
D
e
l
f
t

U
n

i
v
e
r
s
i
t
y

o
f

T
e
c
h

n
o
l
o
g
y

Digital Signal

Processing

For a wireless ECG solution

Bachelor thesis

K. Khalili & S. Speekenbrink

Digital Signal

Processing

For a wireless ECG solution

by

K. Khalili & S. Speekenbrink

Student Name Student Number

Keyvan Khalili 5118190

Sebastian Speekenbrink 5038324

Supervisor: Prof. Dr. Ir. W.A Serdĳn

Project Duration: Apr, 2022 - Jun, 2022

Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Abstract

The goal of the WiECG project is to create a prototype device that makes it possible to perform a 12-lead

ECG measurement on patients without wires from the patient to a monitor. The solution consists of a

transmitter and receiver, one of which is close or on the patients body and the other is connected to a

monitor.

This thesis describes the design and implementation of a subsystem of the prototype device that

performs digitization, digital processing and reconstruction of the measured 12-lead ECG signal. This

concerns converting nine 0 to 3.3V analog signals to the digital domain by using Analog-to-Digital

converters, real-time filtering of nine signals with multiple digital IIR filters and reconstructing nine

digital signals to the analog domain using Digital-to-Analog converters. Furthermore, component

selection, design decisions and the implementation process will be detailed in this document.

The subsystem proposed in this paper is able to successfully sample, efficiently filter and reconstruct

nine signals in real time. Recommendations on improving the implementation to better adhere to the

lower power requirements for a longer battery life are provided as future research prospects.

i

Preface

This thesis is written in context of the Bachelor Graduation Project. The project was proposed by S.

Speekenbrink who originally got the idea for this project by working closely together with ambulance

personnel during his minor project.

This thesis was completed in cooperation with two other groups, Hardware: R. van Krieken and P.

Wiersma and Protocol: Geert Custers and Stefan Loen, all together under the supervisement of Prof. Dr.

Ir. W.A. Serdĳn.

As all different groups worked together very closely, documenting the work in a logical flow was quite

the challenge. It is therefore recommend to read the theses in the following order: Protocol, Digital
Signal Processing and Hardware.

We would like to thank our supervisor Wouter Serdĳn for providing invaluable insights and great

starting points, Asli Boru and Francesc Varkevisser for the incredible feedback and of course the other

members of the WiECG group for their hard work in completing the project. Furthermore we also would

like to thank Martin Schumacher for providing us with all the components needed to manufacture the

WiECG system.

K. Khalili & S. Speekenbrink
Delft, July 2022

ii

Contents

Abstract i

Preface ii

Nomenclature v

1 Introduction 1
1.1 The WiECG Project . 1

1.1.1 Basics of ECG . 1

1.1.2 Problem statement . 1

1.1.3 Proposed Solution . 2

1.1.4 State Of The Art . 2

1.2 Subgroup Digital Signal Processing . 3

1.2.1 Background research . 3

2 Program of requirements 5

3 System Overview 6
3.1 Submodule Overview . 6

3.1.1 Transmitter . 7

3.1.2 Receiver . 7

3.2 Complete overview . 7

4 Design 9
4.1 Hardware . 9

4.1.1 ADC for digitization . 9

4.1.2 DAC for reconstruction . 10

4.1.3 Microcontroller . 10

4.2 Noise filtering . 11

4.2.1 Power line interference . 12

4.2.2 IIR filters . 12

4.2.3 FIR filters . 15

5 Implementation 17
5.1 Analog to Digital Conversion . 17

5.1.1 Settings . 18

5.1.2 Code . 18

5.2 Digital Filters . 19

5.3 Digital to Analog Conversion . 20

6 Measurements 22
6.1 Execution time . 22

6.1.1 Filtering time . 22

6.1.2 DAC Reconstruction time . 23

6.2 Filter Performance . 24

6.2.1 Theoretical . 24

6.2.2 Practical . 26

7 Discussion 28
7.1 Micro Controller power usage . 28

7.2 Filtering efficiency . 28

7.3 DAC Integral non-linearity error . 29

7.4 Testing and experiments . 29

iii

Contents iv

8 Conclusion & Recommendation 30
8.1 Conclusion . 30

8.2 Recommendations . 30

References 32

A Extra figures 35
A.1 IIR designs . 35

A.1.1 ECG Signal Filter Testing . 36

B Complementary Information 38
B.1 Notch filter transfer functions . 38

B.2 DAC Operation . 39

C Signal creation 40

Nomenclature

Abbreviations
Abbreviation Definition

ADC Analog to Digital Converter

DAC Digital to Analog Converter

DMA Direct Memory Access

DSP Digital Signal Processing Subgroup

ECG Electrocardiogram

EMG Electromyography

EMI ElectroMagnetic Interference

FFT Fast Fourier Transform

FIR Finite Impulse response

HW Hardware Subgroup

I2C Inter-integrated circuit

IFFT Inverse Fast Fourier Transform

IIR Inifinte Impulse response

LSB Least Significant Bit

MCU Microcontroller unit

PCB Printed Circuit Board

PLI Power line interference

PROT Protocol Subgroup

PoR Programme of Requirements

SPI Serial Peripheral Interface

SPS Samples Per Second

STM32 MCU STM32H743ZI Microcontroller unit

WiFi Name for international standard IEEE 802.11

v

1

Introduction

This thesis was written in collaboration with 6 people. The project was divided in three subgroups, each

delivering their own thesis. For this reason some parts in this thesis will mimic those of other groups

(e.g. General Introduction, problem statement, proposed solution and state of the art). To preserve

the logical flow of the design, the order of reading should be as follows: Protocols [1], Digital Signal

Processing and Hardware [2].

1.1. The WiECG Project
In the Netherlands alone, 1.3 million ambulance rides are made each year. Of these 1.3 million rides 76

% are urgent [3]. After interviewing Jim van Akkeren (Operational Head Witte Kruis Ambulance Zorg

Den Haag) and Mirthe Ruĳgrok (Ambulance operator) it was concluded that in 90% cases an ECG is

connected to the patient being transported. An ECG is used in many cases to exclude a heart related

problem as the treatment of such should happen as fast as possible. Furthermore ECGs are used when

any form of anaesthesia or medicine is administered, to monitor the patient’s reaction.

As the deployment of an ECG requires wires, problems arise for the ambulance personnel in applying

them. The Wireless ElectroCardioGram project aims to replace these wires with a wireless solution.

1.1.1. Basics of ECG
An ECG is a visualization of the muscle contractions produced by a heart. This is done by measuring

the vector projection of the hearts’ electrical field on the chest of a patient. The measurement is done

using electrodes located on the body of the patient, which measure potentials that are causing heart

contractions. These potentials produced by the heart are then registered and visualized on a monitor.

There are two main ECG variations health workers employ [4]. One with 4 electrodes and one with

6 additional ones. The first configuration is called the extremity electrodes, which can give a general

electrical overview of the heart functions. In the second configuration 6 other electrodes are added: the

chest electrodes. These give more detailed information of the heart on which diagnoses can be made [5].

With these signals 12 signatures in total can be obtained.

1.1.2. Problem statement
As shown before, the usage of ECGs by ambulance personnel is crucial to ensure the well-being of the

patients. ECGs are currently applied by usage of electrodes attached to the chest of the patient. For

regular, non emergency use, only the extremity electrodes are used. In emergency situations a full 12

lead (10 electrodes/wires) configuration is used. Currently these electrodes consist of stickers connected

to wires which are connected to a heart monitor. According to the interviewed ambulance personnel,

the wires are very annoying to work with in emergency situations. The wires get tangled, dirty and in

the way of the ambulance personnel as it obstructs the cabin.

1

1.1. The WiECG Project 2

1.1.3. Proposed Solution
The proposed solution is a device where the same monitor can be used as before, but where the cables

have been replaced by a pair of wireless devices, a transmitter device and a receiver device. The

transmitter device has 10 electrodes which have to be applied to the patient like before, requiring no

extra actions for the operator. The receiver side can be plugged in to the monitor, also requiring no extra

actions. This plug-and-play system can be used with any ECG monitor as long as the connector for that

monitor is available. To make sure that the devices transmit and receive the right signal and not that of

another pair, they can be paired easily by having the transmitter and receiver briefly connect with each

other. This solution solves the problems mentioned in Chapter 1.1.2 in the following way:

• The short cables tend to tangle up way less compared to the longer ones.

• Because the transmitter device is located near the patient and the receiver lies next to the ECG

monitor, no cables are suspended through the ambulance, greatly improving the comfort/workflow

of the operator.

To achieve this goal, a self proposed electrical engineering bachelor graduation project was submitted to

Delft University of Technology. This project will be executed with 6 people and is split up into three

parts:

• Protocol (PROT)

The group that deals with the wireless transmission of the ECG data

• Digital Signal Processing (DSP)

The group that converts, processes digitally and reconstructs the signal and forwards it to the

wireless module

• Hardware (HW)

The group that prepares the measured signals for digital conversion and facilitates the aforemen-

tioned groups in creating a prototype device.

Hardware
Digital

Signal

Processing
Protocol

Transmitter

Patient

Protocol
Digital

Signal

Processing
Hardware

Receiver

ECG

Monitor

Figure 1.1: Brief overview of the solution and the separation of tasks

1.1.4. State Of The Art
Currently wireless heart monitoring (via ECG) is mainly used in several markets; medical and consumer.

Consumer wireless ECG systems (e.g. KardiaMobile 6L™[6]) are usually limited to 6 leads, or only

one in case of wearable devices (e.g. Apple Watch™, Galaxy Watch™), which outputs the data to a

smartphone or display. Furthermore, the sensors and workflow used to obtain the ECG differ majorly

from those that the medical personnel use. (No stickers but handheld/wearable sensor device).

The medical market is home to devices which are purpose-made for health monitoring on a diagnostic

or treatment level. Currently, the Lifepak 15™[7] is in use in many ambulances to monitor the vitals

of the patient. This device is part of a production line which is 12 years old and still in use - in Dutch

ambulances - due to the others1 not being reliable (slow to start up, easily breakable or plainly not

working). The connections to the monitor of these currently used monitors are however wired, leading

to the aforementioned problems.

1Jim van Akkeren stated that since 2017 the Philips Tempus ALS™[8] monitor was in use. But most ambulance regions stopped

usage due to complaints of reliability

1.2. Subgroup Digital Signal Processing 3

There are however medical wireless monitoring systems on the market that remove the wires between

patient and monitor. Some examples are the ZOLL Heart Failure Management System (HFMS)™[9] and

the Corpuls3™[10]. However, the HFMS focusses on detection of heartattacks in a non emergency setting

and the Corpuls3 simply has a detachable wireless display (the relatively bulky defibrilator/patient box

of around 3 kg has to be close to the patient). None of the devices researched focused on removing the

medium of the signal like the proposed solution.

1.2. Subgroup Digital Signal Processing
The Digital Signal Processing (DSP) subgroup concerns itself with the realisation of a submodule that

digitizes, digitally filters and reconstructs an analog signal, received from the Hardware group.

1.2.1. Background research
One of the most important aspects of the system is successfully capturing the important characteristics

of the incoming ECG signal. Two important system features that have a big contribution to capturing the

important characteristics of the incoming ECG signal are sampling resolution and sampling frequency.

The research done into these two system features will be presented in this section.

ECG Frequency contents
The maximum frequency of the input signal is an important metric, as this determines the sampling

frequency. Article [11] states that QRS frequency content is composed of components from the minuscule

to at least 700 Hz. Article [12] concludes that a 250 Hz sampling frequency would be acceptable for

HRV analysis and 100 Hz would already be acceptable if frequency-analysis is not needed on the signal.

Furthermore, Article [13] even states that virtually all of the power is contained in frequencies below 30

Hz with peak power occurring in the range of 4 to 12 Hz. On top of that, another article [14] states that

a sampling frequency of 100 Hz or 250 Hz is sufficient if used by convolutional network-based deep

learning models for QRS detection methods.

