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Saudi Arabia is seeking fresh groundwater resources to face the increase in anthropogenic
activities. The groundwater storage variations and occurrence were investigated and the
surface and subsurface structures influencing the groundwater resources in the research
area were defined using a combined study of Gravity Recovery and Climate Experiment,
aeromagnetic data, and electrical resistivity data with other relevant datasets. Results are:
The groundwater storage fluctuation is calculated at −0.34 ± 0.01 mm/yr during the period
04/2002-12/2021. The area is receiving an average annual rainfall rate of 117.6 mm during
the period 2002 to 2019. Three structural trends, defined in the directions of NS, NNW,
and NNE are cutting the sedimentary cover and the basement rocks. The sedimentary
cover ranges from 0 to 1.2 km thick. Vertical electrical sounding results indicate three main
geoelectric layers: the surface geoelectrical layer of higher resistivity values (428-9626 Ω.
m) is made up of unconsolidated Quaternary sediments; the water-bearing layer of
saturated sands with a resistivity range between 5.1 and 153 Ω. m and with depths
vary from 1 to 94m, and highly fractured basement rocks with resistivity values ranging
from 813 to 6030 Ω. m. The integrated results are useful in providing a comprehensive
image of the study area’s surface and subsurface structures, as well as groundwater
potential in the southwestern part of Saudi Arabia. Our integrated approach provides a
reproducible model for assessing groundwater potential in arid and semiarid areas.

Keywords: gravity data, magnetic data, vertical electrical soundings, satellite data, structural trends, groundwater,
saudi arabia

INTRODUCTION

Saudi Arabia is the largest arid country in the Middle East, with an area of 2.24 × 106 km2 in the
Arabian Peninsula. Saudi Arabia is an arid country with limited water resources. Due to the
increasing demand and unreliable sources of surface water, about 75-85% of water supplies come
from groundwater, which is essentially classified as a fossil water resource. Minor natural recharge
might occur in the mountainous areas. Therefore, investigating groundwater occurrence plays an
important role in the country.

The launch of the Gravity Recovery and Climate Experiment (GRACE) mission opened up new
possibilities for monitoring and estimating the terrestrial component of the hydrological cycle, which
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includes groundwater resources (Tapley et al., 2004). GRACE
anomalies in terrestrial water storage (TWS) are widely employed
in hydrological applications ranging from regional to global scales
(e.g., Wouters et al., 2014; Frappart et al., 2019). In recent years,
several studies were carried out to assess the hydrological settings
and components of major basins and large aquifers. For instance,
GRACE and Global Land Data Assimilation System (GLDAS)
data, with other observed data were used to differentiate the
Mississippi River basin’s water budget and came up with
respectable results (Yeh et al., 1998; Yeh et al., 2006; Rodell
et al., 2007). Furthermore, some studies in the Arab world have
combined GRACE with other relevant information to quantify
groundwater storage variability and estimate aquifer recharge and
depletion rates (Mohamed et al., 2014; Mohamed et al., 2015;
Fallatah et al., 2017; Mohamed et al., 2017; Fallatah et al., 2019;
Mohamed, 2019; Mohamed, 2020a; Mohamed, 2020b; Mohamed,
2020c; Mohamed et al., 2021; Mohamed and Gonçalvès, 2021;

Taha et al., 2021; Mohamed et al., 2022b). GRACE can be used to
fill the blanks in hydrologically monitoring data (Famiglietti et al.,
2011).

It offers global monthly fluctuations in terrestrial water storage
(ΔTWS) (Wahr et al., 2004; Syed et al., 2008). GRACE data has a
low horizontal resolution, and there is no vertical resolution for
GRACE data, which makes this use difficult (e.g., Ahmed et al.,
2016). GRACE is unable to distinguish between contributions
from TWS’s multiple compartments (for example, surface water,
groundwater, and soil moisture). The combination of land surface
model outputs with GRACE data is now allowing individual
elements from GRACE-derived TWS estimates to be extracted
and the data’s horizontal resolution to be improved.

The magnetic method has been widely applied for delineation
of the structural trends of the subsurface structures and
estimating the depth of the basement crystalline rocks in
many regions (Al-Garni, 2004a; Al-Garni, 2004b; Al-Garni

FIGURE 1 | (A) the Location map of the study area, and (B) its geology.
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et al., 2005; Al-Garni et al., 2006; Sultan et al., 2009; Al-Garni,
2010). The aeromagnetic data is integrated with remote sensing
data to investigate groundwater resources (Meneisy and Al Deep,
2020; Mohamed and Ella, 2021). Bakheit et al. (2013) used
airborne magnetic data to trace and analyze structural trends
to locate the position of tectonic lines and subsurface structures.
Eldosouky et al. (2022a) used the analytical signal and the
horizontal gradient magnitude to map the structures of Gabal
Shilman area. Saada et al. (2022) have applied the regional-
residual separation, tilt derivative, and spectral analysis
techniques to better understanding the structural features for
the east of the Qattara depression area using magnetic and gravity
data. Ranganai and Ebinger (2008) assessed the regional
groundwater resources using an integrated approach of
Landsat images with aeromagnetic data at south-central
Zimbabwe Craton.

