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Abstract

This MSc thesis presents an investigation into motion control systems aimed at reducing swing motion
of a lifting load during offshore heavy lifting operations. Two distinct models are developed for this
objective. Subsequently, an analysis is done to assess the impact of various control aspects.

First, an assessment of the offshore heavy lifting market is performed. Following this, diverse mo-
tion control systems designed for offshore heavy lifting operations are examined. Special attention is
given to the principle of the current damping tugger system used on vessels of Heerema Marine Con-
tractors. Subsequent to this examination, multiple alternative aspects for this current damping tugger
system are suggested.

Thereafter, a detailed model is developed, capable of simulating an offshore lifting operation with the
use of a motion control system. For this model, the equations of motion are derived and used as the
foundation for numerical MATLAB models. These MATLAB models are subsequently transformed into
a Simulink model, which serves as the basis for designing the required controllers and setpoints. This
model serves as a tool for investigation of the dynamics of offshore lifting operations when using a mo-
tion control system, but due to excessive computation time, it was not suitable for analyzing the effects
of different control aspects of a motion control system.

Therefore, a simplified version of the model for offshore lifting operations with the use of a motion
control system is developed, aiming to reduce the computation time of the model compared to the de-
tailed model. This simplified model is called the analysis model. This analysis model is used for an
analysis on the effects of different control aspects of a motion control system during an offshore lifting
operation. These aspects comprise two different motion sensors are controller input along with three
distinct control methods. The two sensors in question are one for measuring the motion of the winch
and another for measuring the motion of the load. The first two control methodologies encompass two
divergent setpoint calculation methods, one based on a linear equation and another founded upon a
PID controller, both coupled with a winch controller. The third control method includes a controller that
combines the setpoint and winch controller to one single, combined controller.

Throughout this analysis, the performance of each control aspect is evaluated across 24 unique sce-
narios. From these results it is concluded that the use of a load motion sensor result in superior system
performance in comparison to employing a winch motion sensor in almost all scenarios. Furthermore,
it was found that in combination with a load sensor, the setpoint calculation method based on a PID
controller appeared to be the optimal choice in most scenarios, while, when using the winch sensor,
both the linear setpoint calculation method and the combined controller method yield the best outcomes
in most cases.
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1
Introduction

This Master’s thesis focuses on motion control systems for offshore heavy lifting operations. In this
introduction, first, a general introduction to the topic of offshore heavy lifting operations is provided,
then the problem statement and research objective are presented. Next, the modeling approach and
the use of software are discussed. Lastly, the structure of this thesis is outlined.

1.1. Offshore heavy lifting operations
The offshore heavy lifting sector focuses on the installation and decommissioning of heavy structures,
equipment or materials, mostly in a marine environment. These operations often pertain to offshore oil
and gas platforms, wind turbine installations, bridge sections, and other marine infrastructure compo-
nents.

Technological challenges in offshore lifting operations have always existed. The loads lifted during
those heavy lifting operations are significant, resulting in critical operations. Environmental conditions,
such as wave heights, currents, and winds are naturally changing. These conditions have a great im-
pact on offshore lifting operations. As a result, detailed planning, accurate engineering computations,
and extended risk evaluations are essential to guarantee the safety and effectiveness of these opera-
tions.

Over the years, technological advancements have significantly improved the efficiency and safety of
these operations. Vessels and crew become more advanced every day and advancements in com-
puter modeling allow for simulating operations on beforehand, optimizing strategies and minimizing
risks. However, these technological advancements result in new operational demands, leading to new
challenges, such as heavier loads or operating at heavier environmental conditions.

This Master’s thesis aims to contribute to the technological advancements of the offshore lifting in-
dustry. It focuses on the use of motion control systems aiming to reduce the motion of the load during
offshore lifting operations, especially those operations conducted by the vessels of Heerema Marine
Contractors (Heerema MC).

1.1.1. Vessels of Heerema Marine Contractors
Several contractors operate in the offshore lifting sector. Heerema MC is one of those contractors.
Heerema MC possesses multiple crane vessels, also known as heavy-lifting vessels. These vessels
are specifically designed with large cranes capable of lifting heavy weights. Their substantial size
ensures high vessel-stability, enhancing lifting operations. Figure 1.1 displays Heerema MC’s semi-
submersible crane vessel (SSCV) Sleipnir, built in 2019, that features two cranes, each with a capacity
of 10,000 mT. This vessel is among the largest crane vessels of the world. Additionally, this vessel
holds the record for the heaviest lift ever recorded, both offshore and onshore. This was a module with
a weight of 17,000 mT [1].
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Figure 1.1: Heerema MC’ SSCV Sleipnir
.

Heerema MC actively participates in the installation and decommissioning of offshore structures. The
company has installed and decommissioned numerous oil and gas platforms globally over the years
and is recently active in installation of offshore wind turbines (OWTs) with crane vessels. Additionally,
Heerema MC engages in unique heavy-lifting operations. For example, Heerema MC installed the
pylon of the Erasmusbridge over the River Muse in Rotterdam in 1995 using the SSCV Thialf [2]. Figure
1.2 depicts an image of the installation of this pylon by the Thialf.

Figure 1.2: The installation of the pylon of the Erasmusbridge by Heerema MC’s SSCV Thialf in 1995
.
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1.2. Problem statement
In numerous offshore lifting operations, motion control systems are used. This systems aim to reduce
the swing-motion of the lifted load. Various kinds of these motion control systems exist of which some
are outlined in Section 3.5.

Vessels from Heerema MC are equipped with a motion control system, called the damping tugger
system. This system applies a pulling force to the motion of the load. By actively adjusting this force,
the goal is to dampen the load’s motion. The principle of the damping tugger system is detailed in
Section 3.2.1.

In some of Heerema MC’s lifting projects, the damping tugger system remains unused. This choice is
made because the system would not improve operational efficiency. In these cases the system does
not always respond as it is expected to do. The pulling force in the tugger cable does not match ex-
pectations. The reason for this is not well understood yet [3]. Deeper understanding of the current
damping system would possibly lead to the ability of improving the system. An improved performance
of the system would result in a more efficient offshore lifting operation. This thesis aims to contribute
to this understanding.

1.3. Research objective
In the problem statement, it is explained that an deeper understanding of the damping tugger system
might lead to the ability of improving the system. Moreover, a better understanding of damping of
the motion of the load, could be used for improving various motion control systems for offshore lifting
operations. Therefore, the research objective focuses on contributing to the knowledge about motion
control system for offshore heavy lifting operations in general. This research objective is defined as:

• Investigate how a motion control system for offshore heavy lifting operations can be improved.

To reach this objective, three main research questions will be answered in this thesis. These questions
are provided below:

1. How can an offshore lifting operation with the use of a motion control system be modeled?
2. How can the use of a novel motion sensor improve efficiency of the current damping tugger

system?
3. How can the use of a novel setpoint calculation method improve efficiency of the current damping

tugger system?

1.4. Modeling approach and software
This section examines the use of different software tools. Firstly, the choice between analytic and
numerical modeling approaches is discussed. Subsequently, various mathematical software packages
are introduced, and the process of deriving vessel motions is explained.

1.4.1. Analytically versus modeling software
When considering modeling for this problem and its exploration, there are two main options: an analytic
approach or the use of 3D numerical modeling software. 3D modeling software offers the advantage of
rapidly creatingmodels of intricate and extensive systems. OrcaFlex is particularly suitable for modeling
offshore operations [4]. On the other hand, an analytical approach demands more time but ensures
transparency and facilitates result validation in each step of modeling. Software tools can also be
applied for mathematical aspects of the analytical approach. Given that the system is confined to 2D,
it is chosen to use the analytical method due to its foundational insights.

1.4.2. Mathematical software
Maple software provides an ideal environment for algebraic operations, facilitating the derivation of
equations of motion (EOMs) [5]. Additionally, MATLAB is a well-known software package for calcula-
tions, included with various ordinary differential equation (ODE) solver packages, with ODE45 being
the most commonly used solver [6]. MATLAB’s solver packages can be used to solve EOMs derived
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within the Maple environment. Furthermore, Simulink, a block diagram environment within the MATLAB
package, serves as a suitable tool for modeling control systems [6]. Both Maple and MATLAB will be
used for mathematical computations in this thesis.

1.4.3. LiftDyn
As described in Section 4.3.6, the effect of load on vessel motion is disregarded. Consequently, the
model’s vessel motion is modeled as a predefined trajectory. This path may be derived analytically or
through LiftDyn, a software package developed in-house by Heerema MC for hydrodynamic modeling.
LiftDyn facilitates the generation of realistic vessel motions in both time and frequency domains, offering
a quick and accurate means of producing realistic inputs [7].

1.5. Thesis outline
In this thesis, two main models are developed, with one specifically used for analyzing various control
aspects of a motion control system. Initially, an assessment of the offshore heavy lifting market is
presented in Chapter 2. Subsequent to this, Chapter 3 delves into different motion control systems for
offshore heavy lifting operations, with a large focus on the principle of Heerema MC’s existing damping
tugger system, and also introduces alternative approaches for specific components of this system.
Chapters 4 and 5 outline the development of the detailed and analysis models, respectively. The
analysis model is used for the analysis of diverse control aspects, detailed in Chapter 6.2. Finally, the
outcomes of the analysis together with the created models are presented, followed by a discussion of
the results, which leads to several conclusions and recommendations.



2
The offshore heavy-lifting market

This chapter examines the offshore heavy lifting market. It evaluates the future of its various aspects,
focusing on installation and decommissioning in the future and on the use of motion control systems
during lifting operations.

2.1. Installation and decommissioning
The main focus of offshore heavy lifting operations is on the installation and decommissioning of off-
shore structures. This section highlights the market for installing and decommissioning OWTs and
platforms.

2.1.1. Installation and decommissioning of offshore wind turbines
In response to the growing global demand for energy and the wish to reduce our reliance on fossil fuels,
offshore wind power rised as a renewable energy source in the recent years [8]. Compared to onshore
wind turbines, offshore wind farms do not affect land use and at sea, no physical obstacles disrupt
wind flow. Moreover, offshore wind farms can be scaled up to generate greater energy output than
their onshore counterparts [9] and OWTs produce more electricity per installed capacity unit due to the
higher offshore wind velocities compared to onshore locations [8] [10]. Additionally, the larger size of
OWTs compared to onshore counterparts contributes to increased energy production [11]. Given the
benefits of offshore wind energy and the increasing demand for renewable sources, the profitability of
the offshore wind market is promising for the upcoming decades.

While much research is being done on installation methods, decommissioning remains a largely over-
looked aspect [12]. The transition of the offshore wind sector from experimental pilots to full projects
occurred primarily in the early 2000s [13]. Given the operational lifespan of 20–25 years for OWTs
[14], decommissioning of these turbines has only started recently and will follows the growth trajectory
of installation over the past two decades. Topham’s estimation indicates that approximately 20,000
OWTs will reach the end of their operational lifespan between 2030 and 2040 [15]. In essence, the
decommissioning of OWTs promises to be a profitable market in the upcoming decades.

2.1.2. Installation and decommissioning of offshore platforms
Another significant segment within the offshore domain is the installation and decommissioning of off-
shore platforms. A literature review by Dan Cunha highlights the trend of decommissioning offshore
platforms, particularly escalating since 2014. This is due to the increasing number of offshore plat-
forms either undergoing decommissioning or being almost at the end of their lifespan [16]. As of 2022,
the global count of offshore platforms exceeds 12,000 [17]. Hence, the decommissioning of offshore
platforms currently represents a profitable market.
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2.2. The use of motion control systems in offshore operations
This section examines the improvement of offshore operations with the implementation of motion control
systems. First, the the suitability of a floating vessel, such as a SSCV, for the offshore operations is
assessed. Subsequently, an analysis of the use of motion control systems is done, followed by an
review of the impact of weather conditions on these operations.

2.2.1. The use of Semi-Submersible Crane Vessels for Offshore Operations
The current OWTmarket consists primarily of bottom-founded structures [18]. Three examples of these
support structures are a monopile, gravity-based structure and jacket structure, which are illustrated in
Figure 2.1 [19].

Figure 2.1: Three types of OWT foundations [19]

TheSSCVs is well suitable for offshore operation, due to its outstandingmotion response [19]. Heerema
MC has successfully demonstrated the capability of installing OWTs using SSCVs by means of the rotor
nacelle assembly method [20]. While alternative vessel types, typically jack-up vessels have historically
been used for installation [21], SSCVs have advantages like easier relocation and a wider range of ap-
plicable water depths [22]. In contrast, jack-up vessels are able to eliminate hydrodynamic instability by
rising above sea level [23] [24]. However, the large size of SSCVs provides outstanding stability as well
[19]. A study by Lin and Berlin revealed that SSCVs with a lifting capacity of 10,000 tons exhibited lower
motion responses during wind turbine installation compared to mono-hull vessels, leading to higher al-
lowable sea states and improved operability [25]. Ultimately, the suitability of vessel choice for wind
turbine installation depends on factors such as costs and operability, with SSCVs being a viable option.

During wind turbine installation projects, Heerema MC’s uses their vessels for installation only [20] [26],
while literature suggests that crane vessels with large deck space could both install and transport tur-
bines [23]. However, due to the slow and heavy nature of SSCVs, using them for transportation would
likely results in higher expenses [9] [27] and cannot enter most ports [3]. Thus, it is recommended that
SSCV’s are employed exclusively for turbine installation. Furthermore, while SSCVs have been histori-
cally used for decommissioning offshore platforms, research is needed to determine the challenges for
decommissioning OWTs.

2.2.2. The use of motion control systems
Accurate positioning of the load, particularly during mating between the load e.g., blades or a platform
and the structure, is crucial. During installation of OWTs, several mating processes occur. One of these
mating processes is assembling the turbine to the support structure, as depicted in Figure 2.2 [28].
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Figure 2.2: The process of mating [28]

Themotion of the vessel can impact load stability, potentially hindering successful assembly [28]. Blade-
root mating, a critical stage of installation, has been identified as particularly risky [29]. Jiang and
Verma (2023) provide a risk assessment on the different stages of installation, depicted in Figure 2.3,
identifying blade-root mating as the most critical stage. Verma’s research indicates a high chance
of impact-induced damage to blade roots during mating, with significant negative consequences for
the structure [28] [30]. Studies by Vagnes et al. (2020), Xu (2020) suggest a motion control system
comparable to Heerema MC’s damping tugger system [31] [32], and Zhengru Ren (2021) suggests a
motion control system with wires from different directions. Both methods can reduce structural impact
and improve operability and safety during installation. Notably, these systems have demonstrated
substantial reductions in payload motion [31] [32] [33], thereby contributing to successful wind turbine
assembly.

Figure 2.3: Risk assessment on the different stages of blade-root installation [30]
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Also, Jacobs states in his MSc thesis that the use of tugger cables improves the mating process during
installation of a platform, increasing operability of platform installations [34]. During decommissioning,
motion control systems can contribute to smoother operations, potentially leading to less damage and
high chance of recycling possibilities [35]. Stabilization of loads during platform decommissioning could
also minimize disturbance to marine life [36]. As environmental considerations gain importance, these
factors are expected to play a significant role in the decommissioning sector in the coming decades.

Motion control systems also offer benefits for on-deck operations, a substantial part of offshore op-
erations. Challenges, such as the transfer of foundations between barges, basket transfer and crew
or on-deck component relocated can be improved with motion control systems [9] [23] [37]. Also, for
projects like Heerema MC’s rotor nacelle assembly method, on-deck assembly plays an important role.
Due to the use motion control systems these projects are more cost-effective and operationally efficient
[20] [26].

2.2.3. Weather impact on offshore operations
Weather conditions highly influence offshore operations, with adverse weather leading to increased
vessel motion and operational difficulties or delays. Several studies emphasize weather as a main
factor affecting offshore operations [38] [39] [40]. Operations are constrained to specific periods of
favorable weather, known ass weather windows, affecting vessel operability. Accurate forecasts are
crucial, yet limited by data availability [41]. Uncertainties and limitations persist in weather predictions
[42] [43], necessitating the reliance on error statistics to quantify forecast uncertainty.

Proposed solutions, such as predictive models for short-term wind and wave conditions [22] [44], aim to
improve operability decisions. Hamedani challenges the conservative approach to allowable weather
limits, while Wu Gao highlights the tendency for weather uncertainty to result in overestimation of limits
[45]. The severity of accidents during offshore operations underscores the importance of minimizing
risk [46] [47] [48]. Increasingly large OWTs may heighten weather sensitivity in the sector [49].

While further research on weather forecasts may reduce uncertainties, mitigating the impact of weather
is preferred. A motion control system is one of the options to mitigate weather impact.

2.3. Conclusion
Heerema Heerema MC is active in both offshore installation and decommissioning. A review of the
profitability of this sectors is done, leading to the conclusion that this industry will be profitable in the
upcoming years. Furthermore, the use of the motion control system during offshore lifting operations is
discussed. Correct use of motion control systems in OWT operations demonstrates improved efficiency,
safety, and operability. SSCV’s offer advantages in wind turbine installation due to their substantial
stability. Weather’s significant impact on offshore operations necessitates the development of reliable
forecasts and strategies to reduce weather sensitivity. Motion control systems can mitigate challenges
with load motion during installation, decommissioning and on-deck operations. Further research about
motion control systems is essential to refine these systems.



3
Motion control systems for offshore

heavy lifting operations

This chapter provides an exploration of various concepts of motion control systems for offshore heavy
lifting operation, particularly emphasizing the system implemented by Heerema MC. The discussion
of the latter leads to questioning certain elements and suggesting alternative solutions. Furthermore,
various types of motion sensors are discussed in this chapter.

3.1. Objective of a motion control system
The primary aim of a control system is to damp the swing motion of the lifted load. This section elabo-
rates on such damping and explores the two reference systems that are being employed.

3.1.1. Pay-in and pay-out motion
In a two-dimensional setting, a swinging load attached to a crane can move either towards or away
from the crane. Movement towards the crane is called ’pay-in’ motion, while movement away from the
crane is called ’pay-out’ motion.

3.1.2. Motion damping
The primary objective of the motion control system is to maintain the position of the elevated load at a
desired point. Consequently, the system aims to mitigate any externally induced oscillations affecting
the load. Furthermore, the motion control system is frequently used for rotational control of the load,
but this is not covered in this thesis.

In the context of a motion control system, damping refers to the dissipation of kinetic energy. A de-
crease in kinetic energy results in a reduction of the load’s motion. In the case of the existing damping
tugger system, this energy dissipation is created by the tension exerted on the tugger cable. Due to the
tension of in the cable being high during pay-out motion compared to pay-in motion, damping is created.

In the end, the primary objective of the motion control system is to minimize the motion of the load
relative to a predefined reference value, commonly referred to as the setpoint. In scenarios where a
single disturbance gives rise to oscillatory movement, the ensuing oscillations are attenuated over a
temporal duration due to the inherent damping mechanisms. It is important to note that the process of
damping needs a finite period of time for completion. In circumstances with a continuous disturbance,
damping leads to reduction of the amplitude of the motion but may not lead toward a complete equilib-
rium. Achieving such a state is only feasible under conditions of critical damping, a scenario that is not
attainable with the existing damping tugger system, because this would lead to exertion of prohibitively
high forces on the tugger cable. Given these constraints, the complete reduction of motion of the load
is considered to be unachievable with the current system in almost all cases.

9
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In the majority of operational scenarios, the total minimization of load movement is not needed, as
a specific degree of motion is allowed. Consequently, the system functions effectively when the move-
ment is reduced and maintained below a desired threshold.

3.2. Current motion control system
This section reviews the principle of the current motion control system used by Heerema MC, which is
referred to as the damping system. First, the components of the system are reviewed. Subsequently,
three distinct modes are outlined, with the third mode being the actual damping mode, which is the
main subject of this thesis.

3.2.1. The principle of the current damping tugger system
The current damping system comprises of four primary components: a winch, an electromotor, a tug-
ger cable, and a control system. The control system controls the electromotor, which in turn rotates
the winch. The tugger cable extends from the winch to the load [50]. Typically, tugger systems are
configured with pairs of two or four winches and corresponding tugger cables. Figure 3.1 depicts a
damping tugger system with two tugger cables onboard Heerema MC’s Aegir [51]. Utilizing a pair of
tugger cables enables the rotation of the load within the horizontal plane. However, this thesis focuses
specifically on the operation of a single winch and its tugger cable in a two-dimensional plane.

Figure 3.1: View of damping tugger system on Heerema MC’s Aegir [51]

The fundamental principle of the tugger system involves the use of the winch to apply a specific ten-
sion to the tugger cable, thus initiating a pulling force on the load. This pulling force is altered by the
rotation of the winch as depicted in Figure 3.2. Various methods of using this force to improve offshore
operations are available. Below, three distinct modes are described.

Figure 3.2: Principle of winch and tugger cable
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Fixed length mode
When in fixed length mode, the winch initially tightens the tugger cable to a predetermined tension level
and maintains this cable length, e.i. the winch keeps its position and does not rotate after reaching the
predetermined tension level. This setup essentially functions as a spring. While suitable for handling
lighter loads, it becomes a critical limiting factor for heavier loads [51] [52]. This is attributed to the fact
that the load aligns with the horizontal movement of the vessel due to the tugger cables. The tugger
cables accelerate the load, and heavier loads result in increased forces. To overcome the risk of slack
cables, a high pre-tension is essential.

Constant tension mode
The constant tension mode involves the winch rotating to sustain a consistent tension level in the tugger
cables. A constant tension would lead to a constant force applied to the load, which has no significant
impact on the dynamics of the load, because a constant force does not damp motion. In practical sce-
narios, the force is not constant, because it is affected by factors like the winch’s inertia, interaction
with the controller and motion of the load in other directions than the plane of operation. These factors
lead to fluctuations around the constant tension setpoint, leading often to a bit of damping [51] [52]. In
essence, when analyzed theoretically, the constant tension mode should not result in damping. How-
ever, a practical implementation of the constant tension can lead to damping due to interaction with
external factors.

An alternative method to use constant tension mode (or fixed length mode) for damping motion of
the load, involves manually adjusting the tension setpoint. Crane operators adjust the setpoint for the
constant tension to create a difference in force during a cycle, leading to damping of load’s motion [51].

Damping mode
During damping mode, the rotation of the winch modifies the tension in the cable. When the load pays
out, the tension is set high, whereas during load pay-in, the tension is set low. The tension during
pay-in motion adds kinetic energy to the system, while tension during pay-out motion absorbs kinetic
energy. Due to the higher tension during pay-out, the net added kinetic energy is negative, resulting in
a net damping effect on the system [51].

An illustration of this principle can be found in a playground scenario involving a swing. Consider a
girl named Alice, who is actively swinging back and forth. Now, suppose a boy called Bob intends to
stop Alice’s swinging motion (with the intention of switching turns). To achieve this, Bob pulls on the
swing precisely when Alice is moving away from Bob. This reduces the kinetic energy of Alice on the
swing, reducing its motion. However, when the swing is moving back towards Bob, he stops pulling,
otherwise he will add kinetic energy and the motion of the swing increases again. In this scenario, Alice
on the swing represents the swing load, and Bob pulling on the swing represents the damping tugger
system.

Figure 3.3: Force-velocity of a damping tugger system in damping mode [53]
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The larger the difference between the energy extraction and energy addition, the larger the net damp-
ing. As a result, the difference between the maximum and minimum tensions within the tugger cable,
i.e., the variation between the highest and lowest forces in the cable, significantly impacts the damping
rate of the system [54] [55]. An additional factor that contributes to the damping rate is the speed of
tension switching in the cable. A faster switch means the tension remains longer at its extreme values,
improving overall efficiency [54].

A force-velocity relationship shows the effect of the factors described above. As illustrated in Figure
3.3, this relationship describes the interaction between tension T (or force) within the cable and the
horizontal speed of the load u, based on a certain simulation [53], where A is the change in tension
and R is the change in speed. The damping profile signifies the force-velocity relationship. A steeper
slope in this line means a higher damping ratio. Determining the ideal damping ratio depends on var-
ious conditions and is a complex challenge. Presently, crane operators typically find the appropriate
damping ratio by a trial-and-error approach [3].

3.2.2. Slack and high tension cables
The movement of the load, triggered by the motion of the vessel or crane, is a swinging motion. As
the tugger cable is horizontally fixed to the load, it is elongated due to the load’s motion. This causes
the tension in the tugger cable to constantly increase and decrease. It is important to ensure that the
tension in the tugger cable remains between the safe limits, as too high tension could result in cable
breakage. Consequently, the tension must stay below a predefined threshold.

On the other hand, allowing the tension to drop below zero, i.e. indicating a slack cable, should be
prevented at all times, because retensioning of the cable leads to high impact forces on the winch.
Thus, the tension in the cable must balance between avoiding excessive tension and preventing a
catenary.

3.2.3. The control system of the damping tugger system

Figure
3.4 depicts a schematic overview of the control system and physical damping tugger system. The ve-
locity of the cable is assumed equivalent to that of the load and winch [50]. The control’s setpoint value
is derived from the force-velocity relationships explained in Section 3.2.1.

Figure 3.4: A schematic overview of the control system and physical damping tugger system [50]
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This control setup gives rise to two main questions. Firstly, the assumption of identical velocities for
the winch, cable, and load is brought into question. Variability could arise due to cable elongation or
catenary, resulting in potentially divergent velocities for the winch, cable, and load. Additionally, high
tension in the cable might introduce high-frequency vibrations that could impact velocity measurements.
If such deviations in velocities occur, the controller might receive inaccurate inputs, potentially resulting
in issues like unintended motion or instability.

Secondly, the method behind deriving the setpoint is brought into question. The current setpoint cal-
culation relies on a linear relationship with input velocity. However, this approach may not sufficiently
account for factors influencing the winch response, for instance, the inertia of the winch, thereby lead-
ing to unintended response of the controller. Given these considerations, further research is necessary
to validate the effectiveness of these two aspects within the current system. Consequently, these two
topics emerge as interesting research questions for the scope of this thesis.

3.2.4. Conclusion
This section reviewed the principle behind Heerema MC’s existing motion control system. Two aspects
of the current system are questioned: (1) the validity of the assumption that the velocity of the winch,
cable, and load are equal and (2) the method behind deriving the setpoint. These aspects form the
base for two out of three research questions, which are described in Section 1.3.

3.3. Alternatives within the current motion control system
Alternatives for the questioned aspects of the current system, described in Section 3.2, are discussed
in this section.

3.3.1. Control goal
The motion of the load is a relative motion compared to certain reference systems. In the case of the
damping tugger system, it should be able to damp motion compared to two distinct reference systems:
the global reference system and the on-deck reference system. The global reference system corre-
sponds to the fixed world’s reference system. It may be necessary to dampen motion relative to a fixed
point in the world during specific scenarios, such as the installation of a topside on a bottom-founded
structure. In different situations, an object like a turbine could be positioned on the vessel’s deck. In
this operation, motion should be damped relative to the vessel’s motion, utilizing the vessel’s reference
system for damping purposes. It is worth noting that certain operations require damping relative to
both reference systems in quick succession, for instance during the Arcadis Ost project [3], where the
nacelle and blades were assembled onto the tower on the vessel’s deck, necessitating motion damping
relative to the vessel’s reference system. Subsequently, the tower was installed on top of the earth-
fixed monopile, requiring motion damping relative to the global reference system.

The horizontal origin of the global reference system consistently aligns with the predetermined loca-
tion where the object is intended to be placed. Conversely, the on-deck reference system is related to
the global reference system through the incorporation of the vessel’s motion dynamics. The horizontal
origin of the on-deck reference system is precisely aligned with the crane tip’s centerline. Given that
the on-deck reference system is dynamic, moving synchronously with the vessel, its horizontal origin
remains steadfastly aligned with the centerline of the crane tip.

3.3.2. Alternative control setpoint
In Figure 3.5 a simplified version of the control diagram of the current damping tugger system is depicted.
The control setpoint, or setpoint calculation method, is the input to the winch controller and is indicated
by a red block. The setpoint of the damping mode of the currently used damping tugger system is
formulated as a mathematical equation, as described in Section 3.2.1. In this thesis, this setpoint
method is called the maximum force setpoint. This setpoint fluctuates between the upper and lower
force limits, adhering to a linear relationship characterized by a maximum and minimum limit. This
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particular relationship is identified as the force-velocity relation and is mathematically expressed as:

Fs =


Fmax ẋsen ≥ ẋlim−upper

ζ · ẋsen + Fpre ẋlim−lower < ẋsen < ẋlim−upper

Fmin ẋsen ≤ ẋlim−lower

(3.1)

Here, Fs denotes the force setpoint within the cable system, while Fmax and Fmin represent the estab-
lished upper and lower force limits, respectively. The force setpoint attains these specified limits when
the measured velocity of the load xsen exceeds the limit velocity xlim in either a positive or negative
direction. Additionally, Fpre denotes the pre-tension, and ζ symbolizes the damping ratio.

It is noteworthy that a higher damping ratio facilitates a more rapid transition of the setpoint between the
maximum and minimum force limits. Faster switching results in the setpoint remaining at its extreme
values for extended duration, thereby contributing to a net increase in the system’s damping within a
cycle. A graphical representation of the force-velocity relationship is provided in Figure 3.3.

Figure 3.5: A analysis schematic illustration of the current control diagram of the damping tugger system

When using this particular setpoint, the primary objective is to oscillate between the upper and lower
bounds of tension, with a short transition time. The linear part in the force-velocity relationship accounts
for the system’s physical constraints. This linear section starts a transition to the opposite force limit
before the load’s velocity approaches zero, thereby affording a period for transition. If this transitional
duration is sufficiently long, the physical system is capable of following the setpoint, thereby improving
the system’s robustness.

Nonetheless, because the movement of the load is a pendulum motion, the velocity of the load is
subject to continuous variation. Because the maximum force setpoint is defined by a linear relation-
ship, it does not respond to the rate of change of the error.

Furthermore, the shift from the linear portion of the force-velocity curve to the limit values of force,
at the moment when the velocity reaches its limiting value ẋlim, constitutes an abrupt transition. As
illustrated in Figure 3.3, this relationship exhibits bifurcations at both the positive and negative limit
values of the load’s velocity. Such abrupt transitions or discontinuities in the setpoint calculation could
impact the controller’s performance, potentially leading to system instabilities or overcompensation [3].
Due to these limitations associated with the maximum force setpoint method, this thesis explores an
innovative approach for setpoint calculation, termed as the motion control setpoint.

The motion control setpoint is an alternative setpoint calculation method for the maximum force set-
point. The motion control setpoint uses the same mathematical framework as a proportional-derivative
(PD) controller, leading the relation:

Fs = k̄p · eo + k̄i · ∫ eo + k̄d · ėo (3.2)
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In this context, Fs represents the tension setpoint, while k̄p, k̄i and k̄d correspond to the proportional,
integral and derivative control gains, respectively. It is crucial to calibrate these control parameters such
that the tension setpoint Fs remains within its predefined upper and lower bounds. This calibration is
facilitated through the prediction of the maximum and minimum load velocity ẋlim and the maximum
load acceleration ẍlim. In the case of pendulum motion, both the maximum velocity and acceleration
are correlated with the system’s maximum displacement and oscillation frequency. The variable eo
denotes the velocity error of the load, which is defined as follows:

eo = ẋs − ẋsen (3.3)

Here, the setpoint velocity of the load can be either zero or identical to the velocity of the vessel, con-
tingent upon the reference system utilized for the operation.

