approaches, introduces uncertainty and causes spatial and temporal heterogeneities in
the quality of the end product.

Figure 3. (a–d) Spatial distributions of mean annual precipitation for four precipitation products. The black dots in Figure 3a represent the stations that provided
observational input for the CRU data set.
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Again, this has potential impacts on the conclusions about sensitivity to regional climatic variability. A review
of studies on global or regional climate-vegetation interactions (see Table A1 in Appendix A) shows that most
studies make use of a single data set from either one of the five following categories:

1. Regional climate indices: Interannual variability of a regional climate is partly driven by ocean-climate
interactions across the Pacific and Indian Oceans. Various indices are derived from SSTs at predefined
locations. Such indices provide a consistent and readily measurable indicator of climatic episodes at
annual to decadal scales, yet without a spatial component;

2. Rain-gauge observations: The historical precipitation of a small region can be approximated by a limited set of
rain gauge stations, with or without spatial interpolation. At larger scales, collection, quality control, and grid
interpolation of available rain gauge data become a specialized workflow. Globally, the most widely used refer-
ence product is the Climate Research Unit (CRU) database (0.5° resolution, 1981–2013 [Mitchell and Jones, 2005]);

3. Satellite-based/mixed rain gauge products: Satellite sensors canmeasure infrared (IR) brightness andmicro-
wave (MW) reflectance, which in turn relate to precipitation intensity. Through dedicated algorithms and
merging with available rain gauge observations, periodic area-covering precipitation estimates are pro-
duced. For reviews of these products over Africa, we refer to Awange et al. [2016], Dinku et al. [2007],
and Tote et al. [2015]. Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN; 0.25° resolution, 1983–2012) [Hong et al., 2004; Sorooshian et al., 2000] is deemed
most suitable over this continent [Awange et al., 2016];

4. Model-based reanalysis products: Extensive efforts to reconstruct the spatiotemporal distribution of climatic
variableshavebeendone throughmeteorological reanalysiswith atmosphericmodels, calculatingabestfit
with the ensemble of available historical observations. Reanalysis products are produced by various
meteorological agencies (see Chen et al. [1996], Buizza et al. [2005], Boccara et al. [2008], and Duan et al.
[2012] for comparisons). One of the reference products is the ERA-Interim data set (0.75° resolution, 1979
to present [Dee et al., 2011]) produced by the European Centre for Medium-Range Weather Forecasts;

5. Climate model downscaling products: Downscaling of atmospheric reanalysis or coarse-scale climate model
outputs to higher resolution using a regional climate model (RCM) allows incorporation of a more detailed
description of the particularities of that area, such as orography and lake dynamics [e.g., Akkermans et al.,
2014; Docquier et al., 2016; Thiery et al., 2015], thus providing more spatial detail than global reanalysis products.

Four spatiotemporal precipitation products were tested in parallel for their explanatory power of observed
interannual vegetation patterns: (a) a gridded rain gauge interpolation product (CRU); (b) a product ofmerged
rain gaugeand satellite-basedestimates (PERSIANN); (c) a reanalysis product (ERA-Interim); and (d) RCMoutput
fromtheConsortium forSmall-ScaleModelingmodel inClimateMode (CCLM) [Rockel et al., 2008], inparticular a
downscaling of ERA-Interim in the framework of the Coordinated Regional Climate Downscaling Experiment
(CORDEX) [Panitz et al., 2012]. The differences between these products are illustrated by their distributions of
mean annual precipitation (Figure 3).

4. Methods
4.1. Interannual Extraction Tools
4.1.1. Ensemble Empirical Mode Decomposition (EEMD) of NDVI Time Series
Empiricalmodedecomposition (EMD) [Huang et al., 1998] is an algorithm to iteratively extract the intrinsic time scale
components from any given series. It has already been applied in studies of climate variability [Brisson et al., 2015;
Coughlin and Tung, 2005;Molla et al., 2011; Pegram et al., 2008] and climate effects on plant phenology [Guan, 2014].

Briefly, the EMD algorithm decomposes the series X(t) into a set of k components isolating specific time scales
with decreasing frequencies, termed intrinsic mode functions (IMFi = 1…k) and a residual term R(t):

X tð Þ ¼
X

i IMFi tð Þ þ R tð Þ (2)

Averaging ensembles of noise-added series (ensemble EMD or EEMD) [see Wu and Huang, 2009] yields stable
IMFs representing the oscillating modes in the series. In the NDVI time series, the IMFs with estimated periods
longer than 1 year are summed to reconstruct the overall interannual changes in NDVI. A detailed description of
this approach and its numerical implementation are given byHawinkel et al. [2015]. Interannual NDVI represents
the slowmodulations of the annual cycle of vegetation greenness as a smooth function over time and serves in
this study as a new variable for further spatiotemporal analysis with climatic time series.
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4.1.2. Standardized Precipitation Index
Precipitation occurs as discrete events over a time interval, with an underlying distribution of the probability of
rainfall amounts at a certain time of the year (e.g., a 10 day period or a month, hereafter called “period”). The
standardized precipitation index (SPI) [Guttman, 1999; McKee et al., 1993] evaluates each event in a series
against the estimated historic distribution for that period, taking into account the nonnormal distribution of
precipitation amounts. A positive index indicates a higher than average amount of precipitation in that period.