Separating the deep from the shallow sources of potential field
anomalies and recognizing their edges are crucial in geophysics
(Eldosouky, 2019; Pham et al., 2021a; Eldosouky and Mohamed,
2021; Eldosouky et al., 2022d). As a result, edge detection is an
important analysis direction in pattern recognition for mapping
structures, geologic contacts, and ore deposits (Oruç, 2011;
Arisoy and Dikmen, 2013; Ibraheem et al., 2018; Eldosouky
et al., 2020; Eldosouky and Saada, 2020; Pham et al., 2020;
Pham et al., 2021a; Saada et al., 2021a; Pham et al., 2021b;
Saada et al., 2021b; Pham et al., 2021c; Pham et al., 2021d;
Eldosouky et al., 2021; Eldosouky et al., 2021; Melouah et al.,
2021; Eldosouky et al., 2022a; Eldosouky et al., 2022b; Eldosouky
et al., 2022c; Sehsah and Eldosouky, 2022).

The geoelectrical resistivity, electromagnetic, seismic
refractive, gravity, magnetic, and radioactivity techniques are

among the surface geophysical methods utilized in
groundwater study. Overburden thickness, aquiferous zones,
bedrock architecture, and topography can all be estimated
using these methods (Adagunodo et al., 2014; Joel et al., 2016;
Adagunodo et al., 2017; Oyeyemi et al., 2017; Adagunodo et al.,
2018). The current research is based on the use of electrical
resistivity as a geophysical tool for groundwater exploration that
is considered the most promising and appropriate technology for
groundwater exploration and aids in the identification of the
appropriate place for groundwater investigation.

The electrical resistivity method was widely used for issues
associated with groundwater exploration (Mousa, 2003; Hosny
et al., 2005; Nigm et al., 2008; Mohamaden et al., 2009) in
different media by detecting the surface effects produced by
the flow of electric current inside the earth and correlation
between the electrical properties of geological formations and
their fluid content. The aquifer material, pore space volume, fluid
quantity, and salinity level all have an impact on electrical
resistivity values. Moreover, the water-bearing formations’
geometry has been assessed. (Robain et al., 1995; Robain et al.,
1996). This electrical resistivity method was employed to identify
the saline-freshwater interface zone (Yechieli, 2000; Choudhury
et al., 2001), water-related parameters (Kosinski and Kelly, 1981;
Frohlich and Kelly, 1988; Troisi et al., 2000) and water quantity
(Kessels et al., 1985). Furthermore, contaminated groundwater
zones influence the electrical resistivity approach (Karlik and
Kaya, 2001). The resistivity technique has been effectively utilized
to determine the formations’ thickness and groundwater
potential (Raju and Reddy, 1998) and to study the
groundwater potential and the aquifer system of fractured
hard rocks (Chandra et al., 2012; Ologe et al., 2014; Al Deep

FIGURE 2 | The RTP map of the study area shows the locations of the 2D profiles and the Vertical Electrical Soundings.
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et al., 2021). It has also been combined with borehole data to
estimate geohydraulic parameters from Abi’s fractured shales and
sandstone aquifers (Ebong et al., 2014). In hard rock

environments, geoelectrical resistivity techniques have been
widely used to delineae shallow subsurface lineamnets and
fractures (Ebong et al., 2014; Almadani et al., 2019) and faults

FIGURE 3 | Tilt derivative angle (A), Total horizontal derivative (B), and Enhanced horizontal gradient amplitude (C) maps of the study area.
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(Suzuki et al., 2000; Fazzito et al., 2009), which are the targets of
groundwater investigation (Titus et al., 2009). Ebong et al. (2021)
have applied vertical electrical sounding (VES) and electrical
resistivity tomography techniques to evaluate the geological
features and groundwater potential of the Obudu basement
complex in southeastern Nigeria. Because of its availability,
simplicity, and developments in computer software and other
inversion approaches, VES is the most often used groundwater
prospecting technique (Kana et al., 2015).

Morsy and Othman (2021) have applied an integrated
approach of electrical resistivity and ground-penetrating radar
with topographic data to evaluate the groundwater potential
zones in the southwestern part of Makkah city. Their results
show that the groundwater accumulation is localized in faulted-
bounded depressions and wadis. Sharaf (2011) has integrated the
resistivity and seismic measurements with test holes drilled in the
As Suqah area, Makkah ditrcit. His findings demonstrate that
groundwater is found mostly in two water-bearing zones: alluvial
deposits and the Haddat Ash Sham and Ash Shumaysi
formations’ clastic sedimentary rocks. Taha et al. (2021) used
gravity and electrical resistivity data to investigate the
groundwater resources of wadi Sar in Hijaz mountains on a
regional and local scale. Their findings reveal a general downward
trend in groundwater storage variation computed at −2.00 ±
0.34 mm/yr from 04/2002 to 07/2017, as well as the presence of a

water-bearing layer with low resistivity and variable thickness in
fractured basement rocks of Wadi Sar. Despite the fact that
similar studies may be conducted in various locations in Saudi
Arabia’s southwest, no previous studies using our proposed
geophysical methodologies have been conducted for the entire
study area, which is located between longitudes 41.91° and 45.61°

and latitudes 17.26° and 19.12°.
Other satellite and airborne geophysical field datasets have

been utilized to explore crustal features at the continental scale
(Mohamed and Al Deep, 2021), the geometry of the magma
chamber and heat flow (Mohamed et al., 2022a), and land
subsidence caused by heavy groundwater withdrawal (Othman,
2019; Othman and Abotalib, 2019).