The setpoint method provides a control input without sudden discontinuities. In contrast to the max-
imum force setpoint, the motion control setpoint yields a more continuous input function for the control
algorithm, thereby potentially improving the robustness of the overall system. The latter is investigated.
Both setpoint strategies will be implemented under identical scenarios, followed by an analysis of their
performance.

3.3.3. Alternative controller input
The computation of the setpoint is done with the input provided to the controller, derived from sensor
measurements. A variety of input parameters may be employed, of which the displacement, velocity
and acceleration of the winch, tugger cable and load are discussed.

In an ideal scenario, the load would exhibit pendulum-like motion and eventually reach an equilibrium
state, due to the presence of the motion control system. In this case, the pendulum is in its static equi-
librium state, the load would be motionless, precisely below the point of suspension. Mathematically,
this is represented as x0 = 0. When the pendulum is in a state of oscillation, the velocity of the load
at x0 = 0 will reach either its maximum or minimum value within a cycle. This is because at the low-
est point of oscillation, the potential energy is equal to zero, while the kinetic energy reaches its peak.
Correspondingly, the acceleration of the load is zero at x0 = 0 due to the load having achieved its max-
imum (or minimum) velocity before reverting to zero. Therefore, at the equilibrium point, the equations
x0 = ẍ0 = 0 and |ẋ0| = ẋmax hold true. This describes the phase difference among displacement,
velocity, and acceleration.

The current damping tugger system uses velocity as input for the control system. The phase of the
velocity is equal to the phase of the desired force in the cable. It is possible to take displacement or
acceleration as input. However, the displacement or acceleration is out of phase with the desired force
in the cable, so this would lead to a less straight forward input. Hence, it is chosen to maintain velocity
as the primary input variable for the controller for the alternatives explored within this thesis.

As elaborated in Section 3.1.2, motion reduction is accomplished through energy dissipation. The
energy dissipated over a single cycle is defined as follows:

Edis =

∫ t=Tp

t=0

(F · xo)dt ·
1

Tp
(3.4)

where Edis is the dissipated energy during the cycle, F denotes the force in the cable and Tp is the
time period of the cycle. From this equation it is concluded that the dissipated energy is highest when
the force F is at its maximum.

The input parameter used for the controller serves to establish the controller setpoint, which is ideally
the load’s velocity. A direct approach for obtaining the load’s velocity involves its direct measurement.
To obtain velocity data of the load, motion sensors must be used. The feasibility of using such sensors
is discussed in Section 3.4.
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Easier alternatives for obtaining motion data includes the measurements of the winch or the tugger
cable. This is done with Heerema MC’s damping tugger system, as described in Section 3.2.3. In this
system, the velocity of the winch is measured, and it is assumed that this velocity is equal to that of the
load. The assumption rests on the argument that the elongation of the tugger cable is negligibly small,
thereby causing a neglectable difference in the motion of the load, the tugger cable, and the winch.

However, the validity of such an assumption within this specific system is questioned. Due to the
different natural frequencies of the winch, the tugger cable and to the load, different vibrations may
arise. Additionally, periods of cable slack introduce temporal uncertainties in the load’s motion. In
the case that this assumption is invalid, incorrect input data for the controller is used. This could ad-
versely affect the performance of the damping system, potentially inducing system instabilities or even
counterproductive damping effects e.i. increasing the load’s motion. The use of the load sensor would
eliminate any uncertainties about the motion of the load.

Figure 3.5 presents the control diagram of the current system that uses the winch sensor. It is evi-
dent from the diagram that this is not an actual feedback loop for the load velocity. Using a load sensor
would result in a control diagram as displayed in Figure 3.6. This second diagram depicts an actual
feedback loop for the load velocity.

Figure 3.6: A analysis schematic illustration of the control diagram with the use of a load sensor

In this thesis, both methods for velocity measurement are examined. These methods will be imple-
mented in the computational model under identical experimental conditions. Subsequently, differences
in motion measurement, as well as difference in the performance of the damping system, will be ana-
lyzed.

3.3.4. Conclusion
In Section 3.2, two aspects of the current motion control system are questioned. This section provides
alternatives to the questioned aspects of the current system. These alternatives are considered as
potential improvements. In this thesis, models will be created and used to evaluate these alternatives.
A comparison will be done between the performance of the existing system and a system that includes
these alternatives under identical conditions. Finally, an analysis of both performances will be done.

3.4. Motion sensors
This thesis examines the use of the motion of the load instead of the motion of the tugger cable or
winch as an input parameter for the controller, what is suggested in Section 3.3. If this was applied,
this motion must be measured by new sensors. Before investigating the effect of a different input
parameter for the controller, it is imperative to explore potential constraints within sensor technologies
prior to implementation. In this section, the viability of employing sensors for this purpose is assessed.
The focus here is on establishing the feasibility of sensor deployment, by an evaluation of multiple
sensors in terms of their feasibility, measurement range, and accuracy.
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3.4.1. Various types of motion sensors
Motion sensors come in several categories. Zhu Zhang has categorized them and assessed their
prevalence based on a review of research papers. Visual sensors emerge as the most widely used,
constituting roughly 30% of all papers, followed by inertial measurement (14%), laser detection (13%),
radio-frequency identification (10%), global navigation satellite system (8%), and ultrasonic ranging
(6%) [56]. The subsequent sections elaborate on each distinct sensor category.

Visual sensors
Visual sensors, such as camera sensors, are widely used for motion tracking. Studies by Kawai demon-
strate the use of a camera embedded in a crane to calculate swing angles [57]. Similarly, Wang and
Tan showcase the potential of tracking moving loads using visual sensors [58]. The underlying principle
involves imaging the target through high-frequency photography. Each pixel in the image is scanned,
and algorithms translate this into distance data. This technique ensures rapid and precise data capture,
resulting in high accuracy, a wide measurement range, and near-real-time information [59] [60].

Nonetheless, visual sensors require an unobstructed line of sight to the measured object, limiting oper-
ational space. Furthermore, they are sensitive to sunlight interference, sometimes reducing their range
to 3-10 meters and making them less reliable during daylight hours [61] [62]. To that extent, the ques-
tion arises if heavy rain pollutes the line of sight. The impact of sunlight, artificial construction lighting,
heavy rain, and other visual distractions necessitates further investigation before considering visual
sensors as a robust option for motion measurement during offshore heavy-lift operations.

Inertial sensors
Inertial sensors measure an object’s acceleration. They encompass accelerometers for linear accel-
eration and gyroscopes for angular motion. By integrating these measurements over time, velocity
and position can be estimated. However, integration introduces error accumulation, affecting accuracy
when using inertial sensors for velocity or position measurement [59] [63] [64]. The advantage of iner-
tial sensors is the single-device attachment to the measured object, eliminating the need for a line of
sight. However, such a sensor must be installed on the load. Moreover, the simple principle leads to
rapid processing times, enabling nearly real-time measurements.

Laser detection
Laser detection relies on emitting a laser toward an object and measuring the travel time of the reflected
light to determine distance. Due to time measurement being exceptionally accurate, high distance ac-
curacy, in the order of micrometers, is achieved [65] [66] [67]. The technique’s extensive measurement
range, in the order of kilometers, surpasses offshore operational requirements [66] [67]. However, the
sensor is restricted to a direct line of sight between sender and receiver, limiting operational space.
Moreover, it only measures the distance to the first object in the line of sight, making it blind to possible
obstructions such as rain or cables [59] [68]. Combining laser and camera techniques could lead to
a solution for the blindness for obstructions. Nevertheless, challenges remain, including the impact
of load geometry on accurate motion measurement. Despite these challenges, laser measurement
remains an attractive option for offshore motion measurement due to its simplicity, robustness, and
extended range.

Radio-frequency identification
Radio-Frequency Identification (RFID) is a system comprising tags and readers. While initially designed
for data transmission, it has been applied to motion measurement, such as fall detection [69]. However,
using RFID as a motion sensor for heavy industry is not recommended [70]. Thus, RFID is excluded
from further consideration in this thesis.

Global navigation satellite system
Global Navigation Satellite System (GNSS) determines location by combining signals from multiple
satellites, typically requiring at least four satellites for accuracy [71]. While a standalone GNSS re-
ceiver achieves positioning accuracy of around five meters [59], enhanced accuracy in the millimeter
range can be attained using a network of ground-based base stations [72] [73]. However, reliance
on ground stations limits offshore applicability and makes GNSS unsuitable for motion measurement
during offshore operations.
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Ultrasonic ranging
The principle of ultrasonic ranging is comparable to the laser sensor technique. Sound waves are
emitted and reflected. The traveling time of the waves is used to measure distance. It is suited for
short-range measurements between 5 to 15 meters [59], making it unsuitable for offshore operations.

3.4.2. Multiple sensors
To ensure accurate measurements, multiple sensors should be used to mitigate errors. While Osumi
found challenges in implementing two sensors for swing motion measurement [74], Mckenzie success-
fully employed three uncoupled sensors to achieve accurate motion results [75]. The optimal number
or combination of sensors depends on the sensor type and the specific offshore heavy lift operation.
Further research must be done making any assertions regarding the needed number of sensors.

3.4.3. Conclusion
In this section various sensors were examined in terms of feasibility, accuracy, and range. Visual
and laser sensor techniques demonstrate potential for load motion measurement. Inertial sensors
also offer promise, despite integration challenges. In summary, despite challenges, several sensors
show potential suitability for motion measurement during offshore operations. Based on the knowledge
gained in this section, the assumption is made that the implementation of sensors for load motion
measurement is feasible throughout the rest of this thesis.

3.5. Novel concepts for motion control systems
In this section, various motion control system concepts are discussed in terms of their feasibility and
potential. The current motion control system has been elaborated upon in Section 3.2.

3.5.1. Multi-cable systems
The current damping system configuration involves pairs of either two or four winches along with their
corresponding tugger cables. These winches are positioned on a single side of the load, allowing force
application solely in one direction. An alternative approach suggests incorporating cables from differ-
ent directions to create an interplay of forces. Wang Sun presents a motion control system utilizing
three tugger cables arranged in three directions, as depicted in Figure 3.7 [76]. To accommodate these
cables, the crane boom features two perpendicular beams and a longitudinal beam extension. Anti-
swing winches regulate the tension in the tugger cables, situated at the end of the three beams. This
configuration substantially reduces load motion by up to 80% [76].

Figure 3.7: Wang Sun’s multi-cable motion control system [76]
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While Wang Sun’s concept demonstrates viability, its practicality for incorporation on vessel poses chal-
lenges. The onboard cranes have different geometries, notably a steeper height inclination, leading to
difficulties with the boom extension. Furthermore, the considerable forces associated with heavy-lifting
might be too large for anti-swing booms. An alternative arrangement involves positioning winches on
the deck at considerable distances from one another. However, deck space is limited. Nevertheless,
this concept proves effective within its specific parameters, so future research into its applicability could
be interesting.

Another multi-cable concept is presented by Ren Zhengru, incorporating two sets of four cables to
damp swinging motion, as illustrated in Figure 3.8 [33]. These tugger cables are attached at different
heights to two points on the load, enabling motion reduction in all directions. A dedicated winch controls
tension in each tugger cable. Ren Zhengru’s analysis indicates a potential 70% reduction in loadmotion
using this setup [33]. An interesting facet of this design is the placement of two high and two low cables
from the sides, eliminating the need for cables attached beyond the vessel’s deck limits. On the other
hand, a drawback of this approach is the number of cables, reducing the operational space. Despite
this drawback, the concept holds promise for future exploration in motion control systems research.

Figure 3.8: Ren Zhengru’s multi-cable motion control system [33]

3.5.2. Anti-swing slider systems
A completely different approach to motion control systems is the anti-swing slider system. This concept
involves suspending the load from a slider on the crane’s tip. This slider possesses sideways mobility,
intended to compensate the pendulum motion exhibited by the load. The slider’s movement is con-
trolled by a dedicated controller. The anti-swing slider principle is visually depicted in Figure 3.9 [77].
This principle is widely employed in bridge cranes, but application to boom cranes is also observed [77]
[78].

Studies conducted on anti-swing sliders indicate the potential to mitigate the resonant motion of the
load [77] [79] [80] [81] [82]. However, these results primarily focus on relatively light loads. When con-
sidering heavier loads, certain complexities emerge. The mass of the load affects the slider’s inertia,
necessitating high actuator forces. On the other hand, heavy loads often hang from relatively lengthy
crane cables, resulting in a low oscillation frequency of the load. This low frequency may mitigate
the issue by allowing for reduced slider speeds. Furthermore, the dynamic movement of the slider
introduces varying gravitational forces upon the crane. These varying forces affect the dynamics of
the crane, resulting in a potential risk of significant reduction in the crane’s maximum lifting capacity,
which is untenable. Consequently, prior to considering the application of an anti-swing slider system
for offshore heavy-lifting, further research must be conducted. However, this concept will not be further
explored in this thesis.
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Figure 3.9: A schematic view of an anti-swing slider [77]

3.5.3. Tuned mass dampers
Tuned mass dampers (TMDs) are widely used damping systems in various engineering applications. A
TMD comprises two masses with different weights, connected mostly by springs and dampers. When
something causes the primary, heavier, mass to vibrate, like an earthquake shaking a building, the TMD
comes into action. Energy from the primary mass is moved to the secondary, smaller, mass, which
starts to vibrate. This energy transfer between the masses helps to reduce the vibration of the primary
mass. Eventually, both masses slow down and stop moving because of external damping, like friction.
The selection of the secondary mass weight tunes the system’s natural frequency to a desirable range
[83].

TMDs are widely applied in structures susceptible to seismic forces, such as towers [84]. In this context,
towers are engineered with a secondary mass capable of vibration to a certain extent. During earth-
quakes, the tower’s vibrational energy is transmitted to the secondary mass, mitigating the tower’s
vibration. The design of the secondary mass ensures it can vibrate effectively without issue. Figure
3.10 depicts the principle of TMD applied to a tower [85].

Figure 3.10: Principle of a TMD applied to a tower [85]

Although TMDs originated as earthquake mitigation, their use extends to various other domains. Carlot
describes their implementation near their origin to mitigate vibrations caused by wind forces in buildings
[86]. Additionally, TMDs are used in bridges [87], machinery [88] [89], and the OWT sector [90] [91].

Despite their proven results, TMDs possess certain drawbacks. A TMD is tuned to a single frequency,
posing challenges when the frequency changes. Furthermore, their installation necessitates extra
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weight and space, introducing design constraints [92]. Moreover, the addition of a secondary mass
introduces new degrees of freedom (DOF) for control, resulting in a more complex system that can be
challenging to manage.

Over time, innovative TMD variants have been developed to address specific issues. The pendu-
lum TMD (PTMD) and liquid TMD (LTMD) are interesting solutions. In PTMD, the secondary mass is
suspended like a pendulum from the primary mass, following the same principles as the original TMD
but with potential design benefits. The LTMD also retains the original TMD’s principles but substitutes
the solid mass with a liquid, what could be beneficial when a range of frequencies of sea waves must
be covered [91]. However, the complexity of a liquid mass, especially its modeling and control during
vibration, poses challenges. Furthermore, an interesting variation involves energy recovery from the
vibrating secondary mass, proposed by Kecik, using electromagnetics [93]. While this concept aligns
with sustainability goals, energy recovery can dampen the TMD’s motion and potentially reduce perfor-
mance.

TMDs come in diverse types and sizes and have demonstrated their effectiveness in mitigating un-
desired motions. The main drawback is the additional weight they introduce, particularly concerning
heavy loads encountered in offshore heavy-lifting. Nevertheless, history showed that solutions to heavy
force issues are attainable. As such, TMDs hold potential for enhancing efficiency and operability in
offshore operations, making it an interesting subject for further research.

3.5.4. Electromagnetic interaction
Another concept for motion control involves the use of electromagnetic interaction. This concept offers
the advantage of applying both pulling and pushing forces to the load, in contrast to cables which are
limited to pulling forces only [94]. However, a limitation is that the load must possess magnetic proper-
ties, and there exists a possibility of undesirable interactions between the electromagnetic waves and
objects other than the intended load. Currently, research on this topic is being done at Delft University
of Technology.

3.5.5. Preventing motion of the load
Another method of ensuring minimal load movement involves preventing the initiation of load motion.
One strategy for mitigating load vibrations is by counteracting the oscillations induced by vessel motions.
A technique used for this purpose is known as heave compensation. Heave motion can be classified
into two distinct categories: earth-fixed heave compensation, which aims to restrain the vessel’s verti-
cal movement, and heave motion compensation, which aims to compensate the vertical motion of the
vessel [95] [96]. However, since the focus of this research lies beyond heave motion, it remains beyond
the scope of this thesis.

An alternative and innovative approach to prevent load excitation involves the utilization of wind ab-
sorbers, as suggested by Beller. Beller’s research presents various wind absorbers and demonstrates
their potential to absorb up to 80% of wind-induced forces, consequently reducing load motion due to
wind forces [97]. Nonetheless, due to the typically minor impact of wind forces when compared to the
dominant gravitational forces experienced during heavy-lifting operations [3], wind absorbers will not
receive further examination within the context of this thesis.

3.5.6. Conclusion
Several new ideas are explored, and upon examination, three systems exhibit promise: the multi-cable
system, the anti-swing slider system, and the implementation of a TMD. However, despite their potential,
these options bring feasibility challenges. It is worth noting that an installation need not be confined
to a single concept; multiple concepts could be integrated. In this regard, the prevention of motion
of the load could be incorporated into a motion control system. Nevertheless, this area needs further
research, which could have been an interesting topic for this thesis, however it is chosen to focus on
investigate possible improvements of Heerema MC’s currently used motion control system e.i. the
damping tugger system.
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3.6. Evaluation method of different control systems
Distinct motion control systems, or different versions of the same system, are evaluated. When com-
paring the effectiveness of these systems, a compare value must be established. Various potential
compare values are discussed in this section. Furthermore, a study that used a system similar in
physics and a modeling approach similar to that of this thesis is discussed.

3.6.1. Evaluation of effectiveness of control system
Distinct motion control systems can be evaluated by comparing the amount of energy extracted by the
system from the load. However, the primary objective of the motion control system is to minimize the
motion of the load, which is achieved by extracting energy. Therefore, it is more appropriate to compare
motion control systems based on their main goal, namely, the reduction of load motion, rather than on
energy extraction.

When a setpoint is established, the error is determined by the difference between the actual value
and the setpoint value. Let q represent a sample value. The setpoint for this value is qs. Therefore, the
error for q is:

eq = q − qs (3.5)

where eq is the error of q. The deviation of the setpoint is the absolute value of the error. This deviation
defines how far the actual value is away from the error. The average deviation over a time frame Tp is
then defined as:

dq−av =

∫ Tp

0

|q − qs|dt ·
1

Tp
(3.6)

The average deviation of the setpoint dqav can also be used to compare model outcomes of different
situations. In this thesis the average deviation from the velocity setpoint of the load is used as compare
value.

The kinetic energy within a system leads to motion. The kinetic energy of a sample mass m is ex-
pressed as:

T =
1

2
mẋ2 (3.7)

where T denotes the kinetic energy and ẋ is the velocity of the mass. The average kinetic energy over
a time frame t is then expressed as:

Tav =
1

2

∫ Tp

0

(mẋ2)dt · 1

Tp
(3.8)

The average kinetic energy of the load can be used to compare model outcomes of different situations.

When a generalized mean from a series of outputs is required, the root mean square (RMS) can be
applied. The RMS represents the square root of the mean of all squared values in the series. The RMS
can be used for comparing different series of values, such as the motion of a load over a time frame. In
this thesis, the RMS of the velocity of the load of the motion is used to compare the effects of different
control aspects. The RMS of the velocity of the load is expressed as:

RMS =

∫ Tp

0

(ẋ2)dt · 1

Tp
(3.9)

where ẋ is the velocity of the load or mass. When comparing equations 3.8 and 3.9, it becomes evident
that the average kinetic energy of the load and the RMS of the velocity of the load are proportional to
each other, since the mass m is constant. Hence, the RMS of the load’s velocity conveys information
regarding the kinetic energy of the load. In this thesis, RMS will be used to compare velocity of the load
over a time frame.

In summary, the three suitable parameters that are suitable for comparison are: the average devia-
tion from the setpoint of the velocity of the load, the average kinetic energy of the load, and the RMS
of the velocity of the load.
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3.6.2. Similar study
Following a literature review, a study was identified that used a system similar in physics and amodeling
approach similar to that of this thesis [98]. Figure 3.11 depicts the system used by Zhang. The vessel
motions serve as the input for Zhang’s model, producing multiple output variables. Notably, one output
variable is the rotation of the crane cable θ.

Figure 3.11: The system used by Zhang [98]

Zhang’s study focusses on developing an adaptive tracking approach for an anti-swing system. This
objective slightly varies from the objective of this thesis. Nevertheless, the outcomes of Zhang’s re-
search might be comparable to the findings of this study. The input vessel motion used in Zhang’s
research is a pitch vessel motion, depicted in Figure 3.12.

Figure 3.12: Input pitch vessel motion for Zhang’s study [98]

The vessel movement results in a crane cable rotation, as depicted in Figure 3.13. In Section 4.5.2,
the outcomes of the detailed model will be compared to the outcomes of Zhang’s study.

Figure 3.13: The resulting rotation of the crane tip for Zhang’s study [98]
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3.6.3. Conclusion
The objective of the motion control system is to reduce the motion of the load. Three suitable param-
eters for comparison are: the average deviation from the setpoint of the load’s velocity, the average
kinetic energy of the load, and the RMS of the load’s velocity. The choice of comparison value depends
on the specific situation. Furthermore, a study that used a system similar in physics and a modeling
approach similar to that of this thesis is discussed.

3.7. Conclusion
This chapter examines various motion control systems for offshore heavy lifting operations, with a focus
on the system used by Heerema MC. The discussion on Heerema MC’s system raises two questions,
serving as the base for two of the three research questions addressed in this thesis. These research
questions appear in Section 1.3. After this discussion, two alternative approaches are proposed: one
for the control setpoint and another for the control input. The efficacy of these proposed alternatives
within the motion control system will be analyzed in this thesis. Implementation of the alternative control
input comes with the use of new sensors. An assessment on various sensor techniques confirms the
feasibility of incorporating these new sensors into the system.



4
Detailed model

This chapter describes the development of a model for simulating a lifting operation while using a
motion control system. Initially, the objectives of the model development are described, followed by
explanations of modeling methods, modeling decisions and standard parameters. Next, three systems
are introduced, and their EOMs are derived. Thereafter, numerical MATLABmodels are developed and
assessed through verification cases. These numerical models are subsequently converted to Simulink
models, serving as the foundation for the controller design phase. In this stage, a controller for the
constant tension mode is successfully designed. An attempt is then made to design a controller for the
damping mode, encountering issues such as prolonged computation time. Consequently, a decision is
made to simplify the model to mitigate these issues. This process is described in Chapter 5.

4.1. Objective of the model
The objective is to develop a model that is suitable for the analysis of the effects of the controller
setpoints and inputs outlined in Section 3.3. This model should simulate the motion of the load excited
by vessel motion and controlled by the current motion control system e.i. the damping tugger system.
The simulation model will incorporate both the crane vessel responsible for lifting the load and the
damping tugger system connected to it.

4.2. Method
The approach for constructing the detailed model is outlined in this section. Initially, multiple systems
will be constructed to describe the physics of a lifting operation. Subsequently, a numerical model will
be developed, and a controller will be designed. This is intended to provide a foundational model for
the analysis of the distinct controller setpoints and inputs of Section 3.3.

4.2.1. Controlled lifting system
The created system that describes the physics of the lifting operation is called the controlled lifting sys-
tem. Certain modeling decisions are required, as outlined in Section 4.3. After making these decisions,
a schematic diagram is generated to serve as the foundation for deriving the EOMs for the system. To
simplify the derivation process, the detailed controlled lifting system is divided into two less complex
systems: one representing free lifting operation and another representing the damping tugger system.
The EOMs are then derived for these smaller systems. The knowledge gained from these derivations
are used for the formulation of the EOMs for the complete controlled lifting system.

4.2.2. Lagrangian Method
The EOMs are derived by means of the Lagrangian method [99]. Initially, it is essential to identify the
DOFs of the system. The number of DOFs corresponds with the number of resulting EOMs. Subse-
quently, the kinetic and potential energies of the system are defined, which are used to formulate the
Lagrangian parameter. Using both the Lagrangian parameter and the Euler-Lagrange equation leads
to the derivation of the EOMs.

25
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In cases where the system incorporates dampers or other elements that cause energy dissipation, the
Lagrangian method should also include Rayleigh’s dissipation function [100]. This function accounts
for any defined dissipation terms within the system.

4.2.3. Numerical model
After deriving the EOMs, the next step is creating a numerical model. Initially, a MATLAB model is
created, employing the ODE45 numerical solver to solve the EOMs. This solver provides a dynamic re-
sponse, specifying the DOFs along with their first time-derivatives. Verification relies on the responses
generated by these MATLAB models.

4.2.4. Controller design
The objective of the model is to simulate how the damping tugger system behaves during its damping
mode. To achieve this, a controller for this mode needs to be developed. This controller is designed
within the Simulink environment, because of Simulink’s suitability for controller design. Conversion
from the MATLAB script to the Simulink environment will be done by integrating a MATLAB Function
Block. Additionally, the MATLAB ODE solver is replaced with a Simulink ODE solver. Appendix A.3
elaborates on the Simulink ODE solver.

The control system for damping mode is, in fact, an extension of a control system for the constant
tension mode. For the constant tension mode, the setpoint remains a single constant value. In con-
trast, the setpoint for the damping mode takes the form of a mathematical expression that includes
the winch’s measured velocity, as described in Section 3.3.2. Designing the damping mode’s con-
troller can start by adapting a functional controller from the constant tension mode and adjusting for the
damping mode setpoint. Initially, design efforts focus on the constant tension mode controller, followed
by testing. Once confirmed functional, adjustments are made to implement the damping mode setpoint.

As discussed in Section 3.2.1, the controller used for the damping tugger system is a standard PID
controller. It takes the tension setpoint as its input. The aim is not to design an optimum controller,
but rather to identify one that works effectively for system analysis. The design methodology follows
a trial and error process. Various sets of proportional, integral, and derivative gains will be tested. An
evaluation will be done to select the optimal controller. Given that the two modes possess distinct
objectives, the evaluation of the controller relies on a distinct parameter for each mode. For constant
tension mode, the control that forces the setpoint to deviate least from the desired setpoint is chosen.
In the context of damping mode, the control response that minimizes load motion will be selected. Due
to the extensive time required for simulations, tests will focus on broad parameter ranges.

After designing functional controllers for both constant tension and damping modes, it will be imple-
mented into the Simulink model. This Simulink model will be used to explore the motion of the load
excited by vessel motion and controlled by the damping tugger system.

4.3. Modeling decisions of different elements of the systems
This section provides explanations on the decisions made regarding the construction of the lifting sys-
tem. These decisions are about the system’s dimensions, vessel movements as well as the modeling
approaches of the motion of the load, the damping tugger system, the control system and certain cables.
Furthermore, standardized values for specific parameters are discussed in this section.

4.3.1. A two-dimensional or three-dimensional approach
The controlled lifting system can be either in a two-dimensional (2D) or three-dimensional (3D) envi-
ronment. While calculations based on a 3D model are more complex, they provide greater information.
The choice between them depends on the research goal. For this thesis, which focuses on investigat-
ing a damping system, a single damping system’s response can serve as a suitable test. Previous
studies with similar research objectives have demonstrated the competence of a 2D model, such as
investigations into single anti-swing slider controller systems [77] [79] [80] and crane dynamics of off-
shore crane vessels [37] [82] [101] [98]. Therefore, it is suspected that a 2D model will suffice for this
research.
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4.3.2. Pendulum system
The swingmotion of a suspended load on a crane resembles the swingingmotion of a pendulum system.
Consequently, the crane can be modeled as a pendulum system comprising three main components:
the load, the crane cable, and the crane tip, assuming a frictionless pivot point. The manner in which
these components are modeled must be determined.

A straightforward approach to modeling the load involves representing it as a point mass, assuming
that factors like geometry or additional components e.g., the hook have no impact on motion, as seen
in comparable studies [77] [80] [102] [37]. An alternative is to model the load as a double pendulum,
as Moradi did [79], accounting for other moving parts like the hook. More complex load models exist,
such as Wu and Wang’s use of a double pendulum with distributed mass beam [82]. They demonstrate
the difference between the motion of a single pendulum with a point mass and the double pendulum
with a distributed mass beam. Figure 4.1 [82] illustrates these various pendulum configurations: the
single pendulum, the quasi-periodic single pendulum, which is a single pendulum attached to a laterally
moving trolley resulting in two frequencies, and the second-mode pendulum, representing the double
pendulum with a distributed mass beam suspended from the trolley. Notably, the difference between
these configurations primarily involves the presence of additional frequencies, while the core motion
remains consistent. The goal of this research is to analyze an improved motion control system, which
can be achieved adequately with a point mass, as demonstrated by Wu and Wang.

A crane cable is comprised of a set of cables; Heerema MC’s crane cables typically consist of 64
cables [103]. A common simplification in crane modeling is to treat the set of cables as a single ca-
ble with high stiffness [103], as normally done within Heerema MC and seen in various studies [77]
[80] [104] [37][79]. Additionally, a high-stiffness cable can be approximated as a rigid bar, assuming
negligible elongation, as done as well in those studies [77] [80] [104] [37]. Another option is to model
the crane cable as a dissipative spring, incorporating both spring and damping elements, similar to
Jutten’s approach [101]. Given the potential weight of the load, assuming negligible elongation for a
high-stiffness cable may not hold true, thus the option of a dissipative spring is a more accurate manner
to model the cable.

Figure 4.1: A comparison of distinct load modeling methods [82]

The distinction in complexity between the option of a rigid bar or a damping spring as cable is demon-
strated through the two EOMs. The EOM for a basic pendulum system is given by:

θ̈ +
g

r
sin(θ) = 0 (4.1)
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Here, θ signifies the angle of the pendulum, r is the length of the cable and g denotes the gravity
constant. If the crane cable is characterized as a damping spring, the pendulum systemwould transform
into a spring pendulum. Figure 4.2 provides a visual representation of this spring pendulum setup [105].
The system of equations governing the motion would then appear as follows [106] [107]:

mẍ−m(x+ r)θ̇2 + cẋkx− gm cos(θ) = 0 (4.2)

m(x+ r)2θ̈ + 2m(x+ r)ẋθ̇ + gm(x+ r) sin(θ) = 0 (4.3)

Here, x denotes the extension of the spring (with length r),m signifies the mass of the load, and c and k
the damping and spring coefficients of the dissipating spring, respectively. This introduces heightened
mathematical complexity in contrast to the simple pendulum equation of 4.1. Nevertheless, this study
opts for a detailed simulation of the system, therefore the crane cable is modeled as a dissipative spring.

Figure 4.2: Illustration of a spring pendulum [105]

In the context of this thesis, the crane is to be modeled as a rigid beam, eliminating the influence of any
potential crane deformation. This simplified approach was used in several prior studies [77] [80] [104]
[37].

4.3.3. Modeling of the damping tugger system
The motion control system comprises four primary components: a winch, an electromotor, a tugger
cable, and a control system, with the modeling of the latter covered in Section 4.3.5. If the electromo-
tor is considered as an ideal system, always delivering the desired output, it can be left out, as seen
in Bron’s MSc thesis [53]. This simplification ensures that the focus remains on the winch and cable
motion, which are the main points of interest. Similarly to the crane cable, the same reasoning applies:
modeling the tugger cable as dissipative springs is necessary for accurate modeling. Hence, the tugger
cable is modeled as a dissipating spring.

