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Abstract
This	study	aimed	 to	develop	an	open-source	algorithm	for	 the	pressure-reactivity	 index	(PRx)	 to	monitor	cerebral	auto-
regulation	(CA)	in	pediatric	severe	traumatic	brain	injury	(sTBI)	and	compared	derived	optimal	cerebral	perfusion	pres-
sure	(CPPopt)	with	real-time	CPP	in	relation	to	long-term	outcome.	Retrospective	study	in	children	(<	18	years)	with	sTBI	
admitted	 to	 the	pediatric	 intensive	care	unit	 (PICU)	 for	 intracranial	pressure	 (ICP)	monitoring	between	2016	and	2023.	
ICP	was	analyzed	on	an	insult	basis	and	correlated	with	outcome.	PRx	was	calculated	as	Pearson	correlation	coefficient	
between	ICP	and	mean	arterial	pressure.	CPPopt	was	derived	as	weighted	average	of	CPP-PRx	over	time.	Outcome	was	
determined	 via	 Pediatric	Cerebral	 Performance	Category	 (PCPC)	 scale	 at	 one	 year	 post-injury.	 Logistic	 regression	 and	
mixed	 effect	 models	 were	 developed	 to	 associate	 PRx	 and	 CPPopt	 with	 outcome.	 In	 total	 50	 children	 were	 included,	
35	with	 favorable	 (PCPC	1–3)	 and	 15	with	 unfavorable	 outcome	 (PCPC	4–6).	 ICP	 insults	 correlated	with	 unfavorable	
outcome	 at	 20	mmHg	 for	 7	min	 duration.	Mean	CPPopt	 yield	was	 75.4%	of	monitoring	 time.	Mean	 and	median	 PRx	
and	 CPPopt	 yield	 associated	 with	 unfavorable	 outcome,	 with	 odds	 ratio	 (OR)	 2.49	 (1.38–4.50),	 1.38	 (1.08–1.76)	 and	
0.95	 (0.92–0.97)	 (p <	0.001).	PRx	 thresholds	0.0,	 0.20,	 0.25	 and	0.30	 resulted	 in	OR	1.01	 (1.00–1.02)	 (p <	0.006).	CPP	
in	 optimal	 range	 associated	with	 unfavorable	 outcome	 on	 day	 one	 (0.018,	p =	0.029)	 and	 four	 (-0.026,	p =	0.025).	Our	
algorithm	can	obtain	optimal	targets	for	pediatric	neuromonitoring	that	showed	association	with	long-term	outcome,	and	
is	now	available	open	source.
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sTBI	 	Severe	traumatic	brain	injury
TBI	 	Traumatic	brain	injury

1 Introduction

Clinical	 management	 of	 severe	 traumatic	 brain	 injury	
(sTBI)	 in	 the	pediatric	 intensive	care	unit	 (PICU)	aims	 to	
prevent	secondary	brain	injury	and	brain	herniation	through	
adequate	cerebral	perfusion	[1,	2].	Neuromonitoring	is	piv-
otal	and	may	be	achieved	through	invasive	measurement	of	
intracranial	pressure	(ICP)	and	cerebral	perfusion	pressure	
(CPP)	[2–4].	Emerging	algorithms	use	high-frequency	data	
and	combine	various	aspects	of	neuromonitoring	to	measure	
cerebral	autoregulation	(CA)	and	derive	optimal	targets	for	
pressure	and	perfusion	at	the	bedside	[5,	6].	Despite	grow-
ing	interest,	CA-based	neuromonitoring	is	often	not	trans-
parent,	 not	 standardized	 and	 as	 such	 not	 widely	 adopted	
in	clinical	practice	due	to	a	paucity	of	robust	evidence	and	
implementational	challenges	[7,	8].	

In	 normal	 physiology,	 cerebral	 perfusion	 is	 relatively	
constant	over	a	wide	range	of	blood	pressures	due	to	intact	
CA	[9].	CA	can	become	impaired	after	neurotrauma,	caus-
ing	 inadequate	 perfusion	 and	 contributing	 to	 secondary	
injury.	To	prevent	this,	treatment	follows	a	tiered	approach	
based	on	ICP,	mean	arterial	blood	pressure	(MAP)	and	CPP	
[10].	Target	values	for	MAP	are	standardized	across	age	cat-
egories,	while	for	ICP	a	target	below	20	mmHg	was	adopted	
from	 adult	 research	 due	 to	 lacking	 pediatric	 target	 values	
[10,	 11].	 These	 targets	 disregard	 pediatric	 and	 individual	
variations	in	neuro-vascular	hemodynamics	[12].	Real-time	
CA	monitoring	could	overcome	this	problem	and	research	
has	 shown	 this	 is	 feasible	 through	 the	 pressure-reactivity	
index	(PRx),	i.e.	the	correlation	between	ICP	and	MAP	that	
can	reflect	changes	in	cerebral	blood	flow	[13–15].	The	rela-
tion	between	PRx	and	CPP	during	 intact	CA	can	be	used	
to	 derive	 an	 optimal	CPP	 (CPPopt)	 target	 [13–15].	Argu-
ably,	a	patient-derived	CPPopt	may	better	 reflect	CA	than	
age-standardized	CPP.	Various	CA-based	 algorithms	 have	
been	 proposed,	 with	 considerable	 association	 with	 short-
term	 outcome	 in	 adults	 and	 to	 a	 lesser	 extent	 in	 children	
[13–16].	However,	algorithms	are	often	non-transparent	or	
secured	as	intellectual	property,	preventing	external	valida-
tion	 and	 widespread	 clinical	 implementation	 [17].	 Com-
parative	research	between	different	algorithms	also	showed	
variation	in	simultaneous	in-patient	CPPopt	measurements,	
stressing	 the	need	 for	 transparency	and	 standardization	of	
methodology	[18].	