Depending on the vegetation characteristics, soil conditions, and potential evapotranspiration rates, vegeta-
tion responds to a certain extent to the accumulated precipitation of a past time interval. Storage of water in
the soil reservoir has the potential to act as a temporal buffer between precipitation events and increased soil
moisture availability, with reported lag times up to 2months [Entin et al., 2000; Koster and Suarez, 2001; Orth
and Seneviratne, 2012]. The effects of increased available soil moisture on the apparent greenness of vegeta-
tion display additional time lags [Hawinkel et al., 2012], in particular in ecosystems with woody components
[Porporato et al., 2003].

A time window for accumulation of precipitation can be defined in the calculation of SPI, yielding a more
smoothed indicator for longer accumulation times (Figure 4). Therefore, SPI is calculated with various accu-
mulation periods ranging from 1month to 2 years, in order to test the sensitivity of the detected vegetation
interannual vegetation response to the size of the accumulation period for precipitation.
4.1.3. Interannual Coupling Between NDVI and Climate Variability
Interannual NDVI and accumulated SPI describe the dynamics of interannual change per pixel. The Pearson's
correlation coefficient between both interannual time series quantifies the covariation of both processes and
is a measure of the strength of their coupling, although without proving causation [Lhermitte et al., 2011].

This quantitative measure of interannual vegetation-climate coupling per pixel is exploited in two ways. First,
mapping this coupling per pixel over East Africa reveals patterns of ecological sensitivity. Alternative data
products are compared with respect to the overall amount of explained response and the spatial consistency
of this response to the a priori background knowledge of the study area. Second, the coupling is modeled in
terms of its biogeographical explanatory factors.

4.2. Statistical Model of Interannual Coupling
4.2.1. Additive Modeling With Spatial Correlation Effects
The modeling strategy discussed here is based on the work of Zuur et al. [2009] and implemented in R
packages nlme [Pinheiro et al., 2015], mgcv [Wood, 2011], and gamm4 [Wood and Scheipl, 2014]. Spatial

Figure 4. The standardized precipitation index (SPI) transforms precipitation events (blue) to relative scores, indicating the
deviation from its expected amount for that period of the year (PERSIANN pixel in northern Kenya). SPI with 1 year
accumulation time (green) provides a measure of interannual precipitation variability.
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modeling of vegetation sensitivity Y in terms of biogeographical factors Xi in heterogeneous study areas is
summarized in the following generic model equation:

Y ¼ αþ
X

i
βiXi þ

X
j
f j Xj
� �þ εs (3)

Estimates of the linear responses βi are obtained byminimizing the model residuals εs under the assumptions of
εs being normally distributed, independent andwith constant variance, allowing for hypothesis testing based on
F-statistics [Zuur et al., 2009]. Alternative models are compared through the Akaike information criterion (AIC)
[Akaike, 1998], which weighs the likelihood of the estimated coefficients against the complexity of the model.

Vegetation sensitivity does not respond linearly to all controlling factors. For example, dependency on mean
annual precipitation reaches a maximum in the 200–600mm annual rainfall range [Camberlin et al., 2007;
Richard and Poccard, 1998]. For such nonlinear relationships, the linear estimator is substituted with a
smoothing function f(Xj) to ensure normality and equal variance of the residuals εs. Additive modeling
[Wood, 2011] allows model estimation with adaptive optimization of the smoothing parameters.

The pixel-based observations and their underlying biophysical phenomena are known to be spatially corre-
lated. The spatial covariation of residuals not accounted for by the covariates Xi and f(Xj) is estimated from
residual variograms and subsequently modeled in the covariance structure of εs using generalized additive
mixed modeling (GAMM) [Wood and Scheipl, 2014].

All numerical variables were standardized in terms of standard deviations so that effect sizes become com-
parable between variables. Image data sets typically yield a very large sample size (>10,000) causing very
weak or spurious effects to become statistically significant as measured by the F test [Lin et al., 2013].
Therefore, statistical significance of effects is complemented with an evaluation of scientific significance of
their effect sizes (measured by the estimated regression coefficient βi).
4.2.2. Explanatory Biogeographical Factors
From the prior background knowledge on East Africa's climate and ecosystems, a set of biogeographic factors
emerge as candidate explanatory variables tomodel the interannual NDVI response to precipitation variability.