GRACE and GRACE Follow-On (GRACE-FO) solutions
are used in conjunction with other climatic data to track
spatial and temporal changes in water storage as a result of
climate change and/or anthropogenic activities. The study
also aims to investigate the groundwater potential of the
study area using airborne magnetic data and electrical
resistivity technique. Magnetic data was used to identify
structural features and map the depth to underlying
crystalline rocks that affect groundwater in the study area,
whereas the shallow electrical survey was carried out to
investigate the depth of the groundwater and the
subsurface geology in the study area.

FIGURE 4 | (A) Monthly rainfall rate (mm/month) derived from TRMM data over the area. (B) the average annual rainfall (AAR) was taken from TRMM data. (C)
Annual rainfall rate (mm) for the research area.
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GEOLOGICAL AND HYDROGEOLOGICAL
SETTING

According to Greenwood et al. (1982), there are two primary
subdivisions of layered rocks on the southern Arabian Shield
south of latitude 22° N. An older ensimatic-arc complex and a
younger marginal-arc complex are involved. Greywacke and
mafic to intermediate volcanic rocks of the essentially
contemporaneous Baish, Bahah, and Jidah groups make up the
older arc complex. The younger arc complex is ensimatic in
nature and partly superimposed over the older arc complex. The
Halaban group, which was located to the east and northeast of the
older ensimatic-arc complex, formed part of the younger arc
group’s ensimatic portion. The Ablah, Samran, and maybe Arafat
groups reflect the superimposed parts of the younger arc
complex. The Halaban group consists of andesitic and dacitic
volcanic rocks as well as related clastic sedimentary rocks.

Based on the distribution of layered rock units of various ages
and the orientation of overlying structural features, a number of
N to NE-trending belts were delineated in the southern part of the
Arabian Shield. Major fault zones run the length of these belts,
defining their limits. The majority of these boundary faults go
north and dip severely. Folds and other lineations in and around
them frequently plunge down dip, both shallowly and steeply.
Many of these faults are folded in random locations along their
strike (Greenwood et al., 1982).

Our study region is located in the southwestern part of
Saudi Arabia (Figure 1A). Its geology is shown in Figure 1B.
The study region’s exposed basement rocks are made up of
two separate units: Khamis Mushayt Gneiss and pegmatites.
The Khamis Mushayt Gneiss rocks, which include banded
orthogneiss, migmatite with little paragneiss, and
amphibolite, are the major basement unit in the area.
There are various aplite and pegmatite dikes in this unit.
Quartz, orthoclase, plagioclase, and biotite make up the
pegmatite unit. Flat-lying Cambrian-Ordovician sandstones
and spatially variable alluvial deposits of pebbles, gravels,
sands, and clays overlay these two basement layers in some

locations. In the western part of the area, the old Wajid
Sandstone rocks appear. After the end of late Proterozoic
igneous activity, the Cambrian-Ordovician Wajid Sandstone
rocks were deposited.

According to field research, the majority of the aquifer in the
researched area is made up of cracked and jointed hard rocks,
which are then refilled by precipitation via infiltration. Shallow
aquifers with varied porosity and permeability are formed by
cracked and jointed hard rocks, affecting the aquifer storage
coefficient. Groundwater flow is reduced by fine sediments
deposited in joints, cracks, and faults in hard rocks, allowing
runoff loss and aquifer recharging. By digging the rocks below,
the water from these aquifers is pumped through the drilled wells
(Khan, et al., 2022).

MATERIALS AND METHODS

GRACE/FO Data
GRACE is a pair of satellites that measure changes in the Earth’s
gravitational field in both spatial and temporal variations. It was
launched in 2002 as a collaborative US-German project (Tapley
et al., 2004). Changes in water content are the primary cause of
changes in the Earth’s gravity field. There are two sources of the
GRACE/FO datasets, represented by the spherical harmonic and
mass concentration solutions (mascon). In this study, the mascon
products were used in the current study. With improved spatial
resolution and minimal inaccuracy, these mascons capture all of
the signals detected by GRACE within the GRACE noise limits.
Smoothing filtering and/or Spectral de-striping are not required
with the mascon solutions. Furthermore, there is no need for a
scaling technique for the CSR-M. CSR-M (Save et al., 2016; Save,
2020; released from the Center for Space Research; http://www2.
csr.utexas.edu/grace/), and JPL-M (Watkins et al., 2015; Wiese
et al., 2016, Wiese et al., 2018; Landerer et al., 2020; released from
the Jet Propulsion Laboratory; http://grace.jpl.nasa.gov), two
versions of GRACE/FO mascon solutions, are used to calculate
the ΔTWS that are available from april 2002 to June 2017 for
GARCE and from June 2018 to December 2021 for GRCE/FO.
Monthly gravity field fluctuations provided by the JPL-M data are
of release 06, and with 0.5 ° × 0.5 ° grids (Watkins et al., 2015;
Wiese, et al., 2016; Wiese, et al., 2018; Landerer et al., 2020). A
subset of these JPL mascons crosses coasts and includes signals
from both land and sea mass changes. As a post-processing step,
the Coastal Resolution Improvement filter was used for the entire
mascon solution to detect land and ocean mass from individual
mascons that cross coastlines (Watkins et al., 2015). Therefore,
the scaling factor must apply to the JPL-M to recover the leakage
signals. In comparison to the RL05 version, the CSR mascon
products of release 06, and with 0.25 ° × 0.5 ° grids (Save et al.,
2016; Save 2020) use a freshly designed grid. The hexagonal tiles
that cover the shoreline in this new grid are split into two tiles
along the coast to reduce signal loss between land and sea. The
cubic-spine approach was used to interpolate the missing
monthly data. The time series and secular trends of TWS and
groundwater storage variations (GWS) were constructed using
the two potential solutions, and the TWS trend was produced.