Therefore,	 this	 study	 aimed	 to	 develop	 an	 open-source	
algorithm	to	monitor	CA	via	PRx	and	continuously	derive	
CPPopt.	The	 algorithm	was	 evaluated	 based	 on	 the	 asso-
ciation	 of	 derived	 indices	 of	 PRx,	 CPPopt	 and	 ICP	 with	

long-term	 outcome	 at	 one	 year	 post-injury	 in	 children	
admitted	to	the	PICU	with	sTBI.

2 Methods

2.1 Study population

This	 study	was	 retrospectively	conducted	at	Erasmus	MC	
Sophia	Children’s	Hospital	 (Rotterdam,	The	Netherlands)	
in	accordance	with	the	1975	Helsinki	Declaration.	Consent	
was	waived	by	the	Medical	Ethics	Committee	(MEC-2020-
0265	 in	 2020;	MEC-2021-0937	 in	 2021).	 Children	 (aged	
0	to	18	years)	with	sTBI,	defined	as	Glasgow	Coma	Scale	
(GCS)	≤	8	upon	admission,	admitted	to	 the	PICU	for	con-
tinuous	 ICP	 monitoring	 between	 January	 2016	 and	 Sep-
tember	2023	were	eligible	 for	 inclusion.	 Inclusion	criteria	
were	availability	of	outcome	data	and	at	 least	 three	hours	
of	continuous	ICP	and	MAP	data.	The	latter	criterion	was	
based	on	Güiza	et	al.	who	found	the	lowest	identified	ICP	
of	10	mmHg,	which	is	commonly	encountered	in	pediatric	
sTBI	patients	in	Erasmus	MC,	could	be	endured	for	up	to	
180	min	[19].	

2.2 Data acquisition

ICP	and	MAP	were	measured	at	1	Hz	via	the	patient	moni-
toring	system	(Dräger,	Lübeck,	Germany).	ICP	monitoring	
was	performed	with	an	intraparenchymal	catheter	(Codman	
Microsensor	 ICP	 Transducer,	 Integra,	 Princeton,	 United	
States;	 Pressio	Catheter,	 Sophysa,	Orsay,	 France;	Camino	
Catheter,	Nautus	Medical	 Inc.,	Middleton,	United	States).	
MAP	was	measured	 by	 arterial	 line	 (Becton	 and	Dickin-
son,	 Franklin	Lakes,	United	States).	CPP	was	 determined	
within	the	monitoring	system	as	the	continuous	difference	
between	synchronized	MAP	and	ICP.	Baseline	characteris-
tics	of	patient,	injury	and	hospital	admission	including	age,	
gender,	GCS	on	admission,	injury	severity	score	(ISS),	first	
pupils,	cardiopulmonary	resuscitation	(CPR),	trauma	mech-
anism,	interventions	and	length	of	stay	were	retrieved	from	
the	 electronic	 health	 record	 (HiX,	 Chipsoft,	 Amsterdam,	
The	 Netherlands).	 Outcome	 was	 determined	 at	 one	 year	
post-injury	during	outpatient	consultations	via	the	Pediatric	
Cerebral	Performance	Category	 (PCPC).	The	PCPC	 scale	
scores	functional	outcome	ranging	from	one	to	six,	i.e.	age-
appropriate	functioning,	mild	disability,	moderate	disability,	
severe	disability,	coma	and	(brain-)death	[20].	

2.3 Data preprocessing

Raw	data	were	analyzed	using	Matlab	2022b	(Mathworks,	
Natick,	United	States).	A	simple	form	of	artefact	detection	
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was	performed.	Artefacts	were	defined	as	sudden	deflections	
between	consecutive	samples	 (i.e.	1	 s)	and	values	outside	
the	pathophysiological	range	as	determined	from	histogram	
analysis	in	consultation	with	clinicians.	For	MAP,	these	are	
±	25%	deflections	and	samples	outside	30–160	mmHg.	For	
ICP,	these	are	±	10	mmHg	deflections	and	samples	outside	
0.01–60	mmHg.	Artefacts	were	removed	with	a	margin	of	
10	samples	before	and	60	samples	after	onset	and	replaced	
with	 the	moving	mean	over	a	100	s,	as	artefacts	 typically	
lasted	 up	 to	 one	 minute.	 Data	 were	 then	 downsampled	
(0.1	Hz)	 to	mitigate	high	 frequency	noise	 from	pulse	 rate	
and	respiration	[14].	

2.4 Algorithm development

2.4.1 Cerebral autoregulation

CA	was	 quantified	with	PRx,	 derived	 as	 Pearson	 correla-
tion	coefficient	between	ICP	and	MAP	in	a	300	s	moving	
window	as	described	by	Czosnyka	et	al.	[14]	Mean,	median	
and	increased	PRx	in	percentage	of	 time	were	determined	
for	each	patient.	Increased	PRx	may	indicate	impaired	CA	
through	 positive	 correlation	 between	 ICP	 and	 MAP,	 but	
there	 are	 no	 standardized	 thresholds.	As	 such,	 thresholds	
of PRx >	0.0,	 0.2,	 0.25	 and	 0.3	were	 compared	 [21].	The	
threshold	with	 the	 strongest	 association	with	 PCPC	 score	
was	adopted	for	CPPopt	calculations.