Analysis
In order to gain a better view on these papers, an analysis was performed on the PTB Diagnostic ECG

Database [15] [16]. Fast Fourier Transform (FFT) was performed on all the patients in the data set and

the absolute values of the frequency components were summed together to give a better understanding

of what frequency components compose an ECG recording. Figure 1.2 shows the resulting value of the

frequency spectrum of all the patients summed.

Very low frequency components (0-0.5 Hz) dominate the signal, as seen in Figure 1.2a. Therefore

frequencies under 0.5 Hz were left out in Figure 1.2b to give a better visualisation of the amplitude of

the different frequency components.

(a) Unfiltered frequency spectrum (b) 0.5 Hz High-pass filtered spectrum

Figure 1.2: Frequency spectrum PTB Diagnostic Database

1.2. Subgroup Digital Signal Processing 4

As seen in Figure 1.2b, mostly frequency components in the range from 0 to 50 Hz are present, with

little to no energy in frequencies above 50 Hz. Furthermore, the small 50 Hz peak can be accounted for

due to 50 Hz noise being present in the signal.

All in all, a sampling frequency of 500 Hz was chosen to include all frequencies up to 250 Hz, but also

keep the data rate to an acceptable level.

ECG Resolution
The sampling resolution is in part based on Article [17]. This article states that a 16 bit resolution with

the LSB < 10𝜇𝑉 is sufficient for the reliable analysis of the P-wave and will most likely suffice for the

other parts of an ECG signal as well. Furthermore, an amplification [2] is performed on the original

signal by the Hardware group, thus theoretically increasing the minimum voltage step per LSB and

thus also the resolution. All in all, in order to stay ahead of the curve, to keep the programming simple

(by choosing the bit resolution as a multiple of 8) and to not be dependent on the hardware subgroup

(as this resolution is sufficient to not need an amplification circuit), a bit resolution of 16 bits was chosen

as the sampling resolution, with the LSB comprising 5.0 ∗ 10
−5

V (see eq. 4.1). Note that the effective

resolution could theoretically exceed the resolution proposed in article [17] because of the Hardware

amplification circuit [2].

2

Program of requirements

Here the most important requirements are listed. Throughout the report, these requirements will get

referenced to ensure that the design choices that were made have value for the end result of this project.

The design described in this report and the reports of the other subgroups will attempt to completely

fulfill the following list:

• G1: The device must not employ wires from patient to monitor.

• G2: The device must allow the user to perform a 12 lead ECG.

• G3: The device must be safe for the patient

• G4: The data handled by the device must be safeguarded

• G5: The device must not induce a delay of more than 5 seconds to the workflow of the user

compared to a regular ECG wire.

• G6: The signal transferred by the device must be indistinguishable by the eye from the signal

transferred by a regular ECG wire.

• G7: The device must have a battery life of 2 hours.

• G8: The device must not be bigger than 10cm x 20cm x 5cm (a smartphone-device)

• G9: The device must be lighter than 500 gram

• G10: A prototype device must be functional within 10 weeks from the start of the project.

• G11: The prototype must not cost more than 500 euros.

From this list, the following requirements were specified which specifically apply to the digital signal

processing part of this project.

• G2D: The system must be able to sample nine signals

• G3D: Added noise must be removed to prevent misdiagnosis due to a distorted signal

• G5D: The signal processing must be done in real-time

• G6D.a: An input signal must be sampled at 500 Hz

• G6D.b: An input signal must be sampled at 16 bits resolution

• G6D.c: The digitized input signals must be reconstructed at 16 bit resolution

• G6D.d: The digitized input signals must be reconstructed at 500 samples per second

• G7D: Signal processing must be computationally efficient to be implemented in low power

microcontrollers.

• G10D: The digital processing submodule must be developed within the given timespan

5

3

System Overview

The proposed solution in the introduction 1.1.3 can, in accordance to the PoR, be further specified as

shown in figure 3.1. This also depicts a high-level overview of the contributions of each subgroup. In

section 3.1.1 and 3.1.2, brief descriptions will be given of how the different parts of the transmitter and

receiver attempt to fulfill the requirements given in chapter 2. Finally, in section 3.2, the complete system

is shown where the detailed overviews are connected to the detailed overviews of other subgroups.

Figure 3.1: Block diagram of the general overview of the solution

3.1. Submodule Overview
In order to fulfill the requirements from chapter 2, two subsystems have been developed, a transmitter

subsystem and a receiver subsystem. These subsystems have been realized on a Nucleo development

board with a STM32H743ZI MCU, now referred to as STM32 MCU, together with extra peripherals.

The subsystems are noted as the 2 Nucleo blocks in figure 3.1. The explanation for why this particular

development board/MCU was chosen can be found in chapter 4.1.3. The detailed overview of both

subsystems can be seen in figure 3.2. Both subsystems, transmitter and receiver, will be discussed in

chapter 3.1.1 and chapter 3.1.2 respectively.

6

3.2. Complete overview 7

Analog
Digital

Input

signals

7
8
9

4
5
6

1
2
3

ADC1

ADC2

ADC3

I2CFilters I2C

STM32

MCU

I2C

I2C

I2C

STM32

MCU

DAC1

DAC3

DAC2 Output

signals7

8

9

4

5
6

1
2
3

Wireless

Transmission

(PROT)

ReceiverTransmitter

10
11
12

Figure 3.2: DSP System Overview

3.1.1. Transmitter
The transmitter subsystem prepares the analog signal for transmission by the Protocol subgroup. The

subsystem converts the analog signal to a digital format needed for the wireless transmission and

is completely realised on a STM32 MCU, placed on a Nucleo development board. The transmitter

subsystem comprises 3 ADCs and a filter system. The ADCs take care of converting an analog signal

to the digital domain. The design will be discussed in chapter 4.1.1 and the implementation will be

discussed in chapter 5.1.

The filter system removes certain signal artifacts, with the filter design discussed in chapter 4.2 and the

implementation discussed in chapter 5.2.

3.1.2. Receiver
The receiver subsystem reconstructs 9 analog signals1 from a digital signal received from the Protocol

subgroup. The receiver subsystem comprises a STM32 MCU, placed on a Nucleo development board,

and 3 external DACs. The STM32 MCU takes in digital data from the protocol subgroup, modifies the

data to be used by DACs and transmits the modified data to multiple DACs where the digital signal is

converted to an analog signal.

3.2. Complete overview
Figure 3.3 shows the Protocol subgroup’s responsibility placed in the complete overview of the system.

For complete understanding of this figure, refer to the report of PROT[1] and Hardware[2]

112 analog signals if the system is used as a stand-alone product.

3.2. Complete overview 8

STM32

Power system

Lowpass
Filter

Highpass
Filter Attenuator

Power system

Instrumentation
Amplifier

Highpass
Filter

Lowpass
Filter

Offset
Circuit

Transmitter

Signal connection
Power connectionHardware

DSP

Protocol

Filters ECG data
transmission

Message
queue

Pairing Pairing Buzzer

Data
receival

ESP32 ESP32

ADC

STM32

DAC

Button

Receiver

Electrodes
connection

Heart monitor
connection

Figure 3.3: Complete overview of the WiECG project

4

Design

The objective of the design is to quantize the already amplified ECG signals, received from the Hardware

subgroup, and process the signal so that it is ready for wireless transmission on the transmitter side. The

second part is processing the received signal and reconstructing the signal so that it may be displayed

on an external display, either an oscilloscope or an ECG monitor.

4.1. Hardware
The first aspects of the design that are considered include selection of capable hardware to assure high

quality, real-time capable components. The hardware that is required to realize digital signal processing

include Analog-to-Digital / Digital-to-Analog Converters (ADC/DAC) and a microcontroller (MCU).

4.1.1. ADC for digitization
Before any processing can be done, the signal has to be digitized. This is done by an Analog-to-Digital

Converter. There are certain requirements that are taken into account when choosing an ADC when it

comes to digitizing ECG signals. For working with ECG signals, the ADC has to be very accurate, i.e

have high enough resolution (16-bit as in G6D.b) and have a fast sampling rate (minimum of 500 Hz as

in G6D.a) as to not hinder real-time processing of the ECG signal or consume less of the time budget

(G10D).

There are five different ADC types available, namely Successive Approximation (SAR), Delta-sigma

(ΔΣ), Dual Slope, Pipelined and Flash ADCs, two of which are suitable for data acquisition, Successive

Approximation and Delta-sigma. These 2 technologies are able to provide an adequate resolution,

sampling rate and price compared to the others and are therefore suited. The pros and cons of the

possible technologies to be used is summarized in the following table [18]:

Table 4.1: Pros and Cons of ADC technologies considered

ADC Type Pros Cons Resolution Sample Rate

Successive

Approximation

Good

speed/resolution

ration

No anti-aliasing

protection

Lower Higher

Delta-sigma

High dynamic performance,

anti-aliasing protection

Hysteresis on

unnatural signals

Higher Lower

A 16-bit successive approximation embedded ADC was eventually chosen. Three of these ADCs are

embedded into the STM32 MCU and were therefore chosen, as these ADCs satisfied the requirements

(G6D.a and G6D.b) and are easy to interface with. These ADCs have a 16 bit resolution, quantifying

from 0V to 3.3V, with the LSB comprising:

3.3/2
16 ≈ 5.0 ∗ 10

−6

V (4.1)

9

4.1. Hardware 10

4.1.2. DAC for reconstruction
While selecting ADCs, its counter-part responsible for reconstruction of the digital data was also selected,

a Digital-to-Analog Converter (DAC). Typical architectures of the DACs found included R-2R ladder

and resistor string. The chosen MCU, explained in section 4.1.3, is equipped with a single internal DAC,

capable of outputting two channels of data at a lower bit resolution of 12 bits. Therefore, reconstruction

of the ECG data should be done using external DACs with a minimum resolution of 16 bits. The DACs

that were considered for the prototype and their important characteristics are summarized in table 4.2.

Table 4.2: Multi-channel 16-bit Digital to Analog converters [19][20][21]

Property TI DAC8554IPW AD5675ARUZ TI DAC8574

Supply Voltage 2.7-5.5𝑉 2.7-5.5𝑉 2.7-5.5𝑉

Channels 4 8 4

Data interface SPI/QSPI/Microwire 𝐼2𝐶 𝐼2𝐶

Integral non-linearity ±12𝐿𝑆𝐵 ±8𝐿𝑆𝐵 ±64𝐿𝑆𝐵

Gain error ±0.15 ±0.24 ±1.0

Output settling time 10𝜇𝑠 8𝜇𝑠 10𝜇𝑠
Output slew rate 1.8𝑉/𝜇𝑠 0.8𝑉/𝜇𝑠 1𝑉/𝜇𝑠

The chosen MCU is equipped with both Serial Peripheral Interface (SPI) and Inter-Integrated Circuit

(𝐼2𝐶) protocol which makes implementation of all the listed DACs possible. However, as reliability is an

important aspect of the prototype, it is necessary to ensure that the data has successfully been received

by the DACs. Normally, SPI is implemented with a 4-wire setup with bidirectional flow of information

between the Master sender and the Slave receiver. However, in Texas Instruments DAC8554 SPI is

implemented with a 3-wire setup with a one-way communication protocol, thus making confirmation

of data arrival impossible. Therefore, DAC AD5675ARUZ by Analog Devices is the most suitable DAC

for the project due to its low gain error, low integral non-linearity error and its 𝐼2𝐶 communication

interface.

Despite AD5675ARUZ being the most suitable DAC for the prototype, the prototype was made with TI

DAC8574IPW due to lack of AD5675 availability, caused by the chip shortages. This compromise had to

be made due to the requirement G10 which dictates the time frame the prototype has to be ready in.

4.1.3. Microcontroller
The microcontroller is chosen based on its capability to perform intensive calculations needed for

digital signal processing and its ability to store data (RAM/Memory). Unfortunately, due to the global

chip shortage and the inability to solder a microcontroller by hand, it was decided to implement a

development board into the system instead of using a standalone microcontroller placed on the PCB.

Therefore, only development boards with a MCU implemented thereon will be considered as options

for the microcontroller choice.