Precipitation In East Africa, spanning arid (<250mmyr�1) to humid (>900mmyr�1) environments, mean
annual precipitation (Figure 3) is the prime candidate driver of ecological sensitivity. Its nonlinear effect on
the interannual coupling of vegetation to precipitation variability is depicted in Figure 8.

Oceanic influence The Indian Ocean Dipole Mode Index (DMI) [Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), 2010] and the Oceanic Niño Index (ONI) [NOAA Climate Prediction Center (NOAA-CPC),
2014] were selected to represent the influence of global and regional climate phenomena. Their imprint on tem-
poral precipitation patterns gives an estimate of the spatial distributions of IOD and ENSO influence in the
region. Positive phases of ENSO and IOD can cause increased precipitation amounts in multiple seasons, i.e.,
on the short rains [Behera et al., 2005] as well as the long rains in the next year [Indeje et al., 2000; Yang et al.,
2007]. This effect is estimated by correlating ONI and DMI series with SPI accumulated over 1 to 12months fol-
lowing the ENSO or IOD phases, respectively. Also, the strength of the effect is compared between seasons by
including only values per season in the calculation. An additional measure of ocean influence is each pixel's
Euclidean distance to the ocean, equivalent to stream distance in White et al. [2005].

Topography Elevation, slope, and aspect were derived from GTOPO30 [U.S. Geological Survey (USGS), 1996] at
native 30m resolution and bilinearly resampled to 20 km. FollowingWhite et al. [2005], topographic position
and steady state wetness are characterized by the compound topographic index (CTI), obtained from the
HYDRO1k geographic data set derived from GTOPO30. CTI is a function of slope and of the flow accumulation
from upstream areas, and high values indicate the positions with large catchments and gentle slopes [Moore
et al., 1991].

Ecological zones A delineation of vegetation zones is taken from the Global Land Cover 2000 data set
[Bartholomé and Belward, 2005]. Land cover types were reclassified and split into contiguous vegetation
zones with distinct structural composition (Figure 2). Bare areas were excluded from the analysis.

Soils A map of dominant soil types is extracted from the Food and Agriculture Organization/United
Nations Educational, Scientific and Cultural Organization Digital Soil Map of the World [Food and Agriculture
Organization (FAO), 2002].
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Interannual NDVI amplitude Finally, if the NDVI data have a low signal-to-noise ratio, then weak interannual
fluctuations will not be detected accurately by EEMD [Hawinkel et al., 2015]. Therefore, the amplitude of
the interannual NDVI signal is added to the model to detect data-related effects.

A two-stage strategy is followed to assess the effects of the above biogeographical factors on the interannual
coupling between NDVI and precipitation in East Africa. Factors linked to regional climate, oceanic influence,
large-scale orography, and ecological zoning are modeled as global effects in the study area. Next, a subset of
factors is modeled in more detail per ecological zone in a local effect model. The ecological zones contain 250
to 1500 pixels, making statistical hypothesis tests more effective to evaluate local effects [Lin et al., 2013].
Significance at the 95% confidence interval is considered to detect meaningful effects of biogeographic
factors on the interannual vegetation coupling to climate.

A detailed description of the source data and processing steps for all modeled variables can be found in the
supporting information [Bartholomé and Belward, 2005; Deronde et al., 2014; FAO, 2002; Fensholt and Proud,
2012; Guttman, 1999; Hawinkel et al., 2015; Hong et al., 2004; JAMSTEC, 2010; Lhermitte et al., 2011; McKee
et al., 1993; Mitchell and Jones, 2005; NASA, 2014; NOAA-CPC, 2014; Sorooshian et al., 2000; USGS, 1996;
Wu and Huang, 2009].

5. Results
5.1. Temporal Aspects of Interannual Climate-Vegetation Coupling

The linear correlation between interannual NDVI time series extracted by EEMD and SPI is mapped per pixel
over the study area for different accumulation windows of precipitation. The strength of the coupling
increases when accumulation over multiple months is considered (Figure 5). However, accumulation over
more than 12months does not add to the explained variance. Interannual NDVI response to 1 year accumu-
lated SPI is further used as the indicator for vegetation response to climate variability.

Figure 5. Correlation between precipitation (PERSIANN) and interannual NDVI time series (AVHRR + VGT) for various windows of accumulation. The explained
variance levels off with precipitation accumulation over 6 to 12months.
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5.2. Spatial Patterns of Interannual Climate-Vegetation Coupling

The precipitation products can be ranked with respect to overall explained response and spatial consistency
with the patterns described in section 2 (Figure 6). ERA-Interim displays highly different couplings, inconsis-
tent with other products and with expected patterns of strong coupling in lowland areas exposed to the
Indian Ocean. The CORDEX-CCLM model output yields more subtle deviations from the other products,
but strong zonal anomalies indicate lower spatial consistency, particularly in the most southern latitude band
of the study area. For the two observational products, i.e., CRU and PERSIANN, the patterns of precipitation
sensitivity conform to the a priori expected patterns with reduced coupling to rainfall in mountainous regions
as well as in both extremely dry and humid zones. Discrepancies in detections between AVHRR+ VGT and
GIMMS3g are local and not significant enough to reject either of both data sets at this stage.