2.4.2 Optimal cerebral perfusion pressure

The	 CPPopt	 and	 optimal	 range	 were	 determined	 every	
minute	using	our	custom	algorithm	based	on	literature	and	
consultations	with	clinicians	[5,	22,	23].	In	the	algorithm	as	
illustrated	in	Fig.	1,	downsampled	data	were	used	to	calcu-
late	mean	PRx	and	CPP	per	minute.	In	windows	of	one,	two,	
four,	 six	 and	eight	hours,	mean	CPP	was	binned	 (divided	
into	5	mmHg	 intervals)	 and	 the	mean	 (standard	deviation	
(SD))	 PRx	was	 determined	 per	 CPP	 bin.	A	 second	 order	
polynomial	 was	 fitted	 over	 CPP	 bins	 containing	≥	1%	 of	
data	to	exclude	artefactual	data.	The	local	minimum	of	this	
curve	was	identified	as	CPPopt	in	that	window.	In	case	of	
increased	PRx	 (based	on	 threshold	analysis),	CPPopt	was	
replaced	 with	 a	 missing	 value	 to	 prevent	 targets	 derived	
during	 impaired	CA.	Calculating	CPPopt	 for	 all	windows	
resulted	in	a	total	of	five	CPPopt	targets	per	patient.	Final	
CPPopt	was	determined	as	the	mean	between	mean	CPPopt	
over	all	windows	and	the	CPP	with	the	lowest	PRx	(i.e.	best	
CA).	 To	 subsequently	 determine	 the	 optimal	 CPP	 range,	
the	mean	(SD)	PRx	per	CPP	bin	of	the	eight-hour	window	
was	 used	 to	 generate	 an	 optimal	 PRx	 range.	The	 optimal	
PRx	range	was	defined	as	the	range	between	lowest	mean	
PRx	 (lower	 limit)	 and	 increased	PRx,	 based	 on	 threshold	
analysis	 and	 the	 assumption	 that	 ideal	PRx	 is	negative	or	
around	zero.	The	optimal	CPP	range	was	derived	from	this	
PRx	range.	Measured	CPP	was	considered	 in	 range	 if	 the	
mean	PRx	of	 the	corresponding	CPP	bin	was	within	opti-
mal	PRx	range.	If	the	optimal	CPP	range	included	increased	

Fig. 1	 Schematic	overview	of	 the	CPPopt	algorithm.	 In	windows	of	
one,	 two,	four,	six	and	eight	hours,	CPPopt	was	defined	as	the	local	
minimum	of	a	second	order	curve	fitted	along	binned	CPP	and	corre-
sponding	mean	PRx.	The	optimal	CPP	range	was	determined	from	the	
corresponding	optimal	PRx	range	in	the	eight	hour	window	between	

minimum PRx and minimum +	0.2.	For	illustrative	purposes,	data	of	
the	 entire	monitoring	 period	was	 used	 in	 this	 figure.	CPP	=	cerebral	
perfusion	 pressure;	 CPPopt	=	optimal	 cerebral	 perfusion	 pressure;	
PRx =	pressure	reactivity	index
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3 Results

3.1 Patient characteristics

In	total	67	sTBI	patients	were	admitted	to	the	PICU	during	
the	 study	 period,	 of	which	 61	 underwent	 ICP	monitoring	
and	50	patients	met	inclusion	criteria.	Reasons	for	exclusion	
were	 irretrievable	MAP	 and/or	 ICP	 data	 or	 outcome	 data	
one-year	post	injury	was	not	yet	available.	Of	the	included	
patients,	 41	 (82.0%)	 survived	 until	 one	 year	 post-injury.	
Baseline	 characteristics	 of	 included	 patients	 are	 shown	
and	 compared	 between	 groups	 of	 primary	 and	 secondary	
analysis	in	Table	1.	Survivors	with	favorable	outcome	were	
already	 represented	 by	 the	 favorable	 outcome	 group	 and	
were	therefore	not	included	as	a	separate	column.	Median	
ICP	monitoring	 time	was	5.7	 (4.5–7.7)	days.	On	average,	
3.5%	and	3.7%	of	 raw	ICP	and	MAP	was	artefactual	and	
removed.	Resultantly,	missing	values	increased	from	0.2	to	
2.2%	and	0.1–0.9%	for	ICP	and	MAP.

3.2 Algorithm development

Visual	assessment	of	CPP-PRx	curves	showed	unfavorable	
outcome	 corresponded	 with	 narrow	 CPP	 ranges	 (Supple-
mental	 Figure	S1).	CPPopt	 analysis	was	 conducted	 in	 49	
(98.0%)	 of	 included	 patients.	 One	 patient	 was	 excluded	
because	of	complete	absence	of	CA	and	subsequent	rejec-
tion	of	CPPopt	targets	by	the	algorithm.	CPPopt	yield	was	
75.4%	 overall	 versus	 45.6%	 and	 87.3%	 in	 patients	 with	
unfavorable	and	favorable	outcome,	respectively.	ICP	insult	
analysis	showed	a	negative	correlation	between	the	average	
number	of	insults	for	an	intensity	between	10	and	20	mmHg	
with	durations	120	and	7	min,	and	positive	correlation	for	
more	intense	and/or	longer	insults	(Fig.	2).