Additionally, the mass of the tugger cable could be important, especially given the horizontal orien-
tation of the cable. The presence of mass would result in a catenary geometry for the cable. Therefore,
this mass is represented in the system as a point mass situated at the center of two dissipating springs.

4.3.4. Non-linear springs
In this study, cables function as dissipative springs. However, a cable behaviour can be modeled as a
spring only when it is tensioned. If not tensioned, these cables become slack. Unlike typical springs,
slack cables display no axial stiffness, resulting in completely different behaviour. Therefore, cables are
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modeled as non-linear springs. In this particular system, the non-linear springs have uniform stiffness
in the tension state, while they possess no stiffness (k = 0) in the compression state.

4.3.5. Modeling of the control system
The field of control technology is extensive, bringing various types of controllers. Within damping tech-
nology for pendulum-like movements, different forms of intelligent controllers are applied. For example,
adaptive control is used byQian et al. when facing uncertain weather conditions during installation [102],
while Zhai et al. apply fuzzy control during transitions between decks [37]. Currently, the damping tug-
ger systems utilize a proportional-integral (PI) controller, which is essentially a PID controller with no
derivative gain. This study aims to explore the impact of modifying the control input and altering the
control setpoint calculation under identical conditions. Notably, the intention is not to switch to a dif-
ferent controller type, hence no additional investigation is conducted on controllers other than the PID
controller.

4.3.6. Vessel Motions
The vessel motion is affected by wave elevation and water currents. Additionally, the load can influ-
ence the vessel motion during a lifting operation. Due to the substantial weight of the load, it could
potentially impact the vessel’s motion, which, in turn, influences the load’s motion. This dynamic leads
to a coupling between the motions of the vessel and the load. However, this study concentrates solely
on dampening the load’s motion, excluding an examination of this interplay. Consequently, the impact
of the motion of the load on the motion of the vessel is not considered in this thesis and the motion of
the vessel is given by a prescribed trajectory.

The motion trajectories of the vessel is created using the LiftDyn software package, adhering to realistic
vessel behaviors of Heerema MC’s vessels. As a 2D space is used, it generates vessel movements in
three specific directions: the translational surge (xs), translational heave (ys) and rotational pitch (θs)
direction. LiftDyn is used for generating the surge, heave and pitch trajectories. Subsequently, the
corresponding velocity and acceleration trajectories in these three directions are derived. Figure 4.3
illustrates the displacement and rotation trajectories. The motion trajectories have a length of 1200 sec-
onds. Therefore, every run done for this model has a maximum length of 1200 s. As can be observed,
the trajectories provide no motion before t = 50 s. This absence of movement is intentional. The initial
50 seconds serve to test the system in static steady-state, ensuring no initial kinetic energy exists.

Figure 4.3: The vessel displacement trajectory (magnitude of displacement and angles is confidential information)
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4.3.7. Standard parameters
In this model multiple parameters are standardized, which are listed in Table 4.1. Appendix A.1 provides
explanations for selecting these specific values.

Element Parameter Symbol Value Unit
General Gravity constant g 9.81 m/s2
Crane cable Stiffness ktm 4.85 MN/m
Crane cable Damping constant ctm 10 kNs/m
Crane tip X-coordinate ltx 40 m
Crane tip Y-coordinate lty 100 m
Load Weight mo 500 mT
Tugger cable Half the initial length l0t 60 m
Tugger cable Stiffness kc 2 kN/m
Tugger cable Damping constant cc 10 kNs/m
Tugger cable Mass per length mc 73 kg/m
Winch Radius rw 1.5 m
Winch X-coordinate lwx 0 m
Winch Y-coordinate lwy 30 m

Table 4.1: Standardized parameters of the detailed model

4.4. Equations of motion
The sets of EOMs for the distinct systems are derived in this section. First, the derivation of the EOMs
for the free lifting system occurs in steps. Thereafter, the EOMs for the damping tugger system are
derived. Following this, these two systems are merged to formulate the controlled lifting system and its
EOMs are derived. Finally, the steady-state is discussed.

4.4.1. Free lifting system
The lifting crane cable of the vessel possesses elastic and damping properties that affect the motion of
the object suspended on the cable. Hence, the vessel’s crane cable is modeled as a damped elastic
pendulum, a type of pendulum that incorporates both damping and elastic behavior of the suspension.
In other words, the cable of the pendulum is represented as a spring and damper, resulting in an
oscillating pendulum with amplitude decreasing over time. However, this could be false in the presence
of an excitation force. Figure 4.4 depicts the damped elastic pendulum system. For this scenario, the
tip of the crane is fixed, resulting in a 2DOF system consisting of the rotation at the crane tip θt and
the translation of the spring rt. The initial length of the spring is ls, so the time-dependent length of the
spring is:

lt(t) = ls + rt(t) (4.4)

Moreover, the horizontal and vertical motion of the object are denoted by xo and yo, respectively. It
is assumed that the dissipating spring is subjected to loading only in the longitudinal direction, so no
perpendicular forces to the spring are considered. Furthermore, it is assumed that if the spring is elon-
gated, its damping and restoring characteristics are linear.

When deriving the EOMs for a damped elastic pendulum, the relevant coordinates must be determined
first. The time-dependent horizontal and vertical displacement of the crane tip, defined as xt and yt,
respectively, have its origin in the global axis system with coordinates X and Y . To that extend, the
time-dependent coordinates of the load are defined as:

xo = xt + lt(t) · sin(θt(t)) (4.5)

yo = yt − lt(t) · cos(θt(t)) (4.6)

In the present scenario, the coordinates of the crane tip are fixed at the center of the coordinate system.
In a later stage, the system will be extended to include vessel motions, and the coordinates of the crane
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Figure 4.4: A damped elastic pendulum

tip will be updated accordingly. The coordinate descriptions are used to describe the kinetic energy T
and potential energy U of the system, as:

T =
1

2
mo(ẋ

2
o + ẏ2o) (4.7)

U = mog(yoi − yo) +
1

2
ktmrt(t)

2 (4.8)

The initial vertical coordinate of the object is denoted as yoi and is defined as yo when θt(t) = 0 and
rt(t) = 0. The Lagrangian of the system can then be expressed as L = T − U . Additionally, the
Rayleigh dissipation R is described as[100] [108]:

R =
1

2
ctmṙt(t)

2 (4.9)

By means of the Euler-Lagrangian equation, the EOMs for the damped elastic pendulum system are
derived and look like:

d
dt

∂L

∂θ̇t
− ∂L

∂θt
+

∂R

∂θ̇t
= 0 (4.10)

d
dt

∂L

∂ṙt
− ∂L

∂rt
+

∂R

∂ṙt
= 0 (4.11)

Since this system has two DOFs, two EOMs are obtained using the Lagrangian method. Isolating the
two DOFs result in:

θ̈t(t) =
− sin(θt(t)) · g + 2ṙt(t)θ̇t(t)

−(l + rt(t))
(4.12)

r̈t(t) =
mo(l + rt(t))θ̇t(t)

2 −mog cos(θt(t))− ctmṙt(t)− ktmrt(t)

mo
(4.13)

Now, wind force will be integrated to the EOMs. It is assumed that these forces act as horizontal
point forces exclusively on the load, with the presumption that they exert no influence on any other
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component of the system. This assumption is done, because the area of the crane cable exposed to
wind is neglectable compared to the area of the load.

Figure 4.5: Visualization of wind force decomposition

Figure 4.5 illustrates the inclusion of the winch force to the free lifting system. Given the rotation at
the crane tip, denoted as θt, the wind force acting on the load can be decomposed into a tangential
force, Fr, and an angular force, Fθ. Both these forces are changing due to the variable angle θt. The
tangential force results in a force in the longitudinal direction of the spring, while the angular force
results in a moment exerted on the crane tip, oriented in the direction of θt. These are defined as:

Fwr = −Fw sin(θt) (4.14)

Mwθ = Fθlt = −Fw cos(θt)lt (4.15)

The Euler-Lagrange equations visible in equations 4.10 and 4.11 are extended with the tangential wind
force and the wind moment resulting in equations:

d
dt

∂L

∂θ̇t
− ∂L

∂θt
+

∂R

∂θ̇t
= Mwθ (4.16)

d
dt

∂L

∂ṙt
− ∂L

∂rt
+

∂R

∂ṙt
= Fwr (4.17)

Leading to a new set of EOMs:

θ̈t(t) =
cos(θt(t)) · Fw

mo
− sin(θt(t)) · g + 2ṙt(t)θ̇t(t)

−(l + rt(t))
(4.18)

r̈t(t) =
− sin(θt(t)) · Fw +mo(l + rt(t))θ̇t(t)

2 −mo · g · cos(θt(t))− ctmṙt(t)− ktmrt(t)

mo
(4.19)

Lastly, the set of EOMs is extended with the vessel motions. As depicted in Figure 4.6, the motion of
the crane tip is influenced by the vessel’s movement because of the rigid connection, subsequently
impacting the motion of the suspended object. The extended system is 2D in nature, including three
predetermined vessel motions: surge translation xs(t), heave translation ys(t), and pitch rotation θs(t).
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The horizontal length Ltx and vertical length Lty, are the distances between the center of gravity of the
vessel and the crane tip.

The impact of the vessel motion is implemented into the system by motion of the crane tip. The moving
coordinates of the crane tip are expressed as:

xt = xs + Ltx cos(θs) + Lty sin(θs) (4.20)

yt = ys + Ltx sin(θs) + Lty cos(θs) (4.21)
Coordinates xt and yt are now time-dependent coordinates. Despite these changes, equations 4.5 and
4.6 remain applicable to this system since the time-dependent coordinates of the lifted object depend
on the tip coordinates. The frictionless nature of the tip rotation implies that the rotation of the vessel
θs, does not directly affect the rotation of the pendulum θt. Instead, it indirectly impacts the object’s
motion by influencing the motion of the tip.

The equations for kinetic energy, the potential energy and the Rayleigh dissipation are unaffected by
the extension of the vessel motions. Therefore, the kinetic energy T of equation 4.34, the potential
energy U of equation 4.35 and the Rayleigh dissipation R of equation 4.9 hold true for this system.
However, the initial vertical displacement of the load yoi is now defined by the vertical coordinate of the
load yo when θt(t) = 0, rt(t) = 0, ys(t) = 0 and θs(t) = 0.

Figure 4.6: The free lifting system

Once again, the EOMs for this system are derived using the Lagrangian method. Due to the length of
the equation it is given in appendix D. This set of EOMs represents the motion of the free lifting system.

4.4.2. The damping tugger system
In this section, the EOMs for the physics of damping tugger system are derived. Initially, the EOMs for
the tugger cable alone are derived, followed by the addition of the winch to the system, resulting in the
final set of EOMs for the damping tugger system.

The tugger cable, which connects the winch to the lifted object, is modeled as a point mass inclined
between two non-linear dissipating springs in series. This non-linearity is described in Section 4.3.4.
The point mass accounts for the weight of the tugger cable, which has a notable impact on the bend of
the cable and must, therefore, be included in the system. The series of dissipating springs represents
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both the damping and restoring characteristics of the tugger cable. Due to the vessel motions, both the
winch and the load are moving with respect to the global axis system. Given that this section focuses
only on modeling the tugger cable, the winch and object are modeled as two moving ends of the cable.
Figure 4.7 provides a visualization of the damping tugger system.

Figure 4.7: The physics of the damping tugger system

In this scenario, the motions of the winch xw(t) and yw(t) and the motions of the object xo(t) and yo(t)
are prescribed. The initial coordinates of the winch xw(t = 0) and yw(t = 0) corresponds to those of
the global coordinate system X and Y . The two DOFs are the rotation θk(t) and elongation rc(t) of
spring 1. The latter leads to the time-depended length of spring 1, defined as:

ls1(t) = lns1 + rc(t) (4.22)

Where ls1 is the length of spring 1 and lns1 is the nominal length of spring 1. The function of the winch is
modifying the tension in the tugger cable, which is achieved by adjusting the cable’s length through the
winch’s rotation. In essence, the winch’s rotation elongates the cable, thus alters the length of spring 1.
This phenomenon is modeled by rewriting the rotation of the winch to a change of the nominal length
of spring 1 as:

lns1−new(t) = lns1−old(t)− θw(t)rw (4.23)

Leading to a new equation for the time-depended length of spring 1:

ls1 = lns1 + rc(t)− θw(t)rw (4.24)

The time-depended length of the spring and the time-depended coordinates of the mass are described
as:

xc = wx(t) + cos(θk(t)) ∗ ls1 (4.25)

yc = yx(t) + sin(θk(t)) ∗ ls1 (4.26)

The motions of the mass of the tugger cable is utilized to describe the time-depended length of spring
2 as:

ls2 =
√
(xo(t)− xc(t))2 + (yo(t)− yc(t))2 = lns2 + rs2(t) (4.27)

Where lns2 and rs2(t) represent the nominal length and elongation of spring 2, respectively. Rewriting
equation 4.27 leads to the elongation of spring 2:

rs2 = ls2(t)− lns2 (4.28)

By means of equations 4.22, 4.25, 4.26 and 4.28, the expressions for the kinetic energy T and potential
energy U of the system are defined as:

T =
1

2
mc(ẋ

2
c + ẏ2c ) (4.29)
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U = mcg(yci − yc) +
1

2
ks1rc(t)

2 +
1

2
ks2r

2
s2 (4.30)

Where yoi is the initial vertical coordinate of the load. Hence, the Lagrangian is L = T − U . The
Rayleigh dissipation R is exemplified as:

R =
1

2
cs1ṙc(t)

2 +
1

2
cs2ṙ

2
s2 (4.31)

By means of the Lagrangian method the EOMs are derived:

d
dt

∂L

∂θ̇k
− ∂L

∂θk
+

∂R

∂θ̇k
= 0 (4.32)

d
dt

∂L

∂ṙc
− ∂L

∂rc
+

∂R

∂ṙc
= 0 (4.33)

Appendix D contains the resulting EOMs for the damping tugger system.

4.4.3. Controlled lifting system
The controlled lifting system is a system of the lifting operation with the use of a damping tugger system.
Merging the free lifting system from Section 4.4.1 and the damping tuggers system from Section 4.4.2,
leads to this controlled lifting system. Figure 4.8 depicts the free lifting system. The two systems are
easily merged because the damping tugger system receives the coordinates of the winch and lifted
object as input, which are already described in the system of the lifting operation without damping
system. The merging of these two systems does not involve any new assumptions.

Figure 4.8: The controlled lifting system

This system consist of four DOFs: the rotation of the load θt(t), the elongation of the crane cable rt(t),
the rotation of the spring 1 θk(t) and the elongation of spring 1 rc(t), leading to a set of four EOMs. The
expressions of kinetic energy T and the potential energy U are summation of those of the free lifting
system (e.g. equations 4.34 and 4.35) and those of the damping tugger system (e.g. equations 4.29
and 4.30), leading to:

T =
1

2
mo(ẋ

2
o + ẏ2o) +

1

2
mc(ẋ

2
c + ẏ2c ) (4.34)

U = mog(yoi − yo) +
1

2
ktmrt(t)

2 +mcg(yci − yc) +
1

2
ks1rc(t)

2 +
1

2
ks2r

2
s2 (4.35)
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The Rayleigh dissipation function R of this system is also a summation of the Rayleigh dissipation
functions of the free lifting system (e.g. equation 4.9) and the damping tugger system (e.g. equation
4.31), leading to:

R =
1

2
ctmṙt(t)

2 +
1

2
cs1ṙc(t)

2 +
1

2
cs2ṙ

2
s2 (4.36)

The Lagrangian Methods leads to the four Euler-Lagrange expressions:

d
dt

∂L

∂θ̇t
− ∂L

∂θt
+

∂R

∂θ̇t
= Mwθ (4.37)

d
dt

∂L

∂ṙt
− ∂L

∂rt
+

∂R

∂ṙt
= Fwr (4.38)

d
dt

∂L

∂θ̇k
− ∂L

∂θk
+

∂R

∂θ̇k
= 0 (4.39)

d
dt

∂L

∂ṙc
− ∂L

∂rc
+

∂R

∂ṙc
= 0 (4.40)

The evaluation of these expressions leads to the EOMs for the controller lifting model. These EOMs
are presented in appendix D.

4.4.4. The static steady-state
A system achieves a steady state when the energy it contains remains constant over time. This can
occur either due to the system exhibiting repetitive motion, such as harmonic oscillations, or due to
the absence of motion. The latter condition is referred to as the static steady state. When a system
is in a static steady-state, motion is absent, indicating that the system is at rest. In this thesis, the
static steady-state is the initial state for every system analyzed over a time period, eliminating any ini-
tial energy. All energy appearing during the simulation is attributed to vessel movements or the control
system for motion.

Steady-state values represent the DOFs at when the system is in a steady-state, whether it is a static
steady-state or a steady-state with repetitive motion. When the system is in a static steady-state, the
absence of motion ensures that all time derivatives equal zero. Consequently, only the displacement
values, which are non-derivative functions, could have non-zero values. These values serve as the
starting point for the ODE-solver, as discussed in Section 4.5.1.

It should be noted that a system could have multiple steady-state positions. If the system in this thesis
exhibits more than one static steady-state position, each will be assessed. The most suitable static
steady-state position will then be chosen for further study.

The steady-state values derive from a specific equation for static steady-state conditions. Replac-
ing all time derivatives with zero in the EOMs results in the static steady-state equation. Isolating the
DOF leads to the static steady-state value for the DOF. This becomes clear in the following example.
Equations 4.12 and 4.13 present the set of EOMs for the free lifting system derived in Section 4.4.1,
displayed once more:

θ̈t(t) =
− sin(θt(t)) · g + 2ṙt(t)θ̇t(t)

−(l + rt(t))
(4.41)

r̈t(t) =
mo(l + rt(t))θ̇t(t)

2 −mog cos(θt(t))− ctmṙt(t)− ktmrt(t)

mo
(4.42)

Substituting all derivatives with zero in equation 4.41 leads to:

− sin(θt) · g + 2 · 0 · 0
−(l + rt)

=
− sin(θt) · g
−(l + rt)

= 0 (4.43)

Rewriting the equation yields sin(θt) = 0, leading to θt = q ·2π. This indicates that the system achieves
a static steady-state at θt = 0, π, 2π, 3π etc. This means the system reaches its static steady-state
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when the load is either at its lowest position, directly below the suspension, or at its highest position,
directly above the load. The latter scenario is not feasible in offshore lifting operations. Consequently,
the static steady-state value for θt is established as θt = 0.

Setting all derivatives to zero in equation 4.42 leads to:

mo(l + rt · 0)2 −mog cos(θt)− ctm · 0− ktmrt
mo

=
−mog cos(θt)− ktmrt

mo
= 0 (4.44)

Given that θt = 0, equation 4.44 could be rewritten to:

rt =
−mog cos(θt)

ktm
=

−mog

ktm
(4.45)

So, the static steady-state values for the DOFs of the free lifting system are given by θt = 0 and
rt =

−mog
ktm

. These values can be verified through arguments. A value of θt equal to zero indicates the
load occupies the lowest possible point, a typical position for the pendulum in its static steady-state.
Moreover, Frt = mog denotes the gravitational force acting on the load. The relationship rt = −mog

ktm

can be expressed in the form of Hooke’s law, as:

Frt = ktm · rt (4.46)

Where rt denotes the elongation of the spring due to gravitational force. This elongation corresponds
to the elongation of the crane cable in the absence of axial oscillations or swing motion, being the static
steady-state elongation.

In summary, the static steady-state values are derived by replacing all time-derivatives with zero. This
approach is demonstrated with the set of EOMs of the free lifting system, but could be applied for every
set of EOMs.

4.5. Numerical model
The EOMs are derived for three systems: the free lifting system, the damping tugger system, and the
controlled lifting system. These EOMs are the foundation for the numerical models detailed in this
section. Three MATLAB models, corresponding to the three sets of EOMs, are created, which could
be used for multiple research goals.

4.5.1. MATLAB models
Three MATLAB models are created, corresponding to the three sets of EOMs derived for the free lifting
system, the damping tugger system and the controlled lifting system. Each model shares a similar
structure and objective. Inputs include the EOMs, a specified time frame, values for parameters such
as mass weights and spring stiffness, and the vessel motions. The numerical ODE solver ODE45 is
used to solve the EOMs. The initial conditions of the ODE solver are the static steady-state values of
the DOFs, derived following the method explained in Section 4.4.4.

The non-linear dissipative springs are implemented using an if-loop that examines whether the spring is
in a state of compression or tension. When the spring is tensioned, the standard stiffness and damping
coefficient are applied. However, when the spring is compressed, the stiffness and damping coefficient
are set to zero.

The output of the ODE solver consists of the DOFs and the corresponding first time-derivatives. This
output, combined with input parameters, is used for the calculation of various translational and rotational
displacements and velocities, and forces within the model.

4.5.2. Verification of the MATLAB models
In Section 3.6.2, a study is discussed that used a system with similar physics and a modeling approach
similar to the one used for the development of the numerical MATLAB model for the free lifting system.
Zhang [98] conducted this study. The outcomes of Zhang’s research are compared with those of the
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MATLAB model for the free lifting system. Initially, parameters from the similar study are incorporated
into the MATLAB model, resulting in the new model parameters shown in Table 4.2. Subsequently, the
input pitch motion for the free lifting systemmodel is adjusted to align with the input of Zhang’s model, as
illustrated in Figure 3.12. Additionally, both surge and heave motion are set to zero, mirroring Zhang’s
model settings. Finally, the model is executed to generate the resulting rotation of the crane cable.

Figure 4.9 displays the input pitch vessel motion θs and the resulting rotation of the crane cable θt.
When comparing Figure 4.9 with Figure 3.13, it is observed that the crane cable rotation in both models
has a similar order of magnitude [98], demonstrating that the modeling approach of the detailed lifting
model results in valid outcomes within this specific case. Additionally, multiple other verification cases
are employed to assess the validity of the results from all three models. These cases are provided in
Appendix A.2.

Element Parameter Symbol Value Unit
Crane cable Length l 0.35 m
Load Mass mo 1 kg
Crane tip Horizontal coordinate ltx 1 m
Crane tip Horizontal coordinate ltx 1 m

Table 4.2: Model parameter for comparison with the results of Zhang’s study

Figure 4.9: Pitch vessel motion as input for the model (magnitude of angles is confidential information)

4.5.3. Purposes of the numerical models
The three created models can be used to gain more understanding of the physics of a lifting operation
and of the damping tugger system. For example, the free lifting system can be used for investigating
the motion of the load during free lifting under different environmental conditions, or for studying the
effect of the load on the crane cable. Moreover, the model of the damping tugger system can be used
to study vibrations within the damping tugger system or the impact of the load’s motion on the system,
which is less commonly done. Finally, the controlled lifting system can be used to examine vibrations
within the entire system or the effects of movement of specific elements on other elements. When the
winch is kept motionless, this model can also be used to study the motion of a load connected to a
tugger cable to a fixed point.
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4.6. Controller design
The goal for the detailed model is to function both in constant tension model and in damping mode.
First, a Simulink mode is created and the controller is designed is this environment. As outlined in
Section 4.2.4, two distinct controllers are created, each corresponding to one of these modes. The aim
of this design process is not to create the perfect controller, but to develop one that performs effectively
during system analysis. A trial and error method is used for this purpose. Given the substantial amount
of time required for running simulations, the tests will prioritize a wide scope of parameters. The dis-
cussion starts with an examination of the PID controller used in the damping tugger system, followed
by the design processes for the controllers corresponding to one of the two modes.

Figure 4.10: Simulink loop

4.6.1. Simulink model
A Simulink model was created to investigate the controller of the damping tugger system. This model
contains four main elements: the setpoint calculation, controller, plant and disturbance. The latter is
the vessel motion. Figure 4.10 depicts the control loop of the S imulink model.The plant comprises
the MATLAB script that defines the system’s physics as described in Section 4.5.1, and a block that
outlines the winch limitations. The Simulink approach retains identical input and output values to the
MATLAB method detailed in Section 4.5.1.

Physical aspects, like the electromotor power and winch inertia, limit the winch’s rotation. This is mod-
eled incorporating velocity and acceleration boundaries. Within these boundaries, the rotation velocity
of the winch aligns with the controller output. If the controller output surpasses a boundary, the winch
output retains that boundary value until the controller output returns within the limits. For example,
with a maximum winch velocity of 1 rad/s and a controller output of 1.5 rad/s, the winch output stays
at 1 rad/s until the controller output drops below 1 rad/s again. Figure 4.11 illustrates this scenario. In
essence, the controller output is cut-off when exceeding limits.

4.6.2. The PID controller of the damping tugger system
The control system comprises a controller responsible for winch acceleration. This controller is a typical
PID controller. In mathematical terms, a PID controller can be represented as:

u = kp · e+ ki · ∫ e+ kd · ė (4.47)

where u is the controller output and kp, ki and kd denote the proportional, integral and derivative con-
trol value, respectively, and e is the error input of the controller. This error is defined as a measured
parameter minus the setpoint. Mathematically, this error is expressed as:

e = qsen − qs (4.48)

where e is the error, qsen is the measured parameter and qs is the setpoint.
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Figure 4.11: Visualisation of winch limits

In the case of the damping tugger system, the error is defined as the difference between the measured
tension in the tugger cable and the tension setpoint. The cable tension is continuously measured by a
motion sensor. The measured data is compared to the tension setpoint, leading to the tension error:

et = Tsen − Ts (4.49)

where Tsen is the measured tension, while Fs denotes the tension setpoint. The error serves as the
controller’s input. In that extend, the expression for the controller used in the damping tugger system
is:

u = kp · et + ki · ∫ et + kd · ėt (4.50)

This controller will be tuned to an effective controller for the objective of the model. The tuning of the
controller includes choosing values for the proportional, integral and derivative gain of the controller.

4.6.3. Identification of unstable response
In applying a controller to a damping system, the goal is to reduce the motion of the load. However,
an inappropriate controller may produce an undesired response. Such an undesired response could
result in exceeding maximum cable tension, the cable falling slack, or even increase of load motion.
This undesirable behavior often arise from instabilities in the controller’s performance.

These instabilities may originate from multiple factors. Two common causes involve either an overly
aggressive or an overly conservative controller. The aggressive controller can result in overshooting
and exceeding system limits, while the latter may lead to an inadequate influence on the system. Fig-
ure 4.12 illustrates a scenario with an overly aggressive controller. Such a controller is highly sensitive
to small errors, responding significantly to small vibrations in the tugger cable or small changes in the
load’s motion. This can potentially result in exceeding limits. One specific limit is the lower tension
threshold of the cable. When this tension drops below zero, the cable becomes slack, leading to unpre-
dictable behavior and resulting instabilities. As the controller continues to operate, these instabilities
typically make the situation worse, as observed in Figure 4.12.

An overly conservative controller inadequately responds to changes in the load’s motion. When the
load switches from pay-in to pay-out motion, a quick reaction from the controller is essential to prevent
excessive tension. A controller lacking sufficient response fails to adjust in time, causing a significant
increase in tension. Figure 4.13 demonstrates this phenomenon. As observed, the winch speed re-
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Figure 4.12: Unstable response due to an overly aggressive controller

mains at its minimum or maximum levels during tension peaks. This indicates that the winch rotation
cannot follow the load’s motion due to a delayed start.

Figure 4.13: Unstable response due to an overly conservative controller

4.6.4. Controller design for constant tension mode
For the constant tension mode, the integral term ki of the PID controller is set to zero, converting it to
a PD controller. This is done because the integral term results in an unstable response for this spe-
cific controller. Several cases with a non-zero value for the integral term were executed, all leading to
tension falling slack. This instability likely arises from the continuously varying input accumulated by
the integral term. Setting both proportional and derivative gains, kp and kd, to zero is also examined.
When the proportional gain is set to zero, the cable tension converges to the pre-tension value rather
than stabilizing around the tension setpoint. Figure 4.14 illustrates the winch movement, cable tension,
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and load motion when the controller gains are kp = 0, ki = 0 and kd = 5 with a tension setpoint of
Fs = 130 kN. Similar outcomes occur with different derivative gains. Setting the derivative gain at zero
and retaining only the proportional term results in overshoot, which in turn causes unstable response.

Figure 4.14: Response with control gains of P=0, I=0 and D=5 and a tension setpoint of 130 kN

The PD controller’s response is analyzed for multiple proportional and derivative gain combinations.
First, an analysis is done with a tension setpoint of Fs = 100 kN, corresponding to a tension of 10
mT. The analysis is done with proportional and derivative gains within the range [1 4 7 10 13 16], all
with a tension setpoint of 100 kN. The results are presented in Table 4.3. In the observed results, run
10 delivers optimal outcomes. This run uses a proportional value of 4 and a derivative value of 10,
resulting in an average tension deviation of 59.8 N. This outcome indicates effective maintenance of
constant tension by the controller. High outcomes suggest an unstable response, leading to exagger-

Run kp kd
Average
deviation [N] Run kp kd

Average
deviation [N]

1 1 1 1644.2 19 1 1 19700.4
2 1 4 63.8 20 10 4 3162.7
3 1 7 81.4 21 10 7 2129.8
4 1 10 104.0 22 10 10 1929.6
5 1 13 128.5 23 10 13 72.6
6 1 16 150.1 24 10 16 285.5
7 4 1 9821.8 25 13 1 55088.1
8 4 4 1922.8 26 13 4 9379.3
9 4 7 118.7 27 13 7 5483.8
10 4 10 59.8 28 13 10 2562.4
11 4 13 60.8 29 13 13 1764.8
12 4 16 65.7 30 13 16 470.9
13 7 1 10039.6 31 16 1 34923.6
14 7 4 5731.0 32 16 4 10344.6
15 7 7 1887.4 33 16 7 3573.8
16 7 10 81.4 34 16 10 3340.3
17 7 13 93.2 35 16 13 2519.2
18 7 16 69.7 36 16 16 1872.7

Table 4.3: Outcomes of analysis 1 for the controller design of constant tension mode
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ated tension deviation values. Analysis also reveals that proportional values of [1 4 7] yield much better
outcomes compared to [10 13 16]. Consequently, the latter range is disregarded as a viable option for
the proportional value.

A second analysis is done, this time for two cases. The setpoints are Fs = 100 kN for case 1 and
Fs = 130 kN for case 2, corresponding to 13 mT of tension. Tested values for the proportional value
include [1 4 7], while derivative values comprise [1 4 7 10 13 16]. The resulting data appear in Table 4.4.
In the second case with tension at Fs = 130 kN, a combination of a proportional value of kp = 4 and
derivative value of kd = 10 yields an average outcome. Run 3, combining a proportional value of 1 with
a derivative value of kp = 7, produces the optimal result for this case. Given the proper performance
of run 3 in both cases, this is a potential proper controller.