5.3. Controlling Biogeographical Factors
5.3.1. Influence of ENSO and IOD Phenomena in East Africa
The imprint of ENSO on SPI series is strongest when considering precipitation in the 6months following the
ENSO phase. For IOD, the effect on precipitation was detected most strongly 4months after each IOD phase.
Also, the season in which the effects on precipitation anomalies are most pronounced differs for both indices
(Figure 7). The short rains are heavily driven by IOD, while the effect of ENSO is slightly weaker but extends
into the period of long rains.
5.3.2. Global Effects
A generalized additive mixed model (GAMM) with a smooth term for mean annual precipitation, global bio-
geographic factors, and spatially correlated residuals is applied to all combinations of AVHRR+ VGT and
GIMMS3g and PERSIANN and CRU, respectively. The full model results, relative effect sizes per factors, and
their statistical significance are presented in Table A2 in Appendix A. The models explain 28% to 43% of

Figure 6. (a–d) Detected coupling between interannual NDVI (AVHRR + VGT and GIMMS3g) and 1 year accumulated SPI using four different data products. Overall
explained variability and the occurrence of zonal anomalies are relative measures to compare quality across data products.
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the observed variability in vegetation response. Measured by AIC, inclusion of spatially correlated residuals is
the strongest determining factor for the model's performance.

For all data set combinations, the models agree on the significant effects of mean annual precipitation,
vegetation type, and elevation. The nonlinear effect of mean annual precipitation on the interannual NDVI

response to precipitation is depicted in
Figure 8. ENSO and IOD forcing of preci-
pitation is not reflected in interannual
NDVI patterns in the global model for
the study area. These effects are further
examined per ecological zone in a
local effects model (section 5.3.3). Soil
type and CTI are not found to influence
the interannual NDVI response to preci-
pitation variability.

The global effect model residuals for
the GIMMS3g/PERSIANN data sets are
depicted in Figure 9, along with the
observed coupling and the predictions
from the additive model. The residuals
display spatial correlation with an
estimated range of 250–300 km in all
directions (Figure9c). Largenegative resi-
duals (overestimations of the response)
occur (i) in sparsely vegetated areas in

Figure 7. The influence of (top) ENSO (ONI index) and (bottom) IOD (DMI index) on precipitation anomalies measured by SPI differs per season. ENSO phases have
effects up to 6months later in the long rainy season, while IOD has strong effects on the short rains up to 4months after each positive phase.

Figure 8. The nonlinear relationship between the interannual vegetation
response (AVHRR + VGT) to precipitation variability (PERSIANN) and
annual mean precipitation over East Africa (1981–2014). Maximum
sensitivity occurs in semiarid and subhumid areas with mean annual
precipitation around 500mm. Additive models account for nonlinear
effects on the response variable with smoothing terms (black line). The
dashed line indicates the 95% confidence level for the per-pixel correla-
tion between time series (sample size = 726 time steps).
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the Horn of Africa; (ii) in the eastern end of the Sahel region, which belongs to a systemdominated by theWest
Africanmonsoon [Nicholson, 2013] and falls de facto largely outside the study area; (iii) in the eastern Ethiopian
Highlands; (iv) inapartof the shrublandsofSouthSudan; and (v) in the tropicalwoodlandsandsavannahs in the
southeastern part of the study area. The response is underestimated for (vi) the cropland regions of northern
Ethiopia and (vii) for the extremely wet area east of Lake Victoria (large positive residuals). The latter may be
caused by either an overestimation of precipitation by PERSIANN (Figure 3b) or by a biased estimation of
the nonlinear relationship to mean annual precipitation in the data-scarce upper tail of the distribution
(Figure 8). Elsewhere, residuals are moderate in size and distributed near randomly.

Model disagreement between data set combinations highlights the impact of spatiotemporal inconsistency
in data products. The choice of precipitation product mainly affects the detected effect of distance to the
Indian Ocean. This relatively coarse measure captures any systematic effects related to data quality along the

