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Abstract

Type 2 Diabetes is a very prevalent disease in
current times and leads to significant adverse ef-
fects. Recently, there has been a growing interest
in the association of the human gut microbiome
with respect to chronic diseases like Type 2 Dia-
betes with the aim to identify biomarkers. In this
study, we researched the effect of different machine
learning and feature selection techniques to iden-
tify biomarkers for Type 2 Diabetes that can later
be used for diagnosis and prediction. The main
methods that we explored were Random Forests,
Linear Regression, Support Vector Machines and
XGBoost along with mRMR and CMIM as fea-
ture selection techniques. These methods were ap-
plied to data taken from Europe and China. We
found that mRMR improved the performance of
the Random Forest classifier compared to CMIM.
Apart from finding biomarkers specific to one lo-
cation, we found that Clostridiales, Clostridium,
Roseburia and Lactobacillus could be of interest
in the prediction of Type 2 Diabetes irrespective of
location. This study verified biomarkers found in
previous literature and evaluated several techniques
for the prediction of the disease across different re-
gions.

1 Introduction
Recent research has shown that the gut microbiota has an
important role in the development of diseases and is linked
to health (Wang et al., 2017). The human gut microbiota
consists of a complex range of microorganisms like fungi,
viruses, archea and bacteria. These microorganisms are
associated with nutrient metabolism, drug metabolism, and
antimicrobial protection (Jandhyala et al., 2015). Studies
have shown that the gut microbiota composition is affected
by factors like diet and host genetics (Benson et al., 2010).
The dysbiosis of the gut microbiome has negative effects on
human health (Wang et al., 2017). This imbalance in the
gut microbial composition has been associated with chronic
diseases like inflammatory bowel disease (IBD), obesity and
neurological disorders (Halfvarson et al., 2017; Wang et al.,
2017). We will take a closer look at the association of gut
microbiota with Type 2 Diabetes.

Type 2 Diabetes (T2D) is a chronic disease that occurs
when the glucose level in the blood is too high (Griffin et al.,
2000). This is caused due to the cells in the body becoming
resistant to insulin and being unable to effectively utilise it
or due to the pancreas being unable to produce sufficient
insulin. Major contributing factors that lead to the onset
of T2D include diet, lifestyle, genetics and socioeconomic
factors (Kolb & Martin, 2017). As of 2021, there were
around 537 million adults (10% of adults) that were living
with diabetes (Magliano et al., 2021). Around 90% of these
cases were T2D. 6.7 million people died due to diabetes that
year. Early detection is key in the treatment and may prevent

harmful outcomes like cardiovascular diseases, forms of
neuropathy and other co-morbidities (Griffin et al., 2000;
Safieddine et al., 2021).

Several studies have been conducted on the association
of the gut microbiome with T2D to identify biomarkers
(Bakir-Gungor et al., 2021; Ge et al., 2022). A study by
(N. Larsen et al., 2010) found that there was a significant
reduction of phylum Firmicutes and Clostridia class. Both
Karlsson et al. (2013) and Qin et al. (2012) observed an
increase in Clostridium clostridioforme and a decrease in
Roseburia in patients with T2D. Several studies also noted
an increase in species of Lactobacillus in T2D samples
(Karlsson et al., 2013; N. Larsen et al., 2010; Lê et al., 2013).

The advancement in sequencing technologies has led to
an increase in the availability of microbial data for countless
phenotypes. New technologies like shotgun sequencing
have increased the accuracy of the classification of microbes
(Marcos-Zambrano et al., 2021). Recently many studies
have used machine learning to analyse this microbial data
in terms of taxonomical and functional diversity to observe
the relationship between these communities and human
health (Bakir-Gungor et al., 2021). Techniques like Linear
Regression, Support Vector Machines and Random Forests
to name a few, are widely popular in this field. In particular,
Random Forests have been used by both (Qin et al., 2012)
and (Karlsson et al., 2013) to predict T2D using genus level
and strain level gut microbial data respectively. Studies
have also focused on the effect of different feature selection
techniques for the identification of biomarkers for T2D.
Some techniques include maximum relevance minimum
redundancy (mRMR), conditional mutual information max-
imisation (CMIM), Lasso (Marcos-Zambrano et al., 2021).

