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Abstract
To estimate the depth errors in a subsurface model obtained from the inversion of seis-

mic data, the stationary-phase approximation in a two-dimensional constant-velocity

model with a dipped reflector is applied to migration with a time-shift extension. This

produces two asymptotic solutions: one is a straight line, and the other is a curve. If

the velocity differs from the true one, a closed-form expression of the depth error fol-

lows from the depth and apparent dip of the reflector as well as the position of the

amplitude peak at a non-zero time shift, where the two solutions meet and the extended

migration image focuses. The results are compared to finite-frequency results from a

finite-difference code. A two-dimensional synthetic example with a salt diapir illus-

trates how depth errors can be estimated in an inhomogeneous model after inverting the

seismic data for the velocity model.

K E Y W O R D S
computing aspects, inverse problem, mathematical formulation, seismics, wave

INTRODUCTION

Seismic data provide a subsurface model or image after solv-
ing an inverse problem (e.g., Schuster, 2017), often through
some form of minimization or optimization at a considerable
computational cost. Given the ill-posed character of the pro-
cedure, uncertainty quantification of the model parameters is
the next step. In the classic approach (Backus & Gilbert, 1970;
Tarantola, 2005), the forward modelling operator that simu-
lates data given a model is linearized around the optimum
of some cost function that describes how well the modelled
data match the observations. The first derivative of the cost
function with respect to the model parameters vanishes at the
optimum, and the second derivative or Hessian approximately
describes the uncertainty. In a typical full-waveform inver-
sion (FWI) problem, the Hessian is too big to be computed,
but estimates on sparser (Rickett, 2003) or coarser (Mulder &
Kuvshinov, 2023) grids may suffice.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for commercial purposes.
© 2024 Shell Global Solutions International B.V. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists & Engineers.

A disadvantage of this approach, in contrast to travel-time
tomography, is that depth errors are not explicitly available
but only implicitly through velocity errors. The purpose of
the current paper is to estimate the local depth error of
a P-wave velocity model, constructed by FWI or migra-
tion velocity analysis or another method. The main tool
is based on an explicit expression, derived here, for the
depth error in a time-shift extended migration image, given
a constant velocity.

Migration refers to a class of methods that map seismic
data to reflectors. In its original form, it requires selecting
a subset of the data, known as primaries, which are waves
that have travelled from the source to the reflector and back
to the receivers without being reflected or scattered multiple
times. The Green functions, which describe wave propaga-
tion in a subsurface model from one point to another, can be
computed with a variety of methods. These range from sim-
ple travel times and amplitudes in a constant velocity model
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to ray tracing or one-way wave-equation approximations in
mildly complex subsurface models and to ‘two-way’ constant-
or variable-density acoustic or elastic propagators, typically
implemented by finite-difference or finite-element methods.
The ‘two-way’ approach can handle multi-pathing. To avoid
multiple reflections with the latter, a reflection-free back-
ground model is often used. The subsurface model is split into
a smooth component for the background and a rough compo-
nent, the difference between the original and smoothed model,
representing the reflectors. This distinction is called scale sep-
aration by Claerbout (1985). The Born approximation of the
wave equation can model the primary reflections (Mulder &
Plessix, 2004; Østmo et al., 2002; Tarantola, 1984). Fitting
these to the observed data provides a subsurface migration
image. This approach was originally called linearized inver-
sion (Beylkin & Burridge, 1990; Plessix & Mulder, 2004;
Tarantola, 1984) to distinguish it from the highly nonlin-
ear FWI problem, but nowadays it is often referred to as
least-squares reversed-time migration (Nemeth et al., 1999).
The subsurface model is split into a background model that
contains the smooth components of the velocity model and
reflectors, which are perturbations of the model. In the Born
approximation, the wave interaction between reflectors is
ignored, resulting in an inverse problem that is linear in the
perturbation parameters.

That leaves the nonlinear problem of finding an accurate
background velocity model. If that model is incorrect, events
do not focus after migration. The redundancy in the data offers
a means to improve the model. Migration velocity analysis
refers to methods that require the reflector positions to be
independent of the redundant coordinates over which the data
are summed. The simplest example is the normal move-out
correction, useful in horizontally layered media. If the reflec-
tor depth increases with source–receiver offset, the velocity
should be decreased, and if its depth decreases, the effec-
tive velocity is too high. If travel times are obtained with
ray tracing, the depth should be constant for different reflec-
tion angles. Any residual move-out suggests a velocity update
along the ray, which can be accounted for by the perturbed ray
traveltime equation (e.g., Mulder, 2006).