The microcontroller boards that were considered for this purpose include many different development

boards. Table 4.3 shows the different development boards and their pros and cons. Simply by comparing

the price against performance, all of the Arduino boards are too expensive for the performance

they deliver compared to the alternatives presented. Furthermore, the Protocol subgroup tested the

capabilities of an Arduino Mega for filtering and deemed this development board not powerful enough

for the tasks it would need to perform. Therefore, it was decided against using any Arduino board to

realize the DSP subsystem.

At last, the Nucleo-H743ZI2 was chosen as the development board in the DSP subsystem, as this

development board already had adequate ADCs embedded into the chip present on the board,

compared to the Teensy and the NUCLEO-F411RE. Performance-wise, the Teensy 4.1 and NUCLEO-

F411RE would have been more than capable in performing the calculations needed, but were not chosen

as external ADCs would have to been implemented and interfaced with, thus increasing the complexity

of the system. Furthermore, the Nucleo-H743ZI2 makes use of the STM32H743ZIT6 MCU [22], a

high-performance ARM Cortex-M7 chip, highly capable of the tasks it would need to perform.

4.2. Noise filtering 11

Table 4.3: Development board specifications

Board:

Clock Speed:

(MHz)

RAM/ROM:

(KB)

Memory:

(KB)

Extra:

Price:

(EUR)

Arduino Uno Rev3 16 2/1 32 8 channel, 10-bit ADC

22

(Arduino) [23]

Arduino Mega 2560 Rev3 54 8/4 256 8/16 channel, 10-bit ADC

38.50

(Arduino) [24]

Arduino Due 84 96 512

12-bit ADC

12-bit DAC

38.50

(Arduino) [25]

Portenta H7 Lite 480 8196 16384

3× 16-bit ADC (36 channels, 3.6 MSPS)

2x 12-bit DAC

DSP Extension

63

(Arduino) [26]

Teensy 4.1 600 1024 7936

12-bit ADC

DSP Extension

Not available

33.28

(Mouser) [27]

NUCLEO-F411RE 100 128 512

1× 12-bit ADC (16 Channels, 2.4 MSPS)

DAC not available

DSP Extension

12.84

(Mouser) [28]

NUCLEO-H743ZI2 480 1024 2048

3× 16-bit ADC(36 channels, 3.6 MSPS)

2x 12-bit DAC

DSP Extension

26.68

(Mouser) [29]

4.2. Noise filtering
There are different filtering approaches available, each suited for removal of a particular type of noise.

They can be divided into a few categories[30]:

1. Spatiotemporal domain method such as classical Wiener filters, median filters and adaptive filters.

The disadvantage of this approach is that they are no suitable for non-stationary signals such as

the cardiac signal. However they can be used for removal of frequency varying PLI[31].

2. Frequency domain methods such as band-pass filtering and wavelet-based denoising technique.

While this can not remove noise overlapping with the useful frequency of the ECG signal, it can

be used for removal of out of band noise.

3. Statistical methods such as independent component analysis (ICA) and principle component

analysis (PCA) which can be used in removing in-band noise, but might not be feasible for real-time

systems.

There are different noise sources that contaminate the ECG signal. These noise sources include

[32][33][34]:

• Power line interference which consists of 50Hz and its higher harmonics.

• Electrode contact noise due to improper contact between patient and measuring system

• Motion artifact due to change in electrode-skin impedance caused by electrode motion

• Muscle contraction or EMG interference (DC-10kHz)

• Baseline wander due to respiration or movement of patient (0-0.5 Hz)

Baseline wander noise is filtered in the amplifying stage by the Hardware subgroup before being

digitized and thus does not need to be filtered digitally. The remaining noise sources that have to be

removed are EMG interference and PLI plus its higher harmonics. In figure 4.1, the contribution of

noise sources at low frequencies, where most of the essential information is found, can be seen.

As noises originating from bad electrode contact noise and motion artifacts are preventable and might

not occur under use of trained medical personnel, their removal is not attempted. The bulk of the noise

produced by EMG is removed in the analog domain by a low-pass filter that also acts as an anti-aliasing

filter. The lower frequency components of EMG overlap with the desired frequency band and thus its

removal requires use of techniques such as PCA and ICA for in-band noise removal. However, as it can

be seen in figure 4.1, it almost has a constant amplitude and thus its removal is not essential.

4.2. Noise filtering 12

Figure 4.1: Contribution of noise sources in an ECG signal [35] in sub 40Hz range, excluding PLI noise

4.2.1. Power line interference
With the baseline wander already removed, the PLI and its harmonics are the main noise sources in the

ECG signal. The PLI interference is mainly 50Hz with some deviations depending on the power usage

across the grid. The grid frequency is very stable in West-Europe with average frequency deviations

below ±0.2Hz[36][37]. Additionally, extreme deviations of ±2.5Hz results in an automatic disconnection

of all connected generation and devices from the grid[38]. Therefore, the frequency band of 49-51Hz is

the bandwidth where the PLI resides and should be removed in the system, with its higher harmonics

being an integer multiple.

There are two main digital filtering categories that can be used for filtering, namely Finite Impulse

Response (FIR) and Infinite Impulse Response (IIR). IIR filters have the advantage of being less

computationally expensive and requiring less memory, but have non-linear phase characteristics. This

is undesired as the original shape of the input signal may not be retained1.

FIR filters on the other hand introduce no distortion in the time-domain but introduce a constant group

delay equal to half the filter order. Additionally, they require a higher order filter to achieve the same

level of attenuation as IIR filters and thus require more memory and computation time. Important

aspects differentiating FIR and IIR filters are summarized in table 4.42.

Table 4.4: Comparison of FIR and IIR filters

Aspect FIR IIR

Efficiency Lower Higher

Usage Difficult Convenient

Stability More Less

Memory usage More Less

Controllability Easier More difficult

Sensitivity Less More

4.2.2. IIR filters
The IIR filters that can be implemented for PLI removal include band-stop and notch filters. Removal

of higher harmonics can be achieved by using a comb filter or cascading multiple band-stop or notch

filters. First, different band-stop filters are investigated as there are different IIR filters that may be used

for the band-stop filter.

• Butterworth

• Chebyshev type I/II

1source: https://www.advsolned.com/linear-phase-iir-filters-analysis-design/

2source:https://circuitglobe.com/difference-between-fir-filter-and-iir-filter.html

4.2. Noise filtering 13

• Elliptic

PLI consists of a very narrow band at around 50Hz and thus requires a very steep roll-off. Among these

filters, Elliptic filters provide the steepest roll off but produce ripples in the pass-band. This unfavorably

changes the important components of the ECG signal. Given same reasoning, the Chebyshev type I

filter is also not suitable. However, both Butterworth and Chebyshev type II filters have a flat pass-band.

Given that a Chebyshev type II filter has a faster roll-off than a Butterworth filter at the transitions and

the ripple occuring at the stopband makes it a suitable candidate for implementing the band-stop filter.

The advantage that a Chebyshev type II filter has over a Butterworth filter is that the same roll-off speed

can be achieved with a lower order filer, making the filter computationally less intensive. Given that

the ripple in the stop-band doesn’t have any significance, the choice for the band-stop filters goes to

Chebyshev type II. The magnitude and frequency response of these IIR band-stop filter designed with a

stopband of 49-51Hz with attenuation of 20dB can be seen in figures 4.2 and A.1 respectively.

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

-30

-25

-20

-15

-10

-5

0

5

M
a

g
n

it
u

d
e

 (
d

B
)

Magnitude Response (dB)

(a) 8th order Butterworth

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

-30

-25

-20

-15

-10

-5

0

5

M
a
g
n
it
u
d
e
 (

d
B

)

Magnitude Response (dB)

(b) 4th order elliptic

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

M
a
g
n
it
u
d
e
 (

d
B

)

0

20

40

60

80

100

120

G
ro

u
p
 D

e
la

y
 (

in
 s

a
m

p
le

s
)

Magnitude Response (dB)

(c) 6th order Chebyshev type II

Figure 4.2: Magnitude response of different IIR band-stop filters

As seen in Figure 4.2, for the same attenuation in the stop-band the Butterworth filter has a higher order

than an elliptic filter or a Chebyshev type II filter. Additionally, the elliptic filter has a ripple around the

corner frequency as expected and can achieve the same level of attenuation due to its high roll-off.

The main disadvantage of an IIR filter is its frequency dependent group delay. The group delay of the

Chebyshev Type II filter is added to its magnitude plot in order to estimate whether the introduced

group delay will be detrimental to the time domain signal. As it can be observed in figure 4.2c, the group

delay introduced to frequencies 45-48Hz and 52-55Hz is substantial and is in the order of 10 − 200ms.

4.2. Noise filtering 14

Given that the time interval between the P wave, QRS complex and the T wave is around 40ms [39], the

filtered signal is likely to suffer from distortion. However, simulations and measurements need to be

done to further investigate this assumption.

The MATLAB filterDesigner application was used to make an IIR notch filter by finding an optimized

transfer function that fulfills the required specifications. A notch filter is then created with a notch at

50Hz and a stopband of 47.5 − 52.5Hz. Creating a pure notch filter, while being seen as less stable, is

much simpler and can be realized with only a second order transfer function and the same roll-off as

the designed band-stop filters. The disadvantage of the notch filter is that the variation PLI will not be

removed as effectively as that of the band-stop filter. The more complex band-stop option might be a

better choice if there are noticeable variations in the PLI frequency. However, this might remove useful

components of the ECG signal as well.

The general transfer function of the notch filter is [33]:

𝐻(𝑧) = 𝑘
1 − 2𝑐𝑜𝑠(𝜔0)𝑧−1 + 𝑧−2

1 − 2𝑟𝑐𝑜𝑠(𝑤𝑜)𝑧−1 + 𝑟2𝑧−2

(4.2)

The derived transfer function with sampling frequency of 500Hz and a notch at 50Hz is as follows:

𝐻(𝑧) = 0.98426 − 1.59257𝑧−1 + 0.98426𝑧−2

1 − 1.59257𝑧−1 + 0.96852𝑧−2

(4.3)

The magnitude, group delay and the phase characteristics of the designed filter can be seen in figure

4.3. As it can be seen in figure 4.3a, the notch filter has a slightly lower bandwidth but similar 50Hz

attenuation as the Chebyshev Type II bandstop filter, but it has much lower group delay of 10 − 60ms.

This may cause less catastrophic distortion than the bandstop filter. This, together with the notch filter’s

computational efficiency, makes a notch filter a more suitable IIR filter for this system.

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

M
a
g
n
it
u
d
e
 (

d
B

)

0

10

20

30

40

50

60

G
ro

u
p
 D

e
la

y
 (

in
 s

a
m

p
le

s
)

Magnitude Response (dB)

(a) Magnitude response and group delay

0 50 100 150 200

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

P
h
a
s
e
 (

ra
d
ia

n
s
)

Phase Response

(b) Phase response

Figure 4.3: Important characteristics of the designed notch filter

The last IIR filter that is considered is the comb filter. The advantage that this filter has is its ability to

remove PLI as well as its higher harmonics. The comb filter acts the same as cascaded notch filters and

requires a 10
𝑡ℎ

order filter to implement, but is theoretically much more efficient as its coefficients are

mostly zero. The transfer function of the comb filter with the same bandwidth as the notch filter is:

𝐻(𝑧) = 0.85812 − 0.85812𝑧−10

1 − 0.71625𝑧−10

(4.4)

The magnitude response of the comb filter can be seen in figure 4.4. The problem with the comb filter is

that it will remove the essential components that are found in 0.5 − 2𝐻𝑧 as well. One way to alleviate

this issue is to reduce the bandwidth of the comb filter as to not filter this component with the downside

of worse PLI rejection. As the main goal of the filtering is to remove the PLI, the comb filter is not

applicable and is therefore not implemented in the final prototype.

4.2. Noise filtering 15

However, the same functionality of the comb filter without removal of these low frequencies can

be achieved by means of cascading IIR notch filters with each designed filter having a notch at the

frequencies of the PLI harmonics. Given the computational efficiency of the notch filter, this filter type

is implemented in the final prototype.