FIGURE 5 | Color-coded ΔTWS trend during the period 04/2002-12/
2021from averaging of the CSR-M data.
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GLDAS, TRMM, and SRTM Data
GLDAS is an observational data assimilation system with satellite
and ground-based components. It produces optimal fields of land
surface states and fluxes using advanced land surface modelling

and data assimilation techniques. For soil moisture storage
(ΔSMS), outputs of GLDAS (Rodell et al., 2004; https://disc.
gsfc.nasa.gov/datasets) are employed. In this work, the
averaging of three GLDAS versions (CLSM, VIC and NOAH)

FIGURE 6 | ΔTWS from JPL-M and CSR-M mascon products across the study area, as well as their averaging (Avg-TWS) during the investigated time.

TABLE 1 | TWS components calculated by GRACE and GLDAS.

Component Entire Time Period Period I (02/2004-12/2006) Period II (01/2007-12/2015) Period III (01/2016-12/2021)

GRACE total (ΔTWS) (cm/yr) CSR-M −0.30 ± 0.02 −0.06 ± 0.13 −0.26 ± 0.04 −0.90 ± 0.14
JPL-M −0.38 ± 0.01 −0.12 ± 0.08 −0.37 ± 0.03 −0.44 ± 0.09
AVG −0.34 ± 0.0.1 −0.09 ± 0.09 −0.31 ± 0.03 −0.67 ± 0.09

ΔSMS (mm/yr) +0.03 ± 0.02 +0.12 ± 0.19 +0.04 ± 0.04 −0.18 ± 0.14
ΔGWS (cm/yr) p value −0.34 ± 0.01 <0.0001 −0.10 ± 0.08 −0.32 ± 0.03 <0.0001 −0.66 ± 0.09 <0.0001
AAR (mm) 117.6 124.8 97.4 161.3

Mascon products CSR-M, and JPL-M; GWS: groundwater storage change; SMS: soil moisture change; Annual Average Rainfall is abbreviated as AAR.

FIGURE 7 | Time series and averaging of ΔGWS from JPL-M and CSR-M mascon products across the study area over the investigated time.
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was used. To calculate the ΔGWS, the ΔSMS changes are
subtracted from the ΔTWS using Eq 1

ΔTWS� ΔGWS+ΔSMS (1)
The Tropical Rainfall Measuring Mission (TRMM; https://

disc.gsfc.nasa.gov/datasets) is a collaborative space mission
designed to monitor and analyze tropical rainfall (Kummerow,
1998). TRMM and Shuttle radar topography mission (SRTM)
data are used. The monthly TRMM data, covering the January
2002-December 2019 period with a spatial resolution of 0.25° × 0.
25°, are used to create the average annual rainfall (AAR) and to
generate the monthly rainfall time series and the AAR rate over
the study area. A Digital Elevation Model (DEM) was created
using SRTM data with a 90 m resolution that was used for the
delineation of the stream networks in the area. Landsat eight
datasets were used to extract the surface lineaments affecting
the area.

Aeromagnetic Data
The total magnetic intensity (TMI) map used in the current study
was provided from the Saudi Geological Survey. The TMI map was
subjected to different filtering techniques such as the reduction to
the pole, tilt derivative, and analytical signal. These filters were used
to enhance the image’s signal intensity, evaluate the magnetic
anomalies qualitatively, and calculate the depth to the magnetic
sources. The Geosoft program (Geosoft oasis montaje, V.8.2.4,
2015) was used to handle and analyze the aeromagnetic data.
Figure 2 shows the reduced-to-pole (RTP) magnetic map.

The RTP filter is used to eliminate the skewness of magnetic
anomalies induced by non-vertical magnetization directions. The
RTP anomalies’maxima are directly over the causal bodies, making
explanations easier (Lu et al., 2003). The TMI data were corrected
for the RTP in this investigation using the Oasis Montaj Fourier
transformation approach (Geosoft oasis montaje, V.8.2.4, 2015).
The parameters of the International Geomagnetic Reference Field
(IGRF) are as follows: The total magnetic field intensity was
39,582 nT, and the inclination and declination were 25.5 and
1.6, respectively. These characteristics were utilized to produce
the RTP map (Figure 2) from the TMI field.