In this project we aim to use different machine learning
techniques on metagenomic shot- gun sequenced data of
samples affected with Type 2 Diabetes and control samples
to effectively identify biomarkers that can be used to predict
Type 2 Diabetes. In order to effectively fulfil this goal we
look into the following aspects:- (i) How does the gut micro-
biome data in samples with T2D differ from control samples,
(ii) Can the results previously found in the literature on the
data be reproduced using a Random Forest as described (iii)
Can we identify other techniques that improve or produce
better results than the Random Forest model (iv) What are the
most important features that can be identified as biomarkers
and do they correspond to the existing biomarkers found (v)
Can we identify biomarkers irrespective of the geographical
location of the samples. We hope that the results of this
study will help improve the early detection of T2D as well
as improve understanding of the association of the gut
microbiome with the disease.

2 Methods
2.1 Language and Framework
To answer our research question we have conducted several
experiments on the data as described in the following sec-



tions. The code that we have used in this study has been
written in Python version 3.8. The main libraries that were
required are: scikit-learn (Pedregosa et al., 2011), pandas,
numpy, scipy and xgboost (Chen & Guestrin, 2016). For vi-
sualisation, we used matplotlib, seaborn and alphashape. For
feature selection, we used the library scikit-feature (J. Li et
al., 2018). Additionally, an overview of our workflow has
been depicted in Figure 1.

Figure 1: Workflow diagram describing the steps of this study

2.2 Data
The data used in this study was gathered from the curated-
MetagenomicsProject (Pasolli et al., 2017). We decided to
use 2 data sets, with samples from 2 different locations. Both
the data sets that have been used were obtained by metage-
nomic shotgun sequencing on faecal DNA samples. The data
corresponding to the study conducted by Qin et al. (2012)
contains 363 samples and 651 features taken from Chinese
participants. 170 samples were taken from patients with T2D
and the remaining 193 were control samples. Another data
set that has been used was published by Karlsson et al. (2013)
and contains 145 samples and 499 features from 70-year-old
European women. 53 of these samples were affected with
T2D, 43 were healthy and 49 were taken from people with
Impaired Glucose Tolerance (IGT). IGT is often a precur-
sor to T2D. However, the IGT samples were not used in this
project as we did not know whether these patients later de-
veloped T2D or were healthy. We also combined the data
sets for further analysis by intersecting the features of the Eu-
ropean and Chinese sets. This resulted in the creation of a
combined data set with 459 samples and 425 features. In this
project, we have analysed the relative species abundance of
these samples along with their corresponding metadata.

2.3 Pre-processing and Analysis
To get a better understanding of the data, we conducted
an initial exploratory analysis. Initially, we analysed the
distribution of the class labels with the metadata for each
data set. After that, we took a closer look at the features. We
calculated the frequency of the value 0 across all samples
for all features in the data sets. Features for which the
frequency of 0 was more than 95% were removed. This
led to the removal of 391 features from the Chinese data
set leaving 261 features. From the European data set 237
features were removed resulting in 263 features being left.
For the combined data 258 features were left remaining
after filtering out 167. We then scaled the data using z-score
scaling through the StandardScalar class in Python. We
further inspected the mean and variance of the features based
on the target class.

In order to visualise the high-dimensional data in 2 di-
mensions, we used PCA and t-SNE. PCA is a linear
dimensionality reduction technique that tries to preserve
the global structure of the data, while t-SNE is a non-linear
technique that tries to preserve the local structure of the data.
We plotted the first 2 dimensions for each method for all the
data sets and also graphed the cumulative explained variance
for the principal components obtained during PCA.