In the context of the ‘two-way’ wave equation, reflection
angles are not readily available and other types of redundant
coordinates may be considered. Horizontal shot coordinates
(Kern & Symes, 1994) or offsets (Mulder & ten Kroode, 2002)
are the first that come to mind, but in complex models the
associated waves may illuminate different parts of the sub-
surface, making a comparison for constant reflector positions
with nearby shot positions or offsets complicated. The shot
and receiver position can be replaced by other redundant coor-
dinates, similar to reflection angles in ray tracing. An example
is the use of subsurface offsets (de Bruin et al., 1990; Mulder,
2008; Rickett & Sava, 2002; Shen & Symes, 2008; Symes,
2008), which can be interpreted as action at a distance. An
incoming wave moves instantaneously from the point where

it hits the reflector to another point where it leaves and trav-
els back to the receivers. A time-shift extension (Audebert
and Diet, 2005; Chauris & Benjemaa, 2010; de Vries &
Berkhout, 1984; Faye & Jeannot, 1986; Higginbotham et al.,
2008; MacKay & Abma, 1992; Nemeth, 1996; Sava & Fomel,
2006; Symes, 2008; Yang & Sava, 2011) lets the wave jump
backward or forward in time at the reflector. Note that these
operations can be applied uniformly throughout the subsur-
face to avoid the explicit identification of reflectors. Other
extensions involve shifts in source (Huang et al., 2019; Symes,
2023; Zhang & Gao, 2008) or receiver positions or time shifts
in the data (Luo & Schuster, 1991; van Leeuwen & Mulder,
2008; van Leeuwen & Herrmann, 2013; Warner & Guasch,
2016).

The best velocity provides optimal focusing at zero shift.
The underlying nonlinear optimization problem is often eas-
ier to solve than FWI and suffers less from local minima,
in particular when the data lack sufficiently low frequencies.
Remnant multiples in the preprocessed data, however, can
cause problems (Barnier et al., 2023; Mulder & van Leeuwen,
2008; Mulder, 2014; Weibull & Arntsen, 2013). Nevertheless,
the method may help to provide an initial model for FWI.

As already mentioned, this paper does not target velocity
updating but uses the time-shift extended migration image to
estimate the depth error of a velocity model constructed from
seismic data. First, an explicit expression for the depth error
in a constant velocity model for a reflector with a constant
dip angle is derived using the stationary-phase approxima-
tion. The depth error depends on the apparent reflector dip
and the position and time shift of the focusing point. As
the effective velocity from the source to the reflector and on
towards the receiver does not appear explicitly, the result may
be generalized to the variable-velocity case, following the rea-
soning of Higginbotham et al. (2008), although it remains an
approximation. As a proof of principle, the method is used
to estimate the depth errors of a partially converged veloc-
ity model obtained from two-dimensional synthetic Born data
for a salt diapir model, using an existing implementation of
the focusing method (Mulder, 2008, 2014) with time shifts
instead of subsurface offsets.

STATIONARY-PHASE METHOD FOR A
CONSTANT VELOCITY

The method of stationary phase (van der Corput, 1935; Erdé-
lyi, 1956) provides an approximation to an integral of an
oscillatory function in the high-frequency limit for 𝜔:

∫Ωd𝐱 𝑓 (𝐱)e
i𝜔𝜓(𝐱) ≃

(
(2𝜋)𝑑

𝜔𝑑| det(𝐇0)|
)1∕2

𝑓 (𝐱0)e
i𝜔𝜓(𝐱0)+i

𝜋

4 𝜎(𝐇0).

(1)
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DEPTH ERROR FOR TIME-SHIFT EXTENDED MIGRATION 3

F I G U R E 1 Reflector with dip angle 𝛼0, source at (𝑥𝑠, 0), receiver
at (𝑥𝑟, 0), midpoint (𝑥𝑚, 0), half offset ℎ = (𝑥𝑟 − 𝑥𝑠)∕2, mirrored source
at (𝑥′

𝑠
, 𝑧′

𝑠
), reflection point (𝑥0, 𝑧0). Half the reflection angle is 𝜃0.