3.3 Primary analysis

Crude	and	adjusted	associations	between	mean	PRx,	median	
PRx,	increased	PRx	and	CPPopt	yield	and	unfavorable	out-
come	are	available	in	Table	2.	Associations	were	significant	
before	 and	 after	 adjustment	 for	 GCS	 on	 admission,	 with	
increased	 odds	 for	 mean	 PRx	 after	 adjustment.	 Since	 all	
PRx	 thresholds	produced	 similar	OR,	 the	 threshold	>	0.20	
was	adopted	in	the	algorithm	to	define	increased	PRx	and	
derive	an	optimal	PRx	range	(lower	limit	±	0.20).	Optimal	
CPP	range	calculations	were	rejected	for	PRx	>	0.25,	allow-
ing	 a	 slight	 error	margin	 in	 the	PRx	 range.	Contrary	 to	 a	
threshold	at	0.0,	both	thresholds	allow	CPPopt	calculations	
for	stable	low	levels	of	PRx	(e.g.	0.10)	and	optimal	ranges	
for	PRx	up	to	0.05,	which	may	occur	during	intact	CA.	The	
effects	of	 age,	GCS	on	 admission	 and	percentage	of	 time	
with	CPP	in	optimal	range	for	five	consecutive	monitoring	

PRx	(based	on	threshold	analysis)	no	optimal	range	could	
be	determined	and	measured	CPP	was	deemed	out	of	range.	
Using	the	algorithm,	 the	CPPopt	yield,	 i.e.	 the	percentage	
of	 time	 that	 the	 algorithm	 returned	 a	 CPPopt	 target,	 and	
the	percentage	of	time	with	CPP	within	optimal	range	per	
admission	day	were	determined	for	each	patient.

2.4.3 Intracranial pressure

ICP	was	analyzed	on	an	insult	basis,	according	to	its	inten-
sity	(mmHg)	and	duration	(min),	as	previously	described	by	
Guiza	et	al.	[19].	The	correlation	between	the	average	num-
ber	of	ICP	insults	and	corresponding	PCPC	score	over	the	
entire	cohort	was	visualized	using	a	color	 scale.	Negative	
correlation	indicates	the	ICP	insult	occurs	more	frequently	
in	patients	with	low	PCPC	scores,	while	positive	correlation	
indicates	the	insult	occurs	more	frequently	in	patients	with	
high	PCPC	scores.

2.5 Statistical analysis

For	primary	analysis,	outcome	was	dichotomized	as	favor-
able	(survival	with	favorable	neurological	outcome,	PCPC	
1–3)	or	unfavorable	(mortality	or	survival	with	unfavorable	
neurological	outcome,	PCPC	4–6)	 [20].	Secondary	analy-
ses	were	conducted	for	mortality	(PCPC	6)	versus	survival	
(PCPC	1–5)	and	favorable	neuroloical	outcome	in	survivors	
(PCPC	 1–3)	 versus	 unfavorable	 neurological	 outcome	 in	
survivors	(PCPC	4–5)	via	Mann	Whitney-U	test	[20].	Cate-
gorical	data	were	reported	as	count	(percentage)	and	contin-
uous	data	were	reported	as	mean	(SD)	or	median	(Q1,	Q3).	
Crude	 and	 multivariable	 logistic	 regression	 models	 were	
developed	 to	 assess	 the	 association	between	outcome	and	
PRx	 indices	 and	CPPopt	 yield.	Models	were	 adjusted	 for	
GCS	on	admission	and	reported	with	odds	ratios	(ORs)	and	
95%	 confidence	 intervals	 (95%	CI).	 For	 interpretation	 of	
ORs,	mean	and	median	PRx	were	multiplied	by	10	to	reflect	
changes	in	odds	as	PRx	transitions	from	0	to	0.1	instead	of	
0	to	1	[21].	The	association	between	the	percentage	of	time	
that	CPP	was	within	optimal	 range	per	consecutive	moni-
toring	day	and	outcome	was	assessed	using	mixed	effects	
models,	with	 age	 and	GCS	on	 admission	 as	fixed	 effects.	
Subject-specific	 random	 intercepts	 and	 slopes	 were	 used	
to	account	for	correlation	between	multilevel	data.	A	two-
sided	p-value	<	0.05	was	considered	statistically	significant.
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(negative	 in	 survivors),	 CPPopt	 yield	 and	 percentage	 of	
time	with	CPP	in	optimal	range.	Thresholds	of	PRx	>	0.25	
and >	0.30	 resulted	 in	 similar	 differences	 between	 survi-
vors	and	non-survivors.	Between	survivors	with	favorable	
and	unfavorable	neurological	outcome,	only	CPPopt	yield	
was	significantly	different.	Comparing	all	three	subgroups,	
mean	PRx	was	higher	for	unfavorable	outcome	and	mortal-
ity	(Supplemental	Figure	S2)	and	mean	(SD)	percentage	of	
time	with	CPP	in	optimal	range	shows	an	increasing	differ-
ence	over	consecutive	days	(Supplemental	Figure	S3).

days	on	unfavorable	outcome	are	available	in	Table	3.	Both	
age	 and	 GCS	 on	 admission	 were	 significantly	 associated	
with	 unfavorable	 outcome.	 The	 association	 between	 per-
centage	 of	 time	with	 CPP	 in	 optimal	 range	 and	 unfavor-
able	outcome	varied	over	time,	with	significant	associations	
observed	on	day	one	(positive)	and	on	day	four	(negative).

3.4 Secondary analysis

Subgroup	comparison	of	mean	PRx,	median	PRx,	increased	
PRx,	 CPPopt	 yield	 and	 percentage	 of	 time	 with	 CPP	 in	
optimal	range	are	available	in	Table	4.	All	indices	were	sig-
nificantly	 different	 between	 survivors	 and	 non-survivors.	
The	 largest	 differences	 were	 observed	 for	 median	 PRx	

Primary analysis Secondary	analysis
Variables (Survivors	

with)	Favorable	
outcome

Unfavorable	
outcome

Survivors	with	
unfavorable	
outcome

Mortality

Demographic
Participants 35	(70.0%) 15	(30.0) 6	(12.0%) 9	(18.0%)
Females 12	(34.3%) 8	(53.3%) 4	(66.7%) 4	(44.4%)
Age 9	(6.5,	14.5) 15	(10.0,	16.0) 14	(11.5,	15.8) 15	(9.0,	