2.4 Feature Selection
We compared 2 feature selection methods:- minimal redun-
dancy maximum relevance (mRMR) (Peng et al., 2005),
Conditional Mutual Information Maximization (CMIM)
(Fleuret, 2004). Proposed by Peng et al, mRMR involves the
maximum redundancy criterion to select features that have
a high correlation with the target class and the minimum
redundancy criterion to select features with low correlation
between each other (Radovic et al., 2017). CMIM maximises
the information of the features selected with the target by
iteratively picking features conditional to the features already
picked (Fleuret, 2004).

To identify the best method, we performed bootstrapped
feature selection 10 times for different train test splits. In
each run, we performed 5-fold cross-validation. The 100
features were selected by each feature selection method for
the training set in each fold. With this selected set of features,
our baseline model, the random forest classifier, was trained.
We then tested the set on the validation set in each fold and
calculated the cross-validation scores for accuracy and F1
score. When we were selecting the top 100 features, we
also obtained the corresponding mutual information score
between the selected features and the target variable. The
mutual information score is the amount of information shared
between 2 variables (Brown et al., 2012). We then calculated
the average mutual information for all the features selected
in the 5 folds. Using the 100 features that had the highest
average mutual information score, we tested the test set.
This process was repeated 10 times and the average scores
for the test set across all runs were calculated. Finally, to
identify the best-performing feature selection algorithm, we
compared these scores for both CMIM and mRMR. We used



Wilcoxon signed-rank test to determine the significance of
the difference between the scores of both feature selection
methods obtained on the test sets.

2.5 Machine Learning Models
In this study, we compared several machine learning tech-
niques in order to evaluate which method can be best used to
predict T2D. The baseline method we used was the Random
Forest (RF) method. Several existing studies that have used
taxanomical data of the gut microbiome found that RFs
outperformed other methods in the prediction of phenotypes
(Bakir-Gungor et al., 2021; Karlsson et al., 2013). The
other methods that we compared were Logistc Regression
(LogReg), Support Vector Machines (SVM), and XGBoost
(XGB). This comparison allowed us to ensure that the
predictions we made and the biomarkers we identified were
as accurate as possible.

We used 5-fold cross-validation to obtain a generalised
score for the performance of our models on each data set.
In each fold, we first performed feature selection using
mRMR and selected the top 100 features. After that, we
trained and tested each model and recorded the values for the
evaluation metrics for that fold. The averages of the scores
across all folds were calculated. We also graphed the ROC
curve and the Precision-Recall curve. Following this, we
performed hyper-parameter tuning on our best-performing
model to optimise our results based on the evaluation metrics
as described in Section 2.6. We then checked the statistical
significance of our results to determine if there was a
classifier that was performing better than the rest. We then
identified the top 20 most important features in each model
as potential biomarkers and compared them to find any
resemblance between the sets. Furthermore, we compared
the features across the 3 data sets to assess their similarities.
We then compared our results to that of existing literature
and researched more into the biological significance of the
potential biomarkers.

2.6 Evaluation Criteria
The following metrics were used to compare and evaluate the
models: Accuracy, Area under the ROC curve, F1-Score and
Area under the Precision-Recall graph.
Accuracy is the fraction of predictions the model correctly
classified. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

AUC is the Area under the Receiver Operating Characteristic
(ROC) curve. The ROC curve plots the True Positive Rate
against the False Positive Rate at all decision thresholds. The
AUC measures the classifiers ability to differentiate between
classes. A higher AUC means that the model is better at sep-
arating positive and negative classes.
Precision is a metric used to measure what fraction of the
positive identification were accurate.

Precision =
TP

TP + FP

Recall, also known as the True Positive Rate, is the fraction
of the actual positive class samples were correctly identified.