0 50 100 150 200

Frequency (Hz)

-30

-25

-20

-15

-10

-5

0

M
a
g
n
it
u
d
e
 (

d
B

)

Magnitude Response (dB)

Figure 4.4: Magnitude response of the Comb filter

4.2.3. FIR filters
The non-linearity of IIR filters in the pass-bands may introduce distortion in the time domain. Therefore

it is necessary to furthermore consider FIR filters and analyze their feasibility in real-time signal

processing. Here we mainly look at Hamming and Hann FIR windows which can be used for PLI

removal [34].

Using the MATLAB filterDesigner application, FIR band-stop filters are designed. In figure 4.5, the

magnitude response of the Hamming and Hann window with different filter orders are shown. One of

the first limitations that can be noticed is the need for a much higher order of filters to ensure the same

bandwidth and roll-off as the equivalent IIR filter. A 250
𝑡ℎ

order is only capable of 10dB attenuation. As

we do not want to remove information carrying frequencies, the filter has to have a very sharp notch, i.e.

small band-stop, with high attenuation at 50Hz. Therefore, for reaching the same level of attenuation as

the IIR filter as seen in figure 4.3a, an even higher order filter is required. This indicates that the amount

of memory used for FIR filtering is considerably higher than IIR filters.

A positive aspect with respect to the FIR filter is its linear phase response. The advantage of having a

linear phase response is constant group delay over the frequency range of interest. This ensures that the

time domain response of the filtered signal remains distortion free.

Applying an FIR filter is not as straight forwards as an IIR filter for real time filtering. The IIR filters can

be efficiently applied using convolution in the time domain, as its complexity is 𝒪(𝑛), but the same does

not apply to a FIR filter as the order of filter increases. At some point it becomes too computationally

expensive to do convolution in the time domain and more efficient to do the filtering in the frequency

domain. The complexity of convolution and FFT is 𝒪(𝑚 × 𝑛) and 𝒪(𝑛 log
2
𝑛) respectively.

Graphically, it can be seen in figure 4.6 that the crossover point is around 40 samples, given a FIR filter

of order 250. However, the execution time will differ per hardware used, as instructions per clock

cycle and clock rate will differ. Therefore, this analysis has to be carried out on the chosen hardware,

i.e. the microprocessor/microcontroller, as well. If an FIR filter is to be implemented on a less power

demanding MCU for real-time filtering at a later stage, the MCU has to be able to perform Fast Fourier

and inverse Fourier Transform. However, the need for a large memory would still persist.

4.2. Noise filtering 16

0 50 100 150 200

Frequency (Hz)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

M
a
g
n
it
u
d
e
 (

d
B

)
Magnitude Response (dB)

(a) 50
𝑡ℎ

order

0 50 100 150 200

Frequency (Hz)

-1.5

-1

-0.5

0

M
a
g
n
it
u
d
e
 (

d
B

)

Magnitude Response (dB)

(b) 50
𝑡ℎ

order

0 50 100 150 200

Frequency (Hz)

-10

-8

-6

-4

-2

0

M
a
g
n
it
u
d
e
 (

d
B

)

Magnitude Response (dB)

(c) 250
𝑡ℎ

order

0 50 100 150 200

Frequency (Hz)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

M
a
g
n
it
u
d
e
 (

d
B

)

Magnitude Response (dB)

(d) 250
𝑡ℎ

order

Figure 4.5: Magnitude response of Hamming window (left) and Hann window (right)

0 100 200 300 400 500 600 700 800 900 1000

sample size n

0

0.5

1

1.5

2

2.5

N
u
m

b
e
r

o
f
o
p
e
ra

ti
o

n
s

105 Complexity with imulse response of length m = 250

Concolution

FFT/IFFT

Figure 4.6: Complexity of convolution [𝒪(𝑚 × 𝑛)] & FFT [𝒪(𝑛 log
2
𝑛)] based on sample size n

5

Implementation

All the tasks outlined in this report are to be implemented by two STM32 MCUs, one at the transmitter

and one at the receiver. The tasks the are implemented in the prototype are as follows:

1. Transmitter:

(a) Sample 9 signals

(b) Apply digital filters to the sampled signals

(c) Relay filtered data to an ESP32 MCU to be transmitted wirelessly

2. Receiver:

(a) Receive data from an ESP32 MCU for further processing 1

(b) Reconstruct digital data using DACs

Development tool
In order to program/debug the STM32 MCU, the STM32CubeIDE [22] development platform will be

used. STM32CubeIDE is an advanced C/C++ development platform with peripheral configuration,

code generation, code compilation and debug features for STM32 microcontrollers and microprocessors.

This program has everything needed to configure/program the STM32 MCU and is therefore chosen as

the prefered development tool for this project.

Device configuration tool
The STM32CubeIDE comprises a GUI for configuring the STM32 MCU. Herein, an user is able to

configure settings for peripherals, clocks, timers and much more. These settings are then automatically

converted to C code. If it is stated that settings are configured, it means that the settings are configured

in the device configuration tool and then automatically converted to C code.

Direct Memory Access
The STM32 MCU contains multiple Direct Memory Access (DMA) controllers. Direct Memory Access

controllers are used to provide high-speed data transfers between peripherals and memory and between

memory and memory without any CPU action. Therefore, DMA is the preferred method for any data

transfer to take as much load off the CPU as possible.

5.1. Analog to Digital Conversion
The performance of the whole subsystem relies on the performance of the ADCs. If the ADCs digitize

the signal poorly, the rest of the system will use the poorly digitized signals, resulting in a sub-optimal

output. Therefore it is very important that the ADCs are set up well. This section outlines the method

used to configure and run the ADCs.

1Processing in the prototype is minimal

17

5.1. Analog to Digital Conversion 18

5.1.1. Settings
In order to to use the the ADCs, they must be configured with the right settings to convert 9 signals

from the analog to the digital domain. This can be done by programming the STM32 to turn on the 3

different ADCs with the following (non-default) STM32CubeIDE settings:

• Resolution: 16-bit

• Scan conversion mode: Enabled

• Conversion data management: DMA Circular Mode

• Number of conversions: 3

• External trigger conversion source: Timer 1 Trigger Out event

• External trigger conversion edge: Rising edge

• Sampling time: 810.5 cycles

• DMA: Mode circular

• ADC Clock: 150 MHz

• Other settings are left default

Taking a look at the sub module overview (Figure 3.2), every ADC needs to digitize 3 different signals

out of the 9 total signals. In order to facilitate this, 3 different inputs were enabled as Single-ended.

Furthermore, the number of conversions was set to 3, to notify the ADC it needs to digitize 3 different

signals. This in turn enabled Scan conversion mode automatically, telling the ADC to multiplex between

the 3 different input signals. Moreover, the ADCs were set up to start the conversion with the Timer 1

Trigger Out event. Timer 1 is a timer that raises an interrupt every 2 ms, thus creating a 500 Hz timer.

This makes sure the ADC samples the input signals at 500 Hz (G6D.a). On top of that, the conversion

data management was set to DMA circular mode. The DMA controller will fetch the conversion result

from the ADC and put it in an array. This array will be overwritten every single time the ADCs digitize

the signal. It is therefore crucial to gather the result in time before it is overwritten by a new sample.

When the DMA controller is done with retrieving the conversion result, an interrupt is generated, so the

data can be processed. At last, the Sampling time is set to 810.5 cycles, resulting in a sampling time of:

1

150 ∗ 10
6

∗ 810.5 = 5.40𝜇𝑠

This sampling time makes sure the capacitor of the sample and hold circuit will be adequately charged

before the ADC will start digitizing the capacitor voltage. The full derivation for the minimum sampling

time can be found in the Hardware report[2].

5.1.2. Code
The functions of interest that are causing the ADC to work properly can be seen in the following code

block:

1 // Ca l ib ra t i on funct ion

2 HAL_StatusTypeDef HAL_ADCEx_Calibration_Start (

3 ADC_HandleTypeDef ∗hadc , // Handle to the ADC

4 uin t32_ t CalibrationMode , // S e l e c t c a l i b r a t i o n mode , usual ly ADC_CALIB_OFFSET

5 uin t32_ t S in g l eD i f f // S e l e c t i o n of s ing le−ended or d i f f e r e n t i a l input

6) ;

7

8 // Function to s t a r t the ADC in DMA mode

9 HAL_StatusTypeDef HAL_ADC_Start_DMA(

10 ADC_HandleTypeDef ∗hadc , // Handle to the ADC

11 uin t32_ t ∗pData , // Pointer to the array to s to r e ADC r e s u l t s

12 uin t32_ t Length // Length of the array used to s to r e ADC r e s u l t s

13) ;

14

15 // DMA Callback funct ion

16 void HAL_ADC_ConvCpltCallback (

17 ADC_HandleTypeDef∗ hadc // Handle to ADC

18) ;

5.2. Digital Filters 19

The HAL_ADCEx_Calibration_Start function is used to self-calibrate the ADC to get a more precise

reading. When an ADC has not been used in a while or on startup, it is recommended to call this

function.

The HAL_ADC_Start_DMA function starts an ADC in DMA mode. This is a non-blocking mode,

meaning no CPU clocks are used to gather the results from the ADC, as the DMA controller, explained

in Section 5, takes care of moving the data from the peripheral to memory. When the DMA controller is

done transferring the data from ADC to memory, the callback function HAL_ADC_ConvCpltCallback is

called. This callback function can then be used to process the data for example.

5.2. Digital Filters
The performance of the filters depends strongly on the type of filter chosen, precision of coefficients,

method of filtering and the microprocessor used. While a general function could be written to implement

the digital filters, the chosen microprocessor has an extensive DSP library that can perform the filtering

operation more efficiently than general code would as they are written with the available hardware in

mind and use their full capability. The IIR filters are implemented using a Biquad filter in direct form II.

Higher order filters can be implemented as well by means of cascading Biquad filters. The topology of

the FIR and IIR filters implemented in the CMSIS DSP library can be seen in figure 5.1.

(a) Topology of the Biquad IIR filter

(b) Topology of the FIR filter

Figure 5.1: Topology of FIR and IIR filters implemented in CMSIS DSP Library[40]

The functions of interest, which perform filtering by convolution in the time domain, found in the

CMSIS DSP library and used in prototyping can be seen in the following code block:

1 typedef s t r u c t

2 {

3 uin t8_ t numStages ; /∗∗< number of 2nd order s tages in the f i l t e r . ∗/

4 f l o a t 6 4 _ t ∗pSta te ; /∗∗< points to the array of s t a t e c o e f f i c i e n t s . ∗/

5 const f l o a t 6 4 _ t ∗pCoeffs ; /∗∗< points to the array of c o e f f i c i e n t s . ∗/

6 } arm_biquad_cascade_df2T_instance_f64 ;

7

8 void arm_biquad_cascade_df2T_f64 (const arm_biquad_cascade_df2T_instance_f64∗ S ,

9 const f l o a t 6 4 _ t ∗ pSrc ,

10 f l o a t 6 4 _ t ∗ pDst ,

11 uin t32_ t b lockS ize

12) ;

13

14 // For FIR F i l t e r i n g

15 typedef s t r u c t

16 {

17 uin t16_ t numTaps ; /∗∗< number of f i l t e r c o e f f i c i e n t s in the f i l t e r . ∗/

18 f l o a t 3 2 _ t ∗pSta te ; /∗∗< points to the s t a t e va r i ab l e array . The array i s of length

numTaps+blockSize −1. ∗/

19 const f l o a t 3 2 _ t ∗pCoeffs ; /∗∗< points to the c o e f f i c i e n t array . ∗/

20 } a rm_f i r_ ins tance_ f32 ;

21

22 void arm_f i r_ f64 (const a rm_f i r_ ins tance_ f64∗ S ,

23 const f l o a t 6 4 _ t ∗ pSrc ,

24 f l o a t 6 4 _ t ∗ pDst ,

25 uin t32_ t b lockS ize

26) ;

5.3. Digital to Analog Conversion 20

The full description of the functions and how they work can be found in the CMSIS DSP Software

Library[40]. In short they use normal convolution to apply filter "S" to input data "PSrc" of size

"blockSize" and then store the results in "pDst".

Additionally, for a more efficient implementation of FIR filters in frequency domain, the CMSIS library

includes Fast Fourier Transform functions which are included for completeness but are not implemented

or tested due to time constraints outlined by G10.