Run kp kd
Average deviation [kN]

Fs = 100 kN Fs = 130 kN
1 1 1 1644.2 761143.2
2 1 4 63.8 408.1
3 1 7 81.4 164.8
4 1 10 104.0 185.4
5 1 13 128.5 184.4
6 1 16 150.1 209.9
7 4 1 9821.8 89486.8
8 4 4 1922.8 61040.8
9 4 7 118.7 2025.8
10 4 10 59.8 797.6
11 4 13 60.8 595.5
12 4 16 65.7 445.4
13 7 1 10039.6 334293.4
14 7 4 5731.0 1546508.2
15 7 7 1887.4 51588.8
16 7 10 81.4 4324.2
17 7 13 93.2 1601.0
18 7 16 69.7 726.9

Table 4.4: Outcomes of analysis 2 for the controller design of constant tension mode

In the second analysis, a wide range was used. Subsequent refinement focuses on control gains
representing the optimal controller identified in this earlier analysis, specifically, the controller from run
3 with kp = 1 and kd = 7. For the third analysis, the range for proportional gain includes [1, 2, 3], and for
the derivative gain, [5, 6, 7, 8, 9]. It is worth noting that a proportional gain of kp = 0 results in unstable
behavior, and thus is excluded from this analysis. Data from this third analysis appear in Table 4.5.
These results indicate that the controller from run 1 has optimized performance at a tension setpoint
of Fs = 100 kN, while the controller from run 2 is best for a setpoint of Fs = 130 kN. The controller
from run 2 provides the most effective overall performance for both cases and is therefore selected for
further efficiency analysis.

The controller of run 2 undergoes further evaluation. The control gains of this controller are kp = 1,
ki = 0 and kd = 6. Figure 4.15 presents the motion of the winch, the tension in the cable, and the
motion of the load for case 1, with a tension setpoint of Fs = 100 kN. The tension remains close to the
setpoint value.

Figure 4.16 illustrates the same controller for case 2, with a tension setpoint of Fs = 130 kN. Com-
pared to case 1, tension displays slightly more fluctuation, yet remains close to the setpoint. Next, the
controller is also tested in cases with tension setpoints of Fs = 90 kN, Fs = 110 kN, Fs = 120 kN and
Fs = 140 kN. In each case, the output remains close to the designated setpoint. Based on these ob-
servations, it is concluded that the controller meets the requirements. Thus, selection of this controller
for subsequent use is confirmed, resulting in a PID controller with gains of kp = 1, ki = 0 and kd = 6.
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Run kp kd
Average deviation [kN]

Fs = 100 kN Fs = 130 kN
1 1 5 62.1 139.3
2 1 6 96.4 46.3
3 1 7 81.4 164.8
4 1 8 220.6 108.2
5 1 9 469.3 125.8
6 2 5 8404.6 196740.5
7 2 6 3645.6 13758.0
8 2 7 301.9 7189.4
9 2 8 156.5 7513.7
10 2 9 266.2 9142.8
11 3 5 318154.4 31965.4
12 3 6 311945.9 94776.0
13 3 7 369749.1 136100.1
14 3 8 7253.9 69586.7
15 3 9 588.6 55995.7

Table 4.5: Outcomes of analysis 3 for the controller design of constant tension mode

In this section, a notable aspect is that changing the tension setpoint impacts the performance of a
controller. As concluded from Table 4.4, different tension setpoints have different optimized settings
for the controller. During damping mode, the tension setpoint is constantly changing. Therefore, a
controller may need to continuously adapt its settings for optimal performance in damping mode. This
is further discussed in Section 4.6.5.

Figure 4.15: Response with PD controller for constant tension mode with gains of kp = 1 and Kd = 6 in case 1

Incorporation of this controller into the Simulink model results in a system suitable for analysis of lifting
operations using the damping tugger system in constant tension mode. A limitation of this model is
the large computational time. Although computational time varies with different model configurations,
it often surpasses 15 minutes for simulating an operation with a virtual duration of 1200 s.

Despite the computational duration, the model could be used effectively for examining lifting operations
using the damping tugger system in constant tension mode with various tension setpoints. Efficacy of
the model gets verified for tension setpoints ranging between Fs = 90 kN and Fs = 140 kN.
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Figure 4.16: Response with PD controller for constant tension mode with gains of kp = 1 and Kd = 6 in case 2

4.6.5. Controller design for damping mode
The design of the controller for the damping mode follows the same approach as the design of the
controller for the constant tension mode. Notably, the setpoint for the damping mode is different from
the setpoint of the constant tension mode. The setpoint of the damping mode has a maximum and
minimum tension as input and calculates the desired tension based on this maximum and minimum
tension and the measured velocity. This maximum and minimum tension is set to 180 kN and 20 kN,
respectively. The comparison of different controller settings is based on the average kinetic energy of
the load. The controller implying the lowest average kinetic energy of the load is considered as the
most effective one.

Figure 4.17: Response with PD controller for damping mode with gains of kp = 1, ki = 1 and Kd = 1
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It is important to highlight that the computational time for executing these models can be large. The
computation time varies depending on the settings of the model. In some cases, settings can lead to
a computational time exceeding an hour for a simulated time span of 1200 seconds. This results in
time-consuming analyses of controller settings.

As elaborated in Section 4.6.4, varying the setpoint for constant tension mode leads to different opti-
mized controller configurations. This is particularly noteworthy because, in damping mode, the tension
setpoint is not static but continuously changes. This suggests that an optimal controller for damping
mode may need to be adaptive. However, it is chosen to keep a simple PID controller and not explore
the effects of an adaptive controller.

First, A PID controller with gains kp = 1, ki = 1 and kd = 1 is tested. Figure 4.17 displays the system
response. This response is unstable, similar to controllers in constant tension mode with a non-zero
integral term. Additional experiments with non-zero integral gain also yield unstable behavior, leading
to the conclusion that a PD controller should also be used for the damping mode.

Now, the PD controller that is designed for the constant tension mode is applied to the damping mode.
Figure 4.18 illustrates the controller’s performance. The frequency of the winch is much higher com-
pared to the frequency of the load. Such difference occur due to the control system reacting to small
vibrations in the tensioned cable. This reactivity prevents the system from stabilizing around the set-
point of xs = 0. Observations indicate that the mass oscillates around xo = 2.5m at t = 600. The winch
consistently operates at its maximum and minimum velocities throughout the cycle, indicating system
operation at the winch’s performance limits.

Figure 4.18: Response with PD controller for damping mode with gains of kp = 1 and Kd = 6

To explore further the performance of the PD controller in maintaining constant tension, multiple PD
controllers are tested. Controllers with settings for proportional and derivative gains within the range of
[1, 4, 7, 10] are tested. The results are either closely those of Figure 4.18 or yield unstable outcomes.
From this, the hypothesis is derived that a controller in the order of these gains has no major impact
on the motion of the load. Therefore, higher gains are tested. The range of proportional and derivative
gains tested are [1 10 100], except for the controller with gains kp = 1 and kd = 1 since these settings
are already examined.
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The results for these controller settings are presented in Table 4.6. The optimal controller appears
to be from run 5, characterized by gains kp = 10 and kd = 100, which yielded an average kinetic energy
of 2920.4 J. This controller is the only controller that provided stable, unlike other controllers that all
produce unstable outcomes. A detailed analysis of run 5, illustrated in Figure 4.19, reveals that its re-
sponse closely aligns with that in Figure 4.18. Similar to previously designed controllers, this controller
also has no significant impact on motion.

Run kp kd
Average kinetic
energy [J]

1 1 10 55187.5
2 1 100 54634.6
3 10 1 117283.1
4 10 10 56834.4
5 10 100 2920.4
6 100 1 78094.0
7 100 10 210076.3
8 100 100 56773.5

Table 4.6: Outcomes of analysis 1 the controller design of damping mode

Up to this point, an effective controller for the damping mode has not been created. Numerous gain
combinations were evaluated, ranging from high gains in the order of 1,000 and 10,000 to low gains in
the range of 0.1 to 0.001. Additionally, variations in the maximum andminimum tension did not enhance
controller performance. Eliminating the winch limitations slightly improved the outcomes; a controller
with gains kp = 10 and kd = 100 leads to an average kinetic energy of 1176.9 J. However, this was
achieved at the expense of heavily exceeding winch acceleration and velocity limits. In summary, no
suitable controller has been identified for the damping mode in this Simulink model.

Figure 4.19: Response with PD controller for damping mode with gains of kp = 10 and Kd = 100

Several factors could contribute to the difficulty of identifying an appropriate controller for the system.
First, it may be that a PID controller is not the optimal choice for this objective. As concluded in Sec-
tion 4.6.4, varying setpoints result in different optimized controller settings for constant tension modes.
While PID controllers are suitable to many control systems, they may not be for this particular applica-
tion. As mentioned earlier in this section, an adaptive controller might yield better performance, but this
is not further investigated.
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Even if a PID controller is considered appropriate, multiple factors could compromise its performance.
Firstly, the truncation of the controller’s output, implemented to model winch limits, may result in an
unstable response. Essentially, the controller may overcompensate for this truncated output. Another
issue could arise if the controller reacts to small vibrations in the system, such as the axial vibrations of
the inclined mass of the tugger cable. While this mass does not exist in this form in reality, its modeled
presence could induce axial vibrations. Additionally, due to the complexity of the model various simpli-
fications are done, such as the elimination of the effect of the load on the motion of the winch. These
factors, among others, could adversely affect the controller design process.

Nevertheless, a suitable controller for the damping mode is not found after several approaches. Given
the extensive time required for controller testing and the unsuccessful attempts, a decision has been
made to explore an alternative approach, as described in Chapter 5. While creating the detailed model,
various new perspectives emerged which will be used in the alternative approach. Among these per-
spectives are potential simplifications that could be applied to the system without adversely impacting
the results. These potential simplifications are described Section 5.3.1.

4.7. Conclusion
A representation of the physics of a lifting operation with the use of a motion control system is created in
this chapter, referred to as the lifting system. Initially, the lifting system is split into a free lifting system
and the damping tugger system. The EOMs for these systems are derived by means of the Lagrangian
method. The knowledge obtained from these derivations is used for the derivation of the EOMs for
the controlled lifting system. Thereafter, three MATLAB models are created, each corresponding to
a derived set of EOMs. The numerical solver ODE45 serves for solving the EOMs in these MATLAB
models. Verification across multiple cases confirms the reliability of all three MATLABmodels, enabling
their usage for gaining more understanding of the physics of a lifting operation and of the damping tug-
ger system.

The MATLAB model for the controlled lifting operation serves as the foundation for the Simulink model.
This Simulink model aims to gain more understanding of the system’s controller component. Both the
constant tension mode and the damping mode are incorporated into the Simulink model, resulting in a
model suitable for examining both modes.

The objective of the controller design is not to design an optimized controller but to develop one that
performs effectively during system analysis. The controller that is designed for the constant tension
mode is a controller of PID form with the proportional, integral and derivative settings being kp = 1,
ki = 0 and kd = 6, respectively. Since the integral gain is zero, the controller is, in fact, a PD controller.
Implementation of this controller into the Simulink model leads to a model that is suitable for running
simulations of the damping tugger system in constant tension mode during a lifting operation, for vari-
ous setpoints within the range of Fs = 90 kN to Fs = 140 kN. Despite the often large running time, the
model serves as an effective tool for examining the damping tugger system in constant tension mode.

For the damping mode, no effective controller was designed. Several controller settings with propor-
tional and derivative gains ranging from the order of 0.011 to 10,000 were tried, but did not lead to a
suitable controller. Furthermore, different minimum and maximum tension setpoint were tried as well as
eliminating the winch limitations, but this did not lead to a suitable controller. Several possible causes
of the difficulties with the control design are discussed. First, it could be that a PID controller could
not be the right controller for this objective because of the varying setpoint during damping mode. An
adaptive controller could be more suitable but this is not further investigated. Other causes could be the
truncation of the controller output as result of modeling the winch limitations, possible small vibrations
or modeling simplifications that affect the controllers response.

Given the extensive time required for controller testing and the unsuccessful attempts, a decision has
been made to develop a new, simplified model for further research. This simplified model is called the
analysis model and is elaborated upon in Chapter 5. Multiple new insights derived from the creation of
the detailed model are use for the analysis model.



5
Analysis model

In this section, a simplified version of the model from Chapter 4 is developed, called the analysis model.
While this model shares the primary objective with the detailed model, it also aims to mitigate the is-
sues encountered during the development of the detailed model. This chapter starts with the model
development objective and the explanation of various simplifications, model decisions and standard
parameters. Subsequently, two systems are introduced, and their EOMs are derived. Numerical MAT-
LAB models are then created, and the results are evaluated with verification cases. These numerical
models are, thereafter, converted into Simulink models, where both the maximum force setpoint and
the motion control setpoint are implemented. Following this, the winch controller is developed and
implemented, resulting in a model ready for analyzing the impacts of various controller setpoints and
inputs of Section 3.3. Finally, a simpler control method is introduced as a third control option.

5.1. Objective of the model
Consistent with the objective of the detailedmodel presented in Section 4, the aim of the development of
the analysis model is to facilitate the analysis of the effects of the different controller setpoints and inputs,
which are outlined in Section 3.3. Similar to the detailed model, this simplified version is designed to
simulate the motion of the load influenced by vessel motion and controlled by the motion control system.
Given that the excessive computation time of the detailed model was a main problem within Chapter 4,
this analysis model aims to reduce computational time by implementing several simplifications.

5.2. Method
The method used for developing the analysis model is outlined in this section. This approach is partly
equal to the method used for the detailed model, as described in Section 4.2, while also introducing
some new methodology elements.

5.2.1. Simplified lifting system
The system developed in this chapter is called the simplified lifting system. It is derived from several
simplifications applied to the detailed model, which is discussed in Chapter 4. These simplifications
are outlined in Section 5.3.1. Prior to developing the simplified lifting system, an intermediate system,
called the force system, is constructed. This model consists solely of the crane, the load, and the
damping force acting upon the load, leaving out the tugger cable and winch. The force system is used
for two primary functions: to assess the required damping force in the load i.e., determining the force
in the tugger cable needed to damp the load’s motion and to act as a preliminary step in creating the
complete Simplified lifting system.

The EOMs for both systems are derived using the same approach used for the derivation within the
detailed model, which is described in Section 4.2.2. Specifically, the Lagrangian method is used for
these derivations. Additionally, the Rayleigh Dissipation Function is used to account for any elements
of the system that dissipate energy.

49
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5.2.2. Numerical model
After deriving the EOMs, two numerical MATLAB models are created, each corresponding to a specific
set of EOMs. Similar to the detailed model, the ODE45 numerical solver is used to solve these EOMs,
yielding a dynamic response that specifies the DOFs and their corresponding first time-derivatives. The
numerical models are subsequently verified using specific verification cases.

5.2.3. Controller design
The design phase for the controller of the analysis model differs from that of the detailed model. Ini-
tially, Simulink models for both the force system and the lifting system are constructed. The conversion
from the MATLAB script to the Simulink environment follows the same approach used for the detailed
model, using the Simulink ODE solver as described in appendix A.3. Thereafter, two setpoints, maxi-
mum force setpoint and the motion control setpoint, are integrated into the Simulink model of the force
system. For the motion control setpoint, the control parameters are determined within the Simulink
model. After implementation of these setpoints, the resulting damping forces acting in the load is ex-
amined. A positive outcome of this examination leads to a feasible setpoint for the winch controller.
Following this, the winch controller is developed within the Simulink model for the lifting system. It is
designed based in the maximum force setpoint. Once a suitable winch controller has been developed
for this setpoint, its suitability for the motion control setpoint are assessed. Thereafter, a simpler control
method is designed. In this method, the winch controller and setpoint calculation are integrated into a
single controller. This controller controls the winch using the motion of the load as input, eliminating
the need for a feedback loop for the motion of the winch.

Lastly, the constant tension mode is implemented to the system and the results of this mode are com-
pared to the results of the detailed model. Subsequently, the designed setpoints and controllers are
incorporated into the Simulink model, resulting in a complete model of the lifting system. This model
serves as a basis for the analysis of the two controller setpoints and inputs, which are outlined in Section
3.3. The results of this analysis are presented in Chapter 6.

5.3. Modeling decisions
This section provides details in the design choices made for the construction of the simplified lifting sys-
tem. The system is developed after implementing several simplifications to the detailed lifting system.
This section outlines these simplifications, as well as the vessel motion and standard parameters.

5.3.1. Simplifications
Five key simplifications distinguish the simplified lifting system from the detailed system. Firstly, in the
detailed model, the tugger cable is represented as two dissipation springs with a point mass positioned
between them. The longitudinal and transversal frequencies of this point mass are significantly higher
than the frequencies of the winch and load motion, and thus, they do not interfere with these compo-
nents. Consequently, the point mass can be eliminated, and the tugger cable can be simplified as a
single dissipating spring.

Secondly, the crane cable exhibits a large stiffness due to its strength. This large stiffness results
in a natural frequency for this cable that far exceeds the frequencies of vessel motion, winch motion,
and even the natural frequency of the tugger cable. Hence, the spring representing the crane cable
does not disrupt the dynamics of the overall system. Consequently, the crane cable is represented as
a rigid bar.

The elimination of the point mass in the tugger cable and the modeling of the crane cable as a rigid
bar can substantially reduce the computational time required for the model, since these elements are
sensitive for high-frequency vibrations with small amplitude. This high-frequency vibrations drastically
increase computation time.

The third simplification pertains to the winch. Unlike the detailed model, where the winch is treated
as a rotational mass, the analysis model represents it as a translational mass. However, the rotational
motion of the winch is translated into translational motion for the tugger cable. Consequently, the ro-
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tational motion of the winch results in a translational motion of the tugger cable in the analysis model.
Thus, the winch is portrayed as a mass capable of solely translational motion in the analysis model.
Mathematical details regarding the relationship between a rotating mass and a translating mass are
elaborated in Appendix B.1.

Furthermore, the input motion is simplified. In the detailed model, the vessel motion consists of surge,
heave, and pitch rotation of the vessel, which are converted into x- and y-motions of the crane tip. How-
ever, the primary motion of the crane tip is along the x-axis, and the y-motion has a negligible impact
on system dynamics. Consequently, the analysis model exclusively considers the x-motion of the tip.
This simplification is achieved by eliminating the vessel and crane in the analysis model, restricting the
motion of the crane tip to a single horizontal direction.

Lastly, the purpose of the model is to analyze the impact of various controller aspects. The controller
responds to the load’s motion. In the detailed model, the winch’s position is influenced by the vessel’s
motion. So both the winch and the load are affects by the vessel motions. However, the objective is
to analyze the system’s response when the load’s motion differs from that of the winch. If the winch re-
mains stationary, the load will experience motion due to the input motion at the crane tip. Consequently,
the location of the winch is considered stationary and unaffected by the vessel’s motion to isolate the
analysis of load and winch motion responses.

These five simplifications result in a new version of the model, called the simplified lifting system, which
is discussed in greater detail in Section 5.4. It should be noted that the non-linearity of the springs, de-
scribed in Section 4.3.4, is not applicable to this chapter. This is because it is manually ensured that
the springs are always in tension.

5.3.2. Vessel motions
As outlined in Section 5.3.1, the motion of the suspension is reduced to a single direction. Figure 5.1
depicts the horizontal motion of the suspension over time, induced by vessel motions. Similar to the
vessel motion in the detailed model discussed in Section 4.3.6, there is no motion during the initial
50 seconds to examine the system’s static steady-state behaviour. Unlike the detailed model, this
trajectory spans 1500 seconds, with the final 250 seconds also being motionless. This extension aims
to demonstrate the behaviour of the system as the motion eventually dampens out.

5.3.3. Standard parameters
The simplified lifting system comprises five parameters that maintain constant values throughout each
run of the model. These parameters are presented in Table 5.1. These constant values will be applied
up to and including the control design phase. After the control design phase, multiple scenarios will be
executed in which two specific parameters, the mass of the loadmo and the mass of the winchmw, will
be varied within certain ranges.

Element Parameter Symbol Value Unit
General Gravity constant g 9.81 m/s2

Crane cable Length l 50 m
Load Mass mo 1,000 mT

Tugger cable Stiffness kc 1 MN/m
Tugger cable Max. allowed force Fmax -50 kN
Tugger cable Min. allowed force Fmin -250 kN

Winch Mass mw 5 mT

Table 5.1: Standard parameters of the simplified lifting system

5.4. Equations of motion
In this section, the EOMs for both the simplified force system and the simplified lifting system are
derived. The method employed for this derivation is equal to the one used for the derivation of the
EOMs for the detailed lifting system. The latter derivation is outlined in Section 4.4.
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Figure 5.1: The x-displacement of suspension

5.4.1. Simplified force system
The simplified force system consists of the pendulum system with a moving suspension. The sys-
tem is depicted in Figure 5.2. This system is a 1DOF system with θ(t) as the DOF, representing the
time-dependent angle of the suspended crane cable. Notably, the x-motion of the suspension xt is
prescribed, so this is not a DOF. Being a 1DOF system, it yields only one EOM.

Figure 5.2: The simplified force system
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The time-dependent horizontal displacement of the crane tip is denoted by xt and is referenced to
the global coordinate system with axes X and Y . In this context, the time-dependent coordinates of
the load are defined as follows:

xo = xt(t) + θ(t)l (5.1)

yo = l − l

(
1− θ(t)2

2

)
=

lθ(t)2

2
(5.2)

Here, xt is the time-dependent coordinate of the moving suspension, and l represents the length of the
crane cable. The angles are simplified using the small angle theory, which is justified by the fact that
the crane cable angle will always remain small during a lifting operation. In the event that the crane
cable angle exceeds the threshold for the small angle theory, it indicates an unsafe condition, and such
an operation will not be undertaken. Next, the kinetic and potential energy equations are derived:

T =
1

2
m

(
ẋ2
o + ẏ2o

)
(5.3)

U = mg (yo − yo−in) (5.4)

where m is the weight of the load, and yo−in denotes the yo coordinate of the load when the system is
in initial position, i.e., the yo coordinate when θ = 0 and xt = 0, which leads to yo−in = 0. These energy
equations lead to the Lagrangian:

L = T − U (5.5)

No damping element, such as a cable with damping properties, is present in this system, so the Euler-
Lagrange equation does not imply Rayleigh’s law. The Euler-Lagrange equation, without Rayleigh’s
law, for this system is:

d
dt

∂L

∂θ̇
− ∂L

∂θ
= Fk(t)l (5.6)

where Fk is the time-dependent horizontal force acting in the load, intended to dampen its motion. The
damping force Fk is multiplied by the length because the DOF θ represents an angle, and thus, the
damping force acts as a damping moment. Rewriting this equation and isolating the acceleration term
leads to the following EOM:

θ̈ =
−θ(t)gm− ẍtm+ Fk(t)

lm
(5.7)

This is the EOM for the simplified force system. Section 5.5 describes the implementation of this EOM
into a numerical model.

5.4.2. Simplified lifting system
The simplified lifting system, illustrated in Figure 5.3, is an extension of the simplified force system of
Section 5.4.1. This extension includes the addition of a winch and a tugger cable, represented as a
point mass, capable of translational motion, and a non-linear spring, as Section 5.3 describes.
Due to the presence of the winch, this system becomes a 2DOF-system. Therefore, two EOMs will be
derived for the DOFs θ(t) and xw(t), representing the rotation of the crane cable and the translation of
the winch, respectively. The coordinates of the load xo and yo remain identical to those in the simplified
force system, indicated in equations 5.1 and 5.1.

Again, the small angle theory is applied. The presence of the winch and the tugger cable affects
the kinetic and potential energy equations. The equations defining the kinetic and potential energy in
this system are:

T =
1

2
m

(
ẋ2
o + ẏ2o

)
+

1

2
mw(ẋ

2
w) (5.8)

U = mg (yo − yo−in) +
1

2
k(xw(t)− xo(t))

2 (5.9)

where m is the weight of the load, mw is the weight of the winch, k is the stiffness of the spring and
again, yo−in denotes the yo coordinate of the load in a initial position which is also in this case yo−in = 0.
These energy equations lead to the Lagrangian:

L = T − U (5.10)
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Figure 5.3: The simplified lifting system

Thereafter, the Rayleigh dissipating function, elaborated on in Section 4.2.2, is derived as:

R =
1

2
c(ẋw − ẋo)

2 (5.11)

The Euler-Lagrange equation, including the term for the Rayleigh dissipation functions are:
d
dt

∂L

∂θ̇
− ∂L

∂θ
+

∂R

∂θ̇
= 0 (5.12)

d
dt

∂L

∂ẋw
− ∂L

∂xw
+

∂R

∂ẋw
= Fw(t) (5.13)

where Fw is the time-dependent horizontal force acting in the winch. Solving this equation and isolating
the acceleration terms, leads to the following EOMs:

θ̈ =
−mgθ(t)−mẍt − k(xt(t) + θ(t)l − xw(t))− c(ẋt + θ̇l − ẋw)

ml
(5.14)

ẍw =
Fw(t) + k(xt(t) + θ(t)l − xw(t)) + c(ẋt + θ̇l − ẋw)

mw
(5.15)

These are the EOMs for the simplified lifting system, which will be incorporated in a numerical model,
elaborated on in Section 5.5.

5.4.3. The static steady-state
The static steady-state equations for the simplified force and lifting systems are derived using the ap-
proach as outlined in Section 4.4.4. This results in the static steady-state equation for the simplified
force system as follows:

θ =
Fk(t)

gm
(5.16)

Similarly, for the simplified lifting system, the static steady-state equations are:

θ =
k · (xw − xt)

mg + kl
(5.17)

xw =
Fw(t)

k
+ xt + θl (5.18)

These equations are employed to calculate the static steady-state values of the DOFs, which then
serve as the initial conditions for the ODE solver.



5.5. Numerical model 55

5.5. Numerical model
The EOMs derived in Section 5.4 are the foundation for the created numerical MATLAB models. These
models are described in this section along with the purpose of the models.

5.5.1. MATLAB model
Two numerical MATLAB models have been developed corresponding to the two sets of EOMs derived
in Section 5.4.These numerical models are created in consistent manner with the MATLAB models for
the detailed model, as explained in Section 4.5.1. Thus, the ODE45 numerical solver is used for solving
the EOMs and initial conditions are ascertained through static steady-state equations. The validity of
the outcomes of these models is assessed through verification cases, which are provided in appendix
B.4.

5.5.2. Purposes of the numerical models
The numerical model corresponding to the simplified force system could be used to investigate the
required force in the load to damp its motion. This increases understanding of the optimal tension for
the tugger cable during a lifting operation. Moreover, this model is the basis for the Simulink model
used for controller design.

The second numerical model is designed to explore the influence of the winch and tugger cable in
the load’s motion. This leads to a better understanding of damped lifting operations. Additionally, this
model could be used for an analysis of the relation between the load’s motion, the winch’s motion and
the tension in the tugger cable. Similar to the first model, this numerical model also serves as the basis
for a Simulink model for controller design.

5.6. Controller design
This section outlines the design phase for the controllers and setpoints. Initially, the numerical MATLAB
models described in Section 5.5 will be transformed into Simulink models. Subsequently, parameters
for the maximum force setpoint and the motion control setpoint will be established. Following this, the
winch controller is designed. Thereafter, both the setpoint and controller are integrated into the created
Simulink model for the lifting system, resulting in a complete model of the lifting operation. Lastly, the
constant tension mode is implemented to the system and the results of this mode are compared to the
results of the detailed model.

5.6.1. Simulink model
Two Simulink models were created during the controller design phase: one for designing the controller
for the maximum force setpoint and another for the controller for the motion control setpoint. Both
models can be integrated with the two sets of EOMs. In the design approach for both controllers, the
EOM for the force system is initially applied to determine the required force in the load. Subsequently,
the EOMs for the lifting system are used to design the controllers for the entire system.

5.6.2. The maximum force setpoint
First, the maximum force setpoint is integrated into the Simulink model of the simplified force system.
Figure 5.4 illustrates the control loop for this configuration, where Fsk represents the setpoint for the
force in the load. This setup has no PID controller because the force setpoint is calculated based in the
measured velocity, denoted as ẋsen. The calculated force is directly applied to the load. Additionally,
a velocity deadband is implemented to mitigate fluctuations around zero with small amplitudes. This
deadband is active within the velocity range of ẋsen = 0.05 m/s to ẋsen = −0.05 m/s and significantly
reduces computational time. Further details on this deadband are provided in Appendix B.2.
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Figure 5.4: The control loop of the simplified force system with maximum force setpoint

The implementation of the deadband into the maximum force setpoint determined by equation 3.1 leads
to an updated mathematical expression for the maximum force setpoint:

Fs =



Fmax ẋsen ≥ ẋlim−upper

ζ · ẋsen + Fpre ẋdb−lower < ẋsen < ẋlim−upper

0 ẋdb−lower ≥ ẋsen ≤ ẋlim−upper

ζ · ẋsen + Fpre ẋlim−lower < ẋsen < ẋdb−upper

Fmin ẋsen ≤ ẋlim−lower

(5.19)

Here, Fs denotes the force setpoint within the cable system, while Fmax and Fmin represent the estab-
lished upper and lower force limits, respectively. The force setpoint attains these specified limits when
the measured velocity of the load xsen exceeds the limit velocity xlim in either a positive or negative
direction. The damping ratio is represented by ζ and the upper and lower value of the deadband is
denoted as ẋdb−upper and ẋdb−lower. When the measured velocity of the load is within the deadband
limits ẋdb−upper and ẋdb−lower, the force setpoint is 0. Additionally, Fpre denotes the pre-tension, and ζ
symbolizes the damping ratio. Figure 5.5 includes a visualisation of this maximum force setpoint.

Figure 5.5: Visualisation of the maximum force setpoint including deadband

Within this thesis, the damping ratio ζ is set to 1,000 kNs/m. The force limits are Fmax = −50 kN and
Fmin = −250. Given that the measured velocity is approximately 0.1 m/s, this particular damping ratio
results in a force magnitude in the order of 100 kN. The force acting in the load influences the load’s
motion, leading to a reduction. This is observed when comparing Figure 5.6a and Figure 5.6b, which
show the response of the load without the application of any damping force and with the application of
the design maximum force setpoint, respectively. The force applied to the load over time is illustrated
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(a)Without any damping system (b)With the maximum force setpoint as damping force

Figure 5.6: Comparison of the motion of the load

in Figure 5.7. The force remains within the boundaries of Fmax = −50 kN and Fmin = −250. A visu-
alisation of the same force, within the time interval of [50, 150] seconds, is presented in Figure 5.8. In
this figure, the impact of the deadband, linear setpoint calculation, and truncation at the force limits can
be observed. The deadband ensures that the force immediately drops to zero when the velocity falls
within the deadband values, corresponding to force values F = −100 kN and F = −200 kN.

Figure 5.7: The damping force acting to the load
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Figure 5.8: The damping force acting to the load over a time frame of [50 150] s

5.6.3. The motion control setpoint
Now, the motion control setpoint is intergrated into the force system. The motion control setpoint is a
setpoint calculation method is the form of a standard PD controller, which is described in equation 3.2.
The parameters for this setpoint will be determined in this section. To do so, the motion control setpoint
is implemented into the force system, leading to the control loop of Figure 5.9.

Figure 5.9: The control loop of the simplified force system with motion control setpoint

The input for the controller is the error of the velocity of the load eo. This error is defined as:

eo = ẋso − ẋsen (5.20)

where eo is the error of the load velocity, ẋso denotes the setpoint for the velocity of the load and ẋsen

represents the measured velocity of the load. The measured error is continuously changing due to the
changing disturbance. An integral term would sum this continuously changing error, what would lead to
unstable response of the controller. Therefore a PD-controller form is most appropriate for the purpose
of a motion control setpoint. This is essentially a PID-controller with an integral controller gain set to
zero. The mathematical expression for a PD-controller is as follows:

Fsk = k̄p · eo + k̄d · ėo (5.21)

Here, k̄p and k̄d represent the proportional, integral and derivative gains of the PID-controller, respec-
tively. Notably, the difference of equation 5.21 and equation 3.2, which describes the mathematical
expression of a PID-controller, is the integral term.
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The objective is to design a setpoint that ensures the force in the cable effective reducing the mo-
tion of the load without exceeding maximum and minimum force limits in the cable, Fmax = −50 kN
and Fmin = −250 kN. Since truncation of the ouput of the controller should be avoided as much as
possible, the controller must be tuned in such a way that the setpoint will not exceed the limits of the
force in the cable. Therefore, first, the maximum gains for the controller are determined. This maximum
is set to 450,000, as appendix B.3 describes.