Recall =
TP

TP + FN

We use the area under the Precision-Recall curve (AUPRC)
as an evaluation metric. It is desirable for the model to have
a high AURPRC as it is desirable to have both high Precision
and Recall.
The F1 Score is the harmonic mean of the precision and re-
call and is used for evaluation particularly when the data is
unbalanced. Ideally, a higher F1 Score is desirable.

F1 Score =
2 ∗ Precision ∗Recall

Precision+Recall

2.7 Statistical Tests
Throughout this study, we have used statistical tests to draw
conclusions from our observations and to confirm or reject
our hypothesis.

We used the Shapiro-Wilk test to determine if our data
followed a Gaussian distribution. The Shapiro-Wilk test is
a method of hypothesis testing to see if the data follows a
normal distribution. The null hypothesis is that the data set
has been generated from a normal distribution. By using this
test on all of our data sets, we got p-vlaues lower than 0.05.
Hence, we could reject the null hypothesis and our data was
likely not normal.

Since our data did not follow a Gaussian distribution,
we used Wilcoxon signed-rank test to evaluate if the differ-
ence between our feature selection methods were significant.
The Wilcoxon signed-rank test is the non-parametric equiv-
alent of the paired t-test. The null hypothesis in this test is
that there is no difference between the methods. During the
feature selection process, we used this to test if the evaluation
metrics generated by the RF model when using mRMR
and CMIM, as described in Section 2.4, were significantly
different and thereby conclude if one was performing better
than the other.

In model selection, we used the Friedman test to com-
pare the different classifiers that we used across all 3 data
sets (Demšar, 2006). The parametric equivalent of this test
is f the repeated-measures ANOVA. This test is based on
ranking classifiers based on their performance on each data
set independently. This test was conducted separately for the
accuracy, F1 score and the AUROC.

3 Results and Discussion
3.1 PCA and t-SNE: Samples cluster based on

location
We conducted PCA and t-SNE to visualise the data in 2 di-
mensions and observe any relationship between the samples.
The plots generated by PCA and t-SNE did not show any sig-
nificant formation of clusters based on the target class for
any data set as can be seen in Figure 2. However, for the



combined data set we did observe that the European and the
Chinese samples did cluster separately for both methods, in-
dicating that there is a distinct difference in gut microbial
composition based on the geographical location of the pa-
tients. This observation corresponds to that of Karlsson et
al. (2013), where they also observed the Chinese and Euro-
pean data forming distinct clusters. Studies have shown that
a cause for this is due to the difference in dietary habits for
different geographical locations (Senghor et al., 2018). It is
important to note here that the composition of the data sets
differs on other factors like age range and gender. The data
from China was taken from adult females and males (Qin et
al., 2012). The data from Europe was taken only from 70-
year-old females (Karlsson et al., 2013).

3.2 mRMR performs best for feature selection

We compared the effect of using mRMR and CMIM as fea-
ture selection methods. We evaluated the performance of the
RF model obtained when using these methods to determine
which one is best suitable for our data. As described in Sec-
tion 2.4, we calculated the average score on the test set over
10 runs. Table 1 depicts these observations. Based on these

Table 1: Average value and standard deviation for the metrics cal-
culated on the RF model for all 10 iterations using different feature
selection techniques. These metrics were calculated on the test set
of each run before being aggregated

Metrics European Chinese Combined
mRMR CMIM mRMR CMIM mRMR CMIM

Accuracy 0.68 ± 0.06 0.54 ± 0.10 0.67 ± 0.04 0.58 ± 0.04 0.64 ± 0.04 0.58±0.06
F1 Score 0.74 ± 0.06 0.59 ± 0.10 0.62 ± 0.05 0.53 ± 0.03 0.62 ± 0.04 0.56± 0.04
AUROC 0.68 ± 0.05 0.54 ± 0.10 0.66 ±0.04 0.58± 0.04 0.64 ± 0.04 0.58± 0.03
AUPR 0.69 ± 0.10 0.61 ± 0.12 0.58 ± 0.05 0.51 ± 0.02 0.58 ± 0.06 0.54 ± 0.04

metrics we can see that the mean scores are slightly higher
for mRMR as compared to CMIM. However, the intervals of
the standard deviations do overlap. Therefore, to be certain
that the results were significantly different, we conducted the
Wilcoxon signed-rank test. Table 2 shows the p-values for
different metrics obtained using this test. As we can see, all