Figure 9. (a) The observed coupling of interannual NDVI (GIMMS3g) to precipitation variability (PERSIANN). (b) The model predictions from global effects across the
study area. (c) The spatial distribution of residuals, with Roman numerals highlighting the clusters of large residuals.
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longitudinal gradient. As can be seen from Figure 3a, station coverage for the CRU data set is very low in the
western part of the study area, where remarkably lower coupling is detected with CRU as compared with
PERSIANN (Figures 3a and 3b). For interannual NDVI detected from the AVHRR+VGT data set, response to
precipitation variability decreases sharply with elevation, whereas this effect is only moderate when detected
with GIMMS3g. For highland areas exceeding 1200m, a systematically lower response is detected from
AVHRR+VGT.
5.3.3. Local Effects
The nonlinear effect of mean annual precipitation is estimated within each ecological zone in order to exam-
ine its deviation from the global curve for East Africa (Figure 10). These local deviations include overall higher
sensitivity in cropland areas (plot 10c) and grassland savannah (plot 3b), lower sensitivity in tropical
woodlands (plot 4a), and a shift in maximum sensitivity toward higher precipitation (1200mmyr�1) for
tropical woody shrublands (plot 6). Only in the sparse grassland and shrubland in the Horn of Africa,
sensitivity to precipitation variability does not decrease in the parts receiving relatively more precipitation
annually, stressing this region's vulnerability. In wetlands and regularly flooded areas (plot 11), interannual
vegetation response is decoupled from variability in precipitation amounts.

The local effects of ENSO and IOD influence as well as local topography effects are tabulated in Table A3 in
Appendix A. The influence of IOD and ENSO on the coupling of vegetation and precipitation dynamics in
East African ecosystems appear to have a spatial as well as an ecological limit. IOD influence (notably on the
short rains) explains a portion of the interannual vegetation response to precipitation variability in the subhumid
ecosystems of the African Great Lakes region receiving 500–900mm of precipitation annually. These include
savannah systems with shrub and woody components, woody shrublands, and the associated cropland
systems. Effects of ENSO in the subsequent long rainy season do not show further impacts on the interannual
vegetation response, only weakly in the lowland savannah along the Indian Ocean, and northwest of the East
African Rift valley where precipitation anomalies are out of phase with the ENSO modes (Figure 7). Elevation
has a negative effect on the interannual vegetation response to precipitation only in the cropland systems on
the Ethiopian plateau, where temperature limitations start to be significant.

6. Discussion
6.1. Impacts of Data Uncertainty

Parallel analyses of multiple data products highlight the importance of uncertainty in spatiotemporal data sets
in long-term ecological studies. This is particularly the case for precipitation products over data-scarce regions

Figure 10. The effect of mean annual precipitation on the interannual vegetation response to climate variability varies per ecological zone. The local response (bold
line) deviates from the overall curve for East Africa (thin line).
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such as East Africa. It is hypothesized that satellite-based products will display the most homogeneous quality
over station-scarce regions [Moazami et al., 2014; Pfeifroth et al., 2012], for they do not rely on wide interpola-
tions or underlying atmospheric and topography models. Whereas rain gauge networks and MW sensors pro-
vide data with a clear physical link to precipitation amounts, they suffer from sparse spatial coverage and poor
temporal sampling, respectively. Near-polar orbiting IR sensors provide complementary spatial and temporal
detail, although with no direct physical link to precipitation [Yong et al., 2012]. Merging procedures [see, e.g.,
Huffman et al., 1995] balance accuracy with spatiotemporal coverage and are therefore deemed superior for
use in regional long-term spatiotemporal studies.

The results indicate against the use of reanalysis products (ERA-Interim) over areas where data assimilation is
limited and strong orography challenges coarse-resolution atmospheric models. Their lower performance in
terms of precipitation representation in the East African Great Lakes region relative to CORDEX-CCLM was
confirmed earlier by Thiery et al. [2015, 2016]. The difference between results from station-based CRU and
satellite-based PERSIANN is remarkably low, prompting an upward revision of the quality of CRU with respect
to the initial hypothesis.

Temporal inconsistency in the NDVI time series due to, among others, imperfect sensor intercalibration and
orbital drift effects was also found to impact detection of environmental effects, although of smaller impact
than spatial inconsistency in precipitation products. Particularly at higher elevations (>1200m), detected
responses are negatively affected by residual artifacts in the AVHRR+ VGT series. This may be attributable
to an either lower performance of cloud detection over mountainous areas in the LTDR of SPOT-VGT proces-
sing chains or to orbital drift effects of the VGT2 sensor [Swinnen et al., 2014], causing changing illumination
conditions with possibly stronger effects over rugged terrain. For dense vegetation with near 100% canopy
cover, the NDVI displays saturation effects in its upper range [Asner et al., 2003; Sellers, 1985], which weakens
the relationship to biomass productivity [Gu et al., 2013; Mutanga and Skidmore, 2004]. This adds uncertainty
to the estimation of annual and interannual vegetation responses of tropical forests [Huete et al., 2006] as well
as in dense canopy cropland [Thenkabail et al., 2000]. More advanced spectral indices can reduce the
saturation effect [Huete et al., 2002; Jiang et al., 2008] but are not consistently available for historical analysis
extending 30 years back in time.