The magnetic anomalies’ edges and locations were sharpened
using the Tilt angle (TDR) derivative (Mushayandebvu et al.,
2001). It is applicable in mapping mineral investigations and
shallow basement structures (Geosoft oasis montaje, V.8.2.4,
2015). It was defined by Miller and Singh (1994), as the ratio
of a vertical to a combined horizontal derivative as in Eq.2:

TDR � tan−1[(zf/zz)/sqrt[(zf/zx)2 + (zf/zy)2]] (2)
The potential field is represented by f, and the vertical

derivative of the field is (›f/›z). The tilt angle is positive
when above the source, at the edge where the vertical
derivative is zero and the horizontal derivative is a maximum,
and negative when beyond the source region. The tilt angle can be
used to trace the pattern of the edges because it produces a zero
value over the source edges (Miller and Singh, 1994). The tilt
amplitudes are in the range of -π/2 to +π/2.

To detect the borders of the magnetic structures, the total
horizontal derivative (THDR) technique was used extensively
(Pilkington and Keating, 2004; Cowan et al., 2005; Cooper,
2009). It calculates the potential field’s rate of change in
horizontal directions (Cordell, 1979). The faulted boundaries
may have high gradient zones, which can be identified using
horizontal derivative maps. The horizontal gradient approach
has the advantage of being less vulnerable to data noise because
it only involves the computation of the field’s two first-order
horizontal derivatives (Phillips, 1998). The horizontal gradient’s
amplitude (Cordell and Grauch, 1985) is represented as :

THDR � sqrt[(zf/zx)2 + (zf/zy)2] (3)
The horizontal derivatives of the field in the x and y directions

are (zf/zx) and (zf/zy), respectively. When applied to field
observations, TDR and THDR (Figure 3) both operate as an
automatic gain control filter.

To detect the magnetic and gravity source edges, Pham et al.
(2020) designed a new edge detection filter. The real part (R) of an
arcsine function (asin) of the ratio of the vertical gradient to the
total gradient of the amplitude of the field’s horizontal gradient is
used to create the new Enhanced Horizontal Gradient Amplitude
(EHGA) filter. They tested its usefulness in defining source edges
using synthetic and real data, and compared the results to those
produced by other methods. Edges produced by the filter are more
accurate and have a higher resolution. Eq 4 gives the EGHA edge
detector:

EHGA � R
⎡⎢⎢⎢⎢⎢⎢⎢⎣asin⎛⎜⎜⎜⎝k⎛⎜⎜⎜⎝ HGAz���������������������

HGA2
x +HGA2

xy +HGA2
z

√ − 1⎞⎟⎟⎟⎠ + 1⎞⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Where HGA is the potential field’s entire horizontal gradient
amplitude. HGAx, HGAy, and HGAz are the x, y, and z gradients
of the HGA. K is a positive number decided by the interpreter.

Geoelectrical Data
On the local scale, the use of geophysical techniques for
groundwater investigation has increased considerably during

FIGURE 8 | Stream networks were extracted from SRTM 90 over the
study area.
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the previous decade due to the high advances and developments
in electronic technology and numerical modeling solutions
(Metwaly et al., 2009; Ndlovu et al., 2010). The electrical
resistivity is a common method for groundwater exploration
due to its low cost, simple operation, and efficiency.

Electrical resistivities of subsurface materials can be measured
using geoelectrical techniques. These measurements provide
information on underlying geoelectrical layers, structures, and
groundwater occurrence (Van Overmeeren, 1989; Dahlin et al.,
1999a; Muchingami et al., 2012). Archie’s Law (Archie, 1942)
describes the occurrence of fluid in the fluid-bearing formations
and suggests that the resistance decreases with increased water
content according to an inverse power law as follows:

ρo � aρfφ−m (5)
Where ρo is the fully saturated rock’s resistivity, ρf is the water

filling the pores’ resistivity, φ is the porosity, and a and m are
empirical parameters (Keller and Frischknecht, 1966).

The cementation exponent is defined by the m parameter,
which has values ranging from one to 5. (Glover, 2010).
Regarding the soil moisture content, Grellier et al. (2005)
demonstrated that Archie’s law can be reduced to Eq 6:

ρo � αρfθ−mw (6)
Where θw is the medium’s gravimetric moisture content, and α is
a quantity that includes the medium’s bulk density, as in Eq 7:

θ � M

Mt
(7)

Passing an electrical current (I) between two metallic electrodes
and measuring the potential difference (V) between them is the
electrical resistivity method. The apparent resistivity is calculated
using the following equation (ρa, Eq 8) (Dahlin, 2001):

ρa � KΔV/I (8)
K, a geometrical factor, depends only on the position of the

electrodes.

FIGURE 9 | (A) Landsat images with extracted surface lineaments, and (B) a rose diagram with the major structural patterns.
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Twelve vertical electrical resistivity soundings (VESes), with
current electrode (AB) separation, ranging between 200 and
500 m, were conducted along eight profiles (Figure 2) using a
Schlumberger array. The apparent resistivity value depends on
the geometrical configuration of the electrode array, as defined by
the geometric factor.