Table 2: The p-values obtained by performing Wilcoxon signed-rank
test to compare the performance of RF with mRMR as a feature
selection technique and RF with CMIM have been tabulated. This
test has been conducted independently for all 3 data sets.

Metrics European Chinese Combined
Accuracy 0.0098 0.0059 0.0125
F1 Score 0.0059 0.0195 0.0059
AUC 0.0273 0.0098 0.0108
AUPRC 0.0488 0.0098 0.0108

the p-values are lower than 0.05 and hence, are significant.
Therefore, we can reject the null hypothesis that the RF model
using mRMR performs the same as the RF model combined
with CMIM. From this result, we draw the conclusion that
the RF model gives better results with mRMR as the feature
selection method as compared to CMIM for our data.

3.3 No significant difference between classifiers
As described in before, we performed 5-fold stratified cross-
validation to compare the LogReg, RF, SVM and XGB clas-
sifiers. We used mRMR as the feature selection method to
select 100 features. Figure 3 shows the mean ROC curve ob-
tained during the 5-fold cross-validation for all the classifiers
as well as the area under the curve for each data set. In all the
data sets, the RF and XGB models have a marginally higher
AUROC compared that of LogReg and SVM. The AUROC
for RF and XGB on the European data are 0.73 and 0.69 re-
spectively. Similarly, the scores for the Chinese data are 0.69
and 0.65, and for the Combined data, 0.64 and 0.66. Figure 4
graphs the accuracy, F1 scores and AUPRC of the models in
the form of a box plot in order to portray the mean and spread
of the data. As we can see, there is a lot of overlap between
the thresholds of the average scores of the classifiers. Hence,
we cannot deduce if any classifiers perform better than the
others from these results.
We then tuned the models to optimise the hyper-parameters.
Table 3 compares the performance of the tuned models on our
test set. After this, we performed a Friedman test which is a

Table 3: The table shows the Accuracy, F1 Score, AUROC, and
AUPRC for the four classifiers on all the data sets after hyper-
parameter tuning. The scores were calculated for a test set after
doing cross-validated hyper-parameter tuning on the train set.

RF LogReg SVM XGB
European Accuracy 0.76 0.72 0.66 0.72

F1 Score 0.79 0.73 0.67 0.75
AUROC 0.76 0.74 0.67 0.73
AUPRC 0.76 0.75 0.69 0.74

Chinese Accuracy 0.67 0.72 0.69 0.61
F1 Score 0.56 0.60 0.54 0.48
AUROC 0.65 0.68 0.65 0.58
AUPRC 0.49 0.53 0.50 044

Combined Accuracy 0.66 0.62 0.66 0.63
F1 Score 0.63 0.50 0.64 0.62
AUROC 0.66 0.62 0.66 0.63
AUPRC 0.60 0.58 0.60 0.58

method of hypothesis testing used when multiple classifiers
are compared across multiple data sets. The p-value calcu-
lated by the Friedman test was not significant. This means
that we cannot reject the null hypothesis that there is no sig-
nificant difference between the classifiers.