6.2. Detection of Interannual Variability

EEMD as interannual extraction tool [Hawinkel et al., 2015] is able to highlight the total interannual component
in NDVI time series, regardless of the nature or variable timing of annual growing season across the study area.
This flexibility improves upon earlier approaches with either the assumption of an invariable annual season per
zone [Camberlin et al., 2007; De Keersmaecker et al., 2015; Plisnier et al., 2000] or the filtering of predefined multi-
annual time scales imposed by harmonic or wavelet methods [e.g., Immerzeel et al., 2005;Martínez and Gilabert,
2009]. Interannual NDVI by EEMD thus provides a new key variable for detecting climate-driven changes in
vegetation greenness over large areas without prior assumptions on its time scales.

Interannual variability of precipitation can be captured by SPI by converting series of discrete rainfall
events into smoothed, normalized anomalies. However, particular care must be taken when defining the
accumulation period. Soil memory effects in the atmosphere-land moisture cycle [Orth and Seneviratne,
2012] may explain only part of the observed delay between precipitation anomalies and greenness response
(Figure 5). Moreover, this effect is limited by the soil's water-holding capacity, which is strongly related to the
density of the vegetation cover [Koster and Suarez, 2001]. An explanation for the fact that precipitation anoma-
lies over a 6 to 12month window impact vegetation greenness can therefore not be purely hydrological.
Holmgren et al. [2013] found that precipitation anomalies in semiarid ecosystems trigger changes in tree cover
by increased tree recruitment and alteration of fire regimes. Such nonlinear pathways surpass the capability of
modeling precipitation-vegetation interactions at a subcontinental scale but can be approximated by consid-
ering linear correlations with delay and accumulation effects over multiple seasons.

It must be noted as well that deriving interannual NDVI and SPI from their initial physical quantities (red and
infrared surface reflectance and precipitation amounts, respectively) inevitably lowers their signal-to-noise
ratio: the EEMD algorithm removes the dominant annual mode and introduces a large amount of temporal
interpolation, whereas the stochastic and measurement noise present in precipitation series propagates in
accumulated SPI calculations. Their relationship may not be linear, particularly along the very humid portion
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of the precipitation gradient (>2000mmyr�1) [Guan et al., 2015]. As a result, detected correlations are
moderate in magnitude and must be interpreted relative to the population of pixels rather than as absolute
values per pixel. If the absolute strength of the interannual vegetation response to precipitation variability for
a particular set of locations would be at interest, a nonlinear measure of coupling such as Spearman's rank
correlation could further improve accuracy.

6.3. Biogeographical Controls on Ecosystem Sensitivity

On the scale of East Africa, the interannual response of vegetation greenness to precipitation variability is
determined most strongly by the structural characteristics and of the vegetation itself, rather than through
climatic-oceanic influence or topographic factors. Ecosystems dominated by herbaceous cover (sparse grass
and shrublands, grassland savannahs, and croplands) display the largest overall response to anomalous preci-
pitation (Figure 9a). In this vegetation zone, even the relatively humid areas receiving 1000mmof precipitation
annually display persistent higher sensitivity (Figure 10, plots 2b, 3b, and 10c). These semiarid and subhumid
areas, characterized by pastoral grazing andmixed cereal cropping systems, are likely to suffer severe produc-
tion losses in case of extended drought episodes [Adhikari et al., 2015; Barron et al., 2003; Schlenker and Lobell,
2010; Thornton et al., 2009] with implicit risks for food security [Brown and Funk, 2008; Lobell et al., 2008]. In the
presence of woody components, the modifying role of mean annual precipitation on the interannual vegeta-
tion response approaches the average regional curve (Figure 8), with a decreasing sensitivity beyond 500mm
of annual precipitation. In the transition zonebetween tropical evergreen forest andwoody savannah, a shifted
peak in sensitivity toward 1200mm/year is observed (Figure 10, plot 6). This has severe implications for the sta-
bility of the rainforests in the Democratic Republic of Congo at their northern edge, where forest degradation
due to reducedprecipitation and subsequent alterationof the canopy structure has been confirmedby remote
sensing observations and climatological data [Asefi-Najafabady and Saatchi, 2013; Zhou et al., 2014].

The influence of coupled oceanic-atmospheric phenomena is mostly reflected in precipitation variability
rather than in interannual vegetation response. Our findings on the timing of IOD forcing on precipitation
(Figure 7) confirm that IOD phases cause anomalous precipitation during the short rains [Behera et al.,
2005; Black et al., 2003], while the effect ENSO episodes are observed also the subsequent long rains
[Indeje et al., 2000]. Both phenomena are known to have strong linkages [Behera et al., 2005; Black et al.,
2003], but their precise interaction is still being investigated [Williams and Hanan, 2011].