The IP2WIN (2005) application was used to process the
VESes. The experimental data curve has been divided into
smaller curves. Each one is a geoelectrical unit with a known
resistivity Ω.m) and thickness (m), and it could represent a
geologic layer with different physical attributes than the layers
above and below it.

FIGURE 10 | (A) Magnetic lineaments extracted from the RTP map; (B) a rose diagram highlighting the major structural patterns.
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RESULTS

The results of the processed TRMM data are shown in Figure 4.
Analyses of the rainfall data show a general positive AAR trend
over the study area estimated at 117.6 mm/yr. The results of the
spatial distribution of the secular trend in GRACE-derived ΔTWS
data and the monthly ΔTWS time series over the study area are

shown in Figures 5, 6. Both the ΔTWS and ΔGWS from the two
mascon datasets show a negative trend estimated at −0.34 ±
0.01 cm/yr over the entire period. The RTP, TDR, THDR, and
EHGAmaps are shown in Figures 2, 3. These maps show that the
study area is affected by subsurface structural trends in the
directions of NS, NNW, and NNE. The ground surface relief
is forming streams (Figure 8) taking the surface water away

FIGURE 11 | The 2D inverted magnetic models.
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towards the E, N, and W. The surface structures were extracted
from the Landsat images (Figure 9). Surface and subsurface main
trends in the direction of NNW are delineated from the Landsat
images (Figure 9) and the RTP map (Figure 10), respectively.
The subsurface geology is represented by two layers (Figure 11)
of different magnetic susceptibility values reflecting the top
sedimentary cover and the lower basement crystalline rocks.
The inversion of the resistivity data resulted in three
geoelectrical layers (Figure 12) with varied physical attributes.
Higher resistant unconsolidated Quaternary sediments make up
the first geolectrical layer, low resistant sands saturated with water
make up the second layer, and low to high resistant fractuted and/
or massive basement rocks make up the third one (Table 2).

DISCUSSION

In this work, we used a combined method using GRACE satellite
data with other airborne and ground-based geophysical data to
investigate the groundwater potentialities of the southwestern

part of Saudi Arabia. The monthly rainfall rate (Figure 4A) is
higher in the March to September months and lower in the
October to February months. The coastline region had a higher
AAR rate of about 300 mm, whilst the eastern parts had lower
values of up to 50 mm (Figure 4B). The AAR time series
(Figure 4C) shows a generally positive trend with the AAR of
117.6 mm throughout the period 2002-2019. The AAR rate is one
of the most important characteristics of a region’s climate, as well
as its associated ecosystem types and habitats. The amount of
rainfall a region receives has an impact on stream density, water
availability, land cover type, and agricultural output. Based on the
linear regression analysis of the AAR; three time periods are
distinguished (Figure 4C). Period I (2002-2006) shows an AAR
of 124.8 mm/yr; Period II (2007-2015) shows a minimal AAR of
97.4 mm/yr; Period III (2016-2019) shows the highest AAR of
161.3 mm/yr. Period II is consistent with the onset of the 2007
drought and the dry climatic conditions that affected the Middle
East area (Trigo et al., 2010). As a result, the region has suffered
from water scarcity and limited water resources since the
beginning of that drought (Wolf and Newton 2007; IRIN

FIGURE 12 | The VES inverted models.
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2010; Voss et al., 2013; Mohamed, 2020b). However, the higher
AAR rate during Period III indicates that the study area is
receiving a substantial precipitation rate.

The research area had an overall negative TWS trend over the
entire period (04/2002-12/2021), as shown in Figure 5. The
southwestern part of the research area has a little positive TWS
rate (+0.08 cm/yr), but the northeastern part has a negative
TWS rate (−0.5 cm/yr). Figure 6 shows the monthly time series
of TWS fluctuations from the two mascon products, as well as
their mean. Witnessing of this figure shows a general depletion
in ΔTWS rate estimated at −0.30 ± 0.02, −0.38 ± 0.01, and
−0.34 ± 0.01 cm/yr from the CSR-M, JPL-M, and their mean,
respectively during the entire period. The ΔTWS time series has
three trends throughout the entire study period based on the
linear regression analysis of the average (Figure 6). Period I
shows a slightly negative trend, calculated at −0.09 ± 0.09 cm/yr
(Table 1). A negative TWS Δtrend is estimated at −0.31 ±
0.03 cm/yr for Period II, whereas Period III shows a highly
negative trend, calculated at −0.67 ± 0.09 cm/yr.

The GLDAS-derived ΔSMS for Periods I, II, III, and the entire
period are +0.12 ± 0.19, +0.04 ± 0.04, −0.18 ± 0.14 and +0.03 ±
0.02mm/yr, respectively assuming that large crystalline rocks occupy
the majority of the surface area. To estimate the fluctuations in the
ΔGWS (Figure 7), the non-groundwater component, represented by
the ΔSMS, was subtracted from the ΔTWS. During Periods I, II, III,
and the entire period, average depletion rates of −0.10 ± 0.08, −0.32 ±
0.03, −0.66 ± 0.09 and −0.34 ± 0.01 cm/yr were obtained for the
ΔGWS trend values, respectively. The ΔTWS and ΔGWS trends
both follow the same pattern.