1 typedef s t r u c t

2 {

3 uin t16_ t f f tLen ; /∗∗< length of the FFT . ∗/

4 const f l o a t 3 2 _ t ∗pTwiddle ; /∗∗< points to the Twiddle f a c t o r t a b l e . ∗/

5 const u in t16_ t ∗pBitRevTable ; /∗∗< points to the b i t r e v e r s a l t a b l e . ∗/

6 uin t16_ t bitRevLength ; /∗∗< b i t r e v e r s a l t a b l e length . ∗/

7 } a rm_c f f t _ ins t ance_ f32 ;

8 typedef s t r u c t

9 {

10 arm_c f f t _ ins t ance_ f32 S in t ; /∗∗< I n t e r n a l CFFT s t ru c t u r e . ∗/

11 uin t16_ t fftLenRFFT ; /∗∗< length of the r e a l sequence ∗/

12 const f l o a t 3 2 _ t ∗ pTwiddleRFFT ; /∗∗< Twiddle f a c t o r s r e a l s tage ∗/

13 } a r m _ r f f t _ f a s t _ i n s t a n c e _ f 3 2 ;

14

15 arm_status a r m _ r f f t _ f a s t _ i n i t _ f 3 2 (

16 a r m _ r f f t _ f a s t _ i n s t a n c e _ f 3 2 ∗ S ,

17 uin t16_ t f f tLen) ;

18

19 void a r m _ r f f t _ f a s t _ f 3 2 (

20 a r m _ r f f t _ f a s t _ i n s t a n c e _ f 3 2 ∗ S ,

21 f l o a t 3 2 _ t ∗ p , f l o a t 3 2 _ t ∗ pOut ,

22 uin t8_ t i f f t F l a g) ;

5.3. Digital to Analog Conversion
As seen in table 4.3, there is no MCU that possesses nine DAC channels. Therefore, regardless of the

chosen MCU, the prototype requires external DACs. In figure 5.2, a simplified overview of component

connections in the receiver prototype, where signals are reconstructed, can be seen[2]. The Nucleo would

receive the wirelessly transmitted data from the ESP chip via an 𝐼2𝐶 line. This mode of communication

between the STM32 MCU and the ESP chip was discussed with PROT subgroup and chosen as the most

suitable communication protocol.

At the receiver, the Nucleo has the option to store a buffer of the received data to perform further signal

processing. However, as there is minimal data processing taking place on the Nucleo on the receiver

module’s prototype, no buffer is held. The immediate data is prepared to be sent via a single dedicated

𝐼2𝐶 line to the three DACs. The complete communication with the DACs are documented in appendix

B.2.

The 𝐼2𝐶 protocol is implemented using the Nucleo’s built-in "Hardware Abstraction Layer" (HAL) library.

Using this library puts emphasis more on fast prototyping rather than the most efficient implementation,

as the built-in functions are more complex and contain many checks to catch most of the unexpected

outcomes. However, they do not cause any performance overhead in the prototype. The process of

receiving data from the ESP32, preparing the data and transmission to the DACs is implemented using

the following functions and simplified sequence [41]2:

1 // Timer in t e r ru p t to i n i t i a t e recept ion & transmiss ion process

2 void HAL_TIM_PeriodElapsedCallback (t imer)

3

4 // Se t s I2C l i n e 1 in recept ion mode

5 void HAL_I2C_Slave_Receive_IT (hi2c1 , pData , S ize) ;

6

7 // Reception i s complete c a l l back funct ion .

8 // Data i s processed here as preperat ion fo r DACs

9 void HAL_I2C_SlaveRxCpltCallback (hi2c1)

10 {

11 // Transmission to DACs i s i n i t i a t e d

2Detailed workings of these functions can be found in [42], chapter 47

5.3. Digital to Analog Conversion 21

12 void HAL_I2C_Mem_Write_IT (hi2c , DevAddress , MemAddress , MemAddSize , pData , S ize) ;

13 }

14

15 // Transmission complete c a l l back funct ion

16 void HAL_I2C_MemTxCpltCallback (hi2c2) {

17 {

18 // Retranmission of next channels of data u n t i l a l l channels are updated

19 HAL_I2C_Mem_Write_IT (hi2c2 , DevAddress , MemAddress , MemAddSize , pData , S ize) ;

20 }

Figure 5.2: Simplified schematic of the receiver module

6

Measurements

In this chapter, the important characteristics of the designed modules are benchmarked to ensure

that they follow the requirements outlined in chapter 2. These benchmarks include both theoretical

simulations and practical measurements.

6.1. Execution time
6.1.1. Filtering time
The benchmarks are performed on a STM32H743 board, with the STM32H743ZI2 MCU. STM32 boards

include CPU cycles counter as part of the Debug Watch and Trace (DWT) module[43]. This counter can

be easily used to measure the execution time of a given code. The cycle counter can be enabled and

used as indicated in the code block below[43]:

1 # def ine ARM_CM_DEMCR (∗ (u in t32_ t ∗) 0xE000EDFC)

2

3 # def ine ARM_CM_DWT_CTRL (∗ (u in t32_ t ∗) 0xE0001000)

4

5 # def ine ARM_CM_DWT_CYCCNT (∗ (u in t32_ t ∗) 0xE0001004)

6

7 // Enabling Counter

8 i f (ARM_CM_DWT_CTRL != 0) { // See i f DWT i s a v a i l a b l e

9

10 ARM_CM_DEMCR |= 1 << 24 ; // Set b i t 24

11

12 ARM_CM_DWT_CYCCNT = 0 ;

13

14 ARM_CM_DWT_CTRL |= 1 << 0 ; // Set b i t 0

15

16 }

17

18 s t a r t = ARM_CM_DWT_CYCCNT;

19

20 // Code to measure

21

22 stop = ARM_CM_DWT_CYCCNT;

23

24 de l t a = stop − s t a r t ;

Then the execution time can be derived from the recorded counter and the SystemCoreClock. The

filtering performance of Nucleo-H743ZI2 and Nucleo-F411RE on a 250 sample data is summarized

in tables 6.1 and 6.2 respectively. The results show that both microcontrollers are suitable for single

precision real-time filtering. However, should double precision be used, only the MCU equipped with

Cortex Arm M7 is suitable.

Furthermore, it can be seen that, on both MCUs, the execution time of the FIR filter is around 50

times slower than the IIR filter while having lower attenuation and a considerably higher stop-band

22

6.1. Execution time 23

bandwidth which is not desirable.

Table 6.1: Performance of STM32H743ZI2 with clock rate of 480MHz

Filter type Filter order Precision execution time [𝜇𝑠] Clock Cycles

IIR Notch 2
𝑛𝑑

single 17 8 000

5× IIR Notch 10
𝑡ℎ

single 85 39 600

IIR Comb 10
𝑡ℎ

single 438 210 000

FIR Bandstop 250
𝑡ℎ

single 952 453 000

IIR Notch 2
𝑛𝑑

double 32 15 500

5× IIR Notch 10
𝑡ℎ

double 159 77 300

IIR Comb 10
𝑡ℎ

double 454 218 000

Table 6.2: Performance of STM32F411RE with clock rate of 100Mhz

Filter type Filter order Precision execution time [𝜇𝑠] Clock Cycles

IIR Notch 2
𝑛𝑑

single 47 4 700

5× IIR Notch 10
𝑡ℎ

single 233 23 300

IIR Comb 10
𝑡ℎ

single 476 47600

FIR Bandstop 250
𝑡ℎ

single 2100 210 000

IIR Notch 2
𝑛𝑑

double 1960 196 000

5× IIR Notch 10
𝑡ℎ

double 9700 972 000

IIR Comb 10
𝑡ℎ

double 1600 160 500

The FIR filter performance can be improved significantly if the filtering is done in the frequency domain

using FFT/IFFT as seen in figure 4.6. By using FFT/IFFT, the complexity of the calculations will be

drastically reduced to 𝒪(𝑛 log
2
𝑛).

The 250 samples used represent half a second of data, thus the FIR filter can theoretically be used for

real time signal processing of nine channels on both the ARM CORTEX M4 and M7, but this would

leave less performance overhead for other functions of the microprocessor, i.e. sampling, transmission

and possibly re-transmissions that ensure high reliability. This leads potentially to forming a bottleneck

in the system. Additionally, this might prevent the transition of the prototype to an even more efficient

MCU to fulfill requirement G7D.

Even though using FFT/IFFT would improve performance of the FIR filter, it would not reduce the

memory usage. Additionally, it will be still more computationally intensive than the IIR filter while

having a larger notch and less attenuation as seen in figures 4.3a and 4.5.

The only advantage that the FIR filter has is its constant group delay which prevents distortion in the

time domain. The group delay in the IIR filter occurs around the notch which is attenuated. This

indicates that the distortion and hence the illegibility of the ECG signal in time domain will likely be

limited. The group delay of the IIR and the FIR filter can be seen in figure A.3.

Having a very steep notch does have a disadvantage that is present in both IIR and FIR filters and that is

the time it takes for filter to reach the designed attenuation level. As it was seen in figure 4.5, a very

high order FIR is needed for a top notch which results in a high group delay. While the IIR filter does

not have a group delay in its pass-band due to having less delay elements, it too needs prior samples in

order to properly filter out the 50Hz noise.

This delay was seen in MATLAB simulations as well as when a 50Hz sinusoidal signal was passed

through the IIR filter implemented on the STM32 MCU. It was observed that the attenuation would

converge after some delay, seen in figure A.4, which is inversely proportional to the sampling rate. This

is further investigated and documented in section 6.2

6.1.2. DAC Reconstruction time
The chosen DAC, namley Texas Intruments DAC8574IPW, is capable of operating with wide ranges of

𝐼2𝐶 bus rates ranging from 100kb/s upto 3.4Mb/s, with the upper limit of the chosen Nucleo board

6.2. Filter Performance 24

being 1Mb/s. Based on the data sheet of TI DAC8574IPW, updating each output channel requires four

bytes of data and an additional four is required as a broadcast signal for synchronous updating of the

DAC’s output channel. This results in a minimal transfer speed of ∼ 205kb/s in ideal conditions. As

some overhead has be left in transmission, the highest transmission speed of 400kb/s is chosen, which

does not alter the "Standard/Fast Mode" transmission protocol of TI DAC8574IPW[21].

Tests performed and documented in table 6.31 are done on the receiver prototype, designed and made

by the Hardware group [2]. If real-time reconstruction of ECG signals is to be guaranteed, the time

needed for receiving data from the ESP32 and transmitting to DACs must be below 2ms, as outlined by

G6D.d. It can be observed that the sequential reception and reconstruction of the nine signals are done

successfully under 1.3ms in real-world operating conditions.

Table 6.3: Communication time from/to the Nucleo MCU

No. of Samples I2C bus rate [𝑘𝑏/𝑠] execution time [𝑚𝑠] Effective bits per sample

3× DAC8574 12 400 1.43 47

3× DAC8574 9 400 1.06 47

ESP32 9 1000 0.20 22

6.2. Filter Performance
This section describes the performance of the filter. The theoretical performance of the filter will be

looked at, realized in Matlab and on the STM32 chip, and the real-life performance will be tested on a

real-life ECG signal.

6.2.1. Theoretical
In order to test the (semi-)theoretical performance of the filter, the filter performance is tested in different

environments. First, the performance of the filter is tested in Matlab. Subsequently, the performance

of the filter, realized on the STM32 MCU, is tested with a pure 50 Hz sine wave. At last, the filter

performance is tested on an ECG signal with 50 Hz added, output by a function generator.

Matlab
Using the MIT-BIT database [44][16], the frequency content of the ECG signal is looked at. Firstly, a

great peak is seen at the lower frequencies, which are due to the baseline wander noise. However, this

noise would be removed in an earlier stage with analogue circuitry and is thus not the focus of this

analysis. Applying the designed notch filter to the data, shows that PLI is effectively removed. The

power spectral density of the ECG signals before and after filtration can be seen in figure 6.1

50 100 150 200 250

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

A
m

p
lit

u
e

(a) Without Notch filter

50 100 150 200 250

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

A
m

p
lit

u
e

(b) With Notch filter

Figure 6.1: The power spectral density of the ECG signal from MIT-BIT data base

Testing the bandstop Chebyshev Type II filter on the same data and zooming at frequencies around

112-channel is included in case the prototype is used as a standalone ECG monitoring device.