The gradient of the phase 𝜓(𝐱) vanishes at 𝐱 = 𝐱0, in the
interior of the domain Ω in 𝑑 dimensions. Its Hessian 𝐇0 =
𝐇(𝜓(𝐱0)) is assumed to have a non-zero determinant det(𝐇0)
with a signature 𝜎(𝐇0), defined as the number of positive
minus the number of negative eigenvalues. In the case of mul-
tiple roots for 𝜓(𝐱) = 0, the contributions at the roots should
be summed.

Travel time for a dipped reflector

Liu and Bleistein (1995) derived the travel time for a dipped
reflector with the stationary-phase method. Their approach
is repeated here to define the notation, also illustrated in
Figure 1.

Consider a reflector with dip angle 𝛼0 in a two-dimensional
homogeneous model with constant velocity 𝑣0. A straight-line
reflector is defined by a depth 𝑧(𝑥) = 𝑧𝑎 + (𝑥 − 𝑥𝑎) tan 𝛼0 for
a reference point (𝑥𝑎, 𝑧𝑎). The source is located at (𝑥𝑠, 𝑧𝑠)
and the receiver at (𝑥𝑟, 𝑧𝑟), with 𝑧𝑠 = 𝑧𝑟 = 0 at the surface.
The half-offset is ℎ = (𝑥𝑟 − 𝑥𝑠)∕2, and the midpoint is 𝑥𝑚 =
(𝑥𝑟 + 𝑥𝑠)∕2. Assume ℎ ≥ 0 and 0 < 𝛼0 < 𝜋∕2. The travel
time to a subsurface point (𝑥, 𝑧) is 𝜏 = 𝜏𝑠 + 𝜏𝑟, with 𝜏𝑠,𝑟 =

𝑣−10

√
𝑧2 + (𝑥 − 𝑥𝑠,𝑟)2. The reflection point on the dipped

reflector in the high-frequency limit can be found by requir-
ing 𝜕𝜏∕𝜕𝑥 = 0, using 𝑧(𝑥) on the reflector. The corresponding
equation is

𝑣0
𝜕𝜏

𝜕𝑥
=

𝑥 − 𝑥𝑚 + ℎ + 𝑧 tan 𝛼0√
𝑧2 + (𝑥 − 𝑥𝑚 + ℎ)2

+
𝑥 − 𝑥𝑚 − ℎ + 𝑧 tan 𝛼0√
𝑧2 + (𝑥 − 𝑥𝑚 − ℎ)2

= 0,

(2)
where 𝑧(𝑥) = 𝑧𝑎 + (𝑥 − 𝑥𝑎) tan 𝛼0. To solve the equation, it
is more convenient to replace 𝑥 by 𝑧, assuming non-zero
dip, 𝛼0 ≠ 0, and positive depth, 𝑧 > 0. If 𝑧𝑚 = 𝑧𝑎 + (𝑥𝑚 −
𝑥𝑎) tan 𝛼0 is the depth of the point on the reflector vertically
below the midpoint 𝑥𝑚, then Equation (2), after multiplication

by cot 𝛼0, can be written as

𝑧 + [(𝑧 − 𝑧𝑚) cot(𝛼0) + ℎ] cot 𝛼0√
𝑧2 + [(𝑧 − 𝑧𝑚) cot(𝛼0) + ℎ]2

+ (3)

𝑧 + [(𝑧 − 𝑧𝑚) cot(𝛼0) − ℎ] cot 𝛼0√
𝑧2 + [(𝑧 − 𝑧𝑚) cot(𝛼0) − ℎ]2

= 0.

The solution for the scatter point (𝑥0, 𝑧0) that has 𝑧0 > 0 is

𝑥0 − 𝑥𝑚 = − sin(𝛼0) cos(𝛼0)(𝑧2𝑚 + ℎ2)∕𝑧𝑚, (4a)

𝑧0 − 𝑧𝑚 = (𝑥0 − 𝑥𝑚) tan 𝛼0 = − sin2(𝛼0)(𝑧2𝑚 + ℎ2)∕𝑧𝑚,
(4b)

if 𝑧𝑚 > ℎ tan 𝛼0, that is, if the reflector does not cut the sur-
face at a point between the source and receiver. The distance
of the scatter point on the reflector to the source becomes

𝑑0,𝑠 =
[
1 − (ℎ∕𝑧𝑚) tan 𝛼0

]
cos(𝛼0)

√
ℎ2 + 𝑧2

𝑚
, (5a)

and to the receiver

𝑑0,𝑟 =
[
1 + (ℎ∕𝑧𝑚) tan 𝛼0

]
cos(𝛼0)