16.0)
PCPC
 PCPC 1 12	(34.3%) 0	(0.0%) 0	(0.0%) 0	(0.0%)
 PCPC 2 19	(54.3%) 0	(0.0%) 0	(0.0%) 0	(0.0%)
 PCPC 3 4	(11.4%) 0	(0.0%) 0	(0.0%) 0	(0.0%)
	 PCPC	4 0	(0.0%) 6	(40.0%) 6	(40.0%) 0	(0.0%)
	 PCPC	5 0	(0.0%) 0	(0.0%) 0	(0.0%) 0	(0.0%)
	 PCPC	6 0	(0.0%) 9	(60.0%) 0	(0.0%) 9	(18.0%)
Injury severity
ISS 16	(16,	25) 34	(26,	42.5) 33	(25,	42.5) 34	(32.8,	

36.3)
GCS on admission 6.0	(4.0,	7.0) 3.0	(3.0,	4.0) 3.0	(3.0,	4.0) 3.0	(3.0,	

4.0)
First	pupils
	 Isocoric 25	(71.4%) 3	(20%) 0	(0.0%) 3	(33.3%)
	 Anisocoric 10	(28.6%) 5	(30%) 4	(66.7%) 1	(11.1%)
	 Fixed/dilated 0	(0.0%) 7	(46.7%) 2	(33.3%) 5	(55.6%)
CPR	received 1	(2.9%) 1	(6.7%) 0	(0.0%) 1	(11.1%)
Trauma	mechanism
	 Bicycle	accident 11	(31.4%) 6	(40.0%) 3	(50.0%) 3	(33.3%)
	 Fall 6	(17.1%) 4	(26.7%) 2	(33.3%) 2	(22.2%)
	 Pedestrian	vs.	motor	vehicle 9	(25.7%) 2	(13.3%) 1	(16.7%) 1	(11.1%)
 Passenger 5	(14.3%) 1	(6.7%) 0	(0.0%) 1	(11.1%)
	 Other 4	(11.4%) 2	(13.3%) 0	(0.0%) 2	(22.2%)
Hospital admission
PICU	length	of	stay 12.0	(8.0,	19.5) 9.0	(5.0,	26.0) 26.0	(22.3,	42.5) 5.0	(3.0,	

8.0)
Hospital	length	of	stay 26.0	(14.0,	

34.5)
9.0	(5.0,	42.5) 46.0	(41.3,	57.5) 5.0	(3.0,	

8.0)
Interventions
	 Craniectomy 9.0	(25.7%) 6	(40.0%) 2.0	(33.3%) 4.0	(44.4%)
	 External	ventricular	drainage 0.0	(0.0%) 3	(20.0%) 1.0	(16.7%) 2.0	(22.2%)

Table 1	 Baseline	characteristics

Values	are	expressed	as	n	(%)	
and	median	(Q1,	Q3)	of	their	
respective	group.	Note	that	
survivors	with	good	outcome	
were already represented by 
the	favorable	outcome	group	
and	were	therefore	not	included	
as	a	separate	column.	Favor-
able	outcome	=	PCPC	1–3;	
unfavorable	outcome	= PCPC 
4–6;	survivors	with	good	
outcome	=	PCPC	1–3;	survivors	
with	poor	outcome	=	PCPC	4–5;	
mortality =	PCPC	6;	ISS	= injury 
severity	score;	CPR	=	car-
diopulmonary	resuscitation;	
GCS =	Glasgow	Coma	Scale;	
PICU =	pediatric	intensive	care	
unit
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evaluation	 of	 our	 algorithm	 demonstrated	 that	 increased	
PRx,	 reduced	 CPPopt	 yield	 and	 deviation	 from	 optimal	
CPP	 range	 were	 associated	 with	 unfavorable	 outcome	 at	
one-year	 post-injury.	Derived	 indices	 of	PRx	 and	CPPopt	
differed	between	survivors	and	non-survivors,	and	between	
survivors	with	favorable	and	unfavorable	neurological	out-
come	 time	 with	 CPP	 in	 range	 differed.	 Source	 code	 and	
documentation	 is	 available	at	 	h	t	t		p	s	:	/		/	g	i		t	h	u		b	.	c	o	m	/	e	v	a	n	t	w	i	s	t	
/	p	a	n	d	a					.	PANDA	can	be	adopted	for	external	validation	and	
paves	 the	way	 towards	 prospective	 trials	where	 the	 algo-
rithm	can	be	used	in	real-time	to	assess	the	effects	on	indi-
vidual	patient	outcomes.

The	proposed	algorithm	is	unique.	To	date,	the	majority	
of	research	on	PRx	and	CPPopt	has	been	conducted	in	adults	

4 Discussion

We	 present	 PANDA,	 a	 PRx-based	Algorithm	 for	 Neuro-
monitoring	 and	 Dynamic	 Autoregulation,	 the	 first	 open-
source	algorithm	enabling	personalized	CPPopt	targets	and	
PRx	monitoring	in	children	admitted	to	the	PICU	with	sTBI	
with	 the	 longest	 follow-up	 period	 to	 date.	 Retrospective	

Table 2	 Univariable	and	multivariable	logistic	regression	analysis	of	
PRx,	CPPopt	and	outcome

Crude Adjusted
Dependent 
variable

OR	(95%	CI) p-value OR	(95%	CI) p-value

Mean PRx 1.95	(1.32–2.89) <	0.001 2.49	
(1.38–4.50)

0.003

Median 
PRx

1.43	(1.16–1.76) <	0.001 1.38	
(1.08–1.76)

0.009

PRx >	0.00 1.00	(1.00–1.01) 0.006 1.01	
(1.00–1.01)