6.2. Filter Performance 25

50Hz shows the difference in filtering capabilities of the designed filters. It can be observed in figure

6.2b that the bandstop filter is much more suited for removing a wider band as expected. Initially, a

high level of distortion was expected due to a large group delay. However, testing on an ECG data

signal from MIT-BIT data base did not show distortion. This indicates that despite having a large group

delay, the Chebyshev bandstop filter may be used for filtering the PLI as well.

21.7 21.75 21.8 21.85 21.9 21.95 22 22.05 22.1 22.15 22.2

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
m

p
lit

u
d
e

Unfiltered

Bandstop

Notch

(a) ECG signal in time domain

47 48 49 50 51 52 53

Frequency [Hz]

0

5

10

15

20

25

30

35

40

45

M
a
g
n
it
u
d
e

Bandstop vs Notch Filter

Unfiltered

Bandstop

Notch

(b) ECG signal in frequency domain

Figure 6.2: Time domain and frequency domain comparison of notch & band stop filters

Function generator 50 Hz
To test the filter when realized on the STM32 MCU, a function generator was configured to output a

pure 50 Hz sine wave with an amplitude of 3.000 𝑉𝑝𝑝 and an offset of 1.500 V. This signal is then sampled

for 5 seconds at 500 Hz by an implemented ADC. The resulting digital signal is then fed into the filter

system. Figure 6.3 shows the filter input and filter output in the time-domain.

0 500 1000 1500 2000 2500
Time [Samples]

0

10000

20000

30000

40000

50000

60000

Am
pl

itu
de

Input data - Time Domain

(a) Filter input time-domain

0 500 1000 1500 2000 2500
Time [Samples]

0

10000

20000

30000

40000

50000

60000

Am
pl

itu
de

Output data - Time Domain

(b) Filter output time-domain

Figure 6.3: Filter input and output in the time-domain

As can be seen in Figure 6.3b, the filter first needs to converge and then filters the data effectively. This

is to be expected and is also explained in Chapter 6.1.1. Comparing to the input signal, shown in Figure

6.3a, the 50 Hz signal is as good as completely filtered in 1 second. A frequency spectrogram of the

signal can furthermore be found in Appendix A in Figure A.5.

Frequency generator ECG Signal
With an eye on the end goal of this project, the filter system was tested on a repeating 2 second ECG

signal, obtained from the first 2 seconds of patient 001 from the PTB Database [15] [16]. Additionally,

a 50Hz signal was added to the original signal to simulate 50Hz power line interference, with an

6.2. Filter Performance 26

amplitude of 0.2 * the peak-to-peak amplitude of the original ECG signal. Both these signals can be seen

in Appendix A.1.1 as Figure A.6a and Figure A.6b respectively. At last, this signal was loaded onto a

function generator (Tektronix AFG 3021B) and output to the Nucleo, with a frequency of 0.5 Hz and its

voltage ranging from 0 to 3V. The method for loading an arbitrary signal is explained in Appendix C.

The signal sampled by an ADC and the result after the filter system can be seen in Figure 6.4. In order

to filter the 50 Hz component better, two 50Hz filters have been cascaded, resulting in bigger magnitude

decrease of the 50Hz signal components.

0 200 400 600 800 1000
Time [Samples]

0

10000

20000

30000

40000

50000

60000

Am
pl

itu
de

Input data - Time Domain

(a) Filter input time-domain ECG Signal

0 200 400 600 800 1000
Time [Samples]

10000

20000

30000

40000

50000

Am
pl

itu
de

Output data - Time Domain

(b) Filter output time-domain ECG Signal

Figure 6.4: Filter input and output in the time-domain of ECG Signal

By looking at the result of the filter, Figure 6.4b, it can be seen that the signal visually already looks more

clear. However, still some harmonics can be seen in the final output. By taking a look at the FFT of the

input and output of the filter with the DC component removed, Figure 6.5a and Figure 6.5b respectively,

it can be seen that the 50 Hz component has vastly decreased, but not completely removed. More filters

could be cascaded to give an even better magnitude decrease, but this would introduce a bigger group

delay, thus distorting the signal more; a trade-off has to be made between the two when deciding on the

magnitude decrease.

0 50 100 150 200 250
Frequency [Hz]

0

1000

2000

3000

4000

5000

6000

7000

Am
pl

itu
de

Input data - FFT

(a) Filter input FFT ECG Signal - No DC

0 50 100 150 200 250
Frequency [Hz]

0

500

1000

1500

2000

2500

Am
pl

itu
de

Output data - FFT

(b) Filter output FFT ECG Signal

Figure 6.5: Filter input and output FFT of ECG Signal

6.2.2. Practical
Furthermore, to test the real-life application of the DSP subsystem, an experiment has been performed

on a male human (S. Speekenbrink) to test the incoming signal and the filter system. The time-domain

and FFT results can be seen in Figure 6.6 and Figure 6.7 respectively. Note that the FFT Figures are

without a DC component.

6.2. Filter Performance 27

0 200 400 600 800 1000
Time [Samples]

1.4

1.5

1.6

1.7

1.8

Am
pl

itu
de

Input data - Time Domain

(a) Time-domain real ECG signal input

0 200 400 600 800 1000
Time [Samples]

1.4

1.5

1.6

1.7

1.8

Am
pl

itu
de

Output data - Time Domain

(b) Time-domain real ECG signal output

Figure 6.6: Time-domain real ECG signal input/output

0 50 100 150 200 250
Frequency [Hz]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Am
pl

itu
de

Input data

(a) FFT real ECG signal Input - No DC

0 50 100 150 200 250
Frequency [Hz]

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Am

pl
itu

de
Output data

(b) FFT real ECG signal Output - No DC

Figure 6.7: FFT Real ECG Signal - No DC

First of all, by looking at Figure 6.7a, it can be seen that higher harmonics of PLI are present, namely

150Hz and even 250Hz. This is most likely accounted for by the fact that these tests were performed

with a power supply connected to the main grid, instead of a power supply that is not connected to the

main grid, i.e. batteries. It might be possible that higher harmonics will also be present in the case when

a power supply is used that is not connected to the main grid. In that case, filters for these components

would have to be implemented in the final system. Unfortunately, as of the moment of writing, this has

not been possible yet, because the system could not be connected to a power supply not connected to

the main grid at the moment of testing the real-life ECG signal. Therefore, 100Hz, 150Hz, 200Hz and

250Hz filters have been implemented together with a 50Hz filter to filter out the 50Hz PLI and higher

order harmonics.

The FFT of the result can be seen in Figure 6.7b. By looking at Figure 6.7b, still a minor amount of 50Hz

is present in the resulting signal. However, by looking at the resulting time-domain signal in Figure

6.6b, this 50Hz component is not dominating the signal anymore and is therefore sufficiently filtered,

compared to the input signal in Figure 6.6a. The result is an ECG like signal.

7

Discussion

Here the results of this thesis are discussed and an outline is given on how the prototype could be further

improved, in terms of efficiency (G7), size (G8 & G9) and cost (G11). Additionally, recommendations

are given for further research avenues.

7.1. Micro Controller power usage
In order to prevent bottlenecks in the development process, one of the most powerful MCUs was chosen

that not only is capable of carrying out the functions of the DSP submodule, it does it extremely fast,

as seen in table 6.1, at the cost of extra power usage. Measurements done by HW subgroup showed

that the Nucleo board uses 200-300mA which accounts for ∼ 50% of total power usage of the system.

This power usage occurs when the MCU is running at its maximum clock frequency. Many low power

MCUs do not have the hardware for double precision float computations. Therefore, if double precision

is to be kept, the Nucleo has to be run at a lower and more reasonable clock frequency to ensure low

power usage and double precision arithmetics.

However, if the single precision results tightly resemble ones of double precision filters, then a lower

power MCU equipped with a Cortex M4 MCU (with Floating Point Unit) may be used to reduce power

consumption drastically, but this would require addition of external peripherals, i.e. ADCs. Due to

many low power boards being equipped with DMA, covered in start of chapter 5, the MCU will likely

have enough computation power to realize the DSP functions.

Alternatively, all the functions implemented in the DSP and PROT subgroups may be implemented on a

single MCU, namly an ESP32 MCU, as it has both WiFi and a dual core CPU design with a generous

clock rate of 240MHz. However, the feasibility of this depends on the performance of the DSP library

that is available for an ESP32 MCU.

With these options, total number of components used in the system decreases, improving the system

efficiency while reducing its costs. Additionally, this facilitates the transition into a more miniaturized

system.

7.2. Filtering efficiency
Based on both simulations performed in Matlab as well as measurements on the STM32 MCU, the

designed filters consisting of cascaded notch filters are capable of removing PLI and its higher harmonics

without distorting the ECG signal in the time domain. However, tests were not carried out on heart data

of patients with arrhythmia to investigate the amount of distortion that is added. Given signals collected

from patients with arrhythmia contain different frequency components, the amount of distortion cannot

be predicted without being specifically tested.

Furthermore, other filter systems could be implemented to improve the Signal-to-Noise Ratio of the

output signal. For example, a form of averaging could be applied to reduce the effect of white/coloured

noise. Unfortunately, white noise filtering was not possible in the current system design as the RC time

28

7.3. DAC Integral non-linearity error 29

constant of the system at the terminal input was too high to gather enough samples quickly enough

to use averaging efficiently, as a sample-and-hold circuit is used. Signal averaging could however be

implemented with Article [45] explaining the use on ECG signals.

7.3. DAC Integral non-linearity error
The Texas Instruments DAC8574 that was selected for this prototype has a relatively high integral

non-linearity error and was chosen only due to the long lead time of the DAC AD5675 by Analog Cicuits.

DAC8574IPW, while not making the ECG signal distorted beyond recognition, should preferably not be

used in further revisions of the prototype. The error introduced by DAC8574IPW before attenuation in

the receiver module amounts to ±5mV instead of ±0.6mV, would the DAC of choice be available in the

early weeks of development.

7.4. Testing and experiments
In order to verify the practical efficiency of the proposed/realized DSP system, real-life experiments

and testing have to be performed. While theoretical testing was done, not enough experiments were

performed with a variety of healthy heart data and heart data with arrhythmia to conclude the realized

system works as intended. Due to time constraints, these experiments could not be realized, most

important experiments performed by professional medical staff. While a lot of research has been done

into ECG signals, not enough knowledge had been acquired to successfully interpret an ECG signal.

Therefore, experiments should be performed with professional medical staff who are able to interpret

ECG data and analyse the signal to see if the proposed solution is acceptable.

8

Conclusion & Recommendation

In this thesis a digital signal processing module, which included quantization and reconstruction as

well, was designed and implemented. Here the aspects of the requirements that were successfully

implemented are summarized along with recommendations on future research to further improve the

reliability of digital signal processing part of the prototype.

8.1. Conclusion
The quantization of the 9 input signals was realized with 3 embedded ADCs in the STM32 MCU and

could successfully sample a signal at 500Hz with a 16 bit resolution, thus realizing requirements G6D.a,

G6D.b and G2D.

The digital IIR filters that were implemented could successfully remove powerline interference on the

transmitter module without contamination/distortion of the input signal. Additionally, the designed

filters have exceptional computational efficiency which makes them well suited for real time signal

processing. Therefore, requirements G5D and G7D, which pertain to real-time processing of data, are

fulfilled.

The reconstruction of digitized signals were implemented on a Nucleo development board and was

tested with the prototype receiver board. The performance of the DACs in terms of reconstruction speed

and frequency fell withing the specifications outlined by requirements G6D.c and G6D.d.

Unfortunately, requirement G3D could not be confirmed with the utmost level of certainty. While the

general shape of an ECG signal from a healthy person was not distorted, experiments on heart data

with arrhythmia was not done. Further testing was required to ensure requirement G3D was fully met,

but was not possible due to time restrictions on the development window (G10D).