Inspection of Figure 4C indicates that there is a general
increase in the AAP rate during Period III; however, the
highest ΔGWS depletion rate (Figure 7) is observed in that
Period. This is largely attributed to the drainage pattern and
the surface material of the study area. Inspection of Figure 8
shows the stream networks overlay the DEM. It shows higher
relief of about 2000-2900 m in the Mountainous area close to the
Red Sea coastal area. It decreases north and eastward to low values
of about 1,000 m in its eastern part. It shows a steep slope toward

FIGURE 12 | (Continued).
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the west at the coastal area. Surface water that may be formed
from the substantial rainfall is being drained away from these
stream networks toward the east and north. The rest of the surface
water drains into the Red Sea’s coastline area. This may explain
the negative trend in ΔGWS over the study area. Moreover, the
eastern and central parts of the area are occupied by massive
crystalline rocks that help the surface water drain away north and
eastwards. Part of the surface water is drained toward the coastal
area which shows a positive TWS value (Figure 5).

Witnessing Figure 2 shows that the magnetic intensity values
vary from −1,377 to +524 nT. The lithological changes, basement
relief, and/or faulting and folding may be the cause of the
variations in the magnetic intensity values. Lower and higher
magnetic anomalies are almost arranged in N-S and NNW
directions. The enhanced edges of linear features in the TDR
map (Figure 3A) could be attributable to deep and shallow
magnetic sources (Miller and Singh, 1994). The most
important advantage of the TDR is its zero contour line that
suggests the locations of the subsurface structures caused by sharp

changes. The magnetic anomalies are practically aligned in
definite orientations, generating structural trends in the NS,
NNW, and NNE directions, as seen in the TDR map (Figure
3A) and its zero contour line. The edges of the maxima are well-
defined in the THDR map (Figure 3B), assuming that amplitude
enhancement is preserved. It calculates the potential field’s rate of
change in horizontal directions. The structural trend in the NS
direction can be detected from the magnetic anomalies that are
oriented in a slightly NS direction, according to the THDR
(Figure 3B). The EHGA map (Figure 3C) reveals that the
structural trends are almost in the NS direction, with higher
resolution and sharper responses over the edges of the study
area’s magnetic sources.

The surface geologic features (lineaments) of the study area
were mapped using Landsat eight images (Figure 9A). The
extraction of these lineaments from remote sensing data can
be done through automatic extraction (Anwar et al., 2013; Rayan,
2013). Several computer-assisted lineament extraction methods
have been proposed. The majority of the methods rely on edge

FIGURE 12 | The VES inverted models.
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filtering. The PCI Geomatica’s LINE module is the most
extensively used software for automatic lineament extraction.
The predominant trend derived from the analysis of geological
lineaments is in the NNW direction (Figure 9B). The subsurface
trends of fault lines were also analyzed using the trend analysis
technique according to their lengths, abundance, and magnitude
concerning the azimuth. The magnetic structures have a
significant relation with the intensity, direction, and geometry
of the magnetic anomaly trends (Hall, 1964). Subsurface tectonics
are delineated using magnetic trend patterns (Affleck, 1963). The
trend analysis technique was applied to delineate the subsurface
trends controlling the groundwater flow pathways in the area.
The trend analysis shows that the main structural trends are in
NNW, NNE, and NE directions (Figure 10). Minor trends are
represented in the NS direction. The lineaments could also be
interpreted as the edges of geological bodies and directions of
structures. The integration of the delineated surface and
subsurface structural trends may indicate the continuity of the
NNW trend within the basement rocks and the overlying
sedimentary deposits. This leads to a connection between the
shallow Quaternary and the deeply fractured basement rocks
aquifers that may feed the deeper aquifer. The subsurface
structural trend and related fractures, on the other hand, are
draining groundwater and recharging water away to the north,
west, and east. This causes also a depletion in the groundwater
storage of the study area, as estimated from the GRACE data at
−0.34 ± 0.01 mm/yr during the period 04/2002-12/2021.
However, groundwater can be accumulated at the intersection
zones of the faults.

The underlying geology was investigated and the thickness of
the sediments overlying the crystalline basement rocks was
estimated using 2D modeling of magnetic data along profiles.
To create 2D models from magnetic data, we used the Geosoft
GM-SYS software package. We can optimize the model using the
GM-SYS inversion option. Modeling programs require adequate
initial estimations of model parameters such as body form,

susceptibility, topography, depth, and magnetization of
suspected sources to minimise errors of non-unique solution
between observed and calculated magnetic fields. The profiles’
models are illustrated in Figure 11. The geological succession is
mostly represented by two rock types, according to these models:
(a) the upper sedimentary layer that is composed of Quaternary
and/or Paleozoic sediments, and (b) the lower Pre-Cambrian
crystalline rocks that are composed of granitic and metamorphic
rocks. A two-layer model was applied in the modeling, given that
the Quaternary cover is the non-magnetized layer, and the
basement is the magnetized layer. The magnetic susceptibility
values of 0.00001–0.0005 CGS and 0.001–0.038 CGS units were
chosen for the non-magnetized sedimentary and the more
magnetized basement rocks, respectively. The thickness of the
Quaternary sediments shows wide variations, it varies from 0 to
~1.2 km in the study area. The fewer thickness of the sedimentary
cover in that area is suggesting the presence of lower groundwater
potential in the upper sedimentary aquifer.