These earlier described limits for the proportional and derivative terms are used to verify if the con-
troller parameters come close to the limits. It is important to consider that both the proportional and
derivative terms in the control equation add up, leading to a lower actual limit, as shown in equation
3.2. If the control parameters approach the limit, an additional check is performed in the setpoint for
the force in the cable, Fsk, to ensure it does not exceed the cable force limit. Conversely, if the control
parameters are far from the limit, it is assumed that the controller will be sufficient.

The design of the controller is accomplished via a case. In this case the load initiates with a dis-
placement of 0.50 m, and there is no wave excitation present. The objective is to dampen the load’s
displacement to 0.01 m after 15 seconds. The controller is deemed successful if it achieves this goal.

Following a trial and error process, the control parameters are found to be k̄p = 95, 000 and k̄d = 70, 000.
Figure 5.10 depicts a zoomed-in view around 15 seconds of the response to the specified case. As
demonstrated, the displacement of the load is less than 0.01 m at 15 seconds, confirming that these
controller parameters are satisfactory. It is assumed that this is not a problem. Since the controller
satisfies the objective and the gains do not approach the limits of 450, 000, it is selected for testing it as
the motion control setpoint.

Figure 5.10: The displacement of the load with the chosen control parameters

The selected controller parameters are incorporated into the force system for testing it as the motion
control setpoint. This is done by testing the load’s response to vessel motion. The force acting in the
load, induced by the motion control setpoint is shown in Figure 5.11 and the resulting motion of the
load is shown in Figure 5.12b. Figure 5.12a shows the motion of the load with only the pre-tension and
damping force applied, which was also shown in Figure 5.6a. When comparing Figure 5.12a to Figure
5.12b, a significant reduction of the load is observed.
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Figure 5.11: The damping force action to the load

(a)Without any damping system (b)With the motion control setpoint as damping force

Figure 5.12: Comparison of the motion of the load

5.6.4. The winch controller
Next, the Simulink model is extended to the lifting system, so the winch and tugger cable are now in-
cluded. A PID controller is also integrated, which controls the motion of the winch. The winch controller
is designed upon the maximum force setpoint. After a winch controller is designed that works properly
for the maximum force setpoint, it is checked if it works properly for the motion control setpoint as well.
This is done in Section 5.6.5. The updated control loop is illustrated in Figure 5.13. In this figure, Fsk

denotes the setpoint for the force in the spring, while Fsw and Fk represent the forces in the winch. It
is important to note that when no controller is applied, the winch exhibits unrestricted motion, resulting
in oscillations.

The PID controller, which controls the motion of the winch, aims that the force exerted by the cable
aligns with the force setpoint. In other words, the objective is to minimize the deviation between the
actual cable force and the setpoint. This controller functions under a primary constraint: the force in
the cable must not exceed its limits. As outlined in Section 5.2, the focus is on developing an adequate
controller for research analysis, rather than an optimized one.
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Figure 5.13: The control loop of the simplified lifting system with maximum force setpoint

First, the setpoint for the winch displacement xsw is calculated using Hooke’s law as follows:

xsw =
Fsk

k
+ xo (5.22)

Here, xsw represents the displacement of the left side of the spring, and xo denotes the displacement
of the right side of the spring. The position error of the winch ew is then calculated as:

ew = xsw − xw (5.23)

Where xw represents the measured position of the winch, and xsw is the setpoint for the position of the
winch. Subsequently, this error serves as the input for a PD controller that regulates the setpoint for
the force in the winch. The setpoint of the force of the winch is defined as:

Fsw = kp · ew + ki · ∫ ew + kd · ėw (5.24)

Here, kp, ki and kd represent the proportional, integral and derivative gains of the PID controller, re-
spectively. It is important to note that this model assumes the winch actuator works ideally, meaning
that the force in the winch is always equal to the system’s setpoint. In real-world scenarios, factors
such as inertia, control system delays, may cause the force to deviate from the setpoint. However, this
research does not consider these real-world effects, as its primary focus is on determining the desired
setpoint for the force in the winch.

In the process of designing the controller for the detailed model, it was concluded that a non-zero
integral gain resulted in unstable controller behaviour. After testing, the same was concluded for the
winch controller in the analysis model. Consequently, the integral gain of the PID controller is set to
zero, effectively converting it into a PD controller.

The displacement error for the load is in the order of 0.1, whereas the force is in the order of 100,000.
Therefore, it is hypothesised that a winch controller with parameters in the order of 1,000,000 should
function properly. This hypothesis is tested by evaluating PD controllers with gains ranging from 1 to
1,000,000, based in the deviation of the cable force from the setpoint, as elaborated in Section 3.6.1.
The results are presented in Table 5.2. Run 21 yields the smallest deviation from the setpoint, contrary
to the initial hypothesis. However, the cable force significantly overshoots the setpoint, as is observed
in Figure 5.14. In this specific case, the force limits of Fmax = −50 kN and Fmin = −250 kN are not
exceeded. However, this is due to the low velocity of the load, not to the controller’s efficacy. If the
load were to move at higher velocity, this controller would likely cause the force limits to be exceeded.
Thus, this controller is considered overly aggressive and unsuitable for the application.



5.6. Controller design 62

Run kp kd
Average
deviation [kN] Run kp kd

Average
deviation [kN]

1 10 1 43.2 22 10,000 1 14.6
2 10 10 43.6 23 10,000 10 14.5
3 10 100 43.8 24 10,000 100 14.6
4 10 1,000 40.7 25 10,000 1,000 14.2
5 10 10,000 21.7 26 10,000 10,000 12.3
6 10 100,000 6.9 27 10,000 100,000 6.6
7 10 1,000,000 2.0 28 10,000 1,000,000 2.0
8 100 1 43.0 29 100,000 1 7.7
9 100 10 41.7 30 100,000 10 7.7
10 100 100 42.4 31 100,000 100 7.7
11 100 1,000 39.8 32 100,000 1,000 7.4
12 100 10,000 21.4 33 100,000 10,000 6.1
13 100 100,000 6.9 34 100,000 100,000 4.5
14 100 1,000,000 2.0 35 100,000 1,000,000 1.9
15 1000 1 33.9 36 1,000,000 1 12.2
16 1000 10 34.0 37 1,000,000 10 12.2
17 1000 100 33.9 38 1,000,000 100 12.0
18 1000 1,000 31.7 39 1,000,000 1,000 11.2
19 1000 10,000 19.1 40 1,000,000 10,000 7.1
20 1000 100,000 6.8 41 1,000,000 100,000 2.7
21 1000 1,000,000 2.0 42 1,000,000 1,000,000 1.4

Table 5.2: Outcomes of analysis 1 for the controller design of the winch controller

The controllers that were tested and showing a significant deviation from the setpoint were identified as
overly conservative, concluding that there is a trade-off between being too conservative, which results
in large deviations from the setpoint, and being too aggressive, leading to overshooting the setpoint.
Consequently, the focus is shifted towards identifying a controller that closely adheres to the setpoint
without large exceedance.

Figure 5.14: The force in the cable compared to the force setpoint for a controller with gains kp = 1, 000, 000 and
kd = 1, 000, 000 with time frame [650 950] seconds
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An examination was done on a winch controller with proportional and derivative gains set at kp =
100, 000 and kd = 100, 000. Figure 5.15 illustrates the force in the cable relative to the force setpoint
within the time frame [650, 950] seconds. The Figure shows that the force in the tugger cable generated
by this controller adheres well to the setpoint. Therefore, it is concluded that a controller with gains in
the order of 100, 000 is suitable for this system.

Figure 5.15: The force in the cable compared to the force setpoint for a controller with gains kp = 100, 000 and kd = 100, 000
with time frame [650 950] seconds

Due to the promising results obtained with a controller with gains of kp = 100, 000 and kd = 100, 000, it
was decided to design controllers with gains within this order of magnitude. Various controllers were
tested within this range. The results are shown in Table 5.3. Notably, the controller with gains kp =
300, 000 and kd = 150, 000 result in the best performance.

Run kp kd
Average
deviation [kN] Run kp kd

Average
deviation [kN]

1 50,000 50,000 6.25 9 150,000 50,000 4.16
2 50,000 100,000 5.47 10 150,000 100,000 3.86
3 50,000 150,000 4.83 11 150,000 150,000 3.63
4 50,000 300,000 3.56 12 150,000 300,000 3.08
5 100,000 50,000 4.92 13 300,000 50,000 3.58
6 100,000 100,000 4.49 14 300,000 100,000 3.05
7 100,000 150,000 4.15 15 300,000 150,000 2.88
8 100,000 300,000 3.31 16 300,000 300,000 2.91

Table 5.3: Outcomes of analysis 2 for the controller design of the winch controller

The performance is depicted in Figure 5.16. As observed, the cable force closely aligns with the force
setpoint. Although it exceeds the force limits at certain moments, for example around 1100 seconds,
this slight exceeding is not considered problematic.

Figure 5.17b illustrates the load’s motion when the selected controller is applied. An improvement
is observed when comparing this to Figure 5.17a, which shows the motion of the load without any
damping force. It should be noted that Figure 5.12a is not equal to Figure 5.17a, because the first is
the motion of the load without damping force for the force system and the latter is the motion of the
load without damping force for the lifting system. The motion of the load is not completely damped af-
ter 1250 seconds, which marks the end of the vessel’s trajectory, because the load’s velocity remains
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within the deadband. Employing a controller with gains kp = 300, 000 and kd = 150, 000 ensures that
the actual force in the cable closely remains to the force setpoint, exceeding it only marginally. This
slight exceeding is considered unproblematic, making this controller well-suited for this application.

Figure 5.16: The force in the cable compared to the force setpoint for a controller with gains kp = 300, 000 and kd = 100, 000

In summary, the designed controller effectively ensures that the force in the cable closely aligns with the
force setpoint. Moreover, it significantly mitigates load motion compared to scenarios without a control
system. Consequently, a PD controller with a proportional gain of kp = 300, 000 and a derivative gain
of kd = 150, 000 is chosen as winch controller.

(a)Without any damping force (b)With motion control system and the maximum force setpoint as input

Figure 5.17: Comparison of the motion of the load

5.6.5. The winch controller for the motion control setpoint
Lastly, the motion control setpoint is integrated with the lifting system to evaluate whether the winch
controller, designed in Section 5.6.4, is also effective for this setpoint. The resulting control loop is
depicted in Figure 5.18.

The model is executed, and the actual force in the cable is compared with the force setpoint, as illus-
trated in Figure 5.19. The force in the cable closely aligns with the setpoint. Additionally, the resulting
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motion of the load is presented in figure 5.20b. When this motion is compared to the load movement
without the implementation of a controller, shown in Figure 5.20a, it is observed that the motion of the
load is reduced when the motion control setpoint is employed in combination with the winch controller,
which is designed in Section 5.6.4. Given that the cable force remains close to the setpoint and the
resultant load motion is reduced in comparison to the scenario without a controller, it can be concluded
that the derived motion control setpoint functions effectively in combination with the winch controller.

Figure 5.18: The control loop of the simplified lifting system with maximum force setpoint

Figure 5.19: The force in the cable compared to the setpoint

5.6.6. Combined controller
Now, the setpoint calculation and winch controller have been integrated into a single controller, as well
as the combined controller. This method enables the controller to control the winch’s motion, which in
turn results in a specific force in the cable, exerting force in the load. The load error, represented as
eo, as defined in equation 5.20, serves as the controller’s input. This is illustrated in the control loop
depicted in Figure 5.21. In this setup, only one feedback loop is used: the feedback loop for the mo-
tion of the load. The motion of the winch is not monitored, making this a more straightforward system.
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(a)Without any damping force (b)With motion control system and the motion control setpoint as input

Figure 5.20: Comparison of the motion of the load

Figure 5.21: The control loop of the simplified lifting system with combined controller

However, with less motion data captured, the system might be more sensitive to instabilities. Never-
theless, a controller is developed for this approach. The objective is to design a controller to assess
the system’s impact in the load, rather than to create an optimized controller.

The mathematical expression for the PID-controller in this system is:

Fw = ¯̄kp · eo + ¯̄ki · ∫ eo + ¯̄kd · ėo (5.25)

Here, Fw represents the force in the winch, while ¯̄kp, ¯̄ki, and ¯̄kd denote the proportional, integral, and
derivative gains of the PID controller, respectively. As in the previous controller design approaches,
the integral term was tested to check whether it induces instability in the response. This was indeed
found to be the case, so the integral term was set to zero, converting the controller to a PD-controller.

As outlined in Section 5.6.4, the displacement error for the load is in the order of 0.1, while the force
is in the order of 100,000. It is hypothesized that a winch controller with parameters in the order of
1,000,000 would be effective. Hence, controller gains of [10, 100, 1,000, 10,000, 100,000, 1,000,000]
are examined. Their effectiveness is evaluated based in the average kinetic energy of the load, and
the outcomes are presented in Table 5.4. Several controller settings result in an infinite average kinetic
energy, which is not feasible in practice. This indicates that the system becomes unstable. In this con-
text, the motion control system begins to add energy, resulting in an infinite response in this theoretical
model. Thus, controller settings that lead to an infinite response are considered unsuitable.
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Run kp kd
Average kinetic
energy [J] Run kp kd

Average kinetic
energy [J]

1 10 10 16748.2 19 10,000 10 12205.1
2 10 100 16293.6 20 10,000 100 11292.9
3 10 1,000 10058.1 21 10,000 1,000 7534.1
4 10 10,000 2194.4 22 10,000 10,000 2556.0
5 10 100,000 881.3 23 10,000 100,000 973.0
6 10 1,000,000 Unstable 24 10,000 1,000,000 Unstable
7 100 10 16963.8 25 100,000 10 409566.0
8 100 100 16064.6 26 100,000 100 380643.9
9 100 1,000 9852.1 27 100,000 1,000 195177.3
10 100 10,000 2202.2 28 100,000 10,000 22009.7
11 100 100,000 880.8 29 100,000 100,000 2813.6
12 100 1,000,000 Unstable 30 100,000 1,000,000 Unstable
13 1,000 10 16270.3 31 1,000,000 10 Unstable
14 1,000 100 15640.5 32 1,000,000 100 Unstable
15 1,000 1,000 9728.7 33 1,000,000 1,000 Unstable
16 1,000 10,000 2213.5 34 1,000,000 10,000 Unstable
17 1,000 100,000 889.4 35 1,000,000 100,000 Unstable
18 1,000 1,000,000 Unstable 36 1,000,000 1,000,000 Unstable

Table 5.4: Results of analysis 1 for the controller design of the combined controller

Nevertheless, two conclusions are drawn from the results of Table 5.4. Firstly, both proportional and
derivative gains of 1,000,000 result in an unstable response. This instability may come from exceeding
limits due to too high controller outcome due to the sum of the gains, though this is not tested in this
thesis. Secondly, a derivative gain of 100,000 yields optimal results, evident from the top performances
in runs 11, 5, 17, and 23. Notably, combining this derivative gain with a proportional gain of 100,000
does not yield as good outcomes, potentially due to the sum of the gains as well.

Figure 5.22: The resulting force in the tugger cable due to the combined controller

Subsequently, runs 11, 5, 17, and 23 are further analyzed. These controllers demonstrate similar
responses, except for run 23 which excessive overshoots the force limits of Fmax = −50 kN and
Fmin = −250 kN. Among the top three controllers, the one yielding the lowest average kinetic energy
is chosen for future controller design. This is the controller with gains of ¯̄kp = 100 and ¯̄kd = 100, 000.
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Run kp kd
Average kinetic
energy [J] Run kp kd

Average kinetic
energy [J]

1 50 50,000 1114.9 19 300 50,000 1118.1
2 50 100,000 880.5 20 300 100,000 884.0
3 50 200,000 615.4 21 300 200,000 615.7
4 50 300,000 Unstable 22 300 300,000 Unstable
5 50 400,000 Unstable 23 300 400,000 Unstable
6 50 500,000 Unstable 24 300 500,000 Unstable
7 100 50,000 1113.1 25 400 50,000 1116.7
8 100 100,000 880.8 26 400 100,000 884.3
9 100 200,000 615.1 27 400 200,000 616.8
10 100 300,000 Unstable 28 400 300,000 Unstable
11 100 400,000 Unstable 29 400 400,000 Unstable
12 100 500,000 Unstable 30 400 500,000 Unstable
13 200 50,000 1116.4 31 500 50,000 1118.4
14 200 100,000 883.2 32 500 100,000 886.2
15 200 200,000 616.1 33 500 200,000 617.1
16 200 300,000 Unstable 34 500 300,000 Unstable
17 200 400,000 Unstable 35 500 400,000 Unstable
18 200 500,000 Unstable 36 500 500,000 Unstable

Table 5.5: Results of analysis 2 for the controller design of the combined controller

A more refined analysis is conducted around the settings of run 11. Proportional gains of [50, 100,
200, 300, 400, 500] and derivative gains of [50,000, 100,000, 200,000, 300,000, 400,000, 500,000] are
tested. The outcomes are listed in Table 5.5, leading to three observations. Firstly, derivative gains of
300,000 or above lead to instability, and secondly, a derivative gain of 200,000 delivers the most fa-
vorable results and thirdly, the value of the proportional gain has minimal impact in the average kinetic
energy. Nevertheless, the most efficient controller of this analysis is from run 9, with gains ¯̄kp = 100

and ¯̄kd = 200, 000.

(a)Without any damping force (b) The motion of the load with implication of the combined controller

Figure 5.23: Comparison of the motion of the load

Additional assessment of this controller is positive. As seen in Figure 5.22, the force in the cable
slightly exceeds the limits. However, as with the design phase of the winch control, executed in Sec-
tion 5.6.4, this slight exceeding is considered acceptable. The resulting motion of the load, illustrated
in Figure 5.23b, highlights a reduction in load motion due to the controller when compared to Figure
5.23a. Hence, the PD-controller, with settings ¯̄kp = 100 and ¯̄kd = 200, 000, is selected as the combined
controller.
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5.6.7. Constant tension mode
Now, constant tension mode is created. As explained in section 4.2.4, the constant tension mode’s
reference value is a predefined fixed value. This results in the control diagram depicted in figure 5.24.
As depicted, there exists a singular controller within this system, namely, the winch controller. The
parameters deduced in section 5.6.4 are used for this controller as well.

Figure 5.24: Control diagram for constant tension mode

The results of this constant tension mode are compared to the results of the constant tension mode
created with the detailed model of section 4.6.4. The conditions for both models are set equal, so the
constant tension reference point is established at Fs = −100 kN and both models only have a surge
vessel motion as input motion. Figure 5.25a displays the cable force and load displacement produced
by the analysis model, whereas Figure 5.25b exhibits the cable force and load displacement yielded
by the detailed model.

(a) Simplified model (b) Detailed model

Figure 5.25: Constant tension mode

Upon examination of Figures 5.25a and 5.25b, it becomes evident that both models effectively maintain
a constant tension. In the analysis model, there are minimal fluctuations in the cable’s force around the
setpoint, with their magnitude being negligible small. The detailed model exhibits even smaller force
fluctuations, except for a notable peak in force occurring between t = 50 s and t = 200 s. This peak
arises because vessel motion is present only after 50 seconds. Consequently, it impacts the cable’s
force at t = 50 s, momentarily disrupting equilibrium, and gradually returns to equilibrium by t = 200 s.
Nevertheless, both models demonstrate a functioning constant tension mode.

Although, the behaviour of the load is not exactly equal for the two models, several similarities in the
load displacement are observed. Notably, both displacements share a similar order of magnitude,
approximately 0.3 m. Moreover, both models exhibit peaks in load displacement at synchronized in-
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tervals. For instance, peaks occur around t = 150 s, t = 500 s, t = 850 s, and t = 1050 s in both models.

Despite inherent differences between the models, the analysis model’s load displacement is compara-
ble to that of the detailed model in this specific scenario. Consequently, the analysis model can serve as
a viable alternative to the detailed model. Using the analysis model significantly reduces computation
time, making it a more efficient tool for analyzing the control aspects of the motion control system.

5.7. Conclusion
Two systems are developed in this chapter: the force system and the lifting system. The force system
focuses solely in the cranetip, the motion of the load, and the damping force exerted in the load. It
is designed to explore the impact of the damping force in the load. The lifting system represents a
simplified version of the detailed lifting system discussed in Chapter 4. The lifting system extends the
force system with the winch and tugger system and serves as the foundational model for analyzing the
two controller setpoints and inputs of Section 3.3.

The EOMs for these systems are derived using the Lagrange method and form the basis for two numer-
ical MATLAB models. The numerical solver ODE45 is used to solve these EOMs. Multiple verification
cases confirm the reliability of these MATLAB models, enabling their usage for gaining more under-
standing of the physics of a lifting operation and of the damping tugger system.

Subsequently, these MATLAB models are converted into Simulink models. Both the maximum force
setpoints and motion control setpoints are incorporated into these Simulink models. Parameter se-
lection for the motion control setpoint is conducted via a trial-and-error approach within the Simulink
framework. Eventually, a PD-controller with a proportional gain of k̄p = 95, 000 and a derivative gain of
k̄d = 70, 000 is selected.

Thereafter, a winch controller is designed based in the maximum force setpoint. After multiple analy-
ses, a PD-controller featuring a proportional gain of kp = 300, 000 and a derivative gain of kd = 150, 000
yields the best winch response. This controller is then tested in combination with the motion control
setpoint to whether it functions with this setpoint. The controller’s performance proves to be satisfac-
tory, confirming its suitability with both the maximum force and motion control setpoints.

Consequently, a new control system, namely the combined controller, is introduced. This system di-
rectly controls the motion of the winch based in the error in the load’s motion, eliminating the feedback
loop from the winch motion. This controller is a PD-controller with a proportional gain of ¯̄kp = 100 and
a derivative gain of ¯̄kd = 200, 000.

Lastly, the constant tension mode is integrated into the analysis model, and a comparison is made
with the detailed model, revealing similar results. Thus, the analysis model can be considered a practi-
cal substitute for the detailed model. The use of the analysis model considerably decreases computa-
tional time, making it a more efficient tool for analyzing the control aspects of the motion control system.

Finally, the designed setpoints and controllers are integrated into the Simulink model, resulting in a
complete model of the lifting system. This integrated model is used for the analysis the controller
setpoints and inputs, described in Chapter 6.2. The results of this analysis are presented in Chapter 6.
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Results

In this chapter, the results obtained in this thesis are presented. First, the methodology for the creation
of the models is presented. Thereafter, an analysis of the control aspects, described in section 3.3, is
provided. Lastly, the results obtained in this analys are presented. The results are discussed in Chapter
7.

6.1. Models
Initially, a detailed model was developed and evaluated through verification cases. Subsequently, the
constant tension mode was successfully designed and incorporated into this model, resulting in a model
suitable for simulating offshore lifting operations utilizing a motion control system in constant tension
mode.

Following this, the model was simplified to the analysis model, to enhance its efficiency in analyz-
ing control system aspects. This analysis model significantly reduced computational time compared to
the detailed model. Controllers and setpoints were derived successfully, making the analysis model
suitable for simulating offshore lifting operations with a motion control system in damping mode across
various control inputs and methods.

Subsequently, the constant tension mode was integrated into the analysis model, and a comparative
analysis was conducted against the detailed model, which yielded similar outcomes. Hence, the analy-
sis model can be regarded as a pragmatic alternative to the detailed model. Its utilization substantially
reduces computational time, rendering it a more efficient instrument for scrutinizing motion control sys-
tem’s control aspects.

6.2. Analysis of the control methods and input
An analysis of various control methods and inputs is conducted. The evaluation involves analyzing
the resulting motion of the load when these control methods and inputs are implemented. For this
analysis, the analysis model described in Chapter 6.2 is used. This model is capable of simulating a
lifting operation using a motion control system.

6.2.1. Analyzed aspects of the control system
Two aspects of the control system will be analyzed: the control methods and the control inputs. In
Section 3.3, two distinct setpoints for the winch controller are discussed: the maximum force setpoint
and the motion control setpoint. These represent two separate control methods. A third control method,
known as the combined control method, is introduced in Section 5.2.3. The impacts of all three control
methods on the motion of the load are analyzed in this evaluation.

Section 3.3.3 describes two distinct controller inputs. The first controller input measures the motion
of the tugger cable close to the winch, assuming that the motion of the winch, the tugger cable, and
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the load are identical. Because of this assumption, the measured motion of the tugger cable serves
as the control input. The second controller input examined is the motion of the load, which is directly
measured and sent as feedback to the controller. These controller inputs are termed the winch sensor
and the load sensor in the analysis, respectively.

A control method only functions with an input. Therefore, during the analysis, the control methods
and inputs are integrated, resulting in 3× 2 = 6 possible combinations. For the sake of completeness,
all 6 combinations of control methods and inputs are analyzed.

6.2.2. Different analysis scenarios
The analysis involves multiple scenarios. These scenarios arise from varying certain parameters. The
parameters are: the mass of the load, the mass of the winch, and the reference system for the setpoint.
These parameters are elobrated upon below. The variations in the parameters result in 4× 3× 2 = 24
scenarios. Each combination of control method and input is run once for every scenario. With 24
scenarios and 6 combinations of control methods and inputs, this amounts to 24 × 6 = 144 distinct
model executions.

Mass of the load
Four distinct mass values for the load are considered. The masses range from the estimated weight
of a relatively small object transfer to the maximum lifting capacity of a crane on Heerema MC’s SSCV
Sleipnir. The small object’s mass is estimated at 10 mT, while the maximum capacity of a Sleipnir crane
is 10,000 mT [109]. Steps of ×10 between the minimum and maximum values are selected, resulting
in the use of four masses: [10, 100, 1,000, 10,000] mT.

Mass of the Winch
Three different values are selected for the mass of the winch. The middle value represents a realistic
winch mass. This mass is set at 5 mT, corresponding to a rotational winch with a diameter of 1 meter.
Based on equation B.10, the translational winch also has a mass of 5 mT. The other two masses, values
five times smaller and five times larger than the middle value. Hence, the chosen mass values for the
winch are [1, 5, 25] mT.

Reference systems
Themotion control system is evaluated using two distinct reference systems for determining the setpoint
of load movement. These systems are the global reference system and the on-deck reference system,
as detailed in Section 3.3.1.

Vessel motions
The vessel motion trajectory remains consistent throughout this analysis. This choice was made be-
cause varying the mass of the load, the mass of the winch, and the use of two reference systems
provided sufficient scenarios.

6.2.3. Improvement factor
The impact of various control methods on the motion control system will be assessed. The different
control methods and inputs lead to different motion of the load. This difference is indicated by the RMS
of the velocity of the load, as described in Section 3.6.1. The evaluation is based on the RMS of the
velocity of the load, because the ultimate objective of the motion control system is to damp the velocity
of the load.

First, the RMS of the velocity of the load without a control system for the specific scenario is calcu-
lated; this serves as the base value. Subsequently, the RMS of the velocity of the load, resulting from
the various control methods and inputs for this scenario, is determined. These RMS values are then
compared to the base value, and the percentage improvement (or deterioration) is computed as:

If =
RMScom −RMSbase

RMSbase
· 100% (6.1)
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where I is the improvement value, RMScom represents the RMS of the velocity of a certain combina-
tion and RMSbase denotes the RMS of the velocity of the base value. This results in a percentage
improvement for each combination of methods and inputs for every scenario.

Case 1 2 3
Base 10 8 4
Sensor A 8 4 6
Sensor B 2 4 3

Table 6.1: Sample values for the explanation of the improvement factor

The aforementioned is further explained using an example. Table 6.1 displays sample values that could
be the outcomes from a certain model. Applying equation 6.2.3 to sensor A for scenario 1 yields:

If = −RMScom −RMSbase

RMSbase
· 100% = −8− 10

10
· 100% = 20%

The improvement of a control system using sensor A in scenario 1 is 20%. Table 6.2 displays all
computed improvements. A deterioration is also possible, as demonstrated by the system with sensor
B in scenario 3, denoted by a minus sign.

Case 1 2 3
Sensor A 20% 50% 25%
Sensor B 80% 50% -50%

Table 6.2: Sample improvement factors

After deriving all improvement factors, a comparison of various control aspects will be done based on
these factors. This is done by subtracting one improvement factor from another, resulting in the differ-
ence denoted as ∆If . Taking Case 1 from Table 6.2 as an illustration, the difference in improvement
factors between sensor A and sensor B is than calculated as follows:

∆If = IfA − IfB = 20%− 80% = −60% (6.2)

This indicates that the improvement when using sensor B is 60% higher then when using sensor A. This
comparative approach is employed across all control aspects. To enhance legibility, the cell colors in
the result-containing tables signify the superior improvement factor. Table 6.3 illustrates the distinction
in improvement factors between sensor A and sensor B across the three exemplary cases. Sensor A’s
superiority is denoted by dark grey, while sensor B’s superiority is represented by light grey.

Case 1 2 3
∆If -60% 0% 75%

Table 6.3: Sample difference between improvement factors

6.3. Effects of the control methods and input
An analysis was done on the impact of the various control methods and inputs. In total, all 6 combina-
tions of the control methods and inputs are tested within 24 unique scenarios.

6.3.1. Velocity of the load
The results from the model execution provide a time frame for the displacement and velocity of the
load. Different combinations of control methods and inputs are compared with the base motion of the
scenarios, that is, the motion of the load when no control system is active. Figures 6.1 and 6.2 depict
a result where the implementation of a control system reduces the motion of the load compared to the
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same situation with no active controller. The control method implemented in Figure 6.1 is the winch
controller in combination with the maximum force setpoint, in a scenario that includes a winch of 1 mT
and a load of 1000 mT, referenced to a global system.

Figure 6.1: A situation where the motion of the load is reduced due to the presence of the control system

The control method implemented in Figure 6.2 is the winch controller in combination with the motion
control setpoint, in a scenario that includes a winch of 1 mT and a load of 10 mT, referenced to a global
system.

Figure 6.2: A second situation where the motion of the load is reduced due to the presence of the control system

In contrast, certain controllers result in an increased motion of the load under specific scenarios be-
cause of a counteractive response. Figure 6.3 illustrates such a situation. It is evident that the move-
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ment of the load increases significantly when the load sensor is used. The control method employed
is the winch controller combined with the maximum force setpoint. This scenario involves a winch of
25 mT and a load of 1,000 mT, using an on-deck reference system.

Figure 6.3: A situation where the motion of the load is increased due to the presence of the control system

Lastly, Figure 6.4 illustrates a situation where the controller’s presence neither significantly reduces nor
increases the motion of the load. This observation is made using the combined controller method in
a scenario with a winch of 25 mT and a load of 10 mT, employing an on-deck reference system. The
motion of the load with a control system differs from the motion without a control system, showing vari-
ations that are sometimes larger and sometimes smaller, indicating that the control system affects the
load’s motion. However, from this figure, it is not evident whether the controller’s response significantly
reduces or increases the motion of the load.

Figure 6.4: A situation where the presence of the controller does not reduce or increase the motion of the load
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6.3.2. Resulting root mean square of the velocity of the load
The RMS of the velocity of the load was calculated for each combination of control methods and inputs
across different scenarios. These are then compared to the RMS of the velocity of the load without the
use of any control system for the corresponding scenarios. Appendix C provides the specific values of
the RMS of the velocity for all scenarios.