√
ℎ2 + 𝑧2

𝑚
. (5b)

From the expressions for the scattering point, it follows that
half the scattering angle 𝜃0 obeys tan 𝜃0 = ℎ∕𝑧𝑚. Then, under
the condition tan 𝛼0 < cot 𝜃0,

𝑑0,𝑠 = 𝑧0∕ cos(𝜃0 − 𝛼0), 𝑑0,𝑟 = 𝑧0∕ cos(𝜃0 + 𝛼0), (6)

identical to Equation (14) of Liu and Bleistein (1995). Also,

𝑥0 − 𝑥𝑚 = −ℎ
sin 𝛼0 cos 𝛼0
sin 𝜃0 cos 𝜃0

, (7a)

𝑧0 − 𝑧𝑚 = −ℎ
sin2𝛼0

sin 𝜃0 cos 𝜃0
. (7b)

The two-way travel time becomes 𝜏 =
2𝑣−10 cos(𝛼0)

√
ℎ2 + 𝑧2

𝑚
for 𝑧𝑚 > ℎ tan 𝛼0.

Geometrical arguments and Snell’s law produce the same
result. The mirror source in Figure 1 at (𝑥′

𝑠
, 𝑧′

𝑠
) is defined by

a line from (𝑥𝑠, 0) to (𝑥′
𝑠
, 𝑧′

𝑠
) that should be orthogonal to the

reflector and have a point halfway on the reflector:

(𝑥′
𝑠
− 𝑥𝑠)∕(𝑧′𝑠 − 0) = − tan 𝛼0, (8a)

1
2 (𝑧

′
𝑠
+ 0) = 𝑧𝑎 +

[
1
2 (𝑥𝑠 + 𝑥′

𝑠
) − 𝑥𝑎

]
tan 𝛼0. (8b)
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4 MULDER

The solution is

𝑥′
𝑠
= 𝑥𝑎 + (𝑥𝑠 − 𝑥𝑎) cos(2𝛼0) − 𝑧𝑎 sin(2𝛼0), (9a)

𝑧′
𝑠
= 2

[
𝑧𝑎 + (𝑥𝑠 − 𝑥𝑎) tan 𝛼0

]
cos2 𝛼0, (9b)

providing a distance 𝑑𝑠′,𝑟 = 𝑣0𝜏 = 2 cos(𝛼0)
√

ℎ2 + 𝑧2
𝑚

between (𝑥′
𝑠
, 𝑧′

𝑠
) and (𝑥𝑟, 0). The normal to the reflec-

tor at the point of specular reflection intersects the
surface at 𝑥𝑐 = 𝑥0 + 𝑧0 tan 𝛼0 = 𝑥𝑚 − (ℎ2∕𝑧𝑚) tan 𝛼0 =
𝑥𝑚 − ℎ tan(𝛼0) tan(𝜃0).

Time-shift imaging

The extended migration image in a model with velocity 𝑣 of
data obtained with velocity 𝑣0 and an additional time shift Δ𝑡
is given by

𝑅(𝑥, 𝑧; Δ𝑡) = ∫
ℎmax

ℎmin

dℎ ∫
∞

−∞
d𝑥𝑚 𝐴(𝑥𝑠, 𝑧𝑠; 𝑥, 𝑧)𝐴(𝑥𝑟, 𝑧𝑟; 𝑥, 𝑧)ei𝜔𝜓 ,

(10)
where the phase 𝜓 = 𝜏(ℎ, 𝑥𝑚; 𝑣0) − 𝜏𝑠(𝑥, 𝑧; 𝑣) − 𝜏𝑟(𝑥, 𝑧; 𝑣) −
2Δ𝑡. The amplitudes 𝐴(𝑥𝑠,𝑟, 𝑧𝑠,𝑟; 𝑥, 𝑧) from source or receiver
to depth point (𝑥, 𝑧) are not important in what follows. For
now, an infinite offset range is assumed.