3.4 Important features were found common to all
classifiers

We compared the top 20 features identified by the tuned clas-
sifiers. The Venn diagrams depicted in Figure 5 enlist the 20
most important features identified by the different classifiers
for the European and Chinese sets. The intersection of these
sets shows the markers that have been identified by multiple
models and hence, may be of relevance. The features present
in the top 20 features of all the classifiers for each data set
have been enlisted in Table 4. As we can see there are
no common biomarkers identified by all methods across
both sets. However, the biomarkers identified per dataset do
corroborate with existing literature. For the European data



(a) First and Second dimension obtained from t-SNE on the Chi-
nese data

(b) First and Second dimensions obtained from t-SNE on the Eu-
ropean data

(c) First and Second principal components obtained from PCA on
the Combined data

(d) First and Second dimensions obtained from t-SNE on the com-
bined data

Figure 2: The plots help visualise the high dimensional combined data in 2 dimensions. In plots (a) and (b), the blue samples represent the
healthy patients while the orange points correspond to T2D. For plots (c)-(d), the blue and orange points represent the Chinese samples while
the red and green points depict the European samples. The blue dashed line outlines the cluster formed by the Chinese data while the green
line demarcates the European clusters.

(a) ROC curve of the classifiers on the Euro-
pean data

(b) ROC curve of the classifiers on the Chi-
nese data

(c) ROC curve of the classifiers on the
Combined data

Figure 3: The plots show the ROC curve for the four classifiers (LogReg, RF, SVM, XGB) across five folds of cross-validation on each data
set. The shaded regions depict the error bands for each curve.



(a) Boxplot for the performance of the classi-
fiers on the European data

(b) Boxplot for the performance of the clas-
sifiers on the Chinese data

(c) Boxplot for the performance of the
classifiers on the Combined data

Figure 4: Boxplots depicting the distribution of Accuracy, F1 Score, and AUPRC for the four classifiers (LogReg, RF, SVM, XGB) across
five folds of cross-validation. Their mean and variability along with outliers are shown.

(a) Venn diagram of the intersected features
on the European data

(b) Venn diagram of the intersected features
on the Chinese data

(c) Venn diagram of the intersected fea-
tures on the Combined data

Figure 5: The Venn diagrams show the number of important features common to different combinations of the four classifiers (LogReg, RF,
SVM, XGB) after tuning.

Table 4: The features identified in the European and Chinese data
set respectively by all tuned classifier

European Chinese
Alistipes inops Acidaminococcus sp CAG 542
Ruminococcaceae bacterium D16 Prevotella bivia
Alistipes shahii Lactobacillus mucosae
Faecalibacterium prausnitzii
Roseburia sp CAG 182

Faecalibacterium prausnitzii is a very abundant bacterial
species and is known to be a good biomarker for certain
conditions (Leylabadlo et al., 2020). It was also identified by
Karlsson et al. (2013) for the same data. The genus Rosburia
was noted by their study as well and this verifies our identifi-
cation of Roseburia sp CAG 182. Both of these species have
been associated with improved insulin sensitivity and are an
example of butyrate-producing bacteria (Louis et al., 2010).
Although Alistipes shahii was not identified as important
by Karlsson et al. (2013) for the European data, J. Li et al.
(2022) found that the relationship between increased red
meat intake and increased HbA1c levels was significantly
strengthed by the presence of this species. Since HbA1c is
currently used to diagnose patients with T2D, this species
may be of relevance (Leong & Wheeler, 2018). The genus

Ruminococcaceae was also identified in many studies to have
a positive correlation with T2D (Esquivel-Hernández et al.,
2023; Therdtatha et al., 2021).

For the Chinese data, the genus Prevotella was noted
to be of importance during PCA, however, Qin et al. (2012)
did not find any association between it and T2D. Another
study stated that Prevotella has a strong association with
chronic inflammatory diseases (J. M. Larsen, 2017). Al-
though Qin et al. (2012) did mention any association between
Lactobacillus mucosae and T2D, Karlsson et al. (2013) did
note that many Lactobacillus species were associated with
the disease.