6.3.3. Resulting improvement factors
The specific values of the RMS of the velocity of all scenarios are presented in appendix C. The corre-
sponding improvement factors are provided in this section. The derivation method of the improvement
factor is provided in Section 6.2.3. Table 6.4 provides the improvement factors for all scenarios. Some
scenarios result in notably high, negative improvement factors. The highest value observed is an im-
provement factor of −492%, as shown in Table 6.4. This situation is demonstrated in Figure 6.3. These
high negative improvement factors arises from system instability, causing significant motion of the load.
Such motion results in a high RMS of the velocity of the load.

Reference system ⇒ On-deck Global
mo [mT] ⇓ mw [mT] ⇒ 1 5 25 1 5 25

Maximum force setpoint

10 Load 31% 3% -9% 29% 19% 16%
Winch 41% 4% -12% 33% 19% 16%

100 Load 48% 37% 21% 57% 28% 29%
Winch 37% 25% 8% 56% 27% 26%

1000 Load 41% 51% 35% 59% 64% 53%
Winch 34% 46% 28% 45% 54% 44%

10000 Load 32% 34% 43% 59% 64% 53%
Winch 23% 26% 39% 45% 54% 44%

Motion control setpoint

10 Load 90% 84% 84% 93% 85% 79%
Winch 47% 19% 11% 95% 89% 85%

100 Load 97% 95% 94% 95% 92% 89%
Winch 51% 20% 2% 86% 76% 67%

1000 Load 75% 79% 71% 82% 85% 78%
Winch -52% -35% -87% -15% 3% -43%

10000 Load 42% 37% 41% 82% 85% 78%
Winch 1% -8% -1% -15% 3% -43%

Combined controller

10 Load 83% 33% 9% 93% 89% 86%
Winch 81% 28% 4% 92% 87% 86%

100 Load 56% 36% -30% 77% 74% -492%
Winch 41% 23% 17% 71% 68% 73%

1000 Load 39% 49% 37% 61% 70% 63%
Winch 35% 46% 32% 58% 68% 60%

10000 Load 26% 24% 32% 33% 34% 45%
Winch 21% 20% 30% 28% 30% 42%

Table 6.4: The improvement factors of all executed scenarios

6.3.4. Effects of controller inputs
The study compares various control aspects in pairs. In this section, cell colors are used for readability.
Table 6.5 presents control aspects and their associated colors indicating dominance. For instance, in a
scenario comparing the load and winch sensors, if the load sensor performs better, the cell is colored
red. If the winch sensor performs better, the cell is colored blue.
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The two distinct controller inputs are the winch motion and the load motion. These inputs are com-
pared by subtracting the improvement factor of the winch sensor from that of the load sensor for each
case. The resultant factor indicates the difference in the RMS of the velocity of the load ∆If between
the use of the load sensor and the use of the winch sensor. A positive difference, depicted in red, sug-
gests that the winch sensor is more effective than the load sensor. Conversely, a negative difference in
the improvement factor, shown in blue, signifies that the load sensor results in decreased load motion.

Control aspect Color
Load sensor
Winch sensor
Maximum force setpoint
Motion control setpoint
Combined controller

Table 6.5: Colors indicating dominance dominance of a certain control aspect

Table 6.6 provides the differences in improvement factors for the maximum force setpoint. The load
sensor yields better results in 61 scenarios, while the winch sensor is superior in 8 scenarios. In 3
scenarios, the difference is negligible.

Reference
system ⇒ On-deck Global

mw [mT] ⇒ 1 5 25 1 5 25
mo [mT] ⇓ Maximum force setpoint
10 -10% -1% 3% -4% 0% 0%
100 11% 12% 13% 1% 1% 3%
1000 7% 2% 6% 14% 10% 9%
10000 10% 8% 5% 14% 10% 9%

Motion control setpoint
10 43% 65% 72% -2% -4% -5%
100 46% 75% 92% 9% 16% 22%
1000 126% 114% 158% 96% 82% 121%
10000 40% 45% 42% 96% 82% 121%

Combined controller
10 2% 6% 4% 1% 2% 0%
100 14% 13% -47% 6% 6% -564%
1000 4% 3% 5% 2% 2% 3%
10000 5% 4% 2% 5% 4% 2%

Table 6.6: Comparison of improvement factors of the winch sensor and the load sensor

6.3.5. Effects of control methods
The control methods are now assessed. Firstly, the maximum force setpoint and the motion control
setpoint are evaluated. The improvement factor for the maximum force setpoint is subtracted from
the improvement factor for the motion control setpoint in each scenario. This provides a factor indicat-
ing the difference in the RMS of the velocity of the load ∆If , when using the motion control setpoint
instead of the maximum force setpoint. A positive difference in the improvement factor, displayed in
green, implies that the motion control setpoint outperforms the maximum setpoint method. Conversely,
a negative difference in the improvement factor is shown in yellow, indicating that the maximum set-
point leads to more reduction of the motion of the load.

Table 6.7 illustrates the difference in improvement factors for the winch sensor. Clearly, in 10 sce-
narios, the motion control setpoint produces better results, while in 14 scenarios, the maximum force
setpoint is superior.
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Reference
system ⇒ On-deck Global

mw [mT] ⇒ 1 5 25 1 5 25
mo [mT] ⇓ winch sensor
10 5% 15% 23% 62% 70% 69%
100 14% -4% -6% 29% 50% 40%
1000 -85% -81% -115% -60% -51% -87%
10000 -21% -34% -40% -60% -51% -87%

Load sensor
10 59% 82% 93% 64% 66% 64%
100 49% 59% 73% 38% 64% 59%
1000 34% 28% 626% 22% 21% 25%
10000 -21% -34% -40% -60% -51% -87%

Table 6.7: Comparison of improvement factors of maximum force setpoint and the motion control setpoint when using the
winch sensor

Consider the motion control setpoint and the combined controller. The improvement factor of the motion
control setpoint is subtracted from the improvement factor of the combined controller in every instance.
This difference yields a factor that indicates the reduction in the RMS of the velocity of the load ∆If ,
when using the combined controller instead of the motion control setpoint. A positive difference, dis-
played in purple, suggests that the combined controller performs better than the motion control setpoint.
Conversely, a negative difference in the improvement factor, shown in green, indicates that the motion
control setpoint results in decreased motion of the load.

Table 6.8 presents the differences in improvement factors when employing the winch sensor. The data
shows that in 20 scenarios, the combined controller provides superior outcomes, while in 27 scenarios,
the motion control setpoint is more effective. In 1 scenario no superior control method is identified.

Reference
system ⇒ On-deck Global

mw [mT] ⇒ 1 5 25 1 5 25
mo [mT] ⇓ Winch sensor
10 34% 9% -7% -3% -2% 1%
100 -10% 3% 15% -15% -8% 6%
1000 87% 81% 119% 73% 65% 103%
10000 20% 28% 31% 43% 28% 85%

Load sensor
10 -7% -51% -75% 0% 4% 6%
100 -41% -60% -124% -18% -18% -581%
1000 -35% -30% -34% -21% -15% -15%
10000 -15% -13% -9% -48% -51% -33%

Table 6.8: Comparison of improvement factors of motion control setpoint and the combined controller when using the winch
sensor

Consider the maximum force setpoint and the combined controller. The improvement factor of the
maximum force setpoint is subtracted from the improvement factor of the combined controller in ev-
ery instance. This difference yields a factor that indicates the difference in the RMS of the velocity of
the load ∆If , when using the combined controller instead of the motion control setpoint. A positive
difference, shown in purple, indicates that combined controller leads to better results. Conversely, a
negative difference in that the improvement factor, shown in yellow, indicates that the maximum force
setpoint results in decreased motion of the load.

Table 6.9 presents the differences in improvement factors when employing the winch sensor. The
data shows that in 30 scenarios, the maximum force setpoint provides superior outcomes, while in 7
scenarios, the combined controller is more effective. In 11 scenarios, no clear difference is seen.
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Reference
system ⇒ On-deck Global

mw [mT] ⇒ 1 5 25 1 5 25
mo [mT] ⇓ Winch sensor
10 -3% -1% -1% -3% -2% -1%
100 1% 0% 0% -2% -2% -2%
1000 0% 0% -1% -2% -2% -2%
10000 -20% -19% -18% -15% -13% -12%

Load sensor
10 -4% -2% -1% -3% -2% -1%
100 0% 0% 3% -2% -3% 22%
1000 0% 0% -1% 0% -1% -1%
10000 1% 0% 0% 3% 2% 2%

Table 6.9: Comparison of improvement factors of maximum force setpoint and combined controller



7
Discussion

In this chapter, the results described in Chapter 6 are discussed. To obtaind these results, two models
are created and the outcomes are compared. Following this, an analysis of the impacts of various
control aspects is conducted. The choices made during the development of the models, the execution
of the analysis, and the assessment of the outcomes are discussed below.

7.1. Creation of the models
This discussion covers the results, purposes, and limitations of the developed numerical models. Fol-
lowing, the Simulink model and the controller design phase are discussed.

7.1.1. The detailed model
Three numerical MATLAB models were developed, based on the corresponding sets of EOMs. These
EOMs were derived using the Lagrange method. The derivation was executed in steps to reduce com-
plexity, resulting in a robust method for deriving the EOMs.

After the creation of the numerical models in MATLAB, the validity of the model’s results was evaluated
through several verification cases. For the detailed model, this included a comparison to the results of
a study by Zhang, which employed a similar modelling approach [98]. All results within the verification
cases, including the comparison with Zhang’s study, were demonstrated to be valid, suggesting the
model is likely accurate. However, the outcomes are not compared to data, due to the current lack of
data for this specific case. Conducting such a comparison would enhance the verification of the model.

The three developed models can be used to increase understanding of the physics of lifting operations
and the damping tugger system, like investigation of load motion, force and vibration during offshore
lifting operations. Despite the multiple purposes of the numerical models, both models are bound to
several limitations. First, investigation could only done with passive motion control systems, because
there is no control system integrated into the MATLAB models. However, this is present in the Simulink
model. Additionally, the effects of gravitational force of the load on the vessel are not incorporated into
the model, hence it cannot be studied using these numerical models. Finally, the model includes only
a single vessel motion trajectory. While it is possible to integrate a different vessel motion trajectory,
the model does not currently provide other vessel motion trajectories.

Furthermore, the derivation of the EOMs for both the damping tugger system and the controlled lift-
ing system results in extensive equations. Even though the derivation of these EOMs was done in
steps, yielding a robust method, the resulting equations are complex. Consequently, research using
models based on these complex EOMs might pose challenges with understanding the physics within
the model due to their complexity. However, the issue is addressed with the introduction of the analy-
sis model. The analysis model resulted in more straightforward EOMs that are easier to understand,
making analysis more straightforward.

80
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Thereafter, the MATLAB model for the controller lifting operation was converted into a Simulink model.
This model contains both the constant tension mode and damping mode. A PD-controller was devel-
oped demonstrated effectiveness for simulations in the tension setpoint range of Fs = 90 kN to Fs = 140
kN. The implementation of the controller into the Simulink model resulted in a model suitable for exam-
ining lifting operations using the damping tugger system in constant tension mode.

For the damping mode, the different controller design approaches and the different controller settings
appeared to be ineffective. Several reasons might make it challenging to select a suitable controller for
the system. One reason is that a PID controller might not be the best option for these objectives. As
concluded from the design phase of the controller for the constant tension mode, changing setpoints
lead to different optimized controller settings for constant tension modes. While PID controllers work
well for many control systems, it might not be an ideal controller for changing setpoints. A suggestion
for a better controller is an adaptive controller, potentially offering better results to a changing setpoint.
However, this hypothesis has not been further explored.

Even when a PID controller seems suitable, various factors could reduce its performance. One such
factor is the truncation of the controller’s output, which is done to model the winch limits. This trunca-
tion could leads to instability. In essence, the controller might adjust too much for this truncated output.
Another potential problem is that the controller responds to minor system vibrations, like the axial vibra-
tions from the tugger cable’s inclined mass. Even though this mass does not truly exist in this manner,
its modeled existence might cause axial vibrations.

Due to the complexity of the model, it was not well understood why the different controller design ap-
proaches and the different controller settings for the damping mode were ineffective. An examination
of the effects on the controller of the above mentioned factors would provide a deeper understanding
of the issues in the controller design for damping mode. This understanding might lead to a successful
design strategy. However, the objective is to analyse the different control aspects. Due to the exten-
sive computational time of the model, this analysis would be time-consuming. Hence, the decision was
made to develop a new, simpler model, called the analysis model.

7.1.2. The analysis model
Two simplified systems have been developed. Simplifications are done based on new insights that
were obtained during the creation of the detailed model. These simplifications imply several elements
that has small effect on the dynamics of the system, when using it for the analysis of the control aspects.
Important simplifications are the reduction of crane tip motion to a single direction, the elimination of
the mass of the tugger cable and the decision to model the winch as a translation in stead of a rotating
mass. These simplifications affect the accuracy of the outcomes of the model.

The EOMs for these newly created systems are derived using the Lagrange method. Again, the deriva-
tion was executed in steps to reduce complexity, resulting in a robust method for deriving the EOMs.
The derivation results in much simpler EOMs compared to the EOMs derived during the development
of the detailed model.

Subsequently, two numerical MATLAB models suitable for analyzing the physics of offshore lifting op-
erations and the motion control system for the load are developed. After the creation of the numerical
model in MATLAB, the validity of the model’s results was evaluated through several verification cases.
All results within the verification cases, were demonstrated to be valid, suggesting the model is likely
accurate. Compared to the MATLABmodels created for the detailed model, the MATLABmodels of the
analysis model are simpler and therefore understanding what happens during a simulation is easier.
This results in more straightforward analyses.

The numerical MATLAB models are converted into Simulink models. Within the Simulink environment,
parameters for the motion control system are chosen and a PD-controller for the winch is designed.
This winch controller demonstrated effectiveness for both setpoints. Additionally, a novel control sys-
tem is developed that uses the motion of the load as input and directly manages the winch motion
without measuring the motion of the winch.
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In the section detailing controller design phases, it is highlighted that the controllers are designed to
function properly but are not optimized. The controllers and setpoints are designed within specific
scenarios. These facts imply that the controllers might perform differently across scenarios. In some
situations, certain controllers might not function effectively, indicating that controller performance can
vary due to the controller being not designed for the specific scenario. This variability can influence the
results when comparing different scenarios. The effect of this on the analysis is discussed in Section
7.2.5.

The Simulink model serves as a tool for analyzing offshore lifting operations, either with or without a mo-
tion control system. For example, by changing the weight of the winch or the load, as done in Chapter
6.2, multiple outcomes can be observed. Additionally, factors such as the stiffness and damping ratio of
the tugger cable, as well as different control methods, inputs and parameters, can be adjusted. While
the model serves various purposes, some limitations exist. The current assumption is that the control
loop comprises only a setpoint, a controller, and the physics of the winch and load. This overlooks
other potential influences, such as a motor for the winch. This assumption may affect the accuracy of
the model when comparing its results to real-world situations. Additionally, high-frequency vibrations
might increase simulation time, but this issue is infrequently encountered during model execution.

The computation time of the analysis model is significantly reduced when comparing with the detailed
model, making it a more efficient means for scrutinizing control facets. The comparison between both
models was conducted under constant tension mode, yielding comparable outcomes. Consequently,
it is inferred that the analysis model serves as an more efficient substitute for the detailed model con-
cerning the objectives of this thesis. Employing the analysis model substantially reduces the required
time for analysis. As the results align within the same magnitude, they may be used for assessing
control aspects. however, the models were exclusively evaluated under constant tension mode only.
When using the analysis model for different objectives it would be wise to investigate the accuracy of
its results compared to those of the detailed model.

7.2. Analysis of the control methods and input
The results of the comparison of control methods and inputs are summarized and discussed in this
section. Thereafter, the effect of the controllers and the different scenarios on the outcomes of this
analysis is discussed.

7.2.1. Comparison of the load and winch sensor
Table 7.1 presents the comparison between the improvement factors when using the load sensor versus
the winch sensor. Out of 72 scenarios, 61 favored the load sensor, 8 favored the winch sensor, and in
3 scenarios, neither sensor showed superiority.

Control method Load
sensor

No
difference

Winch
sensor

Number of
scenarios

Maximum force setpoint 19 2 3 24
Motion control setpoint 21 0 3 24
Combined controller 21 1 2 24
Total 61 3 8 72

Table 7.1: Comparison between the improvement factors when using the load sensor versus the winch sensor

When assessing Table 6.6, it is seen that the load sensor enhances the motion control system’s perfor-
mance in the majority of scenarios. However, in a significant number of the scenarios, the difference
in the improvement factors between the load sensor and the winch sensor never exceeds 15%. This
implies that the choice of sensor slightly improves the system when the maximum force setpoint is
applied. In contrast, the motion control setpoint shows that the improvement factor difference between
the two sensors can be substantial, with several cases surpassing 100%. In two scenarios, the load
sensor results in an undesirable response, making the winch sensor the more favorable choice.
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To summarize, the results show that the load sensor generally provides a better response than the
winch sensor across multiple scenarios. In most cases, the improvement factor differences between
the two sensors remain within 15%. Occasionally, there are significant differences, favoring either sen-
sor. Based on the presented results, the load sensor appears more likely to be the optimal choice in
the scenarios addressed in this thesis.

The difference in performance of the system arises from difference inputs when either the winch or
load sensor is used. As explained in section 3.3.3, the use of the winch sensor comes with the as-
sumption that the winch’s motion is directly proportional to that of the load, which is not necessarily
true. One reason for this, is the existence of dissimilar natural frequencies within the winch, the tugger
cable, and the load, resulting in different longitudinal oscillations. Moreover, intervals of cable slack
cause temporal uncertainties in the motion of the load. In contrast, the use of the load sensor elimi-
nates any uncertainties about the motion of the load, leading to a more precise measurement. This
explains the superiority of the results when using the load sensor.

7.2.2. Comparison of motion control setpoint and maximum force setpoint
Table 7.2 presents the comparison between the improvement factors when using the motion control
setpoint versus the maximum force setpoint. The findings suggest that the motion control setpoint
generally performs better than the maximum force setpoint when utilizing the load sensor. However,
with the winch sensor, the maximum force setpoint often outperforms the motion control system, though
the margin of superiority is less pronounced than of the motion control sensor in combination with the
load sensor. In 48 scenarios, 28 favored the motion control setpoint, while 20 favored the maximum
force setpoint. This indicates a slight advantage for the motion control setpoint.

Sensor Motion control
setpoint

No
difference

Maximum force
setpoint

Number of
scenarios

Winch 10 0 14 24
Load 18 0 6 24
Total 28 0 20 48

Table 7.2: Comparison between the improvement factors when using the motion control setpoint versus the maximum force
setpoint

When examining Table 6.7, significant differences in the improvement factor among various control
methods are observed. These differences exceed 20% in most scenarios and even go beyond 50% in
several cases. In some situations, these larger differences favor the maximum force setpoint, while in
others, they favor the motion control setpoint. As a result, no clear dominance appears in the magni-
tude of these improvement factor differences.

In conclusion, the motion control setpoint offers superior performance with the load sensor. Conversely,
the maximum force setpoint performs better with the winch sensor. The latter combination describes
actually the current damping tugger system. However, the latter’s advantage is less pronounced than
the former’s. Nevertheless, the motion control system shows dominance in combination with the load
sensor and the maximum force setpoint shows superiority in combination with the winch sensor. The
overall assessment leans towards the motion control setpoint.

7.2.3. Comparison of motion control setpoint and combined controller
Table 7.3 presents the comparison between the improvement factors when using the combined con-
troller versus the motion control setpoint. It is clearly visible that the motion control setpoint outperforms
the combined controller when the load sensor is applied, while the combined controller shows superi-
ority when the winch sensor is applied. Out of 48 scenarios, 20 favored the combined controller and
27 favored the motion control setpoint, and in 1 scenario, neither control method showed superiority.

When examining Table 6.8, it becomes evident that the choice of the sensor has large impact on the
performance of the distinct control methods. When using the winch sensor, the combined controller
outperforms the motion control setpoint in many instances. The improvement factors for the motion con-
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trol setpoint are substantial, often surpassing 20% in numerous scenarios. However, when using the
load sensor, significant differences in improvement factors towards the motion control setpoint are seen.
Consequently, there is no evident superiority in the magnitude of these improvement factor differences.

In conclusion, the motion control setpoint offers superior performance with the load sensor. Conversely,
the combined controller performs better with the winch sensor. The overall assessment leans slightly
towards the motion control setpoint.

Sensor Combined
controller

No
difference

Motion control
setpoint

Number of
scenarios

Winch 18 0 6 24
Load 2 1 21 24
Total 20 1 27 48

Table 7.3: Comparison between the improvement factors when using the combined controller versus the motion control
setpoint

7.2.4. Comparison of maximum force setpoint and combined controller
When examining Table 6.9, it is evident that the majority of differences in improvement factors are
below 5%, with 11 scenarios indicating no difference in improvement factors. The exception is for
scenarios with a winch sensor and a load weighing 10,000 mT. As the majority of the improvement
factor differences approach zero, this comparison does not clearly show a superior control method.

7.2.5. Limitations of analysis
In Section 7.1.2, the effect of controllers being designed for a single scenario is discussed. To minimize
this effect during the analysis of different controller methods and inputs the ranges of varying param-
eters are centred around values for which the controllers are designed. Additionally, the analysis is
done within a wide range of scenarios and the performance is checked for every scenario, leading to
counting only one unstable response. Given these measures, the controllers are deemed suitable for
this analysis and used for this analysis.

Furthermore, the scenarios examined during the analysis are fictional. In numerous cases, certain
control aspects showed superiority. However, before confirming that one control aspect is genuinely
better than another, further research is necessary, for instance simulating the effects of control aspects
in real-world scenarios and testing them in actual operations.

Lastly, during the creation of the alternative controller inputs, described in section 3.3.3, the decision
has been made to retain velocity as the primary unit for the controller input. This choice has been
made due to the alignment between the current system’s use of velocity as a control input and the
velocity being in phase with the desired force in the cable. An in-phase input facilitates a more direct
setpoint calculation in contrast to the utilization of out-of-phase units such as displacement or acceler-
ation. However, an exploration of the effects of using displacement or acceleration as controller inputs
has not been conducted. It is advisable to do an investigation into the consequences of employing
these parameters as controller input variables. Furthermore, an exploration of the impact of employing
higher-order derivatives, such as jerk or snap, could also be done. to that extend, it should be noted
that each second successive derivative of velocity, is in phase with the desired force in the load.

7.2.6. Evaluation of the results of the analysis
The load sensor provides a better response than the winch sensor in most scenarios. In most situa-
tions, the improvement factors between the two sensors differ by less than 15%. Occasionally, there
is a significant difference, which can favor either sensor. Nevertheless, it is evident that the use of the
load sensor leads to a better performance of the motion control.

When the load sensor was incorporated, the motion control setpoint, combined with the winch sen-
sor, the performance of the motion control system was superior. However, using the winch sensor,
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both the maximum force setpoint and the combined controller yielded a better performance of the mo-
tion control system than the motion control setpoint did. No distinct advantage was observed between
the maximum force setpoint and the combined controller.

In conclusion, the motion control system performed better with the load sensor than with the winch
sensor. When examining the control method, the motion control setpoint in combination with the winch
controller demonstrated the best performance with the load sensor. Conversely, the results for both
the maximum force setpoint and the combined controller were generally superior to the motion control
system when the winch sensor was used.

7.3. Evaluation of Heerema MC's damping tugger system
Regarding Heerema MC’s damping tugger system, it is assumed that the motions of the load and
the winch are identical, as described in Section 3.2.1. However, in the investigated scenarios within
this thesis, these motions differ. From this, it is concluded that incorporating a different sensor could
potentially improve the performance of the currently used damping tugger system. Therefore, is is rec-
ommended to domore research on the incorporation of a load sensor within the damping tugger system.

This currently used damping tugger system incorporates a setpoint calculation in the form of the max-
imum force setpoint, as described in Section 3.2.1. The scenarios assessed in this thesis indicate
that this calculation method is effective in combination with the winch sensor. However, when inte-
grating the load sensor, the motion control setpoint calculation demonstrates superior performance of
the damping tugger system. In conclusion, the selection of the control method depends on the sensor
choice. If the load sensor is incorporated, it is recommended to conduct further exploration on the use
of alternative control methods, especially on a control method incorporating a setpoint calculation with
the form of a motion control setpoint.



8
Conclusion

In this thesis, a model model suitable for analysing multiple control aspects, is developed success-
fully. This analysis model was subsequently used for an analysis on various control methods and input
methods. The conclusions drawn in this thesis are outlined below.

8.1. Models
Initially, a model was created that is suitable for the analysis of different control aspects. This was
done by first creating a detailed, that represents the physics within an offshore lifting operation. The
outcomes of this detailed model were subsequently evaluated with verification cases. However, the
computation time of the detailed model turned out to be excessive, making the detailed model unsuit-
able for an analysis of the different control aspects. Therefore, a new model was created, called the
analysis model.

Consequently, a second model, denoted as the analysis model, was created. In its creation, several in-
sights obtained during the development of the detailed model were used. These insights encompassed
various simplifications that could be applied without significantly altering the system’s dynamics.

Thanks to this simplifications, the computation time of the analysis model is significantly reduced, mak-
ing it a much more efficient tool for analyzing the impacts of the various controller aspects. A compara-
tive evaluation of the outcomes produced by the analysis model and the detailed model was executed
under constant tension conditions. Remarkably, both outcomes show comparable results. Form this, it
was concluded that the complexity of the detailed model could be reduced effectively for the objective
of this thesis, leading to a much more effective model for the analysis of the control aspects.

8.2. Control methods and inputs
The analysis examined different control methods and control inputs. The specific control methods
investigated include the maximum force setpoint and the motion control setpoint, both in combination
with the winch controller, and a combined controller, which uses the motion of the load as input and
directly controls themotion of the winch. The analysis was based onmultiple hypothetical scenarios and
led to an overview of the difference in performance when using different control aspects within various
scenarios. To validate the performance of the motion control system with the use of the different control
aspects outside these scenarios, additional research is required.

8.2.1. Control inputs
The use of the winch motion sensor comes with the assumption that the motion of the winch maintains
a direct correlation with that of both the tugger cable and the lifted load. In contrast, when using the
load motion sensor, any uncertainties within to the relation between the load’s motion and the winch or
tugger cable are eliminated, as the output from the load motion sensors precisely tracks the dynamics
of the load’s motion.
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When interpreting the outcomes derived from the analysis of control aspects, the use of the load motion
sensor often yields a more favorable response than the winch motion sensor. Although the improve-
ment rates between the two sensors are less than 15% in many situations, it is evident that use of the
load sensor improves the performance of the motion control system in the scenarios analyzed within
this thesis.

Consequently, it is concluded that the motion of the load and the motion of the winch are not directly
proportional. In this specific scenario, relying only on the winch’s motion to accurately track the load’s
motion is not accurate enough. Hence, it is recommended to incorporate a load motion sensor capable
of tracking the load’s motion. By using this load motion sensor, the controller’s input becomes more
accurate, thereby leading to an improved system performance.

8.2.2. Control methods
Three different control methods are tested: the maximum force setpoint, the motion control setpoint
and the combined controller. The first two are used in combination with a winch controller, while the lat-
ter method merges the setpoint calculation with the winch controller to one single controller. It should
be noted that the current damping tugger system functions with a control method in the form of the
maximum force setpoint and the winch motion is the controller input.

The incorporation of the load motion sensor lead to superior performance of the motion control system
when the motion control setpoint was used. In contrary, both the use of the maximum force setpoint
and the combined controller showed better performance of the motion control system compared to the
use of the motion control setpoint, when the winch sensor was used. There was no clear advantage
between the maximum force setpoint and the combined controller.



9
Recommendations

In this thesis, the effects of various control methods and controller inputs on a motion control system
were examined and the results were assessed. Based on the evaluation of these results, two primary
recommendation are provided. the provided recommendations could lead to an improved performance
of Heerema MC’s currently used damping tugger system. This improvement would imply a decrease of
the undesired motions of the lifted loads during offshore operations, ensuring safer and more efficient
offshore lifting operations.

9.1. Control inputs
The first recommendation regards the motion sensor of a motion control system. Within Heerema MC’s
currently used damping tugger system, the motion of the winch is measured and converted to the mo-
tion of the load, under the assumption that it is directly proportional to that of the load. After evaluating
various control methods and controller inputs, it became evident that in the assessed scenarios, the
motion of the winch and the load were not consistently proportional. Notably, the motion control sys-
tem exhibited superior performance in nearly all assessed scenarios when the load motion sensor was
used. The use of the load sensor eliminates possible uncertainties about the motion of the load. Con-
sequently, this leads to a more accurate control input, what improves the performance of the motion
control system. Hence, it is recommended to use a sensor that measures the motion of the load instead
of the motion of the winch.

When deciding to implement the load motion sensor, it is recommended to conduct further research
concerning its performance in scenarios beyond those examined in this thesis. Moreover, additional
investigation is recommended about the sensor type and the implementation method. For instance,
displacement sensors and acceleration sensors may yield favorable outcomes, which were not evalu-
ated in this thesis. Therefore, it is recommended to investigate the effects of these sensor types as well.

Conversely, the current motion control system used by Heerema MC relies on a winch motion sen-
sor, as measuring the winch’s motion is mostly more easier than measuring the motion of the load.
This could be an argument for retaining the winch motion sensor. In that case, it must be accepted that
the controller input is less accurate in comparison to the implementation of the load motion controller.

In summary, it is advised to use load motion sensor instead of a winch motion sensor. The use of
the load motion sensor reduces uncertainties concerning the motion of the load, resulting in a more
accurate control system input.

9.2. Control method
The second recommendation regards the control method of the motion control system. The analysed
scenarios in this thesis indicate that the motion control setpoint calculation demonstrates superior per-
formance when the load motion sensor is used. On the other hand, when the winch sensor is used, the
maximum force setpoint and the combined controller method show superior results compared to when
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the motion control setpoint is used. In conclusion, the selection of a control method relies, among other
factors, on the selection of the sensor in use.

In the previous section, it is argued that the use of the load motion sensor yields better performance
of the motion control system. When using this sensor, it is the motion control setpoint method that
demonstrates the most promising results and is thus recommended for controller design. Conversely,
when deciding to retain with the winch motion sensor, for the sake of simplicity, the use of the maximum
force setpoint or the combined controller method is recommended.

Moreover, this thesis examines only three control methods, whereas alternative methods, such as
adaptive control, may also prove to be effective. Nevertheless, this thesis showed that different control
methods yield varying performance outcomes, depending on control input values and control parame-
ters. Consequently, an investigation into the performance of other control methods is recommended,
along with the comparison of different control strategies across various situations and objectives.

In conclusion, the choice of the control method depends on the selection of the sensor in use. Should
the load motion sensor be implemented, as suggested in section 9.1, it is recommended to design a
control system based upon the motion control setpoint method. However, should the decision be made
to stay with the winch sensor, the use of a control method in the form of the maximum force setpoint or
the combined controller is recommended. In both scenarios, further exploration of alternative control
methods is recommended to ultimately determine the optimal approach.
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A
Detailed model

This appendix corresponds to the detailed model described in Chapter 4. It provides explanations of
standard parameters and outlines the verification cases for the detailed model. Additionally, information
about the ODE solver in Simulink is provided. The EOMs for the detailed model can be found in
appendix D.