Stationarity involves the equations 𝜓 = 0, 𝜕𝜓∕𝜕ℎ = 0 and
𝜕𝜓∕𝜕𝑥𝑚 = 0 for Δ𝑡, ℎ and 𝑥𝑚. The first equation directly
provides the stationary time shift Δ𝑡. The remaining two are

2𝛽ℎ cos 𝛼0√
ℎ2 + 𝑧2

𝑚

=
ℎ − 𝑥1√

(ℎ − 𝑥1)2 + 𝑧2
+

ℎ + 𝑥1√
(ℎ + 𝑥1)2 + 𝑧2

, (11a)

2𝛽𝑧𝑚 sin 𝛼0√
ℎ2 + 𝑧2

𝑚

=
ℎ − 𝑥1√

(ℎ − 𝑥1)2 + 𝑧2
−

ℎ + 𝑥1√
(ℎ + 𝑥1)2 + 𝑧2

,

(11b)

where 𝛽 = 𝑣∕𝑣0 and 𝑥1 = 𝑥 − 𝑥𝑚, with 𝑧𝑚 depending on 𝑥𝑚
or 𝑥1.

There are two solutions.
The first is given by ℎ = 0 and 𝑥1 = 𝑥 − 𝑥𝑚 = −𝑧 tan 𝛼.

Here, 𝛼 is defined by sin 𝛼 = 𝛽 sin 𝛼0 and equals the appar-
ent dip angle of the reconstructed reflector after migration,
as long as | sin 𝛼0| < 1∕𝛽 for 𝛽 = 𝑣∕𝑣0. The time shift Δ𝑡 at
the reflection point (𝑥, 𝑧) for the first solution follows from
𝜓 = 0:

Δ𝑡(𝑥, 𝑧) = cos 𝛼
𝑣

(𝑧mig − 𝑧), (12)

where

𝑧mig = 𝑧𝑏 + (𝑥 − 𝑥𝑎) tan 𝛼, 𝑧𝑏 = 𝑧𝑎
tan 𝛼
tan 𝛼0

, (13)

is the depth of the reflector after migration at zero time shift.
This shows that the apparent dip angle is indeed 𝛼 and that the
reference point has moved from 𝑧𝑎 to 𝑧𝑏. In the correct model,
𝛽 = 𝑣∕𝑣0 = 1, 𝛼 = 𝛼0, and the stationary time shift Δ𝑡 = 0.

Before going to the second solution, the Hessian is exam-
ined.

The amplitude along the straight line Δ𝑡(𝑧) at fixed 𝑥, and
ℎ = 0 is inversely proportional to the square root of the abso-
lute value of the determinant of the Hessian withrespect to ℎ

and 𝑥𝑚 at the stationary point. In this case,

𝐇0 = −2cos3𝛼
vz

diag
{
1 − 𝑧 tan 𝛼

𝑧c tan 𝛼0cos2𝛼
, 1
}

(14)

with

𝑧c = 𝑧𝑎 + (𝑥 − 𝑥𝑎) tan 𝛼0 + 𝑧 tan 𝛼 tan 𝛼0. (15)

Note that 𝑧c > 0, because the true reflector depth 𝑧𝑎 + (𝑥 −
𝑥𝑎) tan 𝛼0 is assumed to be positive, only positive depths 𝑧

are considered, 𝛼 and 𝛼0 have the same sign because sin 𝛼 =
𝛽 sin 𝛼0 with 𝛽 = 𝑣∕𝑣0 > 0 and it assumed that 0 < 𝛼0 < 𝜋∕2,
0 < 𝛼 < 𝜋∕2 and 0 < 𝛽 sin 𝛼0 < 1.

The second diagonal value of the Hessian is negative. For
a given 𝑥, the first diagonal value changes sign at the point
defined by 𝑧peak and Δ𝑡peak , where the determinant of the
Hessian becomes zero:

𝑧peak =
𝑧mig

tan2𝛼[1∕(tan 𝛼0 cos 𝛼)2 − 1]
, (16a)

and

Δ𝑡peak = cos 𝛼
𝑣

(𝑧mig − 𝑧peak). (16b)

At this point, the amplitude in Equation (1) appears to become
infinite. To obtain a finite result, higher-order non-zero terms
of the expansion into ℎ and 𝑥𝑚 should be included in the
stationary phase method, but that is beyond the scope of
this paper.

In the correct model with 𝛽 = 1, 𝑧peak = 𝑧mig = 𝑧0 and
Δ𝑡peak = 0.

The signature 𝜎(𝐇0) = −2 if 1 −
(𝑧 tan 𝛼)∕(𝑧c tan 𝛼0 cos2𝛼) > 0, which can be simplified
to (𝑧 − 𝑧peak)(cos2 𝛼 − cot2 𝛼0) > 0. If the expression is
negative, 𝜎(𝐻0) = 0. This implies that the amplitudes for
𝑧 < 𝑧peak and 𝑧 > 𝑧peak have a 90◦ phase difference.