0.024

PRx >	0.20 1.01	(1.00–1.01) 0.001 1.01	
(1.00–1.01)

0.008

PRx >	0.25 1.01	(1.00–1.01) <	0.001 1.01	
(1.00–1.02)

0.007

PRx >	0.30 1.01	(1.00–1.02) <	0.001 1.01	
(1.00–1.02)

0.006

CPPopt 
yield

0.95	(0.92–0.98) 0.001 0.93	
(0.88–0.97)

0.003

All	 dependent	 variables	 were	 adjusted	 for	 GCS	 on	 admission.	 A	
p-value	<	0.05	 was	 considered	 statistically	 significant.	 PRx	= pres-
sure-reactivity	index;	CPPopt	=	optimal	cerebral	perfusion	pressure;	
OR =	odds	ratio;	CI	=	confidence	interval

Table 3	 Associations	 of	 percentage	 of	 time	with	CPP	 in	 range	 over	
consecutive	monitoring	days,	age	and	GCS	on	admission
Fixed	effect Coefficient 95%	CI p-value
Age 0.100 0.007–0.193 0.037
GCS on admission -0.252 -0.455	–	-0.060 0.013
CPP	in	range,	time	%
 Day 1 0.018 0.002–0.033 0.029
 Day 2 -0.016 -0.033–0.001 0.057
 Day 3 0.006 -0.011–0.023 0.462
	 Day	4 -0.026 -0.048	–	-0.004 0.025
	 Day	5 0.002 -0.020–0.023 0.870
Model	 was	 adjusted	 for	 subject-specific	 random	 intercept	 and	
slopes.	 A	 p-value	<	0.05	 was	 considered	 statistically	 significant.	
GCS =	Glasgow	Coma	 Scale;	 CI	=	confidence	 interval;	 CPP	=	cere-
bral perfusion pressure

Fig. 2	 Color-scaled	correlation	
between	average	number	of	ICP	
insults,	expressed	according	to	
intensity	in	mmHg	on	the	x-axis	
and	duration	in	minutes	on	the	
y-axis,	and	outcome.	The	color	
bar	on	the	right	represents	the	
correlation,	where	blue	indicates	
a	negative	correlation	(i.e.	the	
insult	occurs	more	frequently	in	
patients	with	low	PCPC	scores)	
and	red	indicates	a	positive	corre-
lation	(i.e.	the	insult	occurs	more	
frequently	in	patients	with	high	
PCPC	scores).	The	cut-off	for	
correlation	with	unfavorable	out-
come	occurred	at	ICP	intensity	of	
20	mmHg	for	a	duration	of	seven	
min.	ICP	=	intracranial	pres-
sure;	PCPC	=	Pediatric	Cerebral	
Performance	Category
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in	our	cohort.	Altogether,	while	PANDA	required	more	data	
input	 than	 reported	 for	 ICM+	 (eight	 versus	 five	 hours),	
we	 obtained	 similar	 CPPopt	 yield	 as	 in	 the	 prospective	
ICM +	trial	 (mean	 75.4%	 versus	 76.6%	 of	 time),	 demon-
strating	feasibility	of	PANDA	[27].	

Both	PRx	and	CPPopt	were	significantly	associated	with	
unfavorable	 outcome	 and	 showed	 significant	 differences	
between	 survivors	 and	 non-survivors,	 conform	 previous	
research	[13,	28,	29].	With	positive	PRx,	systemic	pressure	
changes	are	propagated	towards	cerebral	vasculature	[9,	15,	
30,	31].	Hence,	PRx	indices	and	increased	PRx	are	indica-
tive	of	CA	impairment.	Reduced	CPPopt	yield	(as	CPPopt	
targets	were	rejected	for	PRx	≥	0.2)	was	also	mildly	associ-
ated	with	unfavorable	outcome.	This	 is	 a	 unique	view	on	
how	PANDA	may	 be	 used	 in	 clinical	 practice.	The	mean	
percentage	of	time	with	CPP	in	optimal	range	was	the	only	
index	 that	 differed	 significantly	 between	 favorable	 and	
unfavorable	neurological	outcome	in	survivors.	We	postu-
late	PRx	and	CPPopt	are	 inherently	markers	of	secondary	
injury,	while	 long-term	outcome	also	depends	on	primary	
injury.	 This	 is	 supported	 by	 previous	 studies	 where	 PRx	
was	 independent	 of	 neurological	 score	 on	 admission	 and	
ICP	and	CPP	were	delayed	markers	of	secondary	injury	[13,	
21,	32].	Crude	associations	between	PRx	and	CPPopt	and	
outcome	were	also	robust	when	adjusted	for	GCS	on	admis-
sion.	Furthermore,	the	percentage	of	time	with	CPP	in	opti-
mal	 range	 showed	 the	 strongest	 association	with	outcome	
on	 the	 fourth	 day	of	monitoring.	On	day	 four,	 the	 largest	
differences	in	percentage	of	time	with	CPP	in	optimal	range	
were	also	observed	between	the	three	subgroups.	Assuming	
monitoring	days	coincide	with	admission	days,	all	outcome	
groups	start	with	a	similar	mean	percentage	CPP	in	range,	
but	over	consecutive	days	an	increasing	trend	was	observed	
in	patients	with	favorable	outcome,	while	the	opposite	was	
observed	for	mortality.