8.2. Recommendations
The prototype implemented, while adhering to the set requirements, could have been further improved.

Furthermore, during the project new approaches were discovered that could not be implemented in

time. These are provided here as future research prospects.

• There are filtering techniques available that make use of adaptive filters and/or neural networks

that may be better at removing (PLI) noise from a contaminated ECG signal. However, these

methods require a deeper knowledge of the ECG signals, more specifically different types of heart

arrhythmia and their time domain characteristics. A possible research product may include the

creation of a proper neural network and its implementation on an MCU such as STM32H743ZI

using X-CUBE-AI.

• With the existence of optimized Fourier transforms in DSP libraries, implementing real-time

signal processing on a MCU might now be possible given advancements in the processing power

of micro controller processors. Further research can be done on the feasibility of real-time FIR

30

8.2. Recommendations 31

filtering, as this would ensure that distortion is never added in the ECG signal which adds to the

reliability of the system.

• The system can be made more tightly integrated, especially with the PROT sub group by unifying

the MCUs used. The feasibility of data acquisition, signal processing and transmission/re

transmission on a single MCU could be a topic for future research.

• Switching noise of the DACs may also be reduced by upscaling the reconstruction rate by linear

interpolation, should it not be possible to increase the sampling rate of the complete system and

keep the real-time filtering aspect of the system. While increasing the DACs reconstruction rate

will not completely remove the switching noise, it minimizes its amplitude. This will reduce the

order of the filter that is required to remove it in the analog domain, reducing power usage, size

and cost of the system.

References

[1] S. G.A.J. Custers, “Communication protocols for a wireless ecg solution,” Delft University of

Technology, Tech. Rep, 2022.

[2] R. v. K. P.J. Wiersma, “Circuit design for a wireless ecg device,” Delft University of Technology,

Tech. Rep, 2022.

[3] Ambulancezorg nederland. “Ambulancezorg nederland sectorkompas 2020, statistieken vanuit

het rivm.” (2022), [Online]. Available: https://www.ambulancezorg.nl/sectorkompas.

[4] M. Sejersten, O. Pahlm, J. Pettersson, et al., “Comparison of easi-derived 12-lead electrocardiograms

versus paramedic-acquired 12-lead electrocardiograms using mason-likar limb lead configuration

in patients with chest pain,” Journal of Electrocardiology, vol. 39, no. 1, pp. 13–21, 2006, issn:

0022-0736. doi: https://doi.org/10.1016/j.jelectrocard.2005.05.011. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0022073605002219.

[5] M. W. Dr. B. McGraw Dr. J. Lord. “Analysis and interpretation of the electrocardiogram, e-

learning module, queens university of health sci.” (2022), [Online]. Available: https://elentra.
healthsci.queensu.ca/assets/modules/ECG/normal_ecg.html.

[6] AliveCor. “Kardiamobile 6l.” (2022), [Online]. Available: https://www.kardia.com/kardiamobi
le6l/.

[7] Physio-control. “Lifepak 12 datasheet.” (2022), [Online]. Available: https://www.physio-
control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/
Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf.

[8] Koninklĳke Philips N.V. “Philips tempus als monitor.” (2022), [Online]. Available: https://www.
philips.nl/healthcare/product/HC989706000171/tempus-als-monitordefibrillator.

[9] ZOLL, an Ashahi Kasei Company. “Zoll heart failure management system (hfms).” (2022), [Online].

Available: https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-
management-system.

[10] corpuls. “Corpuls3 monitor.” (2022), [Online]. Available: https://corpuls.world/en/products/
corpuls3/#Monitoring-unit.

[11] L. G. Tereshchenko and M. E. Josephson, “Frequency content and characteristics of ventricular

conduction,” en, J. Electrocardiol., vol. 48, no. 6, pp. 933–937, Nov. 2015.

[12] O. Kwon, J. Jeong, H. B. Kim, et al., “Electrocardiogram sampling frequency range acceptable for

heart rate variability analysis,” en, Healthc. Inform. Res., vol. 24, no. 3, pp. 198–206, Jul. 2018.

[13] V. Murthy, T. Grove, G. Harvey, and L. Haywood, “Clinical usefulness of ecg frequency spectrum

analysis,” in The Second Annual Symposium on Computer Application in Medical Care, 1978. Proceedings.,
1978, pp. 610–612. doi: 10.1109/SCAMC.1978.679974.

[14] A. Habib, C. Karmakar, and J. Yearwood, Choosing a sampling frequency for ecg qrs detection using
convolutional networks, 2020. doi: 10.48550/ARXIV.2007.02052. [Online]. Available: https:
//arxiv.org/abs/2007.02052.

[15] R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT

der PTB über das internet,” Biomed. Tech. (Berl.), pp. 317–318, Jul. 2009.

[16] A. L. Goldberger, L. A. Amaral, L. Glass, et al., “PhysioBank, PhysioToolkit, and PhysioNet:

Components of a new research resource for complex physiologic signals,” en, Circulation, vol. 101,

no. 23, E215–20, Jun. 2000.

[17] F. Censi, G. Calcagnini, I. Corazza, et al., “On the resolution of ECG acquisition systems for the

reliable analysis of the p-wave,” Physiological Measurement, vol. 33, no. 2, N11–N17, Jan. 2012.

doi: 10.1088/0967-3334/33/2/n11. [Online]. Available: https://doi.org/10.1088/0967-
3334/33/2/n11.

32

https://www.ambulancezorg.nl/sectorkompas
https://doi.org/https://doi.org/10.1016/j.jelectrocard.2005.05.011
https://www.sciencedirect.com/science/article/pii/S0022073605002219
https://elentra.healthsci.queensu.ca/assets/modules/ECG/normal_ecg.html
https://elentra.healthsci.queensu.ca/assets/modules/ECG/normal_ecg.html
https://www.kardia.com/kardiamobile6l/
https://www.kardia.com/kardiamobile6l/
https://www.physio-control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf
https://www.physio-control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf
https://www.physio-control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf
https://www.philips.nl/healthcare/product/HC989706000171/tempus-als-monitordefibrillator
https://www.philips.nl/healthcare/product/HC989706000171/tempus-als-monitordefibrillator
https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-management-system
https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-management-system
https://corpuls.world/en/products/corpuls3/#Monitoring-unit
https://corpuls.world/en/products/corpuls3/#Monitoring-unit
https://doi.org/10.1109/SCAMC.1978.679974
https://doi.org/10.48550/ARXIV.2007.02052
https://arxiv.org/abs/2007.02052
https://arxiv.org/abs/2007.02052
https://doi.org/10.1088/0967-3334/33/2/n11
https://doi.org/10.1088/0967-3334/33/2/n11
https://doi.org/10.1088/0967-3334/33/2/n11

References 33

[18] G. Smith. “Types of a/d converters - the ultimate guide.” (2020), [Online]. Available: https:
//dewesoft.com/daq/types-of-adc-converters.

[19] 16-bit, quad-channel, ultra-low glitch, voltage output digital-to-analog converter, DAC8554, Texas

Instruments, Oct. 2006.

[20] Octal, 16-bit nanodac+ with i2c interface, AD5675, Rev. A, Analog Circuits, Oct. 2010.

[21] Quad, 16-bit, low-power, voltage output, i2c interface digital-to-analog converter, DAC8574, Texas

Instruments, Dec. 2004.

[22] Stm32cubeide. [Online]. Available: https://www.st.com/en/development-tools/stm32cubeide.
html#:~:text=STM32CubeIDE%20is%20an%20all%2Din,for%20STM32%20microcontrollers%
20and%20microprocessors..

[23] Arduino uno rev3. [Online]. Available: https://store.arduino.cc/products/arduino-uno-
rev3.

[24] Arduino mega 2560 rev3. [Online]. Available: https://store.arduino.cc/products/arduino-
mega-2560-rev3.

[25] Arduino due. [Online]. Available: https://store.arduino.cc/collections/boards/products/
arduino-due.

[26] Portenta h7 lite. [Online]. Available: https://store.arduino.cc/products/portenta-h7-lite.

[27] 4622 adafruit: Mouser. [Online]. Available: https://nl.mouser.com/ProductDetail/Adafruit/
4622?qs=7MVldsJ5UaxIlY4FBCFg7w%3D%3D.

[28] Nucleo-f411re stmicroelectronics: Mouser. [Online]. Available: https://nl.mouser.com/ProductDe
tail/STMicroelectronics/NUCLEO-F411RE?qs=Zt3UNFD9mQjdEJg18RwZ2g%3D%3D.

[29] Nucleo-h743zi2 stmicroelectronics: Mouser. [Online]. Available: https://nl.mouser.com/ProductD
etail/STMicroelectronics/NUCLEO-H743ZI2?qs=lYGu3FyN48cfUB5JhJTnlw%3D%3D.

[30] P. Bing, W. Liu, Z. Wang, and Z. Zhang, “Noise reduction in ecg signal using an effective hybrid

scheme,” IEEE Access, vol. 8, pp. 160 790–160 801, 2020. doi: 10.1109/ACCESS.2020.3021068.

[31] Y. Weiting and Z. Runjing, “An improved self-adaptive filter based on lms algorithm for filtering

50hz interference in ecg signals,” in 2007 8th International Conference on Electronic Measurement and
Instruments, 2007, pp. 3-874-3–878. doi: 10.1109/ICEMI.2007.4351057.

[32] H. Gholam-Hosseini, H. Nazeran, and K. Reynolds, “Ecg noise cancellation using digital filters,”

in Proceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No.98TH8269), 1998,

pp. 151–152. doi: 10.1109/ICBEM.1998.666440.

[33] H. K. Jayant, K. Rana, V. Kumar, S. S. Nair, and P. Mishra, “Efficient iir notch filter design using

minimax optimization for 50hz noise suppression in ecg,” in 2015 International Conference on Signal
Processing, Computing and Control (ISPCC), 2015, pp. 290–295. doi: 10.1109/ISPCC.2015.7375043.

[34] S. L. Joshi, R. A. Vatti, and R. V. Tornekar, “A survey on ecg signal denoising techniques,” in 2013
International Conference on Communication Systems and Network Technologies, Apr. 2013, pp. 60–64.

doi: 10.1109/CSNT.2013.22.

[35] E. Ajdaraga and M. Gusev, “Analysis of sampling frequency and resolution in ecg signals,” in

2017 25th Telecommunication Forum (TELFOR), 2017, pp. 1–4. doi: 10.1109/TELFOR.2017.8249438.

[36] mains frequency. “Measurement of the mains frequency.” (2022), [Online]. Available: https:
//www.mainsfrequency.com/index.htm.

[37] swissgrid. “Frequency.” (2022), [Online]. Available: https://www.swissgrid.ch/en/home/
operation/regulation/frequency.html.

[38] entsoe. “[press release] continuing frequency deviation in the continental european power system

originating in serbia/kosovo: Political solution urgently needed in addition to technical.” (2018),

[Online]. Available: https://www.entsoe.eu/news/2018/03/06/press-release-continuing-
frequency-deviation-in-the-continental-european-power-system-originating-in-
serbia-kosovo-political-solution-urgently-needed-in-addition-to-technical/.