The second solution of the stationary-phase equations with
ℎ ≠ 0 can be obtained by solving the stationary-phase equa-
tions (11) in terms of 𝑧(𝑥, 𝜃0), 𝑥𝑚(𝑥, 𝜃0) instead of 𝑥𝑚(𝑥, 𝑧)
and ℎ(𝑥, 𝑧). Define

𝜉± = (𝑥 − 𝑥𝑚) ± ℎ = (𝑥 − 𝑥𝑚) ± 𝑧𝑚 tan 𝜃0. (17)

The system (11) becomes
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DEPTH ERROR FOR TIME-SHIFT EXTENDED MIGRATION 5

2𝛽 cos(𝛼0) sin(𝜃0) =
𝜉+√
𝜉2+ + 𝑧2

−
𝜉−√
𝜉2− + 𝑧2

, (18a)

2𝛽 sin(𝛼0) cos(𝜃0) = −
𝜉+√
𝜉2+ + 𝑧2

−
𝜉−√
𝜉2− + 𝑧2

. (18b)

After taking the sum and difference of these equations, the
system simplifies to

𝜉+ = 𝛽 sin(𝜃0 − 𝛼0)
√

𝜉2+ + 𝑧2, (19a)

𝜉− = −𝛽 sin(𝜃0 + 𝛼0)
√

𝜉2− + 𝑧2, (19b)

which can be reduced to

𝑧 = 𝜉+∕𝑞− = −𝜉−∕𝑞+, 𝑞± = tan 𝜃±, (20)

with

sin 𝜃± = 𝛽 sin(𝜃0 ± 𝛼0). (21)

Assuming a dip angle 𝛼0 ≥ 0 and scattering angle 𝜃0 ≥ 0, as
in Figure 1, the last expression implies

0 ≤ 𝜃0 ≤ arcsin(min(1, 1∕𝛽) ) − 𝛼0. (22)

Solving 𝑥𝑚 and 𝑧 from 𝜉+ + 𝜉− = 2𝑥𝑚 and 𝜉+ − 𝜉− = 2ℎ with
𝑧𝑚 = 𝑥𝑎 + (𝑥𝑚 − 𝑥𝑎) tan 𝛼0 and ℎ = 𝑧𝑚 tan 𝜃0 produces

𝑥 − 𝑥𝑚 =
[𝑧𝑎 + (𝑥 − 𝑥𝑎) tan 𝛼0](𝑞+ − 𝑞−) cos(𝛼0) sin(𝜃0)

𝑞+ cos(𝜃0 − 𝛼0) + 𝑞− cos(𝜃0 + 𝛼0)
,

(23)
from which 𝑧𝑚, ℎ and

𝑧 = 2ℎ
𝑞+ + 𝑞−

(24)

are found. Finally, the condition 𝜓 = 0 provides

Δ𝑡 =
𝑧𝑚

𝑣

[
𝛽
cos(𝛼0)
cos(𝜃0)

− tan(𝜃0)
cos(𝜃+) + cos(𝜃−)

sin(𝜃+ + 𝜃−)

]
. (25)

In the limit for 𝜃0 → 0, 𝑧 = 𝑧peak and Δ𝑡 = Δ𝑡peak , showing
that the starting point of the second solution coincides with
the point where the Hessian vanishes.

For zero dip angle 𝛼0 = 0, the reflector depth is 𝑧mig =
𝑧𝑏 = 𝛽𝑧𝑎 and the first solution has ℎ = 0 and Δ𝑡 = 𝑣−1(𝛽𝑧𝑎 −
𝑧). The second has 𝑥𝑚 = 𝑥, ℎ = [(𝑧2

𝑎
− 𝛽2𝑧2)∕(𝛽2 − 1)]1∕2

and Δ𝑡 = 𝑣−1(𝛽2 − 1)[(𝑧2
𝑎
− 𝑧2)∕(𝛽2 − 1)]1∕2 (Sava & Fomel,

2006). In addition, 𝑧peak = 𝑧𝑎∕𝛽 and 𝑧mig = 𝑧𝑎𝛽, implying
𝑧𝑎 = (𝑧mig𝑧peak)1∕2 (Faye & Jeannot, 1986).