using	 commercialized	 Intensive	 Care	 Monitor+	 (ICM+)	
software	(Cambridge	Enterprise,	University	of	Cambridge,	
Cambridge,	United	Kingdom)	[5,	8,	22,	24–26].	Recently,	
the	 first	 prospective	 trial	 was	 conducted	 using	 ICM	+ for 
CA-based	CPP	management	in	adult	TBI	[27].	During	the	
trial,	32	patients	were	randomized	to	CA-based	CPP	man-
agement	and	28	to	standard	management.	The	trial	showed	
the	 feasibility	 and	 safety	 of	 CA-based	management,	with	
slightly	 higher	 percentages	 of	CPP	within	 target	 range	 in	
the	CA-based	group	and	no	difference	in	safety	end-points.	
Individual	patient	outcomes	were	not	improved.	However,	
this	was	not	the	primary	objective	of	the	study	and	therefore	
not	powered	accordingly	[27].	In	ICM+,	CPPopt	is	derived	
per	minute	using	36	windows	between	two	and	eight	hours	
with	10	min	increments	[6].	In	our	algorithm,	larger	incre-
ments	were	used	 and	we	 avoided	giving	undue	weight	 to	
recent	 windows	 in	 final	 CPPopt	 calculation	 as	 this	 could	
negatively	impact	cases	where	CA	was	suddenly	impaired	
[23].	We	also	opted	 to	 reject	 increased	PR	(≥	0.2)	 instead	
of	flat	 curves	 (span	<	0.2)	 as	 this	 could	 negatively	 impact	
patients	 with	 stable	 low	 PRx	 (i.e.	 intact	 CA).	 Threshold	
analysis	to	define	increased	PRx	was	inconclusive.	Similarly	
in	 pediatric	 literature,	 associations	 with	 unfavorable	 out-
come	were	observed	for	PRx	>	0.25	but	also	for	PRx	>	0.0	
for	prolonged	duration	[21,	28].	This	may	indicate	thresh-
olds	 need	 to	 be	 personalized	within	 a	 cohort	 or	 individu-
ally.	In	our	study,	we	chose	the	lowest	non-zero	threshold	
(≥	0.2)	 for	 CPPopt	 calculations,	 based	 on	 the	 assumption	
that	 negative	 or	 approximating-zero	 PRx	 indicates	 intact	
CA,	 and	 added	 a	 margin	 for	 optimal	 CPP	 range	 (0.25).	
With	regard	to	optimal	range,	PANDA	provides	a	dynamic	
range	as	compared	to	ICM	+	where	the	optimal	range	equals	
CPPopt ±	5	mmHg	[23].	While	 the	optimal	 range,	derived	
from lower limit PRx +	0.2,	 requires	further	validation	we	
observed	all	 patients	with	mean	PRx	<	0.2	were	 survivors	
while	all	patients	with	mean	PRx	>	0.2	were	non-survivors	

Table 4	 Differences	in	PRx	and	CPPopt	indices	between	survivors	and	non-survivors	and	between	outcome	in	survivors
Mortality Outcome	in	survivors

Indices Overall Survivors Non-survivors p-value Survivors	
with	good	
outcome

Survivors	
with	poor	
outcome

p-value

Mean PRx 0.100 0.025 0.441 <	0.001 0.005 0.137 0.128
Median PRx 0.021 -0.062 0.398 0.005 -0.111 0.222 0.067
PRx >	0.00,	mean	%	of	time 48.4% 45.6% 61.4% 0.023 43.8% 56.2% 0.285
PRx >	0.20,	mean	%	of	time 36.2% 32.0% 55.2% 0.001 30.0% 43.3% 0.149
PRx >	0.25,	mean	%	of	time 33.4% 29.1% 53.3% <	0.001 27.2% 40.1% 0.149
PRx >	0.30,	mean	%	of	time 30.8% 26.4% 51.2% <	0.001 24.5% 37.1% 0.149
CPPopt	yield,	mean	%	of	time 75.4% 84.7% 27.6% <	0.001 87.3% 69.5% 0.061
CPP	in	range,	mean	%	of	time 51.0% 56.5% 14.9% 0.046 62.6% 29.9% 0.006
Subgroups	were	compared	via	Mann-Whitney	U	test	for	all	indices.	A	p-value	<	0.05	was	considered	statistically	significant.	Favorable	out-
come	=	PCPC	1–3;	unfavorable	outcome	=	PCPC	4–6;	survivors	with	good	outcome	=	PCPC	1–3;	survivors	with	poor	outcome	=	PCPC	4–5;	
mortality =	PCPC	6;	PRx	=	pressure-reactivity	index;	CPPopt	=	optimal	cerebral	perfusion	pressure
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software.	Our	open-source	code	can	be	used	to	perform	external	
validation	on	retrospective	data	and	compare	findings	of	CPP	in	
optimal	range	with	age-standardized	CPP	targets.	In	the	future,	
we	aim	to	refine	PANDA	by	incorporating	personalized	PRx	
thresholds.	Such	thresholds	may	be	identified	through	temporal	
analysis	of	baseline	PRx	and	changes	associated	with	clinical	
events,	on	a	patient	and	age-stratified	population	level.	This	final	
algorithm	will	be	integrated	into	a	neuromonitoring	dashboard	
to	enable	an	overview	of	various	neuromonitoring	modalities	
and	their	potential	interrelation.	Ideally,	this	dashboard	will	be	
built	using	opens	source	software	such	as	Python.	We	encour-
age	future	research	to	adopt	PANDA	and	continue	collabora-
tive	developments	in	the	field	of	(pediatric)	neuromonitoring	to	
advance	towards	the	bedside.

5 Conclusion

We	 present	 an	 open-source	 algorithm	 for	 bedside	 neuro-
monitoring	 in	 pediatric	 sTBI	 admitted	 to	 the	 PICU.	 The	
algorithm	 obtained	 indices	 of	 PRx,	 CPPopt	 and	 ICP	 that	
were	associated	with	outcome	at	one	year	post-injury.	We	
invite	fellow	researchers	to	adopt	this	algorithm	for	external	
validation	 and	 comparison	 to	 other	 existing	 (commercial)	
algorithms.