Three geoelectrical units (Figure 12; Table 2) of known
resistivity and thickness values are recognized, which may
reflect geologic layers of physical properties that differ from
those located above and below. The details of the geoelectrical
units are described in the following: The surface geoelectrical
layer has different resistivity and thickness values varying from
one place to another. The resistivity values of the first layer are
varying from 428Ωm at V3 (Race 4) to 9626Ωm at V4 (Najran
37), whereas the thickness values are varying from 1 m at VES V1
(bish-4) and VES Vt (Najran 10) to about 94 m at VES 3 (Najran
48). The second geoelectrical layer represents the water-bearing
unit in the study area. This layer has resistivity values varying
from 5.1Ωm at V1 (bish-4) to 153Ωm at V4 (Najran 37), and
thickness values varying from 8 m at V7 (Edaby-2) to 107 m at V1
(bish-5). The third geoelectrical layer is represented by low to
high resistant basement rocks with resitivity values varying from
20Ωm at V1 (P1, bish-5) and 30Ωm at V2 (P1, bish-4) to
6125Ωm at Vt (P3, Najran 48) and 6030Ωm at V3 (P6, Najran

TABLE 2 | The resistivity (Ω.m) and depth (m) values for the various inverted geoelectrical layers.

Project Profile No VES Elevation (m) Layer 1 (Weathered rocks) Layer 2 (Water-Bearing
Unit)

Layer 3 (Hard Rocks)

Depth (m) Rho (Ω m)< Depth (m) Rho (Ω m) Depth (m) Rho (Ω m)<

bish-4 P1 V2 64.6 0:1 766 11:122 11–28 >122 30
bish-5 P1 V1 65 0:14 434 14:121 10 >121 20
Edaby-2 P2 V7 367.5 0:4.5 2133 4.5:12.5 20 >12.5 5,627
Edaby-2 P2 V8 365.2 0:5 1955 5:15 20 >15 5,511
Race 1 P2 V4 1,101 0:25 990 25:58 9 >58 5,434
Race 4 P2 V3 525.6 0:11.5 428 11.5:23 138 23 1,388
Najran 48 P3 Vt 1812 0: 94 467 94:168 1.5 >168 6125
Najran 37 P4 V4 1,325.5 0: 4 9626 4:22 153 >22 813
Najran 12 P5 V5 1,278.1 0: 2 140 2:20.5 53 >20 2779
Najran 4 P6 V1 1,246 0: 5.5 2619 5.5:27 19 >27 5,523
Najran 6 P6 V1 1,303.7 0: 15 828 15:103 56 >103 4,738
Najran 10 P6 V3 1,190 0:1 1,693 1:24 69 >24 814
Najran 9 P6 V3 1,182 0:8 183 8:60 52 >60 6030
Najran 8 P7 V3 1,262 0:18 756 18:78 36 >78 3,738
Najran 8 P7 V5 1,271 0:37 606 37:70 16 >74 1,442
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9). The lower resistivity values for that layer at particular VES
points could result from the presence of fractured basement rocks
saturated with water that lowers the resetivity values. In contrast,
the higher resistivity values for that layer at certain VES points
could indicate the presence of more resistant massive basement
rocks. Our current VES interpretation and results are in good
agreement with the results of resistivity data at Wadi Sar (Taha
et al., 2021), which is located in the northwestern part of the
research area. Piezometric wells should be drilled in the wadis of
the western portion of the area in the future to test and verify the
study’s findings, however, this is dependent on budget
availability.

CONCLUSION

For the study region, an integrated strategy combining gravity,
magnetic, and electrical data with other remote sensing datasets
was used. The study area is receiving an average rainfall rate of
117.6 mm/yr forming surface stream networks. Part of the surface
water is drained to the Red Sea by the streams, while the rest is
drained to the eastern and northern parts of the land. The
groundwater shows a depletion trend estimated at −0.34 ±
0.01 mm/yr during the entire period 04/2002-12/2021. The
surface trends are in NNW, and the deep trends are in NS,
NNW, and NNE directions according to an examination of the
structural trends retrieved from Landsat images and magnetic
data. The thickness of the sediments varies greatly, ranging from a

low of 0 in the mountainous areas to a high of 1.2 km in the
valleys. The water-bearing unit has a thickness ranging from 8 to
107 m with low resistivity values of 5.1-153Ωm. The depth of
that unit fluctuates between 1 and 94 m. The average yearly
rainfall over the research region is ranging between ~300 mm
in the coastal area and up to 50 mm in its eastern parts. The
eastern part, as well as the lowlands of the wadies in the west,
could be potential areas for agricultural growth and the
construction of new villages.
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