Depth error

The apparent dip angle at ℎ = 0 and Δ𝑡 = 0 can be esti-
mated from 𝜕𝑧∕𝜕Δ𝑡 = −𝑣∕ cos 𝛼 or 𝜕𝑧∕𝜕𝑥 = tan 𝛼, where the
second expression avoids a sign ambiguity. With that and
the migration depth 𝑧mig at zero time shift, 𝑧peak can be
located along the line Δ𝑡 = 𝑣−1(𝑧mig − 𝑧) cos 𝛼. The depth
error follows from

𝑧mig − 𝑧0 = 𝑧mig

(
1 −

tan 𝛼0
tan 𝛼

)
, (26)

where

tan 𝛼0
tan 𝛼

=
[
1 +

(
𝑧mig

𝑧peak
− 1

)
cos2 𝛼

]−1∕2
. (27)

For small dip, 𝑧mig − 𝑧0 ≃ 𝑧mig(1 −
√

𝑧peak∕𝑧mig) (Faye &

Jeannot, 1986).
The time-shifted migration image in an arbitrary velocity

model is defined as

𝑅(𝑥, 𝑧; Δ𝑡) =
∑
𝑠

∑
𝑟(𝑠)

∫Ωd𝑡 𝑝𝑠(𝐱, 𝑡 + Δ𝑡∕2)𝑞𝑟(𝑠)(𝐱, 𝑡 − Δ𝑡∕2),

(28)
with 𝑝𝑠(𝐱, 𝑡) the forward wavefield as function of position
𝐱 ∈ Ω and time 𝑡 for a source enumerated by 𝑠 and 𝑞𝑟(𝑠)(𝐱, 𝑡)
the reverse-time wavefield for the receivers labelled by 𝑟(𝑠)
for source 𝑠. Note the definition has a sign for the time
shift Δ𝑡 that is the opposite of what is chosen in several
other publications.

To estimate 𝑧peak at a given 𝑥 and 𝑧 = 𝑧mig, determine the
apparent dip angle 𝛼 from 𝑅(𝑥, 𝑧; Δ𝑡 = 0), rotate the extended
image by arctan(−𝑣(𝑥, 𝑧)∕ cos 𝛼), track along the nearly hor-
izontal event to find the peak amplitude and its position and
then rotate back to find 𝑧peak .

If the velocity is not constant, the straight-line solu-
tion becomes curved (Duveneck, 2021). The curve can
be constructed by solving the ordinary differential equa-
tion d𝜁∕dΔ𝑡 = 𝑣(𝜁 )∕ cos 𝛼(𝜁 ) for 𝜁 (𝑥, 𝑧; Δ𝑡) at given 𝑥 and 𝑧,
with initial condition 𝜁 (𝑥, 𝑧; Δ𝑡 = 0) = 𝑧. The integration is
performed separately in the positive and negative direction of
Δ𝑡. Interpolation in 𝑧 then provides 𝑅(𝑥, 𝜁 ; Δ𝑡), and the peak
values Δ𝑡peak(𝑥, 𝜁 ) can be determined along horizontal lines,
at constant 𝜁 . The result is assigned to Δ𝑡peak(𝑥, 𝑧), leading to
𝑧peak(𝑥, 𝑧) = 𝜁 (𝑥, 𝑧; Δ𝑡peak).

COMPARISON TO FINITE-FREQUENCY
RESULTS

To illustrate the result, Born scattering data were generated
with a two-dimensional frequency-domain finite-difference
code (Mulder & Plessix, 2002) for a velocity model with
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6 MULDER

(a) (b)

(c) (d)

F I G U R E 2 (a) Extended image at fixed 𝑥 = 2000 m and a function of time shift Δ𝑡 and depth 𝑧 for the true velocity. The drawn line represents
the first solution of the stationary-phase equations, and the circle denotes the expected position of the maximum amplitude. The dashed lines
correspond to the maximum offset. (b) As (a) but for too low a velocity of 1350 m/s. The drawn yellow curves represent the second solution, with the
green part corresponding to offsets larger than the maximum offset in the data. The true depth of the reflector is marked by a small horizontal line
segment at zero time shift. (c) As (a) but for too high a velocity of 1650 m/s. (d) Detail of (c).

𝑣0 = 1500 m/s and two reflectors. The first had a depth of
400 m at 𝑥 = 0 and 700 m at 𝑥 = 3000 m, the second a depth
of 1200 m at 𝑥 = 0 and 1000 m at 𝑥 = 3000 m, resulting in
dip angles of 5.71 and −3.81 degrees. Shots at zero depth
ranged from 𝑥𝑠 = 0 to 3000 m with a 50-m spacing and a 15-
Hz Ricker wavelet. Receivers had offsets ℎ = 𝑥𝑟 − 𝑥𝑠 from 0
to 2000 m at a 25-m interval in a marine-type acquisition.