Although the influence of IOD and ENSO on the interannual coupling between vegetation and precipitation
variability is of less significance than the role of mean annual precipitation and vegetation type, its spatial and
ecological limits provide new insights in the region's vulnerability to climate variability. The subhumid
ecosystems of the African Great Lakes region (500–900mmyr�1) are most strongly coupled to climatic
fluctuations caused by IOD and ENSO. This subregion encompasses densely populated areas with mixed
cropland and agroforestry systems associated with woody shrublands and of savannah systems with shrub
and woody components. The overall lower sensitivity to precipitation variability compared to the treeless
ecosystems mentioned above is thus not guaranteed in case of persistent multiannual climate anomalies
spelled by IOD or ENSO. Hirota et al. [2011] have identified critical transitions on tree cover when
ecosystem-dependent tipping points are crossed, an aspect which has not been accounted for in present-
day climate models. Near-real time monitoring of IOD and ENSO teleconnections is therefore essential in
developing early warning systems for drought risk in East Africa [Pozzi et al., 2013; Pulwarty and Sivakumar,
2014]. Ivory et al. [2013] found that the impact of interannual climatic variability on vegetation is also
expressed through fluctuations in atmospheric circulation resulting in alterations of the dry season length.
SST-derived indices such as ONI and DMI are thus not the sole indicators of imminent wet and dry episodes.

Despite the strong role of East Africa's topography in shaping its climate systems [Anyah et al., 2006; Indeje
et al., 2001], the direct effects of local topography on ecosystem sensitivity are minor compared to the overall
effects of vegetation type and mean annual precipitation. White et al. [2005] found a larger role of elevation
and slope in temperate regions, where temperature and solar energy influx are more limiting.

7. Conclusions

Regional assessments of vegetation response to climate variability inevitably rely on spatiotemporal data sets
with inherent quality limitations. Fromawide rangeof observation and interpolation strategies, satellite-based
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Table A1. Review of Climate Data Sets Used in Studies on the Spatiotemporal Response of Vegetation to Climate Variabilitya

Data Set Studies

(a) Climate indices (no spatial component)
ENSO index from sea surface temperature (SST)
anomalies [Ropelewski and Halpert, 1986; Trenberth, 1997;
Trenberth and Stepaniak, 2001; Woodruff et al., 1987]

Anyamba and Eastman [1996], Myneni et al. [1996], Plisnier et al. [2000],
Mennis [2001], Nicholson et al. [2001], and White et al. [2005]

Southern Niño Oscillation Index (SOI)
[Ropelewski and Jones, 1987]

Li and Kafatos [2000], Plisnier et al. [2000], and Prasad et al. [2007]

Multivariate ENSO Index (MEI)
[Wolter and Timlin, 1998, 2011]

Brown et al. [2010], Propastin et al. [2010], and van Leeuwen et al. [2013]

Indian Ocean Dipole/Dipole Mode Index
(IOD/DMI) [Saji et al., 1999]

Prasad et al. [2007] and Brown et al. [2010]

Pacific Decadal Oscillation (PDO) [Mantua et al., 1997] Brown et al. [2010]

(b) Station rain gauge observations (with or without grid interpolation)
Climate Research Unit (CRU) database
[Mitchell and Jones, 2005, New et al., 2000]
grid interpolations

Camberlin et al. [2007], Hirota et al. [2011], Holmgren et al. [2001],
De Jong et al. [2013], and Ibrahim et al. [2015]

Global Precipitation Climatology Center (GPCC)
[Becker et al., 2013] grid interpolations

Nezlin et al. [2005]

VASClimO product [Beck et al., 2004] grid interpolations Bai et al. [2008]

Standardized Precipitation and Evapotranspiration Index (SPEI),
based on updated CRU-gridded data product [Harris et al., 2014]

Ivits et al. [2014] and De Keersmaecker et al. [2015]

Regional station observations (with custom spatial interpolation) Richard and Poccard [1998], Kawabata et al. [2001], Omuto et al. [2010],
and Guo et al. [2014]

Regional station observations (without interpolation) Nicholson and Farrar [1994], Plisnier et al. [2000], Nicholson et al. [2001],
Li et al. [2002], Prasad et al. [2007], Wessels et al. [2007],
Zhou et al. [2009], and Brando et al. [2010]

(c) Satellite-based estimates and mixed rain gauge satellite products
Tropical Rainfall Measuring Mission (TRMM) [Kummerow et al., 2000] Herrmann et al. [2005] and Hilker et al. [2014]

Tropical Applications of Meteorology using Satelite data and
ground observations (TAMSAT) [Grimes et al., 1999]

Brandt et al. [2015]

Global Precipitation Climatology Project (GPCP) version 2
monthly precipitation analysis [Adler et al., 2003]

Herrmann et al. [2005]

NOAA Climate Prediction Center (CPC) Rainfall Estimator
version 2.0 (RFE2.0) [Herman et al., 1997; Xie and Arkin, 1996]

Kileshye Onema and Taigbenu [2009]