A.1. Standard parameters
In this section, the standardized parameter values are explained that are used within the detailed model.
The gravitational constant g is set to the standard value of 9.81 m/s2. Within Heerema MC, both the
stiffness and damping constants for the crane cable are standard used values of ktm = 4.85 MN/m
and ctm = 10 kNs/m, respectively [103]. These constants are also used for the stiffness and damping
constant of the crane cable within this thesis. It has been observed that, in practice, the cable stiff-
ness is often larger than this value. However, the underlying reasons for this phenomenon is not well
understood. Nonetheless, for the purposes of this project, the value of 4.85 MN/m is an acceptable
approximation of the cable stiffness. The weight of the load is configured at 50 mT, a value consistent
with an offshore wind turbine foundation.

The initial length of the tugger cable is defined as 60m, subject to alteration by winch rotation. Within the
parameters of Heerema MC, the tugger cable’s stiffness kc is given as 2.0 kN/m [3]. As for the damping
coefficient of the tugger cable cc, no established value exists within Heerema MC. Consequently, it is
assumed to match the crane cable’s damping constant of 10 kNs/m. The mass per unit length of the
tugger cable stands at 73 kg/m, and the winch radius rw measures 1.5 m [3]. Lastly, the crane tip and
winch coordinates are chosen such that it represent realistic dimensions.

A.2. Verification cases of the detailed model
In this section, the outcomes of the free lifting system, the damping tugger system, and the controlled
lifting system are evaluated through various verification cases. Certain standard parameters have been
modified for the sake of clarity.

A.2.1. Vessel motions and tip motions
Wave elevation and current influence vessel motion. Due to a rigid connection between the vessel cen-
ter and the crane tip, motion from the vessel transfers directly to the tip. This transfer is demonstrated
through this through basic translation and rotation equations:

xt = xs(t) + lx · cos(θs(t))− ly · sin(θs(t)) (A.1)

yt = ys(t) + lx · sin(θs(t)) + ly · cos(θs(t)) (A.2)

The horizontal distance lx and vertical distance ly of the rigid connection measure 40 m and 100 m,
respectively. First, the impact of horizontal vessel motion xs and vertical vessel motion ys on tip motion
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are investigated. Figure 4.3 presents the input vessel motions, and Figure A.2 displays the consequen-
tial tip motion. Both motions manifest identical amplitude and period, confirming direct transmission of
vessel motion to tip motion when rotation is absent.

Figure A.1: The input vessel motions in x- and y-direction

Secondly, the impact of vessel rotation θs on tip motion undergoes examination. Figure A.3 depicts
input vessel rotation θs, ranging between maximum values of 1 and −1. Upon substituting these maxi-
mum θs values into Equations A.1 and A.2, the resultant maximum tip motion values are defined. These
maximums align with the peaks shown in Figure A.4.

Figure A.3: The input vessel rotation in θs-direction



A.2. Verification cases of the detailed model 98

Figure A.2: The resulting motion of the crane tip, caused by both the horizontal vessel motion xs and the vertical vessel
motion ys

Figure A.4: The resulting motion of the crane tip, caused by both the horizontal vessel rotation θs

A.2.2. Free lifting system
First, the amplitude and period of the crane cable are tested. The pendulum motion is eliminated,
leaving only vertical axial vibrations. The computed values for amplitude and period are then compared
to the outcomes generated by the model. The calculated amplitude and period of the crane cable are:

r =
mo · g
ktm

= 51.2 m (A.3)

Tp = 2π ·
√

mo

ktm
= 14.3 s (A.4)
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wheremo denotes themass of the load which is 500mT and ktm displays the stiffness of the cable which
is 100 kN/m in this case. Figure A.5 illustrates the elongation of the crane cable over time compared
the calculated amplitude and period. Twice the calculated amplitude of 51.2 m leads to a maximum
elongation of 102.4 m. It can be observed that the calculation align with the model outcomes.

Figure A.5: The amplitude and period of the vibrating mass compared to the calculated values

To verify themotion of the elastic pendulum, two distinct experiments were conducted: onewith reatively
high stiffness and another with relatively low stiffness. In each experiment, the initial angle remained
at θc = π

4 rad. In the scenario with relatively high stiffness (k = 200 MN/m), elongation of the crane
cable remained minimal. Therefore, the pendulum functions as a rigid cable pendulum, as illustrated
in Figure A.6. Conversely, in the experiment with relatively low stiffness (k = 2 kN/m), significant
elongation occurred in the crane cable. Consequently, the pendulum behaves as an elastic pendulum,
as corroborated by Figure A.7.

Figure A.6: The behaviour of the pendulum with increased stiffness
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Figure A.7: The behaviour of the pendulum with decreased stiffness

Furthermore, the initial elongation of the crane cable is established at the equilibrium state, which is
given by rc = m·g

k . Consequently, the mass remains motionless, with no vibration being observed. This
phenomenon occurs because the system contains no potential or kinetic energy in the initial state, and
no energy is added to the system.

A.2.3. The damping tugger system
Both the elongation of the two springs, represented by rc and rs2, as well as the angular displacement
θk of the first spring, are investigated. Initially, the Y-coordinates for the winch and the load are equal.
The initial conditions ensure that the cable mass starts at this vertical position. Due to the influence
of potential energy, vertical oscillations in the cable mass take place, as depicted in Figure A.8. Both
springs are equal resulting in equal elongations for both springs. Contrary to a simple sinusoidal mo-
tion, the elongation of the springs and the angular displacement of the first spring are complex. This
complexity occurs due to lateral forces generated by both springs, which initiate the vertical velocity of
the cable mass. These lateral forces continuously change, leading to non-sinusoidal motions for the
springs’ elongation and rotation.

In the second scenario, the steady-state conditions are tested. Gravity is restored to its original value,
and the initial shift in horizontal position is undone and the springs are replaced by dissipating springs,
exhibiting damping effects. Due to this damping effect, the system gradually approaches an equilibrium
state, where spring 1 attains a specific elongation and angular orientation. Figure A.10 illustrates the
system as it moves toward this equilibrium condition.

The steady-state values of the elongation and rotation of the springs are calculated as:

Fg = Fn1 + Fn2 = mc · g (A.5)

Fn1 = sin(θk−eq) · Fk1 (A.6)

Fk1 = k1 · x1 (A.7)

rc−eq =
ls01

cos(θk−eq)
− ls01 (A.8)

Fg = 2 · sin(θk−eq) · k1 ·
(

ls01
cos(θk−eq)− ls01

)
= mc · g (A.9)



A.2. Verification cases of the detailed model 101

Figure A.8: The extension of springs 1 and 2 and the angle spring 1

where Fnx symbolizes the normal force, Fkx denotes the spring force, and ls0x represents the initial
length of either spring 1 or spring 2, which is 20 m is this case. The mass of the cable tugger mc is 50
kg/m, leading to an initial mass of 2000 kg. Figure A.9 provides a visual representation of the spring
geometry, incorporating the variables mentioned above. Solving equation A.9 leads to θk = 0.046 rad.
This is then incorporated into equation A.8, yielding rc−eq = 0.021 meters. The red lines in Figure A.10
represent these outcomes. The motion damps out to the calculated values confirming the accuracy of
the model.

Figure A.9: The geometry of the springs

A.2.4. Controlled lifting system
The controlled lifting system is a combination of the free lifting system and the damping tugger system,
which have been verified in sections A.2.2 and A.2.3, respectively.

In the first verification case of the controller lifting system, the load and the cable mass are treated
as uncoupled elements by setting the spring 2 stiffness, denoted as ks2, to zero e.i. eliminating spring
2. This results in two distinct pendulum systems. The initial conditions are set such that the load expe-
riences only vertical vibrations due to gravitational forces and no pendulum-like swings. The amplitude
and period of these vibrations should align with the results from the first case in Section A.2.2, as out-
lined by equations A.3 and A.4.

First, the behaviour of the crane cable and load is checked. Figure A.11 illustrates the motion of the
load. The observations aligns with the calculated period and amplitude. Comparing this figure to Fig-
ure A.5, leads to the conclusion that both obsevered motions are equal, therefore the elimination of the
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Figure A.10: Damped motion of the system

spring 2 is successful. Importantly, the motion of the load is exclusively vibrational, with no observed
swinging.
Now the behaviour of the cable mass and spring 1 is tested. The above described initial conditions are
set such that the mass of the cable operates as a pendulum. The period of this cable mass is described
by:

Tp = 2π ·

√
l0s1
g

= 9.0 s (A.10)

where l denotes the initial length of spring 1, which is 20 m in this case. Figure A.12 presents the
observed period, which is in line with the value predicted by the model. Furthermore, the performance
of the pendulum is in line with the behavior of a rigid pendulum. It should be noted that the mass of the
cable is relatively small in comparison to the stiffness of Spring 1.
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Figure A.11: The motion of the lifted load

Figure A.12: The motion of the cable mass obtained from the model compared to the calculated period

A.3. Simulink ODE solver
In a Simulink model, the ODE solver operates differently compared to a regular MATLAB model. The
Simulink model incorporates a MATLAB function containing the EOMs and implements them accord-
ingly. The MATLAB function represents the EOMs in terms of one or more variables defining the DOFs
and their respective first derivatives. Subsequently, the function provides the second derivatives as its
output. These second derivatives are then integrated over time to determine the first derivatives, and
further integration yields the corresponding state variables. Consequently, the complete state vector is
obtained, comprising both the first derivatives and the state variables. These first derivatives and state
variables become the inputs for the subsequent time step in the simulation process.
Figure A.13 depicts the visual representation of the ODE solving process in Simulink. In this represen-
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Figure A.13: ODE solver in simulink

tation, the state variable x and its first derivative dx are the inputs to the EOMs contained within the
MATLAB function. As a result, the EOMs generate the second derivative ddx as the output. Subse-
quently, the second derivative ddx is integrated to get the first derivative dx, and further integration of
the first derivative provides the state variable x.

In this thesis, the used ODE solver is ODE45. Simulink incorporates its own algorithm for selecting
the most suitable ODE solver method, and in the majority of cases, this is ODE45. However, should
Simulink select a different ODE solver, the reason for this choice will be assessed before determining
whether an alternative ODE solver is indeed warranted. As mentioned before, ODE45 serves as the
default ODE solver employed in this thesis, unless explicitly specified.



B
Analysis model

This appendix corresponds to the analysis model described in Chapter 5. It contains the explanations
of modeling the winch as translating mass, the deadband and the limit values of the motion control
setpoint. Furthermore, the verification cases for the outcomes of the analysis models are provided.

B.1. Modeling the winch as translating mass
This section provides the mathematical relationship between a rotating and a translating mass, which
could both be used to model the winch. The aim is to derive the relation between a rotating mass and
a translating mass that have the same effect on the motion of the tugger cable. Initially, the equation
of motion for the rotating mass is provided as:

Mθ = Iθ̈ (B.1)

In this equation, Mθ represents the torque exerted on the rotating winch, I signifies the inertia of the
winch, and θ̈ denotes the rotational acceleration of the winch. Expanding the terms for inertia and
rotational acceleration yields:

I = mθr
2 (B.2)

θ̈ = ẍθr (B.3)
Where mθ is the mass of the rotating winch, r is the radius of the winch and ẍθ is the effective transna-
tional acceleration of the tugger cable due to the rotation of the winch. Substituting and rewriting these
equation leads to:

ẍθ =
Mθ

mθr3
(B.4)

The equation of motion for the translating mass is now provided as follows:

Fθ = mxẍx (B.5)

Where Fθ is the force acting on the translating mass,mx denotes the mass of the translating winch and
and ẍx represents the acceleration of the translating winch, which is equal to the effective transnational
acceleration of the tugger cable. This equation could be rewritten to:

ẍx =
Fx

mx
(B.6)

Since both masses are influenced equally by the tugger cable, we set θ̈ and ẍ equal to each other. This
results in the following equation:

Mθ

mθr3
=

Fx

mx
(B.7)

Refactoring this equation yields the relationship between the rotational mass and the translational mass,
assuming the impact on the motion of the tugger cable is held constant.

mθ = mx
M

Fxr3
(B.8)
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This describes the relationship between rotational mass and translational mass, both of which can
be used to model the winch. Further evaluation of this relationship is possible when an additional
assumption is made. Specifically, if the force applied to the translational winch is equal to the force that
generates the moment in the rotational winch at the radius of r, then the following equation holds true:

Mθ = Fxr (B.9)

Substituting B.9 into equation B.8 leads to:

mθ = mx
Fxr

Fxr3
=

mx

r2
(B.10)

This is the relation between the rotational mass and translational mass under the assumptions that they
produce the same effect on the tugger cable as well as that the force applied to the translational winch
is equal to the force that generates the moment in the rotational winch at the radius of r.

B.2. Deadband
An accepted x-displacement of the load is established as xo−max = 0.1 m. The maximum x-velocity
is derived using kinetic and potential energy equations. This leads to the following expression for the
x-velocity:

ẋo =

√
2 · Tp

m
− ẏo (B.11)

The kinetic energy reaches its maximum when the load crosses the cycle’s center point, where the
vertical velocity ẏo is zero. To find the relationship between the load’s maximum x-displacement and
maximum x-velocity, we substitute the kinetic energy with the potential energy. Here, the motion of the
suspension xt is omitted, as it concerns damping out the load’s motion. Therefore, in this case, the
relationship xo−max = θ · l holds, resulting in:

ẋo−max =

√
g · x2

o−max

l
(B.12)

Given an accepted x-displacement of xo−max = 0.1 m, the corresponding maximum x-velocity is ap-
proximately ẋo−max ≈ 0.05 m/s. This value is set as the deadband for the system.

B.3. Limit values of motion control setpoint
The velocity error of the load serves as the input for the motion control setpoint. The proportional gain of
the controller, denoted as kp, multiplies the velocity error. Likewise, the derivative gain, denoted as kd,
multiplies the acceleration error. The displacement error has a maximum limit of eo−max = 0.5m. Using
equation B.11, this corresponds to a maximum velocity value of ėo−max = 0.22 m/s. The pre-tension
is given as Fk = −150 kN, and the maximum force deviation from this pre-tension is |Fmax−dev| = 100
kN. Consequently, the equation for calculating the limit of the proportional controller gain is as follows:

lim(k̄p) =
|Fmax−dev|
ėo−max

=
100e3

0.22
≈ 450, 000 (B.13)

The maximum acceleration error is unknown, so the limit for the proportional gain is used as the limit
for the derivative gain as well. So the limit of the controller gain is set to 450,000.

B.4. Verification of the analysis model
To validate themodels, various test cases are performed, starting with the verification of the forcemodel.
For this case, the load’s mass is set to 1 kg, and the crane cable’s length is 1 m. The initial conditions
for the motion are θ = 0 rad and θ̇ = 0 rad/s. The force acting on the load is a constant Fk = 2 N. Now,
the period of the motion and the angle of the static state can be calculated as follows:
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Tp = 2π

√
l

g
= 2.0 s (B.14)

θ =
Fk

mg
= 0.2 rad (B.15)

Figure B.1 shows the response of the load when the force of 2 N is applied. As observed, the angle
θ starts at the initial angle θ = 0 and increases to the maximum angle θ = 0.4. The static state
corresponds to the equilibrium between these minimum and maximum angles, resulting in θ = 0.2 rad,
which aligns with the calculated angle. Additionally, Figure B.1 demonstrates that the period of the load
is 2.0 seconds, consistent with the calculated period.

Figure B.1: Verification model of force system, case 1

Figure B.2: Verification model of force system, case 1
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Now the second model is verified through two distinct cases. In the first case, the focus is on the period
of the motion of the winch. For this case, the load’s mass is set to 10 kg to keep its motion negligible.
The winch mass is set to 1 kg, the spring coefficient is set to 100 N/m, and the damping coefficient is
set to 1 N/ms. Considering the mass of the load as fixed, the period of the motion of the winch can be
calculated as:

Tp = 2π

√
mw

k
= 0.62 s (B.16)

The initial displacement of the winch is set to xw = 1 m, and the initial velocity is ẋw = 0 m/s. Figure
B.2 shows the motion of the winch in this case, and as observed, the period of the winch is equal to
0.62 seconds, consistent with the calculated value.

The second case involves the period of the motion of the load, accounting for the presence of the
spring and winch. For this case, the winch mass is set to 10 mT to maintain the winch’s motion negli-
gible. The load mass is set to 1 kg, the spring coefficient is set to 1 N/m, and the damping coefficient
is set to 1 N/ms. Considering the mass of the winch as fixed, the period of the motion of the load can
be calculated as done in equation B.14.

It should be noted that the period should be slightly smaller than 2.0 seconds due to the presence
of the spring. The initial displacement of the load is set to θ = 1 rad, and the initial velocity is θ̇ = 0 m/s.
Figure B.3 shows the motion of the load in this case, and as observed, the period of the load is slightly
smaller than 2.0 seconds, corroborating the theoretical expectations.

Figure B.3: Verification model of lifting system, case 2



C
Results

Table C.1 (next page) contains the results of the analysis done in chapter 6.2. These results are
discussed in chapter 7.
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Reference system ⇒ On-deck Global
mo [mT] ⇓ mw [mT] ⇒ 1 5 25 1 5 25

Maximum force setpoint

10
No control 0.073 0.050 0.045 0.053 0.027 0.017
Load control 0.051 0.049 0.049 0.037 0.021 0.015
Winch control 0.043 0.048 0.050 0.035 0.022 0.015

100
No control 0.098 0.079 0.062 0.105 0.058 0.049
Load control 0.051 0.050 0.049 0.045 0.042 0.035
Winch control 0.062 0.060 0.057 0.046 0.042 0.036

1000
No control 0.126 0.150 0.111 0.118 0.133 0.101
Load control 0.074 0.073 0.072 0.048 0.048 0.048
Winch control 0.083 0.081 0.079 0.065 0.061 0.056

10000
No control 0.132 0.133 0.155 0.118 0.133 0.101
Load control 0.089 0.088 0.087 0.048 0.048 0.048
Winch control 0.102 0.098 0.094 0.065 0.061 0.056

Motion control setpoint

10
No control 0.070 0.047 0.042 0.054 0.026 0.018
Load control 0.007 0.007 0.007 0.004 0.004 0.004
Winch control 0.037 0.038 0.037 0.003 0.003 0.003

100
No control 0.121 0.076 0.061 0.103 0.062 0.044
Load control 0.004 0.004 0.003 0.005 0.005 0.005
Winch control 0.060 0.060 0.060 0.015 0.015 0.014

1000
No control 0.126 0.142 0.102 0.109 0.130 0.088
Load control 0.032 0.030 0.029 0.020 0.020 0.019
Winch control 0.191 0.192 0.191 0.125 0.126 0.125

10000
No control 0.128 0.117 0.125 0.109 0.130 0.088
Load control 0.075 0.073 0.073 0.020 0.020 0.019
Winch control 0.126 0.127 0.126 0.125 0.126 0.125

Combined controller

10
No control 0.072 0.047 0.042 0.053 0.027 0.019
Load control 0.012 0.031 0.039 0.004 0.003 0.003
Winch control 0.014 0.034 0.040 0.004 0.004 0.003

100
No control 0.119 0.079 0.062 0.104 0.062 0.043
Load control 0.053 0.051 0.081 0.024 0.016 0.257
Winch control 0.070 0.061 0.052 0.030 0.020 0.012

1000
No control 0.125 0.142 0.106 0.112 0.130 0.091
Load control 0.076 0.072 0.067 0.044 0.039 0.033
Winch control 0.081 0.077 0.072 0.047 0.042 0.036

10000
No control 0.130 0.120 0.129 0.112 0.104 0.115
Load control 0.096 0.091 0.087 0.075 0.069 0.064
Winch control 0.102 0.096 0.090 0.080 0.072 0.066

Table C.1: RMS of the velocity of the load for all scenarios



D
Equations of motion of detailed model

In this appendix, the EOMs derived in Chapter 4 are provided.

D.1. Free lifting system

θ̈t(t) = (mo · (cos(θt(t)) · (ly · cos(θs(t))+ (D.1)
lx · sin(θs(t)))− sin(θt(t)) · (lx · cos(θs(t))−
ly · sin(θs(t)))) · θ̈s(t)− cos(θt(t)) · ẍs(t) ·mo−
sin(θt(t)) · ÿs(t) ·mo +mo · ((ly · cos(θs(t))+
lx · sin(θs(t))) · sin(θt(t)) + cos(θt(t)) · (lx · cos(θs(t))−
ly · sin(θs(t)))) · θ̇s(t)2 + sin(θt(t)) · g ·mo−
2 · ṙt(t) · θ̇t(t) ·mo − cos(θt(t)) · Fw)/((l0 + rt(t)) ·mo)

r̈t(t) = (− sin(θt(t)) · Fw + ((ly · cos(θs(t))+ (D.2)
lx · sin(θs(t))) · sin(θt(t)) + cos(θt(t)) · (lx · cos(θs(t))−
ly · sin(θs(t)))) ·mo · θ̈s(t)− sin(θt(t)) · ẍs(t) ·mo+

cos(θt(t)) · ÿs(t) ·mo − (cos(θt(t)) · (ly · cos(θs(t))+
lx · sin(θs(t)))− sin(θt(t)) · (lx · cos(θs(t))−
ly · sin(θs(t)))) ·mo · θ̇s(t)2 +mo · (l0 + rt(t)) · θ̇t(t)2−
mo · g · cos(θt(t))− ctm · ṙt(t)− ktm · rt(t))/mo

D.2. Damping tugger system

θ̈k(t) = (2 · (θ̇w(t) · rw · cs2 + ks2 · (θw(t) · rw− (D.3)
2 · l0s2)) · ((−yo(t) + yw(t)) · cos(θk(t)) + sin(θk(t)) · (xo(t)−
xw(t))) · sqrt(4 · (xo(t)− xw(t)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · cos(θk(t))+
4 · (yo(t)− yw(t)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · sin(θk(t))+
θw(t)

2 · r2w − 4 · rw · (l0s1 + rc(t)) · θw(t) + 4 · l0s12 + 8 · l0s1 · rc(t)+
4 · rc(t)2 + 4 · xo(t)

2 − 8 · xo(t) · xw(t) + 4 · xw(t)
2 + 4 · yo(t)2 − 8 · yo(t) · yw(t)+

4 · yw(t)2)− 8 · (−(θw(t) · rw − 2 · rc(t)− 2 · l0s1) · (yo(t)−
yw(t)) · cos(θk(t))2 + sin(θk(t)) · (θw(t) · rw − 2 · rc(t)−
2 · l0s1) · (xo(t)− xw(t)) · cos(θk(t)) + (xo(t)

2 − 2 · xo(t) · xw(t) + xw(t)
2+
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yo(t)
2 − 2 · yo(t) · yw(t) + yw(t)

2 + (θw(t) · rw − 2 · rc(t)−
2 · l0s1)2/4) · sin(θk(t)) + (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · (yo(t)−
yw(t))) ·mc · ẍw(t) + 8 · ((xo(t)− xw(t)) · (θw(t) · rw − 2 · rc(t)−
2 · l0s1) · cos(θk(t)) + (yo(t)− yw(t)) · (θw(t) · rw − 2 · rc(t)−
2 · l0s1) · sin(θk(t)) + xo(t)

2 − 2 · xo(t) · xw(t) + xw(t)
2 + yo(t)

2−
2 · yo(t) · yw(t) + yw(t)

2 + (θw(t) · rw − 2 · rc(t)−
2 · l0s1)2/4) ·mc · cos(θk(t)) · ÿw(t) + (−8 · ((xo(t)− xw(t)) · (θw(t) · rw
− 2 · rc(t)− 2 · l0s1) · cos(θk(t)) + (yo(t)− yw(t)) · (θw(t) · rw − 2 · rc(t)−
2 · l0s1) · sin(θk(t)) + xo(t)

2 − 2 · xo(t) · xw(t) + xw(t)
2 + yo(t)

2−
2 · yo(t) · yw(t) + yw(t)

2 + (θw(t) · rw − 2 · rc(t)−
2 · l0s1)2/4) ·mc · rw · θ̇w(t) + 16 · ((xo(t)− xw(t)) · (θw(t) · rw − 2 · rc(t)
− 2 · l0s1) · cos(θk(t)) + (yo(t)− yw(t)) · (θw(t) · rw − 2 · rc(t)−
2 · l0s1) · sin(θk(t)) + xo(t)

2 − 2 · xo(t) · xw(t) + xw(t)
2 + yo(t)

2−
2 · yo(t) · yw(t) + yw(t)

2 + (θw(t) · rw − 2 · rc(t)− 2 · l0s1)2/4) ·mc · ṙc(t)+
4 · ((xo(t)− xw(t) + yo(t)− yw(t)) · (xo(t)− xw(t)− yo(t)+

yw(t)) · cos(θk(t))2 + 2 · sin(θk(t)) · (yo(t)− yw(t)) · (xo(t)−
xw(t)) · cos(θk(t))− (xo(t)− xw(t))

2) · cs2 · (θw(t) · rw − 2 · rc(t)−
2 · l0s1)) · θ̇k(t) + 4 · (−2 · (yo(t)− yw(t)) · (xo(t)− xw(t)) · cos(θk(t))2

+ ((xo(t)− xw(t) + yo(t)− yw(t)) · (xo(t)− xw(t)− yo(t)+

yw(t)) · sin(θk(t))− ((θw(t) · rw − 2 · rc(t)− 2 · l0s1) · (yo(t)−
yw(t)))/2) · cos(θk(t)) + (xo(t)− xw(t)) · ((θw(t) · rw/2− l0s1−
rc(t)) · sin(θk(t)) + yo(t)− yw(t))) · cs2 · rw · θ̇w(t)− 8 · (−2 · (yo(t)−
yw(t)) · (xo(t)− xw(t)) · cos(θk(t))2 + ((xo(t)− xw(t) + yo(t)−
yw(t)) · (xo(t)− xw(t)− yo(t) + yw(t)) · sin(θk(t))− ((θw(t) · rw − 2 · rc(t)
− 2 · l0s1) · (yo(t)− yw(t)))/2) · cos(θk(t)) + (xo(t)− xw(t)) · ((θw(t) · rw/2−
l0s1− rc(t)) · sin(θk(t)) + yo(t)− yw(t))) · cs2 · ṙc(t)+
8 · cs2 · (−((θw(t) · rw − 2 · rc(t)− 2 · l0s1) · (xo(t)− xw(t)) · cos(θk(t))2)/2−
((θw(t) · rw/2− l0s1− rc(t)) · sin(θk(t)) + yo(t)− yw(t)) · (yo(t)−
yw(t)) · cos(θk(t)) + (xo(t)− xw(t)) · ((yo(t)− yw(t)) · sin(θk(t))+
θw(t) · rw/2− l0s1− rc(t))) · ẏo(t)− 8 · cs2 · (−((θw(t) · rw − 2 · rc(t)−
2 · l0s1) · (xo(t)− xw(t)) · cos(θk(t))2)/2− ((θw(t) · rw/2− l0s1−
rc(t)) · sin(θk(t)) + yo(t)− yw(t)) · (yo(t)− yw(t)) · cos(θk(t)) + (xo(t)

− xw(t)) · ((yo(t)− yw(t)) · sin(θk(t)) + θw(t) · rw/2− l0s1−
rc(t))) · ẏw(t) + 8 · ((−yo(t) + yw(t)) · cos(θk(t)) + sin(θk(t)) · (xo(t)

− xw(t))) · cs2 · ((θw(t) · rw/2− l0s1− rc(t)) · cos(θk(t)) + xo(t)−
xw(t)) · ẋo(t)− 8 · ((−yo(t) + yw(t)) · cos(θk(t)) + sin(θk(t)) · (xo(t)

− xw(t))) · cs2 · ((θw(t) · rw/2− l0s1− rc(t)) · cos(θk(t)) + xo(t)−
xw(t)) · ẋw(t)− 8 · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · (xo(t)− xw(t)) · (g ·mc+

2 · ks2 · yo(t)− 2 · yw(t) · ks2) · cos(θk(t))2 + (−8 · (−ks2 · xo(t)
2+

2 · xw(t) · ks2 · xo(t)− xw(t)
2 · ks2 + (yo(t)− yw(t)) · (g ·mc + ks2 · yo(t)−

yw(t) · ks2)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · sin(θk(t))− 8 · (g ·mc+

ks2 · yo(t)− yw(t) · ks2) · (xo(t)
2 − 2 · xo(t) · xw(t) + xw(t)

2 + yo(t)
2−

2 · yo(t) · yw(t) + yw(t)
2 + (θw(t) · rw − 2 · rc(t)− 2 · l0s1)2/4)) · cos(θk(t))
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+ 8 · (xo(t)− xw(t)) · ks2 · ((xo(t)
2 − 2 · xo(t) · xw(t) + xw(t)

2 + yo(t)
2−

2 · yo(t) · yw(t) + yw(t)
2 + (θw(t) · rw − 2 · rc(t)− 2 · l0s1)2/4) · sin(θk(t))+

(θw(t) · rw − 2 · rc(t)− 2 · l0s1) · (yo(t)− yw(t))))/(4 · ((xo(t)−
xw(t)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · cos(θk(t)) + (yo(t)−
yw(t)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · sin(θk(t)) + xo(t)

2−
2 · xo(t) · xw(t) + xw(t)

2 + yo(t)
2 − 2 · yo(t) · yw(t) + yw(t)

2 + (θw(t) · rw−
2 · rc(t)− 2 · l0s1)2/4) ·mc · (θw(t) · rw − 2 · rc(t)− 2 · l0s1))

r̈c(t) = (4 · ((−xo(t) + xw(t)) · cos(θk(t)) + (−yo(t)+ (D.4)
yw(t)) · sin(θk(t))− θw(t) · rw/2 + rc(t)+

l0s1) · (−θ̇w(t) · rw · cs2/2 + ks2 · (−θw(t) · rw/2 + l0s2)) · sqrt(4 · (xo(t)−
xw(t)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · cos(θk(t)) + 4 · (yo(t)−
yw(t)) · (θw(t) · rw − 2 · rc(t)− 2 · l0s1) · sin(θk(t)) + θw(t)

2 · r2w−
4 · rw · (l0s1 + rc(t)) · θw(t) + 4 · l0s12 + 8 · l0s1 · rc(t) + 4 · rc(t)2 + 4 · xo(t)

2−
8 · xo(t) · xw(t) + 4 · xw(t)

2 + 4 · yo(t)2 − 8 · yo(t) · yw(t) + 4 · yw(t)2)− 8 ·mc · (2 · (l0s1
− θw(t) · rw/2 + rc(t)) · (yo(t)− yw(t)) · cos(θk(t))2 − 2 · (l0s1−
θw(t) · rw/2 + rc(t)) · (xo(t)− xw(t)) · sin(θk(t)) · cos(θk(t))+
(rc(t)

2 + (−θw(t) · rw + 2 · l0s1) · rc(t) + θw(t)
2 · r2w/4− 2 · xo(t) · xw(t)−

2 · yo(t) · yw(t) + xo(t)
2 + xw(t)

2 + yo(t)
2 + yw(t)

2 + l0s1
2−

l0s1 · θw(t) · rw) · sin(θk(t))− 2 · (l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t))) · ÿw(t) + 4 · (−2 · (l0s1− θw(t) · rw/2 + rc(t)) · (xo(t)−
xw(t)) · cos(θk(t))− 2 · (l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t)) · sin(θk(t)) + rc(t)

2 + (−θw(t) · rw + 2 · l0s1) · rc(t)+
θw(t)