Figure 2a shows the extended image in the correct veloc-
ity model, obtained with the same finite-difference code.
Figure 2b corresponds to a velocity that is 10% smaller and
Figure 2c,d for 10% larger.

The straight-line solutions are drawn as black lines. The
amplitude along these lines changes its phase by 90◦ relative

to the peak location, marked by an open circle, as predicted
by the stationary-phase analysis. This is only visible at some
distance because of interference with the second solution.

With a finite acquisition, the endpoint in the stationary-
phase integral has to be included. Given a maximum half-
offset ℎmax and a time shift Δ𝑡 following from 𝜓 = 0, this
leaves the equation 𝜕𝜓∕𝜕𝑥𝑚 = 0. Solving for 𝑥𝑚 leads to Δ𝑡
as a function of 𝑧 at fixed 𝑥, shown with a dashed black line
in Figure 2. In the absence of a proper acquisition taper, the
second solution at zero time shift shows up as an additional
apparent reflector interface in the migration image.

The second solution is drawn in yellow for offsets ℎ ≤ ℎmax
and in green for ℎ > ℎmax. It starts at the peak location and
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DEPTH ERROR FOR TIME-SHIFT EXTENDED MIGRATION 7
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F I G U R E 3 Velocity model (a) and reflectivity (b) for the true model and the estimated error (c), clipped at ±200 m, for the recovered model
(d), the related depth-weighted migration image (e), and a crude estimate of the depth error obtained by comparing the recovered and exact velocity
model (f).

curves towards more negative Δ𝑡 and larger depths 𝑧 if the
velocity is too small, and in the opposite direction of the
velocity is too large.

In the finite-frequency case and with an incorrect veloc-
ity, the peak value along the straight-line solution does not
occur at the predicted location. This is mainly caused by
the interference with the curved second solution that starts
at the predicted peak location and, to a lesser extent, with
the curve for the maximum offset. The net effect will be an
over-estimate of the depth error.

AN APPLICATION

To examine the potential use of the derived depth-error esti-
mate, the two-dimensional velocity model of Figure 3a, taken
from Mulder (2001), was considered. Born scattering data
for the reflectivity shown in Figure 3b were generated for a
land-type acquisition with shots between −950 and 6950 m
at a 50-m interval with a 15-Hz Ricker wavelet and receivers
between −962.5 and 6962.5 m at a 25-m interval.

Figure 3d displays a reconstructed velocity model rep-
resented by cubic B-splines and obtained by optimizing a
focusing functional based on time-shift extended imaging,
similar to Mulder (2008, 2014) but with subsurface shifts
replaced by time shifts. Note that this method does not explic-

itly include depth errors but only tries to move energy in
the image to zero shift. The shown model corresponds to
an intermediate result, starting from the best linear-in-depth
velocity with a given surface velocity. Figure 3e shows the cor-
responding depth-weighted migration image. The data were
differentiated in time to change the zero crossing of the reflec-
tivity in Figure 3b at the position of a reflector interface
into a peak in Figure 3e. Figure 3c displays the depth errors,
expected to be over-estimated and affected by the cubic-
spline representation of the background model. The impact
of the salt diapir is obvious, as is the increase in error with
depth. For comparison, Figure 3f shows a crude estimate of
the depth error obtained from ∫ 𝑧

0 d𝑧
′[1 − 𝑣0(𝑥, 𝑧′)∕𝑣(𝑥, 𝑧′)],

which ignores strong lateral variations. This shows that,
although the focusing of energy in an extended image can be
fairly effective for the construction of an initial velocity model
from primaries-only data, this appears to be less so for the
more delicate depth-error estimation outlined here, at least for
its present implementation, although the overall trend is more
or less correct.

CONCLUSIONS

The stationary-phase method applied to migration with a
time-shift extension in a 2-D constant-velocity model with a
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8 MULDER

dipped reflector produces two solutions, one a straight line,
and the other is a curve, similar to the case of a horizon-
tal reflector (Sava & Fomel, 2006). The depth error follows
from the apparent reflector dip and depth as well as the depth
of the amplitude peak along the first solution in the time-
shift extended image, where the second solution meets. The
method was applied to estimate the depth errors in a 2-D
synthetic example with a salt diapir.
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