[39] R. Klabunde. “Cardiovascular physiology concepts.” (2019), [Online]. Available: https://
cvphysiology.com/Arrhythmias/A009.

https://dewesoft.com/daq/types-of-adc-converters
https://dewesoft.com/daq/types-of-adc-converters
https://www.st.com/en/development-tools/stm32cubeide.html#:~:text=STM32CubeIDE%20is%20an%20all%2Din,for%20STM32%20microcontrollers%20and%20microprocessors.
https://www.st.com/en/development-tools/stm32cubeide.html#:~:text=STM32CubeIDE%20is%20an%20all%2Din,for%20STM32%20microcontrollers%20and%20microprocessors.
https://www.st.com/en/development-tools/stm32cubeide.html#:~:text=STM32CubeIDE%20is%20an%20all%2Din,for%20STM32%20microcontrollers%20and%20microprocessors.
https://store.arduino.cc/products/arduino-uno-rev3
https://store.arduino.cc/products/arduino-uno-rev3
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://store.arduino.cc/collections/boards/products/arduino-due
https://store.arduino.cc/collections/boards/products/arduino-due
https://store.arduino.cc/products/portenta-h7-lite
https://nl.mouser.com/ProductDetail/Adafruit/4622?qs=7MVldsJ5UaxIlY4FBCFg7w%3D%3D
https://nl.mouser.com/ProductDetail/Adafruit/4622?qs=7MVldsJ5UaxIlY4FBCFg7w%3D%3D
https://nl.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-F411RE?qs=Zt3UNFD9mQjdEJg18RwZ2g%3D%3D
https://nl.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-F411RE?qs=Zt3UNFD9mQjdEJg18RwZ2g%3D%3D
https://nl.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-H743ZI2?qs=lYGu3FyN48cfUB5JhJTnlw%3D%3D
https://nl.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-H743ZI2?qs=lYGu3FyN48cfUB5JhJTnlw%3D%3D
https://doi.org/10.1109/ACCESS.2020.3021068
https://doi.org/10.1109/ICEMI.2007.4351057
https://doi.org/10.1109/ICBEM.1998.666440
https://doi.org/10.1109/ISPCC.2015.7375043
https://doi.org/10.1109/CSNT.2013.22
https://doi.org/10.1109/TELFOR.2017.8249438
https://www.mainsfrequency.com/index.htm
https://www.mainsfrequency.com/index.htm
https://www.swissgrid.ch/en/home/operation/regulation/frequency.html
https://www.swissgrid.ch/en/home/operation/regulation/frequency.html
https://www.entsoe.eu/news/2018/03/06/press-release-continuing-frequency-deviation-in-the-continental-european-power-system-originating-in-serbia-kosovo-political-solution-urgently-needed-in-addition-to-technical/
https://www.entsoe.eu/news/2018/03/06/press-release-continuing-frequency-deviation-in-the-continental-european-power-system-originating-in-serbia-kosovo-political-solution-urgently-needed-in-addition-to-technical/
https://www.entsoe.eu/news/2018/03/06/press-release-continuing-frequency-deviation-in-the-continental-european-power-system-originating-in-serbia-kosovo-political-solution-urgently-needed-in-addition-to-technical/
https://cvphysiology.com/Arrhythmias/A009
https://cvphysiology.com/Arrhythmias/A009

References 34

[40] “CMSIS DSP Software Library.” (), [Online]. Available: https://www.keil.com/pack/doc/
CMSIS/DSP/html/index.html.

[41] User manual: Description of stm32h7 hal and low-layer drivers, UM2217 Rev 5, STMicroelectronics, Jul.

2020.

[42] Reference manual: Stm32h742, stm32h743/753 and stm32h750 value line advanced arm®-based 32-bit
mcus, RM0433 Rev 7, STMicroelectronics, Feb. 2020.

[43] “Measuring code execution time on ARM Cortex-M MCUs.” (2018), [Online]. Available: https:
//embeddedcomputing.com/technology/processing/measuring-code-execution-time-on-
arm-cortex-m-mcus.

[44] G. Moody and R. Mark, “The impact of the mit-bih arrhythmia database,” IEEE Engineering in
Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001. doi: 10.1109/51.932724.

[45] S. Narayanaswamy, “High resolution electrocardiography,” en, Indian Pacing Electrophysiol. J.,
vol. 2, no. 2, pp. 50–56, Apr. 2002.

[46] Tektronix. “Waveform generator software.” (), [Online]. Available: https://www.tek.com/en/
products/software/arbexpress-signal-generator.

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://embeddedcomputing.com/technology/processing/measuring-code-execution-time-on-arm-cortex-m-mcus
https://embeddedcomputing.com/technology/processing/measuring-code-execution-time-on-arm-cortex-m-mcus
https://embeddedcomputing.com/technology/processing/measuring-code-execution-time-on-arm-cortex-m-mcus
https://doi.org/10.1109/51.932724
https://www.tek.com/en/products/software/arbexpress-signal-generator
https://www.tek.com/en/products/software/arbexpress-signal-generator

A

Extra figures

A.1. IIR designs

0 50 100 150 200

Frequency (Hz)

-6

-4

-2

0

2

4

6

P
h

a
s
e

 (
ra

d
ia

n
s
)

Phase Response

(a) 8th order Butterworth

0 50 100 150 200

Frequency (Hz)

-3

-2

-1

0

1

2

3

P
h

a
s
e

 (
ra

d
ia

n
s
)

Phase Response

(b) 4th order ellicptic

0 50 100 150 200

Frequency (Hz)

-4

-3

-2

-1

0

1

2

3

4

P
h

a
s
e

 (
ra

d
ia

n
s
)

Phase Response

(c) 6th order Chebyshev type II

Figure A.1: Phase response of different IIR band-stop filters

35

A.1. IIR designs 36

0 50 100 150 200

Frequency (Hz)

-1.5

-1

-0.5

0

0.5

1

1.5

P
h
a
s
e
 (

ra
d
ia

n
s
)

Phase Response

(a) Notch filter

0 50 100 150 200

Frequency (Hz)

-400

-350

-300

-250

-200

-150

-100

-50

0

P
h
a
s
e
 (

ra
d
ia

n
s
)

Phase Response

(b) 250
𝑡ℎ

order hamming band-stop filter

Figure A.2: Phase response comparison of IIR notch filter and FIR band-stop filter

0 50 100 150 200

Frequency (Hz)

0

10

20

30

40

50

60

G
ro

u
p
 d

e
la

y
 (

in
 s

a
m

p
le

s
)

Group delay

(a) Notch filter

0 50 100 150 200

Frequency (Hz)

124.5

124.6

124.7

124.8

124.9

125

125.1

125.2

125.3

125.4

125.5

G
ro

u
p
 d

e
la

y
 (

in
 s

a
m

p
le

s
)

Group delay

(b) 250
𝑡ℎ

order hamming band-stop filter

Figure A.3: Group delay comparison of IIR notch fiter and FIR band-stop filter

Figure A.4: Convergence of IIR filter attenuation over time

A.1.1. ECG Signal Filter Testing

A.1. IIR designs 37

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time [sec]

0

50

100

150

200

250

Fr
eq

ue
nc

y
[H
z]

Frequency Spectogram Input data

0.2

0.4

0.6

0.8

1.0

1e8

(a) Filter input Frequency-domain

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time [sec]

0

50

100

150

200

250

Fr
eq
ue
nc
y
[H
z]

Frequency Spectogram Output data

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1e7

(b) Filter output Frequency-domain

Figure A.5: Filter input and output in the frequency-domain

0 200 400 600 800 1000
Time [Samples]

−0.6

−0.4

−0.2

0.0

0.2

0.4

Am
pl

itu
de

 [m
V]

Original signal

(a) Original ECG Signal

0 200 400 600 800 1000
Time [Samples]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de
 [m

V]

Orignal Signal + 50H

(b) ECG Signal with 50 Hz added

Figure A.6: ECG Signal - Patient 001

B

Complementary Information

B.1. Notch filter transfer functions
In the main body of the thesis, only the transfer function for a 50Hz notch filter was included with

precision up to 5 decimal points. In the implementation the precision is higher and thus, the transfer

function with unrounded coefficients are included in this appendix.

• 50Hz Notch filter:

𝐻(𝑧) = 0.984260526926093116 − 1.59256698635129967𝑧−1 + 0.984260526926093116𝑧−2

1 − 1.59256698635129967𝑧−1 + 0.968521053852186231𝑧−2

(B.1)

• 100Hz Notch filter:

𝐻(𝑧) = 0.984260526926093116 − 0.608306459425206669𝑧−1 + 0.984260526926093116𝑧−2

1 − 0.608306459425206669𝑧−1 + 0.968521053852186231𝑧−2

(B.2)

• 150Hz Notch filter:

𝐻(𝑧) = 0.984260526926093116 + 0.608306459425206447𝑧−1 + 0.984260526926093116𝑧−2

1 + 0.608306459425206447𝑧−1 + 0.968521053852186231𝑧−2

(B.3)

• 200Hz Notch filter:

𝐻(𝑧) = 0.984260526926093116 + 1.59256698635129945𝑧−1 + 0.984260526926093116𝑧−2

1 + 1.59256698635129945𝑧−1 + 0.968521053852186231𝑧−2

(B.4)

38

B.2. DAC Operation 39

B.2. DAC Operation
TRx: Temporary Register x of channel x

DACx: Output channel x of a single DAC8574

Table B.1: 4-byte operation of TI DAC8574

Slave Address+R/𝑊̄ Control Byte 2-Byte Data Function

1 0 0 1 1 A1 A0 0 A3 A2 0 0 X Sel1 Sel0 0 MSB - LSB

Write data to TRx selected by Sel1-Sel0,

on the DAC with matching A3-A0 pins

1 0 0 1 1 A1 A0 0 A3 A2 0 1 X Sel1 Sel0 0 MSB - LSB

Write data to TRx selected by Sel1-Sel0

and immediately update output of DACx,

on the DAC with matching A3-A0 pins

0 0 1 1 A1 A0 0 A3 A2 1 0 X Sel1 Sel0 0 MSB - LSB

Write data to TRx selected by Sel1-Sel0

and update all 4 Channels,

on the DAC with matching A3-A0 pins

1 0 0 0 0 0 0 0 X X 1 1 X 0 X X X - X Broadcast command for all DACs on the 𝐼2𝐶 line

to update all 4 channels with data in TRs

Figure B.1: DAC generated output on Channel 2 of an osciloscope

C

Signal creation

In order to independently test different parts of the system proposed, a function generator (Tektronix

AFG 3012B) was used to output an ECG signal. This appendix will outline the method followed to load

an ECG signal to an arbitrary waveform of the Tektronix AFG 3012B function generator.

1. Obtain up to 1000 samples to form into an arbitrary waveform sampled at a constant time interval

2. Install ArbExpress software from Tektronix [46]

3. Create a .csv file with a format as in Table C.1

Table C.1: Waveform format

(a) General format

#CLOCK={Sample rate oscilloscope}

#SIZE={Amount of samples in waveform (N)}

{Sample 1 value}

{Sample 2 value}

...

{Sample N value}

(b) Example format

#CLOCK=1.0000000000e+08

#SIZE=1000

0.209376141

0.219020873

...

0.736418009

4. Load the .csv file into the ArbExpress software by clicking: File -> Open (Cntrl + O key shortcut)

and selecting the .csv file. When loading in the example format, ArbExpress wil look like Figure

C.1

5. Save the waveform on an USB-device as a .tfw file by clicking: File -> Save as -> Save as type: AFG

TFW(*.tfw)

6. Plug in the USB device in the function generator

7. Load the arbitrary waveform from the USB-device: Function: Arb -> Arb Waveform Menu ->

Memory: USB -> Select waveform.

For the example waveform, the result can be seen in Figure C.2

8. Set frequency, phase, amplitude and offset on the function generator as needed

40

41

Figure C.1: ArbExpress waveform loaded

Figure C.2: Waveform loaded on Tektronix AFG 3021B

	Abstract
	Preface
	Nomenclature
	Introduction
	The WiECG Project
	Basics of ECG
	Problem statement
	Proposed Solution
	State Of The Art

	Subgroup Digital Signal Processing
	Background research

	Program of requirements
	System Overview
	Submodule Overview
	Transmitter
	Receiver

	Complete overview

	Design
	Hardware
	ADC for digitization
	DAC for reconstruction
	Microcontroller

	Noise filtering
	Power line interference
	IIR filters
	FIR filters

	Implementation
	Analog to Digital Conversion
	Settings
	Code

	Digital Filters
	Digital to Analog Conversion

	Measurements
	Execution time
	Filtering time
	DAC Reconstruction time

	Filter Performance
	Theoretical
	Practical

	Discussion
	Micro Controller power usage
	Filtering efficiency
	DAC Integral non-linearity error
	Testing and experiments

	Conclusion & Recommendation
	Conclusion
	Recommendations

	References
	Extra figures
	IIR designs
	ECG Signal Filter Testing

	Complementary Information
	Notch filter transfer functions
	DAC Operation

	Signal creation