2 · r2w/4− 2 · xo(t) · xw(t)− 2 · yo(t) · yw(t) + xo(t)
2 + xw(t)

2 + yo(t)
2+

yw(t)
2 + l0s1

2 − l0s1 · θw(t) · rw) ·mc · rw · θ̈w(t)− 8 · (−2 · (l0s1−
θw(t) · rw/2 + rc(t)) · (xo(t)− xw(t)) · cos(θk(t))− 2 · (l0s1−
θw(t) · rw/2 + rc(t)) · (yo(t)− yw(t)) · sin(θk(t)) + rc(t)

2+

(−θw(t) · rw + 2 · l0s1) · rc(t) + θw(t)
2 · r2w/4− 2 · xo(t) · xw(t)−

2 · yo(t) · yw(t) + xo(t)
2 + xw(t)

2 + yo(t)
2 + yw(t)

2 + l0s1
2−

l0s1 · θw(t) · rw) ·mc · cos(θk(t)) · ẍw(t) + 8 · (−2 · (l0s1− θw(t) · rw/2
+ rc(t)) · (xo(t)− xw(t)) · cos(θk(t))− 2 · (l0s1− θw(t) · rw/2+
rc(t)) · (yo(t)− yw(t)) · sin(θk(t)) + rc(t)

2 + (−θw(t) · rw + 2 · l0s1) · rc(t)
+ θw(t)

2 · r2w/4− 2 · xo(t) · xw(t)− 2 · yo(t) · yw(t) + xo(t)
2 + xw(t)

2 + yo(t)
2

+ yw(t)
2 + l0s1

2 − l0s1 · θw(t) · rw) · (l0s1− θw(t) · rw/2+
rc(t)) ·mc · θ̇k(t)2 − 8 · (l0s1− θw(t) · rw/2 + rc(t)) · cs2 · (2 · (yo(t)−
yw(t)) · (xo(t)− xw(t)) · cos(θk(t))2 + (−(xo(t)− xw(t) + yo(t)−
yw(t)) · (xo(t)− xw(t)− yo(t) + yw(t)) · sin(θk(t))− (l0s1− θw(t) · rw/2+
rc(t)) · (yo(t)− yw(t))) · cos(θk(t)) + (sin(θk(t)) · (l0s1− θw(t) · rw/2
+ rc(t))− yo(t) + yw(t)) · (xo(t)− xw(t))) · θ̇k(t) + (−8 · cs2 · (xo(t)−
xw(t) + yo(t)− yw(t)) · (xo(t)− xw(t)− yo(t) + yw(t)) · cos(θk(t))2+
16 · (−cs2 · (yo(t)− yw(t)) · sin(θk(t)) + (cs1 + cs2) · (l0s1− θw(t) · rw/2+
rc(t))) · (xo(t)− xw(t)) · cos(θk(t)) + 16 · (cs1 + cs2) · (l0s1− θw(t) · rw/2+
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rc(t)) · (yo(t)− yw(t)) · sin(θk(t)) + (−8 · cs1− 8 · cs2) · rc(t)2 + 8 · (cs1+
cs2) · (θw(t) · rw − 2 · l0s1) · rc(t)− 2 · r2w · (cs1 + cs2) · θw(t)2+
8 · l0s1 · rw · (cs1 + cs2) · θw(t) + (−8 · cs1− 8 · cs2) · yo(t)2 + 16 · yw(t) · (cs1+
cs2) · yo(t) + (−8 · cs1− 8 · cs2) · yw(t)2 − 8 · xo(t)

2 · cs1 + 16 · xo(t) · xw(t) · cs1−
8 · xw(t)

2 · cs1− 8 · l0s12 · (cs1 + cs2)) · ṙc(t) + 4 · cs2 · ((xo(t)− xw(t) + yo(t)

− yw(t)) · (xo(t)− xw(t)− yo(t) + yw(t)) · cos(θk(t))2 − 2 · ((−yo(t)+

yw(t)) · sin(θk(t))− θw(t) · rw/2 + rc(t) + l0s1) · (xo(t)−
xw(t)) · cos(θk(t))− 2 · (l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t)) · sin(θk(t)) + rc(t)

2 + (−θw(t) · rw + 2 · l0s1) · rc(t)−
l0s1 · θw(t) · rw + l0s1

2 − 2 · yo(t) · yw(t) + θw(t)
2 · r2w/4 + yo(t)

2+

yw(t)
2) · rw · θ̇w(t) + 8 · (cos(θk(t)) · (l0s1− θw(t) · rw/2 + rc(t))

− xo(t) + xw(t)) · cs2 · ((−xo(t) + xw(t)) · cos(θk(t)) + (−yo(t)+

yw(t)) · sin(θk(t))− θw(t) · rw/2 + rc(t) + l0s1) · ẋo(t)−
8 · (cos(θk(t)) · (l0s1− θw(t) · rw/2 + rc(t))− xo(t) + xw(t)) · cs2 · ((−xo(t)

+ xw(t)) · cos(θk(t)) + (−yo(t) + yw(t)) · sin(θk(t))− θw(t) · rw/2+
rc(t) + l0s1) · ẋw(t) + 8 · cs2 · ((l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t)) · cos(θk(t))2 − (sin(θk(t)) · (l0s1− θw(t) · rw/2 + rc(t))−
yo(t) + yw(t)) · (xo(t)− xw(t)) · cos(θk(t)) + (rc(t)

2 + (−θw(t) · rw+
2 · l0s1) · rc(t)− l0s1 · θw(t) · rw + l0s1

2 − 2 · yo(t) · yw(t) + θw(t)
2 · r2w/4+

yo(t)
2 + yw(t)

2) · sin(θk(t))− 2 · (l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t))) · ẏo(t)− 8 · cs2 · ((l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t)) · cos(θk(t))2 − (sin(θk(t)) · (l0s1− θw(t) · rw/2 + rc(t))−
yo(t) + yw(t)) · (xo(t)− xw(t)) · cos(θk(t)) + (rc(t)

2 + (−θw(t) · rw+
2 · l0s1) · rc(t)− l0s1 · θw(t) · rw + l0s1

2 − 2 · yo(t) · yw(t) + θw(t)
2 · r2w/4+

yo(t)
2 + yw(t)

2) · sin(θk(t))− 2 · (l0s1− θw(t) · rw/2 + rc(t)) · (yo(t)−
yw(t))) · ẏw(t) + 16 · (ks2 · yo(t)2 + (g ·mc − 2 · yw(t) · ks2) · yo(t) + yw(t)

2 · ks2
− g · yw(t) ·mc − ks2 · (xo(t)− xw(t))

2) · (l0s1− θw(t) · rw/2+
rc(t)) · cos(θk(t))2 − 16 · ((l0s1− θw(t) · rw/2 + rc(t)) · (g ·mc+

2 · ks2 · yo(t)− 2 · yw(t) · ks2) · sin(θk(t)) + (−ks1− (3 · ks2)/2) · rc(t)2 + ((ks1+

3 · ks2) · (θw(t) · rw − 2 · l0s1) · rc(t))/2− ks2 · ((3 · θw(t)2 · r2w)/4−
3 · l0s1 · θw(t) · rw + xo(t)

2 − 2 · xo(t) · xw(t) + xw(t)
2 + yo(t)

2 − 2 · yo(t) · yw(t)
+ yw(t)

2 + 3 · l0s12)/2) · (xo(t)− xw(t)) · cos(θk(t)) + (((16 · ks1+
24 · ks2) · yo(t) + (−16 · ks1− 24 · ks2) · yw(t) + 8 · g ·mc) · rc(t)2 − 8 · ((ks1+
3 · ks2) · yo(t) + (−ks1− 3 · ks2) · yw(t) + g ·mc) · (θw(t) · rw − 2 · l0s1) · rc(t)+
2 · r2w · (g ·mc + 3 · ks2 · yo(t)− 3 · yw(t) · ks2) · θw(t)2 − 8 · l0s1 · rw · (g ·mc+

3 · ks2 · yo(t)− 3 · yw(t) · ks2) · θw(t) + 8 · yo(t)3 · ks2 + (8 · g ·mc−
24 · yw(t) · ks2) · yo(t)2 + (24 · yw(t)2 · ks2− 16 · g · yw(t) ·mc + 8 · ks2 · (xo(t)

2−
2 · xo(t) · xw(t) + xw(t)

2 + 3 · l0s12)) · yo(t)− 8 · yw(t)3 · ks2 + 8 · g · yw(t)2 ·mc−
8 · ks2 · (xo(t)

2 − 2 · xo(t) · xw(t) + xw(t)
2 + 3 · l0s12) · yw(t) + 8 · g ·mc · (xo(t)

2−
2 · xo(t) · xw(t) + xw(t)

2 + l0s1
2)) · sin(θk(t)) + (−8 · ks1− 8 · ks2) · rc(t)3+

8 · (θw(t) · rw − 2 · l0s1) · (ks1 + (3 · ks2)/2) · rc(t)2 + (−2 · r2w · (ks1+
3 · ks2) · θw(t)2 + 8 · l0s1 · rw · (ks1 + 3 · ks2) · θw(t) + (−8 · ks1−
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24 · ks2) · yo(t)2 + ((16 · ks1 + 48 · ks2) · yw(t)− 16 · g ·mc) · yo(t) + (−8 · ks1−
24 · ks2) · yw(t)2 + 16 · g · yw(t) ·mc + (−8 · ks1− 8 · ks2) · xo(t)

2 + 16 · xw(t) · (ks1+
ks2) · xo(t) + (−8 · ks1− 8 · ks2) · xw(t)

2 − 8 · l0s12 · (ks1 + 3 · ks2)) · rc(t)+
8 · (θw(t) · rw − 2 · l0s1) · (θw(t)2 · ks2 · r2w/8− θw(t) · ks2 · l0s1 · rw/2+
(3 · ks2 · yo(t)2)/2 + (g ·mc − 3 · yw(t) · ks2) · yo(t) + (3 · yw(t)2 · ks2)/2− g · yw(t) ·mc+

ks2 · (xo(t)
2 − 2 · xo(t) · xw(t) + xw(t)

2 + l0s1
2)/2))/(8 · (−2 · (l0s1− θw(t) · rw/2

+ rc(t)) · (xo(t)− xw(t)) · cos(θk(t))− 2 · (l0s1− θw(t) · rw/2+
rc(t)) · (yo(t)− yw(t)) · sin(θk(t)) + rc(t)

2 + (−θw(t) · rw + 2 · l0s1) · rc(t)
+ θw(t)

2 · r2w/4− 2 · xo(t) · xw(t)− 2 · yo(t) · yw(t) + xo(t)
2 + xw(t)

2 + yo(t)
2

+ yw(t)
2 + l0s1

2 − l0s1 · θw(t) · rw) ·mc)

D.3. Controller lifting system

r̈t(t) = (2 · (−sθt(t) · Fw +mo · (2 · (ẋs(t)− ltx · θ̇s(t) · sθ− (D.5)
lty · θ̇s(t) · cθ + ṙt(t) · sθt(t) + (l0+

rt(t)) · θ̇t(t) · cθt(t)) · θ̇t(t) · cθt(t) + 2 · (ẏs(t)+
ltx · θ̇s(t) · cθ − lty · θ̇s(t) · sθ − ṙt(t) · cθt(t)
+ (l0 + rt(t)) · θ̇t(t) · sθt(t)) · θ̇t(t) · sθt(t))/2−
mo · g · cθt(t)− ktm · rt(t)− ks2 · (sqrt((ltx · cθ − lty · sθ + (l0+

rt(t)) · sθt(t)− lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1−
θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)
− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)−
l0s2 + θw(t) · rw/2) · (2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · sθt(t)− 2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)−
lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · cθt(t))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2))− ctm · ṙt(t)−
cs2 · ((2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · (−ltx · θ̇s(t) · sθ − lty · θ̇s(t) · cθ+
ṙt(t) · sθt(t) + (l0 + rt(t)) · θ̇t(t) · cθt(t)+
lwx · θ̇s(t) · sθ + lwy · θ̇s(t) · cθ+
θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))−
cos(θt(t)) · (−θ̇w(t) · rw/2 + ṙc(t))) + 2 · (ltx · sθ+
lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (ltx · θ̇s(t) · cθ−
lty · θ̇s(t) · sθ − ṙt(t) · cθt(t) + (l0+

rt(t)) · θ̇t(t) · sθt(t)− lwx · θ̇s(t) · cθ+
lwy · θ̇s(t) · sθ − θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))− sin(rc(t)) · (−θ̇w(t) · rw/2+
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ṙc(t))))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)) + θw(t)

t) · rw/2) · (2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · sθt(t)−
2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ
− sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · cθt(t))/(2 · sqrt((ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ + lty · cθ−
(l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1−
θw(t) · rw/2 + rc(t)))

2))) · 1/mo − 2 · (ẋs(t)− ltx · θ̇s(t) · sθ
− lty · θ̇s(t) · cθ + ṙt(t) · sθt(t) + (l0+

rt(t)) · θ̇t(t) · cθt(t)) · θ̇t(t) · cθt(t)− 2 · (ẏs(t)+
ltx · θ̇s(t) · cθ − lty · θ̇s(t) · sθ − ṙt(t) · cθt(t)
+ (l0 + rt(t)) · θ̇t(t) · sθt(t)) · θ̇t(t) · sθt(t)−
(2 · sθ) · sθt(t) · lty · θ̇s(t)2 − (2 · sθ) · cθt(t) · ltx · θ̇s(t)2+
(2 · cθ) · sθt(t) · ltx · θ̇s(t)2 − (2 · cθ) · cθt(t) · lty · θ̇s(t)2+
(2 · sθt(t)2) · rt(t) · θ̇t(t)2 + (2 · sθt(t)2) · l0 · θ̇t(t)2 + (2 · cθt(t)2) · rt(t) · θ̇t(t)2+
(2 · cθt(t)2) · l0 · θ̇t(t)2 + (2 · sθ) · sθt(t) · ltx · θ̈s(t)−
(2 · sθ) · cθt(t) · lty · θ̈s(t) + (2 · cθ) · sθt(t) · lty · θ̈s(t)+
(2 · cθ) · cθt(t) · ltx · θ̈s(t)− (2 · sθt(t)) · ẍs(t)+

(2 · cθt(t)) · ÿs(t)) · 1/(2 · sθt(t)2 + 2 · cθt(t)2);

θ̈t(t) = (−(2 · cθt(t)) · l0 · ẍs(t)− (D.6)
(4 · sθt(t)2) · rt(t) · ṙt(t) · θ̇t(t)− (4 · sθt(t)2) · l0 · ṙt(t) · θ̇t(t)−
(4 · cθt(t)2) · rt(t) · ṙt(t) · θ̇t(t)− (4 · cθt(t)2) · l0 · ṙt(t) · θ̇t(t)+
(2 · sθ) · sθt(t) · rt(t) · ltx · θ̇s(t)2 + (2 · sθ) · sθt(t) · l0 · ltx · θ̇s(t)2−
(2 · sθ) · cθt(t) · rt(t) · lty · θ̇s(t)2 − (2 · sθ) · cθt(t) · l0 · lty · θ̇s(t)2+
(2 · cθ) · sθt(t) · rt(t) · lty · θ̇s(t)2 + (2 · cθ) · sθt(t) · l0 · lty · θ̇s(t)2+
(2 · cθ) · cθt(t) · rt(t) · ltx · θ̇s(t)2 + (2 · cθ) · cθt(t) · l0 · ltx · θ̇s(t)2 − 2 · (ẋs(t)−
ltx · θ̇s(t) · sθ − lty · θ̇s(t) · cθ + ṙt(t) · sθt(t)
+ (l0 + rt(t)) · θ̇t(t) · cθt(t)) · ṙt(t) · cθt(t)−
2 · (ẏs(t) + ltx · θ̇s(t) · cθ − lty · θ̇s(t) · sθ−
ṙt(t) · cθt(t) + (l0+

rt(t)) · θ̇t(t) · sθt(t)) · ṙt(t) · sθt(t)−
(2 · sθt(t)) · rt(t) · ÿs(t)− (2 · sθt(t)) · l0 · ÿs(t)+
2 · (ẋs(t)− ltx · θ̇s(t) · sθ − lty · θ̇s(t) · cθ+
ṙt(t) · sθt(t) + (l0 + rt(t)) · θ̇t(t) · cθt(t)) · (l0+
rt(t)) · θ̇t(t) · sθt(t)− 2 · (ẏs(t) + ltx · θ̇s(t) · cθ−
lty · θ̇s(t) · sθ − ṙt(t) · cθt(t) + (l0+
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rt(t)) · θ̇t(t) · sθt(t)) · (l0 + rt(t)) · θ̇t(t) · cθt(t)+
2 · (−cθt(t) · Fw · (l0 + rt(t)) +mo · (2 · (ẋs(t)− ltx · θ̇s(t) · sθ
− lty · θ̇s(t) · cθ + ṙt(t) · sθt(t) + (l0+

rt(t)) · θ̇t(t) · cθt(t)) · (ṙt(t) · cθt(t)− (l0+

rt(t)) · θ̇t(t) · sθt(t)) + 2 · (ẏs(t) + ltx · θ̇s(t) · cθ
− lty · θ̇s(t) · sθ − ṙt(t) · cθt(t) + (l0+

rt(t)) · θ̇t(t) · sθt(t)) · (ṙt(t) · sθt(t) + (l0+

rt(t)) · θ̇t(t) · cθt(t)))/2 +mo · g · (l0 + rt(t)) · sθt(t)−
ks2 · (sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ+
lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)− l0s2+

θw(t) · rw/2) · (2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (l0+
rt(t)) · cθt(t) + 2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)−
lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (l0+
rt(t)) · sθt(t))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2))− cs2 · ((2 · (ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (−ltx · θ̇s(t) · sθ−
lty · θ̇s(t) · cθ + ṙt(t) · sθt(t) + (l0+

rt(t)) · θ̇t(t) · cθt(t) + lwx · θ̇s(t) · sθ+
lwy · θ̇s(t) · cθ + θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t))− cos(θt(t)) · (−θ̇w(t) · rw/2 + ṙc(t)))+

2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ
− sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (ltx · θ̇s(t) · cθ−
lty · θ̇s(t) · sθ − ṙt(t) · cθt(t) + (l0+

rt(t)) · θ̇t(t) · sθt(t)− lwx · θ̇s(t) · cθ+
lwy · θ̇s(t) · sθ − θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))− sin(rc(t)) · (−θ̇w(t) · rw/2+
ṙc(t))))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)) + θw(t)

t) · rw/2) · (2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (l0+
rt(t)) · cθt(t) + 2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)−
lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (l0+
rt(t)) · sθt(t))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+
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(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2))) · 1/mo+

(2 · sθ) · sθt(t) · rt(t) · lty · θ̈s(t) + (2 · sθ) · sθt(t) · l0 · lty · θ̈s(t)+
(2 · sθ) · cθt(t) · rt(t) · ltx · θ̈s(t) + (2 · sθ) · cθt(t) · l0 · ltx · θ̈s(t)−
(2 · cθ) · sθt(t) · rt(t) · ltx · θ̈s(t)− (2 · cθ) · sθt(t) · l0 · ltx · θ̈s(t)+
(2 · cθ) · cθt(t) · rt(t) · lty · θ̈s(t) + (2 · cθ) · cθt(t) · l0 · lty · θ̈s(t)−
(2 · cθt(t)) · rt(t) · ẍs(t)) · 1/((2 · sθt(t)2) · rt(t)2+
(2 · sθt(t)2) · l20 + (2 · cθt(t)2) · rt(t)2 + (2 · cθt(t)2) · l20+
(4 · sθt(t)2) · rt(t) · l0 + (4 · cθt(t)2) · rt(t) · l0);

r̈c(t) = (2 · (mc · (−2 · (ẋs(t)− lwx · θ̇s(t) · sθ− (D.7)
lwy · θ̇s(t) · cθ − θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t)) + cos(θt(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · θk(t) · sin(rc(t)) + 2 · (ẏs(t) + lwx · θ̇s(t) · cθ−
lwy · θ̇s(t) · sθ + θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t)) + sin(rc(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · θk(t) · cos(θt(t)))/2 +mc · g · sin(rc(t))− ks1 · rc(t)−
ks2 · (sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ+
lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)− l0s2+

θw(t) · rw/2) · (−2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · cos(θt(t))− 2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)−
lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · sin(rc(t)))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2))− cs1 · ṙc(t)−
cs2 · ((2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · (−ltx · θ̇s(t) · sθ − lty · θ̇s(t) · cθ+
ṙt(t) · sθt(t) + (l0 + rt(t)) · θ̇t(t) · cθt(t)+
lwx · θ̇s(t) · sθ + lwy · θ̇s(t) · cθ+
θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))−
cos(θt(t)) · (−θ̇w(t) · rw/2 + ṙc(t))) + 2 · (ltx · sθ+
lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (ltx · θ̇s(t) · cθ−
lty · θ̇s(t) · sθ − ṙt(t) · cθt(t) + (l0+

rt(t)) · θ̇t(t) · sθt(t)− lwx · θ̇s(t) · cθ+
lwy · θ̇s(t) · sθ − θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))− sin(rc(t)) · (−θ̇w(t) · rw/2+
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ṙc(t))))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)) + θw(t)

t) · rw/2) · (−2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · cos(θt(t))−
2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ
− sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · sin(rc(t)))/(2 · sqrt((ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ + lty · cθ−
(l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1−
θw(t) · rw/2 + rc(t)))

2))) · 1/mc + 2 · (ẋs(t)− lwx · θ̇s(t) · sθ
− lwy · θ̇s(t) · cθ − θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t)) + cos(θt(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · θk(t) · sin(rc(t))− 2 · (ẏs(t) + lwx · θ̇s(t) · cθ−
lwy · θ̇s(t) · sθ + θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t)) + sin(rc(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · θk(t) · cos(θt(t))− θk(t)

2 · sin(rc(t))2 · θw(t) · rw−
θk(t)

2 · cos(θt(t))2 · θw(t) · rw+
(2 · sin(rc(t))) · lwx · θ̇s(t)2 · sθ − (2 · cos(θt(t))) · lwy · θ̇s(t)2 · sθ+
(2 · sin(rc(t))) · lwy · θ̇s(t)2 · cθ + (2 · cos(θt(t))) · lwx · θ̇s(t)2 · cθ+
(2 · θk(t)2) · sin(rc(t))2 · rc(t) + (2 · θk(t)2) · sin(rc(t))2 · l0s1+
(2 · θk(t)2) · cos(θt(t))2 · rc(t) + (2 · θk(t)2) · cos(θt(t))2 · l0s1+
(2 · sin(rc(t))) · lwy · θ̈s(t) · sθ+
(2 · cos(θt(t))) · lwx · θ̈s(t) · sθ − (2 · sin(rc(t))) · lwx · θ̈s(t) · cθ+
(2 · cos(θt(t))) · lwy · θ̈s(t) · cθ + sin(rc(t))2 · θw(t)t,
t) · rw + cos(θt(t))2 · θ̈w(t) · rw − (2 · sin(rc(t))) · ÿs(t)−
(2 · cos(θt(t))) · ẍs(t)) · 1/(2 · sin(rc(t))2 + 2 · cos(θt(t))2);

θ̈k(t) = ((2 · sin(rc(t))) · lwy · θ̇s(t)2 · sθ · rc(t)+ (D.8)
(2 · θk(t)) · cos(θt(t))2 · θ̇w(t) · rw · l0s1−
θk(t) · cos(θt(t))2 · θ̇w(t) · r2w · θw(t)+
(2 · θk(t)) · cos(θt(t))2 · θ̇w(t) · rw · rc(t)+
(2 · θk(t)) · cos(θt(t))2 · ṙc(t) · θw(t) · rw+
(2 · sin(rc(t))) · ẍs(t) · l0s1 + (2 · sin(rc(t))) · ẍs(t) · rc(t)−
(2 · cos(θt(t))) · ÿs(t) · l0s1− (2 · cos(θt(t))) · ÿs(t) · rc(t)+
2 · (mc · (2 · (ẋs(t)− lwx · θ̇s(t) · sθ − lwy · θ̇s(t) · cθ−
θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

cos(θt(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · (−θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))−
sin(rc(t)) · (−θ̇w(t) · rw/2 + ṙc(t))) + 2 · (ẏs(t)+
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lwx · θ̇s(t) · cθ − lwy · θ̇s(t) · sθ+
θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

sin(rc(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · (−θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

cos(θt(t)) · (−θ̇w(t) · rw/2 + ṙc(t))))/2+

mc · g · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))− ks2 · (sqrt((ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ + lty · cθ−
(l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1−
θw(t) · rw/2 + rc(t)))

2)− l0s2 + θw(t) · rw/2) · (2 · (ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · sin(rc(t)) · (l0s1−
θw(t) · rw/2 + rc(t))− 2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)
− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))/(2 · sqrt((ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ + lty · cθ−
(l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1−
θw(t) · rw/2 + rc(t)))

2))− cs2 · ((2 · (ltx · cθ − lty · sθ + (l0+

rt(t)) · sθt(t)− lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1−
θw(t) · rw/2 + rc(t))) · (−ltx · θ̇s(t) · sθ−
lty · θ̇s(t) · cθ + ṙt(t) · sθt(t) + (l0+

rt(t)) · θ̇t(t) · cθt(t) + lwx · θ̇s(t) · sθ+
lwy · θ̇s(t) · cθ + θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t))− cos(θt(t)) · (−θ̇w(t) · rw/2 + ṙc(t)))+

2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ
− sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · (ltx · θ̇s(t) · cθ−
lty · θ̇s(t) · sθ − ṙt(t) · cθt(t) + (l0+

rt(t)) · θ̇t(t) · sθt(t)− lwx · θ̇s(t) · cθ+
lwy · θ̇s(t) · sθ − θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2+
rc(t))− sin(rc(t)) · (−θ̇w(t) · rw/2+
ṙc(t))))/(2 · sqrt((ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)−
lwx · cθ + lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2+

(ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ−
sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2)) + θw(t)

t) · rw/2) · (2 · (ltx · cθ − lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ+
lwy · sθ − cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))) · sin(rc(t)) · (l0s1−
θw(t) · rw/2 + rc(t))− 2 · (ltx · sθ + lty · cθ − (l0 + rt(t)) · cθt(t)
− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t))) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))/(2 · sqrt((ltx · cθ−
lty · sθ + (l0 + rt(t)) · sθt(t)− lwx · cθ + lwy · sθ−
cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t)))

2 + (ltx · sθ + lty · cθ−
(l0 + rt(t)) · cθt(t)− lwx · sθ − lwy · cθ − sin(rc(t)) · (l0s1−
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θw(t) · rw/2 + rc(t)))
2))) · 1/mc + 2 · (ẋs(t)− lwx · θ̇s(t) · sθ

− lwy · θ̇s(t) · cθ − θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2+
rc(t)) + cos(θt(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

2 · (ẏs(t) + lwx · θ̇s(t) · cθ − lwy · θ̇s(t) · sθ+
θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

sin(rc(t)) · (−θ̇w(t) · rw/2 + ṙc(t))) · θk(t) · sin(rc(t)) · (l0s1
− θw(t) · rw/2 + rc(t))− (4 · θk(t)) · sin(rc(t))2 · ṙc(t) · l0s1−
(4 · θk(t)) · sin(rc(t))2 · ṙc(t) · rc(t)−
(4 · θk(t)) · cos(θt(t))2 · ṙc(t) · l0s1−
(4 · θk(t)) · cos(θt(t))2 · ṙc(t) · rc(t)−
sin(rc(t)) · ẍs(t) · θw(t) · rw + cos(θt(t)) · ÿs(t) · θw(t) · rw+
2 · (ẋs(t)− lwx · θ̇s(t) · sθ − lwy · θ̇s(t) · cθ−
θk(t) · sin(rc(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

cos(θt(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · sin(rc(t)) · (−θ̇w(t) · rw/2 + ṙc(t))−
2 · (ẏs(t) + lwx · θ̇s(t) · cθ − lwy · θ̇s(t) · sθ+
θk(t) · cos(θt(t)) · (l0s1− θw(t) · rw/2 + rc(t))+

sin(rc(t)) · (−θ̇w(t) · rw/2+
ṙc(t))) · cos(θt(t)) · (−θ̇w(t) · rw/2 + ṙc(t))+

sin(rc(t)) · lwx · θ̈s(t) · sθ · θw(t) · rw + sin(rc(t)) · lwy · θ̈s(t) · cθ · θw(t) · rw+
cos(θt(t)) · lwx · θ̈s(t) · cθ · θw(t) · rw − cos(θt(t)) · lwy · θ̈s(t) · sθ · θw(t) · rw+
sin(rc(t)) · lwx · θ̇s(t)2 · cθ · θw(t) · rw − sin(rc(t)) · lwy · θ̇s(t)2 · sθ · θw(t) · rw−
cos(θt(t)) · lwx · θ̇s(t)2 · sθ · θw(t) · rw − cos(θt(t)) · lwy · θ̇s(t)2 · cθ · θw(t) · rw−
(2 · cos(θt(t))) · lwx · θ̈s(t) · cθ · rc(t) + (2 · cos(θt(t))) · lwy · θ̈s(t) · sθ · l0s1+
(2 · cos(θt(t))) · lwy · θ̈s(t) · sθ · rc(t)− (2 · sin(rc(t))) · lwx · θ̈s(t) · sθ · l0s1−
(2 · sin(rc(t))) · lwx · θ̈s(t) · sθ · rc(t)− (2 · sin(rc(t))) · lwy · θ̈s(t) · cθ · l0s1−
(2 · sin(rc(t))) · lwy · θ̈s(t) · cθ · rc(t)− (2 · cos(θt(t))) · lwx · θ̈s(t) · cθ · l0s1+
(2 · cos(θt(t))) · lwx · θ̇s(t)2 · sθ · l0s1 + (2 · cos(θt(t))) · lwx · θ̇s(t)2 · sθ · rc(t)+
(2 · cos(θt(t))) · lwy · θ̇s(t)2 · cθ · l0s1 + (2 · cos(θt(t))) · lwy · θ̇s(t)2 · cθ · rc(t)−
θk(t) · sin(rc(t))2 · θ̇w(t) · r2w · θw(t) + (2 · θk(t)) · sin(rc(t))2 · θ̇w(t) · rw · rc(t)+
(2 · θk(t)) · sin(rc(t))2 · ṙc(t) · θw(t) · rw + (2 · θk(t)) · sin(rc(t))2 · θ̇w(t) · rw · l0s1−
(2 · sin(rc(t))) · lwx · θ̇s(t)2 · cθ · l0s1− (2 · sin(rc(t))) · lwx · θ̇s(t)2 · cθ · rc(t) + (2 · sin(rc(t))) · lwy · θ̇

s(t)
2 · sθ · l0s1) · 1/(−(2 · sin(rc(t))2) · l0s1 · θw(t) · rw−

(2 · sin(rc(t))2) · θw(t) · rw · rc(t)− (2 · cos(θt(t))2) · l0s1 · θw(t) · rw−
(2 · cos(θt(t))2) · θw(t) · rw · rc(t) + (2 · sin(rc(t))2) · l0s12+
(2 · sin(rc(t))2) · rc(t)2 + (2 · cos(θt(t))2) · l0s12 + (2 · cos(θt(t))2) · rc(t)2

+ (4 · sin(rc(t))2) · l0s1 · rc(t) + sin(rc(t))2 · θw(t)2 · r2w/2+
(4 · cos(θt(t))2) · l0s1 · rc(t) + cos(θt(t))2 · θw(t)2 · r2w/2);
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