Supplementary Information	 The	 online	 version	 contains	
supplementary	material	available	at	 	h	t	t		p	s	:	/		/	d	o		i	.	o		r	g	/	1	0	.	1	0	0	7	/	s	1	0	8	7	7	-	0	
2	4	-	0	1	2	4	8	-	w					.		

Acknowledgements	 We	 would	 like	 to	 thank	 and	 acknowledge	 the	
entire	intensive	care	and	neurocritical	care	team	as	well	as	patients	and	
their	parents	and/or	legal	guardians	at	Erasmus	MC	Sophia	Children’s	
Hospital,	who	made	this	study	possible.

Author contributions	 All	 authors	 contributed	 to	 the	 study	 concep-
tion	and	design.	NK,	 JK,	RJ	conceived	and	designed	 the	 study.	BF,	
TR	and	ET	performed	data	analysis.	TR	and	ET	wrote	the	first	draft	
of	the	manuscript.	NK,	JK,	RJ,	CB,	MH,	MH	and	AS	contributed	to	
data	analysis,	manuscript	editing	and	approved	the	final	version	of	the	
manuscript.

Funding	 No	 funding	was	 received	 to	 assist	with	 the	 preparation	 of	
this	manuscript.

Data availability	 No	datasets	were	generated	or	 analysed	during	 the	
current	study.

Declarations

Disclosures	 The	 authors	 have	 no	 relevant	 financial	 or	 non-financial	
interests	to	disclose.

Competing interests	 The	authors	declare	no	competing	interests.

Open Access 	This	article	is	licensed	under	a	Creative	Commons	Attri-
bution-NonCommercial-NoDerivatives	 4.0	 International	 License,	 which	

The	 present	 study	 further	 showed	 children	 benefit	 from	
targeting ICP <	20	mmHg,	as	secondary	injury	may	already	
manifest	 after	 a	 short	 duration	 at	 this	 intensity.	 Our	 find-
ings	are	corroborated	by	previous	research,	showing	that	the	
transition	from	favorable	to	unfavorable	outcomes	occurs	at	
lower	intensities	and	shorter	durations	of	ICP	insults	in	chil-
dren	than	in	adults	[19,	28,	33].	These	results	emphasize	the	
need	for	insult	or	cumulative	ICP	monitoring	and	personal-
ized,	perhaps	more	aggressive,	targets	for	sTBI	management.	
This	will	also	benefit	CPP,	as	the	overall	percentage	of	time	
with	CPP	in	optimal	range	was	moderate	in	this	study.

The	 main	 strength	 of	 the	 present	 study	 is	 the	 develop-
ment	of	an	open	source	algorithm	based	on	qualitative	and	
high	capture	data	for	bedside	use.	The	 long	follow-up	cap-
tures	 the	ongoing	recovery	 trajectory	of	sTBI	patients.	The	
transparency	of	our	 study	allows	 researchers	and	clinicians	
worldwide	to	adopt	PANDA	in	clinical	practice	and	perform	
external	validation,	contributing	to	clinical	impact	and	which	
may	trigger	a	shift	in	neuromonitoring	with	the	establishment	
of	 pediatric	 and	 personalized	 therapeutic	 targets.	 Finally,	
through	focus	on	multiple	parameters	our	study	paints	a	com-
prehensive	 overview	 of	 neurovascular	 hemodynamics	 and	
CA.	 However,	 some	 limitations	 of	 the	 present	 study	 need	
to	be	addressed.	The	algorithm	requires	eight	hours	of	data	
and	intact	CA	to	determine	CPPopt,	so	it	 inherently	cannot	
generate	 CPPopt	 the	 entire	 monitoring	 time.	 Conversely,	
the	inability	to	generate	CPPopt	can	indicate	impairment	of	
CA.	Furthermore,	sTBI	is	a	heterogeneous	disease	in	which	
trauma	mechanism,	primary	injury	and	complications	vary	as	
well	as	the	various	therapeutic	strategies	that	 influence	ICP	
and	CPP	[10].	For	example	decompressive	craniectomy,	per-
formed	in	a	quarter	of	favorable	and	nearly	half	of	unfavor-
able	outcomes,	influences	cerebral	compliance	and	has	been	
shown	to	affect	PRx	[34].	Unfortunately,	subgroup	analysis	
was	not	feasible	because	of	small	sample	sizes.	With	regard	
to	outcome,	PCPC	was	used	instead	of	the	more	widely	used	
Glasgow	Outcome	 Scale	 (GOS),	 simply	 because	 PCPC	 is	
preferred	 in	 our	 center.	 The	 PCPC	 is	 a	 functional	 perfor-
mance	 score	 unable	 to	 provide	 a	multidimensional	 picture	
on	individual	outcome.	Nonetheless,	the	score	is	suitable	to	
categorize	patients	in	functional	outcome	groups.	Finally,	we	
were	unable	to	compare	our	algorithm	to	currently	available	
commercial	 algorithms,	 such	 as	 ICM+®,	 as	 these	 are	 not	
available	in	our	center.	However,	further	validation	by	com-
paring	our	algorithm	to	commercial	algorithms	is	a	necessary	
step	in	future	studies.

With	 PANDA,	 the	 present	 study	 presents	 an	 open-source	
algorithm	 for	 CA-based	 neuromonitoring,	 which	 obtained	
significant	 association	 with	 long-term	 outcome	 at	 one	 year	
post-injury	 in	 retrospective	 data	 of	 children	 admitted	 to	 the	
PICU	with	 sTBI.	This	 implies	 that	CA-based	 neuromonitor-
ing	is	clinically	relevant	and	feasible	without	commercialized	
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