3.5 Clostridiales, Clostridium, Roseburia and
Lactobacillus are of interest irrespective of
location

Since we were analysing samples taken from different loca-
tions, we did expect to see some difference in the biomarkers
based on this grouping. We further investigated the gener-
alisation of the markers irrespective of location. The Venn
diagram depicted in Figure 5(b) shows the number of impor-
tant features common to different combinations of classifiers
for the combined data set. Table 5 enlists the 6 features iden-
tified by all the models for this data. We also compared the



Table 5: The features identified in the Combined data set by all tuned
classifiers

Combined
Clostridiales bacterium 1 7 47FAA
Christensenella minuta
Clostridium scindens
Lactobacillus mucosae
Blautia producta
Roseburia sp CAG 182

most important features identified in all 3 data sets. It is im-
portant to note that the initial features of each data set were
not identical. In all the data sets the genus Roseburia has
shown to be of importance. The European and Combined set
identifies Roseburia sp CAG 182 and the Chinese set identi-
fies Roseburia sp CAG 303. While the exact species of these
features are unidentified, co-abundance groups have been in-
dicated. Several other genera have been found in the signif-
icant features in all data sets. This observation may indicate
that genus-level data will provide more generalised biomark-
ers. Other studies have also identified the genera Clostridi-
ales, Clostridium and Lactobacillus to be of interest (Karls-
son et al., 2013; Mora-Ortiz et al., 2019; Qin et al., 2012)

3.6 Responsible Research
To ensure that this research study upholds the integrity and
ethos of the scientific community, we have taken the sub-
sequent steps. All external tools, software and libraries in
used in this project are open-sourced. The data that we used
was published from previous studies and is freely accessible.
We have ensured that a detailed description of our methodol-
ogy and data has been provided, along with all sources from
which we obtained any material. We have used all samples of
the published data and any filtering and processing of the data
has been justified. Through the handling of our data, we try
to limit the introduction of any bias. All of these procedures
ensure that our work can be easily reproduced and verified.

4 Conclusions
In this study, we aimed to identify biomarkers for T2D
that could be later used for early prediction. We utilised
techniques like machine learning and feature selection to
achieve this goal and we also explored their effects. We took
a more generalised approach to the problem and investigated
the presence of biomarkers in data taken form 2 different
locations.

Through our experiments to answer our third sub-question,
we could not identify a classifier that performed significantly
better than our baseline model, the Random Forest model.
However, we did find that mRMR performed better than
CMIM in terms of feature selection. It is also important to
note that finding a better classifier is dependent on hyper-
parameter tuning. Given the short time frame of the project,
only a small subset of possible parameters were tested for
each model. Hence, to draw more conclusive results, further
research can be done in the future.

Our experiments to answer sub-question 4 confirmed
several existing biomarkers for each data set independently
like Faecalibacterium prausnitzii and Roseburia. Further-
more, we also confirmed that the genera Clostridiales,
Clostridium, Roseburia and Lactobacillus were for interest in
relation to T2D irrespective of location. Since we conducted
species analysis, further investigation of the genus-level
abundances would need to be conducted to provide more
reliable results.

Overall, our research has shown that there is a signifi-
cant association between the gut microbiome and T2D.
Although machine learning methods may not be accurate
enough to predict the presence of T2D based on data obtained
from faecal samples, we hope that our results will be of help
to clinicians and may assist them in their diagnoses.

References
Bakir-Gungor, B., Bulut, O., Jabeer, A., Nalbantoglu, O. U.,

& Yousef, M. (2021). Discovering Potential Taxo-
nomic Biomarkers of Type 2 Diabetes From Hu-
man Gut Microbiota via Different Feature Selection
Methods.

Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J.,
Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., Hua,
K., et al. (2010). Individuality in gut microbiota
composition is a complex polygenic trait shaped
by multiple environmental and host genetic factors.
Proceedings of the National Academy of Sciences,
107(44), 18933–18938.

Brown, G., Pocock, A., Zhao, M.-J., & Luján, M. (2012).
Conditional likelihood maximisation: A unifying
framework for information theoretic feature selec-
tion. The journal of machine learning research, 13,
27–66.

Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. https :
//doi.org/10.1145/2939672.2939785
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