NOAA Climate Prediction Center (CPC) Merged
Analysis of Precipitation (CMAP) [Xie and Arkin, 1997]

Camberlin et al. [2007]

Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN)
[Hong et al., 2004; Sorooshian et al., 2000]

Clinton et al. [2014]

(d) Model-based data assimilation and reanalysis products
European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-40 Reanalysis

Swinnen [2008]

Global Land Data Assimilation System
(GLDAS) [Rodell et al., 2004]

Myoung et al. [2013]

Natural Resources Canada daily data
[Hutchinson et al., 2009; McKenney et al., 2011]

Li et al. [2013]

(e) Regional climate model downscaling outputs
ECHAM4 [Roeckner et al., 1996]–Regional Model
(REMO) [Jacob et al., 2001]

Schmidt et al. [2014]

ECHAM5 [Roeckner et al., 2003]–COSMO-CLM2

[Davin et al., 2011]
Akkermans et al. [2014]

aFive categories can be distinguished, ranging from pure data-based to more model-based products.
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estimates deliver the most homogeneous quality over areas with scarce direct ground observations.
Nevertheless, we recommend to evaluate any ecological hypothesis in a setup with multiple
alternative data products and to critically test detected outcomes against the potential effect of data-
related bias.

Environmental effect models combine the flexibility to model multiple linear and nonlinear ecological
effects with statistical robustness for large spatially correlated samples, for example, via generalized addi-
tive mixed models (GAMMs). Models must be adapted to the scale of the effects (regional to local) and be
evaluated iteratively to infer meaningful conclusions on biogeographical factors determining the
vegetation response.

In the water-limited ecosystems of East Africa, mean annual precipitation explains the bulk of variability in
vegetation response across ecological zones. More locally, topographic and soil factors play a limited role.
The influence of coupled ocean-atmosphere phenomena affects vegetation response within limits defined
by orography and ecological zones. Overall, ecosystems with dominant herbaceous components are most
sensitive to interannual precipitation variability. However, also woody shrubland and woodland systems
are affected by prolonged climate anomalies that occur with IOD and ENSO phases. The applied assessment
strategy is transferable to other regions, with due attention for data quality evaluation and review of region-
specific links with the global climate. Proper identification of ecological strata and identification of meaning-
ful biogeographical factors is critical in constructing models to describe complex spatiotemporal vegetation
response for the evaluation of climate change sensitivity.

Appendix A: Climate Data Sets Used in Spatiotemporal Studies on
Vegetation Response

Table A3. Local Effects of ENSO, IOD, and Topography on the Interannual Vegetation Response (GIMMS3g) to Precipitation Variability (PERSIANN)a

Ecological
Zones
(Figure 2)

3b. Tropical
Grassland

Savannah: East
African Lowlands

4b. Tropical
Shrubland
Savannah:
Great Lakes

5a. Tropical
Woody

Savannah:
Sudan Lowlands

5b. Tropical
Woody

Savannah:
Great Lakes

6. Tropical
Woody
Shrubland

9. Crop
and Grass/
Shrubland
Mosaic

10b. Cropland:
Ethiopian
Plateau

10c. Cropland:
Great Lakes

ENSO influence �0.07 * �0.07 0.14 * �0.07 0.09 �0.17 *** 0.04 �0.09
IOD influence 0.01 0.16 * 0.24 0.17 * 0.18 * �0.37 * �0.07 0.25 ***
Elevation 0.01 0.12 �0.05 �0.01 �0.02 �0.21 �0.16 * �0.01
Sample size (N) 2217 712 357 991 534 441 1027 849
P (X> |F|) in F test: 0< ***< 0.001**< 0.01*< 0.05< .< 0.1

aRelative effect sizes are tabulated along with their statistical significance.

Table A2. Global Effects of Biogeographical Factors on the Interannual Vegetation Response to Climate Variability are Estimated Using Different Combinations of
Input Dataa

AVHRR + VGT/PERSIANN AVHRR + VGT/CRU GIMMS/PERSIANN GIMMS/CRU

Mean precipitation smooth *** smooth *** smooth *** smooth ***

Interannual NDVI amplitude 0.11 *** 0.03 *** 0.06 *** 0.05 ***

IOD influence �0.03 . �0.01 0.04 . 0.01
ENSO influence �0.01 0.00 0.00 0.01
Elevation �0.17 *** �0.14 *** �0.05 ** �0.04 **
CTI �0.01 * 0.00 0.00 0.00
Distance to ocean �0.03 �0.16 *** 0.01 �0.22 ***
Ecological zone *** *** ** ***
Soil type *
Model-adjusted R2 0.43 0.31 0.36 0.28

P (X> |F|) in F test: 0< ***< 0.001**< 0.01*< 0.05< .< 0.1 N = 11,361

aRelative effect sizes are shown for parametric terms, along with indications of their statistical significance.
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